
 

On analytical expressions for the distribution of the filtered
output of square envelope receivers with signal and colored
Gaussian noise input
Citation for published version (APA):
Tafur Monroy, I. (2001). On analytical expressions for the distribution of the filtered output of square envelope
receivers with signal and colored Gaussian noise input. IEEE Transactions on Communications, 49(1), 19-23.
https://doi.org/10.1109/26.898245

DOI:
10.1109/26.898245

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/26.898245
https://doi.org/10.1109/26.898245
https://research.tue.nl/en/publications/7f69fed0-5d21-443d-b784-f2438ba58de3


IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 1, JANUARY 2001 19

On Analytical Expressions for the Distribution of the Filtered Output of Square
Envelope Receivers with Signal and Colored Gaussian Noise Input

Idelfonso Tafur Monroy

Abstract—Closed-form expressions for the moment generating
function (MGF) of the filtered output of square envelope receivers
with signal and colored Gaussian noise input are derived. The
informative signal is a binary sequence of rectangular pulses.
The considered Gaussian processes are the Wiener process, a
Gaussian process with linear covariance (moving average), and
the Ornstein–Uhlenbeck process. The derived MGFs are then
applied to the problem of finding the quantum limit for optically
preamplified, direct detection receivers.

Index Terms—Communication theory, envelope receivers, error
analysis, optical communications, preamplified receivers.

I. INTRODUCTION

DETERMINING the distribution of the output of square en-
velope receivers with colored Gaussian input constitutes

a classic problem in communication theory; see, e.g., [1]–[5].
Although the mathematical formalism for determining the sta-
tistics of the output of such receivers is well known, e.g., [1],
[3], [5], and [6], deriving closed-form expressions for the dis-
tribution is a complex task. Moreover, if both signal and noise
are present at the input, this task become even more formidable.
For the case of noise only input expressions for the moment
generating function (MGF) and analytical approximations to the
probability density function have been reported for several co-
variance kernels, e.g., [3], [5], and [7]. For both signal and noise
being present at the input closed-form expressions for the dis-
tribution are scarcely documented in the literature. In this letter,
closed-form expressions for the MGF are derived for the case
of an input informative signal composed of a binary sequence
of rectangular pulses. The considered Gaussian processes are
the Wiener process, a Gaussian process with linear covariance
(moving average), and the Ornstein–Uhlenbeck process.

The remain of this letter is structured as follows. In Section II
the system model to be discussed is presented. The mathemat-
ical formalism to obtain closed-form expressions for the MGF
of the receiver’s output is also described. Closed-form expres-
sions for the MGF for the considered Gaussian processes are de-
rived in Section III. Section IV is devoted to the application of
the derived MGFs to find the quantum limit for optically pream-
plified, direct detection receivers. Finally, summarizing conclu-
sions are presented in Section V.
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II. SYSTEM MODEL

In this section, we present the reference model for the
system under investigation. The receiver schematic diagram
is presented in Fig. 1. This receiver has the classic configu-
ration of pre-detection filter , square envelope detector,
and post-detection filter. The input is an informative signal
corrupted by an additive white Gaussian noise (AWGN)
with spectral density parameter . In the sequel, equivalent
bandpass representation of signal and noise is assumed. The
incoming signal is a binary sequence of rectangular pulses

. For a given bit pattern, , at the
output of the filter the signal is given by

(1)

where is the pre-detection filter impulse response,
in which denotes convolution, is unit rectan-

gular pulse of duration , are statistically binary
symbols representing a data “zero” and a “one,” respectively.
is the energy content of the signal in a bit-duration time
interval . At the pre-detection filter
output, the resultant colored Gaussian noise is denoted by,
whose in-phase and quadrature components have zero mean and
autocovariance

(2)

where means complex conjugate. With the above nota-
tions, the input of the square envelope detector becomes

. If we consider and integrate-and-dump
post-detection filter, then the receiver’s output is given by

(3)

The general mathematical form for the MGF of,
, is well known, e.g., [1], [7]

(4)

where . The set of orthonormal func-
tions are the eigenfunctions and are the eigenvalues of
the integral equation

(5)
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Fig. 1. Square envelope receiver.

in which is the covariance kernel of the process .
Let stand for the resolvent kernel associated with
the integral equation (5). The MGF in (4) can be represented in
terms of the resolvent kernel as [7]

(6)

where

(7)

and , also called the Fredholm determinant, is given by

(8)

III. MGF

In this section, closed-form expressions for are pre-
sented for three different Gaussian processes.

Case 1: The Wiener Process:Suppose that is the (nor-
malized) impulse response of an integrate-and-dump filter, then

(9)

The process is the Wiener process which has covariance
given by

(10)

As one can observe from the character of , the in-
tegrate-and-dump filter does not introduce intersymbol
interference (ISI). The resulting expression for the MGF is (see
Appendix A for a derivation)

(11)

Case 2: Gaussian Process with Linear Covariance:Let
be a finite-time bandpass integrator (moving average) whose
impulse response is given by

otherwise.
(12)

The covariance kernel of is the triangular function (linear
covariance [5])

otherwise.
(13)

The analysis for the observation time shows that the MGF
for is of the same character as (11). As already reported in [5],
it can be derived from (11) by substitution of by . The
result is

In contradistinction to the integrate-and-dump filter the fi-
nite-duration integrator introduces ISI. Communication is
only possible if the observation time is shifted from to

. For this type of filter, only a single past and
one succeeding bit produce ISI on the present transmitted bit.
Hence the bit sequence of interest is . The
expression for is given by (14), shown at the bottom of
the page, with

sinc sinc

sinc sinc

sinc sinc

where , and sinc . The Fredholm
determinant is given by . Appendix B ex-
plains the derivation of (14).

Case 3: The Ornstein–Uhlenbeck Process:If is the im-
pulse response of the Lorentzian filter

(15)

(14)
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Fig. 2. Optically preamplified OOK receiver.

then the process is the so called Ornstein–Uhlenbeck
process with covariance given by

(16)

The information signal for is given by

The Lorentzian filter is a causal filter; hence when studying the
effect of ISI only a sequence of previous bits with respect to the
present transmitted bit is treated, .
In practice only a small number of previous bit is considered
[8] For this case the resolvent kernel is well known, e.g., [5]
and [7]. The closed-form expression for and its detailed
derivation has been reported in an earlier paper by the author
[8]. The resulting expressions for and are presented
here

(17)

where

in which .

(18)

The mean and the variance ofcan be found from the properties
of the MGF. Namely, from the first and second derivative of the
MGF evaluated at [9]. The mean and the variance of
can also be expressed in terms of the covariance kernel without
the knowledge of the MGF [8]. The validity of the previous
derived MGF has been tested by confirming that the mean and
the variance obtained by both methods are identical. Moreover,

if only noise is present, then the MGF is given only in terms
of the Fredholm determinant , and their expressions are in
agreement with those already known in the literature, e.g., [5]
and [7].

IV. A PPLICATIONS

In this section, we applied the derived MGF to determine the
quantum limit for optically preamplified, on–off keying (OOK)
direct detection receivers. The schematic diagram of such a re-
ceiver is illustrated in Fig. 2. The preamplifier is an EDFA (er-
bium-doped fiber amplifier) which is modeled as linear optical
field amplifier with gain and AWGN noise representing
the ASE (amplified spontaneous emission) noise. The spectral
parameter of is given by , where
is the amplifier spontaneous emission factor,is the Planck’s
constant, and optical frequency. An optical filter is used
to limit the effect of ASE on the system performance, and in
the case of WDM (wavelength-division multiplexing) systems
to select the desired channel.

By introducing a proper normalization (see [8]),represents
the average number of photons contained in an optical signal

for a transmitted binary “one.” The spectral parameter of
is then given by . At the output of the

photodetector the photocurrent is directly proportional to the
square magnitude of the received optical field. Further, the pho-
tocurrent is filtered and sampled to form the decision variable

. Thus, the analysis of optically preamplifed, OOK direct de-
tection receivers (Fig. 2) is an example of the classic commu-
nication situation of square envelope detectors followed by fil-
tering with colored Gaussian input. Assume that the postdetec-
tion filter is an integrate-and-dump filter. The MGF for the re-
ceiver decision variable is then given by

, where is the so-calledPoisson parameter[cf. (3)], e.g.,
[10] and [8].

Assuming independent, equally likely binary symbols the av-
erage error probability is given by

(19)
Based on the MGF for the decision variable, error probabil-
ities are expeditiously computed by the so-called saddlepoint
approximation. For further details on the saddlepoint approxi-
mation see [7], [11], and [8] for an application to performance
analysis of optically preamplified receivers.

In optical communications, the (standard),quantum limitis
defined as the average number of photons per bit in the optical
signal needed to achieve a bit-error probability of
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TABLE I
QUANTUM LIMIT FOR OPTICALLY PREAMPLIFIED OOK DIRECT DETECTION,

G = 100, AND n = 1

assuming ideal detection conditions, which for a preamplified
receiver means that a largeis assumed.

Suppose we have optical filters described by the impulse re-
sponses (equivalent baseband representation) of Cases 1–3 [see
(9), (12), and (15)]. The above derived MGFs [(11), (14), and
(17)] can then be used [substituting to account for
amplification, and with ] to find the corre-
sponding quantum limits. In Table I, the obtained results are
presented. For comparison, the quantum limit for the situation
when the optical signal is assumed to pass the optical filter
undistorted and that is Gaussian bandlimited (ideal band-
pass filter) is also included. When the effect of optical filtering is
taken into account penalties are observed compared to the case
assuming ideal bandpass filtering. For the analyzed optical fil-
ters, this penalty in the quantum limit is at least of eight photons
per bit. It should be noted that of the considered optical filters
only the Lorentzian filter (Case 3) represents practical interest.
Widely used in optical transmission systems Fabry–Perot fil-
ters are well described by the Lorentzian impulse response of
(15).We observe also that there exists an optimum bandwidth
bit-time product , the reason being a tradeoff be-
tween ISI and ASE noise (see Table I).

V. CONCLUSIONS

Closed-form expressions, believed to be new, for the MGF
of the filtered output of square envelope receivers with signal
and colored Gaussian noise have been derived. The Wiener
process, a Gaussian process with linear covariance, and the
Ornstein–Uhlenbeck process are considered. The informative
signal is binary sequence of rectangular pulses. We present an
application of the derived MGFs in the performance analysis of
optically preamplified, direct detection receivers.

APPENDIX A
DERIVATION OF THE MGF: CASE 1

For the covariance function given by (10), the resolvent kernel
is given by [5]

(20)

where ,

and
.

We perform integration in (7) first with respect toand with
respect to .

in which . Solving the integrals
we get

Subsequently

resulting in

(21)

The Fredholm determinant is given by [see (8)]

(22)
A result already obtained in [5] and references therein.

APPENDIX B
DERIVATION OF THE MGF: CASE 2

For the covariance kernel given in (13) and an observation
interval , the resolvent kernel is presented in [5].
If the observation time is extended to , then the resultant
resolvent kernels is given by

(23)

with . The MGF is found by performing integration
in (7) and (8) with the proper integration limits and the corre-
sponding expression for . The algebraic procedure is sim-
ilar to that presented in Appendix A.
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