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PERTURBATION AND APPROXIMATION PROPERTIES

FOR ABSTRACT EVOLUTION EQUATIONS

OF FRACTIONAL ORDER

Emilia Bazhlekova

Abstract

We investigate the abstract evolution equation of fractional order

D�u � Au� � � ��

where D� is the Caputo fractional derivative of order � and A is an unbounded
closed operator in a Banach space X � Some perturbation properties are presented�
Using a numerical approximation of D� by fractional di�erences� a representation
formula for the solution operator S� is obtained and applied for studying of the
convergence of the corresponding numerical method� The results generalize known
facts about C��semigroups and cosine operator functions�

Mathematics Subject Classi�cation� 	
A��� �
D�
� �
D���
Key Words and Phrases� fractional calculus� C��semigroup� cosine operator

function� Mittag�Le�er function

�� Introduction

Consider a linear closed operator A densely de�ned in a Banach space X � Let
� � � and n � N� Given x � X � we investigate the following Cauchy problem�

D�
t u�t� � Au�t�� t � �� n� � � � � n�

u��� � x� u�k���� � �� k � �� 	� � � � � n� ��
�����

Here D�
t is the Caputo fractional derivative of order ��

D�
t u�t� � Jn��t Dn

t u�t�� n� � � � � n� ���	�

where Dn
t �

�
d
dt

�n
and J

�
t is the Riemann�Liouville fractional integral�

J�t u�t� �
�

����

Z t

�
�t� s����u�s� ds� � � �� J�

t u�t� � u�t�� �����

The connection between D�
t and the Riemann�Liouville fractional derivative

D�
t u�t� � Dn

t J
n��
t u�t�� n� � � � � n� �����



	

is given by

D�
t u�t� � D�

t

�
u�t��

n��X
k��

u�k����
tk

k�

�
� n � � � � � n� �����

For more details on fractional calculus and applications see �
� and ���� For results
on the abstract problem ����� �also with nonzero initial conditions� see ���� �	�� ���
and references there�

Section 	� contains preliminaries� In Section �� we study perturbation prop�
erties of problem ������ In Section �� we derive a representation formula for
the solution operator S��t�A�� in terms of the resolvent of its generator A� The
starting point is a numerical approximation of D�

t by fractional di�erences� The
convergence rate of the formula when � � � is estimated� The results generalize
some facts concerning C��semigroups and cosine operator functions �COF� and
also exhibit some new features�

�� Preliminaries

Throughout this paperD�A� is the domain� ��A� is the resolvent set� R�	�A� �
�	I �A��� is the resolvent operator of A� B�X� is the space of all bounded oper�
ators from X into itself� z� denotes the principal branch of z� in C cut along the
negative real axis�

Definition ���� A family fS��t�A�gt�� � B�X� is called a solution operator
for ������ if the following conditions are satis�ed�

a� S��t�A� is strongly continuous for t � � and S����A� � I �
b� S��t�A�D�A� � D�A� and AS��t�A�x � S��t�A�Ax for all x � D�A��
c� S��t�A�x is a solution of ����� for all x � D�A�� t � ��

Definition ���� The solution operator S��t�A� is called exponentially
bounded� if there are constants M � � and 
 � � such that

kS��t�A�k �Me�t� t � �� �	���

An operator A is said to belong to C��M�
�� if the problem ����� has a solution
operator S��t�A� satisfying �	���� Denote C� �

S
fC��M�
�� M � �� 
 � �g�

Let us note that if A � C��M�
� and 	 � C such that Re	 � 
 then 	�

belongs to the resolvent set ��A� of A� R�	�� A� is analytic in 	 and

	���R�	�� A�x �

Z �

�
e��sS��s�x ds� x � X� �	�	�

�see e�g� �	� eqs �	�	�� �	������
A characterization of C� is given in the following generation theorem� a par�

ticular case of ���� Theorem �����



�

Theorem ���� A � C��M�
� i� �
���� � ��A� and

k�	���R�	�� A���n�k �Mn��	� 
���n���� 	 � 
� n � N�� �	���

It is known �see �	� Theorem 	���� that if � � 	� then A � C� i� A � B�X��
That is why we consider only � � ��� 	�� In general� it is di�cult to prove that
A � C� verifying conditions �	�	� directly� Therefore it is useful to develop a
perturbation theory for problem ������

In this direction� the following subordination principle �	� could be also helpful�

Theorem ���� Let � � � � � � 	� � � ���� If A � C� then A � C�� S��t�A�
is analytic in ft � Cnf�g� j arg tj � minf���� � ��
�	� 
�	gg and the following
representation holds

S��t�A�x �

Z �

�
�t���s�S��s�A�x ds� t � �� x � X� �	���

where �t���s� � t�����st
���� ���z� �

P�
n��

��z�n

n�����n����� �

�� Perturbation properties

A classical result �see ���� and ����� is� if A is the generator of a C��semigroup
�COF� and B � B�X�� then A�B is again a generator of a C��semigroup �COF��
This is not true in general for solution operators of ����� with � � � � �� as the
following example shows�

Example ���� Let � � � � � be �xed� Assume X � l� � the Banach space of
all sequences x � fxng

�
n��� xn � C� with norm kxk �

P�
n�� jxnj ��� Let A� be

an operator de�ned by A�x � fexp�i�
�	�nxng
�
n�� with domain D�A�� � fx �

l� �
P�

n�� njxnj ��g� We are going to prove that A� � C�� but A� � I �� C��

Applying �A�	�� it follows that if S��t�A� exists� it is given by the formula

S��t�A�x � fE��exp�i�
�	�nt
��xng

�
n���

Since arg�exp�i�
�	�nt�� � �
�	 for t � �� the asymptotic property of Mittag�
Le�er functions �A��� implies jE��exp�i�
�	�nt��j � ���� n 	 �� Hence
kS��t�A�xk � ����� ��kxk for some � � � and any x � l�� hence A� � C

��

Similarly�

S��t�A� � I�x � fE���exp�i�
�	�n� ��t��xng
�
n���

Using again the asymptotic relation �A����

jE���exp�i�
�	�n���t��j � ����� exp�Re�exp�i�
�	�n������t�� n	�� �����

we shall show that� given t � �� there is no constantC such that kS��t�A��I�xk �
Ckxk� Indeed� let us use the representation



�

Re��exp�i�
�	�n� ������ � Re��rn exp�i�n��
���� � r���n cos��n���� ���	�

where

rn � �n	 � �� 	n cos��
�	����	� �n � arctan
n sin��
�	�

� � n cos��
�	�
� �����

Now we shall �nd the asymptotic behaviour of cos��n��� as n 	 �� Using a
well�known school formula and ����� we obtain

tan��
�	� �n� �
tan��
�	�� tan �n
� � tan��
�	� tan�n

�
sin��
�	�

n� cos��
�	�
� O�

�

n
�� n	��

that is 
�	 � �n�� � O���n�� n 	 �� Hence cos��n��� � sin�
�	 � �n��� �

O���n�� n	�� Together with r
���
n � O�n����� n	�� we obtain

r���n cos��n��� � O�n������� n	��

Since ���� � � �� using ����� and ���	�� we have the desired result�

In contrast to the case � � ��� ��� in the case � � ��� 	� perturbations by
bounded operators are always possible� In the next theorem we prove this even
in the case of bounded time�dependent perturbations� For � � 	 an analogous
theorem is presented in �
��

Theorem ���� Let � � ��� 	�� A � C��M�
� and for every t � R� B�t� �
B�X�� If the function t 	 B�t� is continuous in the uniform operator topology
then for every x � D�A� the Cauchy problem

D�
t u�t� � �A�B�t��u�t�� t � �� �����

u��� � x� u���� � �� �����

admits an uniquely determined solution u�t� given by the formula

u�t� � S��t�A�B�x �
�X
n��

S��n�t�A�x� ���
�

where
S����t�A� � S��t�A��

S��n�t�A� �

Z t

�
R��t� s�A�B�s�S��n���s�A� ds� n � N� ���
�

R��t�A� �
�

��� � ��

Z t

�
�t� s���	S��s�A� ds� �����



�

Moreover� if KT � maxt�
��T � kB�t�k� we have for all t � ��� T � the bounds

ku�t�k �Me�tE��MKT t
��kxk�

ku�t�� S��t�A�xk �Me�t�E��MKT t
��� ��kxk�

�����

P r o o f� From �	��� and ����� it follows

kR��t�A�k �Me�tt��������� ������

Then� applying the identity
R t
��t�s�

a��sb�� ds � ta�b��B�a� b� to ���
�� we obtain
by induction

kS��n�t�A�k �Mn��e�tKn
t t

�n����n � ��� n � N�� ������

From these bounds it follows that the series representing S��t�A � B� in ���
�
are uniformly convergent on compact subsets of R� with respect to the operator
norm topology� Hence� S��t�A�B� is a strongly continuous function on R� with
values in B�X�� Furthermore� the bounds ����� follow directly from �������

Next we prove that u�t� satis�es ����� and ������ Since S����A� � I� S��n���A�
� �� n � N� S ���n���A� � �� n � N�� we have S����A�B� � I � S�����A�B� � ��
i�e� the initial conditions are satis�ed� Applying ���
� and ���
�� it follows

u�t� � S��t�A�x�
�X
n��

Z t

�
R��t� s�A�B�s�S��n�s�A�x ds

� S��t�A�x�

Z t

�
R��t� s�A�B�s�u�s� ds� ����	�

where the interchanging of the summation and integration is justi�ed by the uni�
form convergence of the series� Integrodi�erentiating ����	�� we obtain

D�
t u�t� � AS��t�A�x�D�

t

Z t

�
R��t� s�A�B�s�u�s� ds� ������

Let for shortness� �f 
g��t� �
R t
� f�t�s�g�s� ds� Then� setting h�t� � B�t�u�t� and

using ������ ������ �R�
h���� � �R�
h�
���� � �� the property J�t �f 
g� � �J�t f�
g

and the semigroup property for operators of fractional integration� we obtain

D�
t �R��t�A� 
 h�t�� � D�

t �R��t�A� 
 h�t�� � D	
tJ

	��
t �J���t S��t�A� 
 h�t��

� D�
t �S��t�A� 
 h�t�� � �D�

tS��t�A�� 
 h�t� � S����A�h�t�� ������

Since S���n���A� � �� n � N�� it follows

D�
tS��t�A�x � J�

tD
	
tS��t�A�x � J���t J	��

t D	
tS��t�A�x � J���t D�

t S��t�A�x






� J���t S��t�A�Ax � R��t�A�Ax � AR��t�A�x� ������

Combining ������� ������ and ������ and using the closedness of A� we obtain that
u�t� satis�es ������

To prove the uniqueness� let v � R� 	 D�A� be a solution of ����� with
v��� � v���� � �� Then� using the property J�t D

�
t u�t� � u�t� � u��� � tu����

we have v�t� � J�t Av�t� � J�t B�t�v�t� and applying the variation of parameters
formula �see ���� Prop� ��	��� v�t� satis�es the integral equation

v�t� �

Z t

�
R��t � s�A�B�s�v�s� ds�

Setting mt � maxs�
��t� kv�s�k� we see that for mt � �

mt �
MKtmt

����

Z t

�
�t� s����e��t�s� ds �

MKtmt

���� ��
t�e�t � mt�

if t � � is chosen su�ciently small� Thus� v�t� � � on ��� t�� with t� � �� Iteration
of this argument leads to v�t� � � on R�� �

Next we present an additional perturbation result�

Theorem ���� Let � � ��� 	��A � C� and B be a linear operator with domain
D�B� satisfying D�B� � D�A�� Assume that there exist constants 
 � �� M � �
such that �
���� � ��A�� BR�	�� A� is strongly in�nitely di�erentiable when
	 � 
 and satis�es

k�BR�	�� A���n�xk �Mn�kxk��	� 
�n��� x � X� 	 � 
� n � N�� ����
�

Then A� B � C��

P r o o f� The proof imitates the proof of an analogous theorem for COF �see
������ Here we take 	���R�	�� A� instead of 	R�		� A� and use Theorem 	��� �

We conclude this section with two open problems�

�� Let � � ��� 	�� If A � C� does there exist 
 � R such that the solution
operator S��t�A� 
I� is uniformly bounded �kS��t�A� 
I�k �M� t � � ��

For � � � the existence of such a constant is trivial and it is of great help in
dealing with C��semigroups� For � � 	 it is shown by an example �see ���� that
the answer is negative� Applying the subordination principle �Theorem 	�	�� we
can give an answer to the problem for noninteger � only in some particular cases�

	� Let � � ��� 	�� If A�� A	 � C
� and they commute� is it true that A� �A	 �

C��

Again for � � � the answer is positive �see ����� and for � � 	 � negative �see
����� Here we notice only a weaker property of A� �A	� as follows�






Proposition ���� Let � � ��� 	�� A�� A	 � C� and they commute� Then
A� � A	 generates a semigroup analytic in �� � ft � Cnf�g� j arg tj � �� �
��
�	g�

Let us note that the analyticity of S��t�A� �A	� in �� does not imply in
general A� �A	 � C

� �see �	� Example ��	���

P r o o f� According to Theorem 	�	� A� and A	 generate C��semigroups
analytic in �� and given by the formulas

S��t�Aj�x �
Z �

�
�t�����s�S��t�Aj�x ds� j � �� 	�

Since S��t�A�� and S��t�A	� commute for all t� s � �� then S��t�A�� and S	�t�A	�
commute for t� s � �� Hence �see ����� A� �A	 � C� and S��t�A� � A	� �
S��t�A��S	�t�A	� is a strongly continuous semigroup analytic in ��� �

�� Approximate solutions

The exponential representation for C��semigroups

S��t�A�x � lim
n��

�I �
t

n
A��nx� x � X� t � �� �����

where the convergence is uniform in bounded t�intervals for each �xed x� is very
well known� This formula has important implication for the numerical approxima�
tion of the trajectories of S��t�A� especially for implicit approximation schemes�
Results in this direction for cosine operator functions are given e�g� in ��
� and
����

First we recall why the exponential formula ����� is important for the numer�
ical approximation of S��t�A�� Usually� to �nd an approximation of the value of
the solution of the problem

D�
tu�t� � Au�t�� u��� � x� ���	�

at a �xed time t � � we divide the interval ��� t� into n equal parts and approximate
the derivative by a di�erence� If we take the two�point backward di�erence we
obtain the following implicit di�erence scheme

�

h
�un�jh�� un��j � ��h�� � Aun�jh�� j � �� � � � � n� un��� � x� �����

with h � t�n� The equations ����� can be solved explicitly and their solution
un�t� given by un�t� � �I � t

nA�
�nx for n su�ciently large is an approximation

of the solution u�t� of ���	�� Then the exponential formula ����� implies that
un�t�	 u�t�� as n	�� So� the solution of the di�erence scheme ����� converges



�

to the solution of the di�erential equation ���	�� Some estimates of the range of
convergence could be also done�

We generalize this classical result to the case of the fractional order problem
������ Consider the numerical method for solving fractional di�erential equations
using the following approximation of D�

t � by the backward fractional di�erence
�see ��	� Ch�
�����

D�
� f��� � h��


��h�X
i��

����i
�
�
i

�
f�� � ih�� �����

where �
�

i

�
�

���� �� � � ��� � i� ��

i�
� i � N�

Applying ����� to the solution u�t� of ����� we obtain D�
t u�t� � D�

t �u�t� � x��
Then using ����� to approximate the equation in ����� and forward di�erences to
approximate the initial conditions in �����

u�k���� � h�k
kX

i��

����i
�
k
i

�
u��k � i�h�� k � �� �� � � � � m� ��

we obtain the following di�erence scheme

h��
jX

i��

����i
�
�
i

�
�un��j � i�h�� x� � Aun�jh�� j � m�m� �� � � � � �����

un�jh� � x� j � �� �� � � � � m� �� ���
�

where h � t�n� It can be solved explicitly and the result is presented in the next

Theorem ���� Let A � C��M�
� and un�t� be the approximation de�ned by
�	�
��� to the solution u�t� of �
�
�� Then

un�t� �
�

�n�m��

n�m��X
k��

b�k�n�m�� �I � �t�n��A��k x� x � X� ���
�

where b�k�n are given by the reccurence relations

b���� � �� b�k�n � �n� �� k��b�k�n�� � ��k � ��b�k���n��� � � k � n� n � 	� �� � � � �

b�k�n � �� k � n� n � �� 	� � � � � �����

and un�t� converges to u�t� as n	� uniformly on bounded subsets of t � ��
To prove this theorem we need two lemmas�



�

Lemma ���� Let � � �� If 	 � C is such that R�	�� A� is in�nitelly di�eren�
tiable then

�	���R�	�� A���n�x � ����n	��n���
n��X
k��

b�k�n���	
�R�	�� A��k� �����

for n � �� �� � � � where b�k�n are given by the reccurence relations �	����

Lemma ���� Let f�
� � ����� 	 X be a continuous function such that
kf�t�k � Me�t� t � �� for some M � � and 
 � �� Then for any integer
k � � we have

lim
n��

nn�k��

�n� k��

Z �

�
�n�ke�n	 �f�t�� f�t��� d� � �

uniformly on bounded subsets of t � ��

Lemma ��� follows by a simple inductive argument on n� Lemma ��	 can be
proven by a method similar to that in ���� p����� so we omit the proofs�

P r o o f� �of Theorem ���� The case t � � is trivial� applying
Pn��

k�� b
�
k�n�� � n��

which can be obtained from ����� with A � �� Consider t � �� Then� using ���
�
and the identity

jX
i��

����i
�
�

i

�
�

�
j � �

j

�
�

����� is equivalent to

�I�h�A�un��m�j�h� �
jX

i��

����i��

�
�
i

�
un��m�j�i�h��

�
j � �
j

�
x� j � �� �� � � � �

������
�here we let

P�
i�� � ���

If we choose n such that n�t � 
 and apply �	�	� then �I � h�A��� �
h��R�h��� A� exists and we obtain from ������

un��m� j�h� � h��R�h��� A�

�
� jX
i��

����i��

�
�

i

�
un��m� j � i�h� �

�
j � �

j

�
x

�
� �

������
Denote for shortness F �	� � 	���R�	�� A�� Next we shall prove by induction on
j that un��m� j�h� � vn�j� h�� j � �� �� � � �� where

vn�j� h� �

	
����j	j��

j�
F �j��	�x



����h

� j � �� �� � � � � ����	�



��

For j � � this is trivial� Suppose that un��m � l�h� � vn�l� h� is true for all
l � j � �� By ������ and the induction hypothesis it follows

un��m�j�h� �

�
�	F �	�

�
�����j��

jX
i��

�
�

i

�
	j���i

�j � i��
F �j�i��	�x�

�
j � �

j

�
x



A
�
�
����h

�

������
Further� we use the identity

AF �j��	�x � �	�F �	���j�x� ����j��j�	�j����
�
j � �

j

�
x� j � �� �� � � � � ������

which can be easily proven by induction� �Note that AF �j��	� is a bounded
operator by ����� and the fact that AR�	�� A� is bounded and it is su�cient
to prove ������ for x � D�A��� Applying the operator �R�	�� A� to both sides
of ������ and using that AR�	�� A�x � R�	�� A�Ax � 	F �	�x � x� x � D�A��
R�	�� A� � 	���F �	�� we obtain

F �j��	�x � F �	�

	
�	����	�F �	���j�x� 	F �j��	�x� ����jj�	�j

�
j � �

j

�
x



�

������
With the aid of the Leibniz rule

�	�F �	���j� �
jX

i��

�
j
i

�
���� �� � � ���� i� ��	��iF �j�i��	�

and ������ can be written in the form

F �j��	�x �
����jj�

	j��
	F �	�

�
�����j��

jX
i��

�
�
i

�
	j���i

�j � i��
F �j�i��	�x�

�
j � �
j

�
x

�
� �

����
�
Now ������ and ����
� imply un��m�j�h� � vn�j� h�� Taking j � n�m we obtain

un�t� �

	
����n�m	n�m��

�n�m��
F �n�m��	�x



��n�t

� ����
�

and this representation together with ����� implies ���
��
Di�erentiating �	�	� n � m times with respect to 	 and inserting the result

into ����
� we �nd

un�t� �

	
	n�m��

�n�m��

Z �

�
sn�me��sS��s�A�x ds



��n�t

� ������



��

Noting that 	n�m��
R�
� sn�me��s ds � �n�m��� it follows

u�t�� un�t� �

	
	n�m��

�n�m��

Z �

�
sn�me��s�S��t�A�x� S��s�A�x� ds



��n�t

� ������

or� after the change of variables s � t�

u�t�� un�t� �
nn�m��

�n�m��

Z �

�
�n�me�n	�S��t�A�x� S��t��A�x� d�� ���	��

It remains to apply Lemma ��	 and the proof of Theorem ��� is completed� �

Remark ���� A similar representation for u�t� has been obtained in ���
Corollary ��	�� applying the Post�Widder inversion formula� In our notations it
can be written as u�t� � limn�� vn�n� t�n�� In fact� ���	�� together with Lemma
��	 shows that u�t� � limn�� vn�n� k� t�n� for any integer k � ��

Remark ���� Note that if � � � � � then b�k�n � �� This fact can be applied
for studying the positivity properties of the solution operator�

Next we estimate the rate of convergence of representation ���
� when � � ��

Theorem ���� Let � � �� A � C��M�
� and x � D�A�� If un�t� is the
approximation de�ned by �	�
��� to the solution u�t� of �
�
� then

ku�t�� un�t�k � O�n���	�� ���	��

uniformly on t in compacts of ������ If A � C�M� �� then the more precise
estimate

ku�t�� un�t�k � C�Mn���	t�kAxk� x � D�A�� ���		�

holds� where C� depends only on ��

P r o o f� We start from ������� Let us �nd a bound for S��t�A�x�S��s�A�x�
Applying D�

t J
�
t to both sides of the equation in ����� and using the property

J�t D
�
t f�t� � f�t��

n��X
k��

f �k����
tk

k�

we obtain

S���t�x � D�
tJ

�
t AS��t�x � D�

tJ
�
t J

���
t S��t�Ax � J���t S��t�Ax� ���	��

Therefore S��t�A�x� S��s�A�x �
R t
s R��� �A�Axd� with R��t�A� de�ned as in

������ Applying ������ it follows

kS��t�A�x� S��s�A�xk �M������jt � sj max
��
s�t�

����e��kAxk �



�	

MkAxk

����

���
��

�t� s�t���e�t� t � s�

�s� t�s���e�s� s � t�

Inserting these bounds in ������ we get

ku�t�� un�t�k �

MkAxk

�����n�m��

�
n

t

�n�m�� �Z t

�
sn�me�ns�t�t � s�t���e�t ds�

Z �

t
sn�me�ns�t�s� t�s���e�s ds

�
�

MkAxkt�e�t

�����n�m��

�
��n�m� �� n��

�

n
��n�m� 	� n��

nn�m��e��t

�n� 
t�n�m����
��n �m� �� �� n� 
t��

nn�m��e��t

�n� 
t�n�m��
��n�m� �� n� 
t�



� ���	��

where ��a� b� �
R b
� e

�tta�� dt� ��a� b� �
R�
b e�tta�� dt are the incomplete Gamma

functons �see ���� vol���� Using the identities ��a� �� b� � a��a� b�� bae�b� ��a�
�� b� � a��a� b� � bae�b� we simplify the last expression and obtain

ku�t�� un�t�k �
MkAxkt�e�t

�����n�m��

�
m� �

n
��n�m� �� n��

e��t
�
��


t

n

��n n��m��� 
t�m�

�n� 
t���m��
��n �m� �� n� 
t� �

	n� 
t

n� 
t
nn�me�n



�

���	��
Applying the inequalities ��n��� n� � ��n��� � n�� ��n��� n�
t� � ��n����
	�n����nne�n � �	�
n���	 and the asymptotic property of the Gamma functions
��n � ���n� � n����� � O�n����� � ���� vol� ��� we see that the last term in the
brackets is dominating as n	 �� that implies ���	��� In case 
 � � the estimate
���	�� reduces to

ku�t��un�t�k �
MkAxkt�

�����n�m��

�
m� �

n
��n� �� n� �

� �m

n�
��n� �� n� � 	nn�me�n

�

that by remarks above implies ���		� �



��

Appendix

The Mittag�Le�er function �see ��� vol� ���� de�ned as follows

E��z� �
�X
n��

zn

���n � ��
� � � �� z � C� �A���

is an entire function which satis�es the fractional order di�erential relation

D�
t E��	t

�� � 	E��	t
��� �A�	�

Its asymptotic expansion as z 	� for � � � � 	 is�

E��z� �
�

�
exp�z���� � ���z�� j argzj �

�

	
�
� �A���

E��z� � ���z�� j arg��z�j � ���
�

	
��
� �A���

where

���z� � �
N��X
n��

z�n

���� �n�
� O�jzj�N�� z 	��
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