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Summary 

Often, an output device with binary output is used for the realization of computer­
generated holograms. This requires a transformation of the calculated hologram 
transmittance function into a binary function. For binary holograms based on pulse­
density modulation, this function is assumed to consist of nonoverlapping identical 
binary pulses. The desired optica! properties are approximately obtained by an 
appropriate modulation of the local density of the pulses. For Fourier holograms 
a small difference between the spectra of the original and the binary hologram is 
required in a given frequency band. 

Continuous pulse-density modulation allows a free positioning of the pulses. For. 
one-dimensional signals we apply an integration concept in order to determine the 
positions of the pulses, either individually or for smal! groups of pulses simultane­
ously. For the various methods the approximation error as a function of the pulse 
density is estimated. Computer simulations verify the theory for the lower-order 
methods. Reformulating the integration concept in differential form, one can derive 
a set of nonlinear partial differential equations for two-dimensional pulse-density 
modulation. Two-dimensional pulse-density signals with a relatively small number 
of pulses have been obtained by solving these equations numerically. However, in 
its present implementation this approach requires too much computation for a large 
number of pulses. In a concluding section the relation of continuous pulse-density 
modulation with known methods for the clustering of points has been discussed. 

For discrete pulse-density modulation the positioning of the pulses is restricted 
to fixed raster points. The problem of determining where to place the pulses is 
now reduced to deciding for the individualraster points whether to place a pulse or 
not. In a natura! way the integration concept developed for continuous pulse-density 
modulation then passes into error diffusion. In order to apply error diffusion on a 
two-dimensional raster, a processing order of the raster points is introduced. The 
quantization errors introduced at previous raster points are weighted by diffusion 
coefficients and taken into account during the decision for a certain raster point 
under consideration. A linear model for error diffusion shows how the diffusion 
coefficients can he employed in order to obtain a small deviation of the spectra 
within the given frequency band. Unstable behaviour of the recursive error diffusion 
system is avoided by a proper choice of the diffusion coefficients. A methad for the 
determination of appropriate and stabie diffusion coefficients is presented. Applying 
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the error ditfusion system with the calculated ditfusion coefficients results in binary 
holograms with a small deviation in the given frequency band. 

The generalization of error ditfusion which is not recursively computable leads 
to a Hopfield neural network. The interconnection weights and the thresholds of the 
neurons in this network are determined by the original hologram and the frequency 
band used. The binary hologram Î? found as the outputs of the neurons. Given an 
initia! pulse distribution, the neuron outputs are updated until some final solution 
is reached. However, despite the additional amount of computation, compared to 
error ditfusion, the results are rather disappointing. Since the network performs a 
local search during updating, the obtained pulse distribution is optima! with respect 
to its local neighbourhood. A Boltzmann machine, which is the combination of 
a Hopfield network with simulated annealing, allows escaping from local optima! 
solutions, such that better solutions can be found. An efficient implementation of 
the Hopfield network is possible due to the special structure of the interconnection 
weights. This structure is also exploited for the presented Boltzmann machine with 
parallel updating. This leads to substantially improved binary holograms with a 
reasonable computational etfort. 



Chapter 1 

Introduetion 

The design of computing and signa! processing systems based on parallel architec­
tmes is receiving more and more attention. For the realization of parts of such 
systems (e.g. interconnections) opties offers interesting design potentialities. An 
important component of optica! systems is the holographic element, which serves 
as a wavefront-shaping device. The conventional way to realize a hologram is the 
photographic recording of an interference pattern. With a more recent technique 
the desired pattem is generated by means of a digital computer. Digital holography 
offers possibilities going beyond those afforded by classica! holography. Moreover, 
computer-generated holograms are relatively small and light, and are suitable for 
mass production. In Chapter 2 of this thesis, a concise introduetion to classica] 
holography is presented, foliowed by the basic principles of computer-generated 
Fourier holograms. A more detailed discussion of computer-generated holograms 
can he found in recent review articles by Lee (1978), Dallas (1980) and Bryngdahl 
and Wyrowski (1990). 

The calculated hologram transmittance is realized by means of an output device, 
such as an e-beam lithograph or a plotter. Since most output devices generate 
binary output, the transmittance function of the hologram has to he transformed 
( quantized) into a binary signa!. In this thesis we investigate how pulse-density 
modulation can be applied in order to obtain binary holograms. The transmittance 
function is assumed to consist of nonoverlapping identical binary pulses, while the 
desired properties of the hologram are obtained by an appropriate modulation of the 
density of the pulses. For Fourier holograms the spectrum of the original hologram 
should equal the spectrum of the binary hologram in a given frequency band. In 
genera!, this is only approximately achieved with pulse-density modulation. The 
necessary quality measures for the binary hologram are discussed in Chapter 2. 

Pulse-density modulation is subdivided in continuous pulse-density modulation 
and discrete pulse-density modulation. With continuous pulse-density modulation, 
treated in Chapter 3, the positioning of the pulses is not restricted, except that over­
lap of the pulses is forbidden. A one-dimensional pulse-density signa! is obtained 
by means of an integration concept (Eschbach and Hauck, 1987). Basically, in its 
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graphical representation the positive hologram transmittance function is represented 
·as a sum of nonoverlapping equal-area 'slices' . Each slice is represented by a binary 
pulse of the same area, where the pulse position is determined by the specific form 
of the slice. The result is a signa! with a local pulse density which is proportional 
to the amplitude of the transmittance function. Variations on this concept, where 
the positions of small groups of pulses are determined simultaneously, are also con­
sidered in Chapter 3. Pulse-density modulation based on the integration concept is 
closely related to known methods for numerical integration. Due to this relation the 
approximation error of the various methods can he easily estimated. 

A straightforward extension of the integration concept for two-dimensional sig­
nals is not possible. However, reformulating the one-dimensional problem in a dif­
ferential form, one can derive a set of nonlinear partial ditferential equations for 
the two-dimensional case. The pulse positions of the two-dimensional pulse-density 
signa! are then obtained by solving this set of equations numerically. Chapter 3 is 
èoncluded with a short discussion of the Linde-Buzo-Gray algorithm and the Ko­
honen neural network in the context of the vector quantization problem, which is 
related to pulse-density modulation. 

For discrete pulse-density modulation pulses are restricted to he positioned at 
fixed raster points only. Under this condition one-dimensional continuous pulse­
density modulation leads to a modulation technique known as error ditfusion (Floyd 
and Steinberg, 1976). The determination of the binary hologram is now reduced to 
a decision problem: for each raster point we have to decide whether a pulse is placed 
or not. With error ditfusion the raster points are processed sequentially, introducing 
an error in each decision. Basically, the error of the previous raster points is ditfused 
totheraster point under consideration, and there influences the decision to he made. 
Due to the recursive nature of error ditfusion, stability is an important issue. In order 
to apply this concept to two-dimensional signals an appropriate order of processing 
of the points in the two-dimensional raster is introduced. Error ditfusion is employed 
in Chapter 4 to obtain binary holograms. 

With error ditfusion the rast er points are processed recursively. However, this is 
not a basic requirement, and the finiteness of the number of raster points admits 
other solutions. In Chapter 5 we consider an iterative approach as given by the 
sequentia! updating law of a discrete-time Hopfield neural network. In addition, a 
parallel updating law is discussed. The performance of error ditfusion and that of 
the Hopfield neural network is compared in Chapter 5. Since the Hopfield network 
performs alocal search during updating, a locally optima! binary hologram is found. 
With a Boltzmann machine, which combines the updating law of a Hopfield neural 
network with simulated annealing, it is possible to escape from local optima! solu­
tions and to find better pulse distributions. Also in Chapter 5 the relation between 
Hoptield's neural network and other iterative techniques (direct binary search, the 
iterative Fourier-transform algorithm, projections on convex sets) is discussed. 



Chapter 2 

Computer-generated holograms 

2.1 Holography 

In 1948 D. Ga.bor invented the method of hologra.phy (Ga.bor, 1948). He rea.lized tha.t 
it is possible to eneode both amplitude a.nd phase informa.tion of a.n optica.! wave 
( ema.na.ting from some coherently illumina.ted object) in a.n interference pat tem. 
When this pattem is recorded in photogra.phic ma.teria.l, the resulting hologram 
holds all information a.bout the object . With proper illumina.tion of the hologram a 
virtua.l or rea.l image of the origina.l object a.ppears. Si nee a. monochromatic coherent 
light souree is needed to make a. hologram, it was not before the invention of the 
laser in the 1960's that holograms of reasonable size could be realized. One possible 
way to realize a hologram with a. coherent light souree is shown in Figure 2.1. An 

object 

hologram 

Figure 2.1: Optica! recording of a hologram. In the hologram the interference 
pattem I7J1o + 7J1rl 2 is recorded. 

expanded laser bundie is split into two bundies by means of a half-transmitting 
mmor. The reflected bundie illuminates an object from which, due to reflection 

3 



4 Chapter 2 

and refraction, a secondary wave called the 'object bundle' ~0(x, y, z , t2 emanates. 
This bundie interfetes with the directly transmitted 'reference bundle' 1/J,(x, y, z, t). 
Particularly, this holds true at the photographic plate which records the time average 
of the squared tot al field ( ~o + ~. )2 . Due to the assumed harmonie time dependenee 
with frequency w we have 

~o(x,y,z,t) 

~.(x, y, z, t) 

Re [1/Jo(x,y,z)e-iwt] 

Re [1/Jr( x, y, z)e-iwt] (2.1) 

where tfo( x, y, z) and tfr( x, y, z) denote the complex field distributions of the object 
and reference bundle, respectively. Superposition of ~o and ~r then implies super­
position of tfo and 1/J,, and the photographic processimplies recording of the squared 
absolute value of the resulting complex field (I/Jo+ 1/J,). More specifically, the silver 
density of the exposed and developed photographic material is determined by 

In a linear approximation the silver density is proportion al to I I/Jo + tfr 12 , while for 
an ideal 'positive' film the transparenee is proportional to this function. The latter 
approximation is assumed to be valid in our furt her considerations. 

Under certain conditions, the interference pattem stared in the photographic 
plate holds all information about the original object, mea.ning that with proper 
illumination of the photographic plate we must he able to reconstruct the original 
object. In this reconstruction step we illuminate the hologram with the reference 
field used in the recording procedure. Under the assumption that t he (t ransmission) 
hologram is thin, it modulates the complex amplitude of the incident reference wave, 
resulting in a field 

(2.3) 

behind the hologram. Besides a zero-order diffraction term (l t/Jo l2 + lt/J. I2 )t/J. , the 
hologram reconstructs a field distri bution t/Jo lt/J,I 2 in the first-order diffract ion, which 
under the (legitimate) approximation lt/Jr 12 = 1 is identical to the field that orig­
inated from the original object. The last term 1/J;t/J; denotes the twin image of 
the object in the first negative diffraction order. When these contributions can be 
spatially separated, the original object appears as shown in Figure 2.2. 

Soon one realized that an alternative to the recording procedure in optica! holo­
graphy is to calculate and realize the interference pattem using a digital computer. 
This was the start of digital holography. Given a mathematica! description of the 
desired object, we calculate the wavefront field which has to he recorded in the 
hologram. In general the result will he complex and has to be transformed by a (first) 
coding procedure into a real signa! in order to make realization as a transparency 
possible. One way to achieve this is to simulate the recording process of optica! 
holography. However, with digital holography we are able to manipulate signals 
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reconstructed 

object --á 
I 

hologram 

5 

observer 

Figure 2.2: Reconstruction of the object. With proper illumination of the hologram 
the original object is observed. 

in ways that have no counterpart in optica! holography. This, and the fact that 
the object does not have to exist physically, is a major advantage of digital holo­
graphy. After having calculated the hologram transmittance, an output device, 
e .g. a laserprinter, is used in order to realize the transpaiency. Since most output 
devices are able to generate binary output only, the continuous transmittance has 
to be transformed into a binary signa! by means of a second coding procedure. 
When the binary hologram is realized and used in the reconstruction procedure, 
it wil! generate a reconstruction that deviates from the desired object due to the 
procedures involved in the calculation of the hologram. This thesis is particularly 
concerned with the effects of the second coding procedure, i.e. quantization, with 
the final aim to calculate binary holograms that generate a good approximation of 
the desired object. 

2.2 Computer-generated Fourier holograms 

Since holograms store the entire information content of the original object, it is 
possible to generate 3-dimensional images with holograms. In addition to this ap­
plication, holograms arealso applied in optica! systems as subsitutes for conventional 
optica! elements, such as lenses, and for the storage and filtering of optica! signals. 
The last functions are difficult or even impossible to achieve with conventional opti­
ca! elements. The holograms discussed in this thesis are supposed to belong to this 
category. 

We restriet ourselves to the calculation of holograms used in the optica! system 
shown in Figure 2.3. This system consists of a lens with focal distance f surrounded 
by free space. An input signa! is applied in the front focal plane of this system 
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and transformed into an output signa! in the back focal plane. The input signa! 
is realized by illuminating a hologram placed in the input plane with a (coherent) 
plane wave. The hologram generates in the output plane a signa! which we call (in 
analogy with optica! holography) 'the reconstruction' 1• For this reason we will call 
the input plane the hologram plane and the output plane the reconstruction plane. 

Without imposing any restrictions on the input signa( (related to the physical 
realization of the hologram), we analyze the output signa( 1/Jo(xo, Yo) measured in the 
output plane when a possibly complex input signa( "P;(x;,y;) is applied intheinput 
plane. Under the assumption that the smallest spatial period occurring in "P;(x;,y;) 

f f 

Figure 2.3: Optica( Fourier transform. The hologram in the input plane is illumi­
nated with a (coherent) plane wave. 

is large compared to the wavelength ). of the incident wave, we are allowed to use 
scalar diffraction theory to calculate the field distri bution in the output plane. Using 
the Fresnel approximation and the notion of a 'thin lens' acting as a phase modulator 
with a quadratic phase characteristic, we find for the output signa! (Goodman, 1968) 

"k XoXi + YoYi 
ik ik2 r r -z 1 

1/Jo(Xo,Yo) = - 27r/ i}} 1/J;(x;,y;)e dx;dy;, 

with k = 27r /). the wave number 2 . Introducing the normalized coordinates 

Xj 

x= J>J 
y; 

y= v'V 

for the front focal plane and 

Yo 
v= fiJ 

(2.4) 

(2.5) 

(2.6) 

1 The term 'reconstruction' is thus used for the signa! itself, whereas the original meaning of 
this word deals with the process of reconstructing. 

2 Unless stated otherwise, all integrations and summations in this thesis extend from -oo to 
+oo. 
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for the back focal plane, we find 

For convenience we define .,P(x, y) and IJ!( u, v) according to 

.,P(x, y) 

IJ!(u, v) 

.,P;( FJx, FJy ) 

ie-i2kftPo( FJu, FJv) , 

7 

(2.8) 

and observe that, due to (2. 7), these two signals forrn a Fourier transform pair: 

IJ!( u, v) 

.,P(x,y) 

JJ .,P(x,y)e- i21r(uz+vy)dxdy 

jj IJ!( u, v)e i 2"(xu+yv)dudv . (2.9) 

Since the signa! generated in the back focal plane is proportional to the Fourier 
transforrn of the input signa! applied in the input plane, the holograrns under con­
sideration are called 'Fourier holograrns'. In the rernainder of this thesis we will use 
the proposed notation with norrnalized coordinates to denote signals in the input and 
output plane. Conesponding physical signals and physical dirnensions can be found 
by 'denorrnalization' using the above equations (2.5) and {2.6). The norrnalization 
constant has a typical value vf>:J ~ 2.5 rnrn for À = 500 nrn and f = 10 rn. 

The following exarnples indicate the relevanee of Fourier holograrns. In Figure 2.4 
Fourier holograrns are applied in order to generate opt ica! interconnections between 
input and output plane (Jenkins et al., 1984). In the input plane a nurnber of 

f f 

Figure 2.4: Realization of optica! interconnections between laser sourees ( an) in the 
input plane and detectors (bn) in the output plane using Fourier holograrns. 

holograrns is placed, individually illurninated with a laser source. Each hologram 
is designed to generate light-spots with given intensities in the output plane, where 
detectors are placed. When the laser sourees are uncorrelated, every detector surns 
the received light frorn the uncorrelated laser sourees weighted in intensity. In this 
way we have realized optica! interconnections between the input and the output 
plane. This systern realizes an optica! rnatrix-vector rnultiplication b = Ca, where 



8 Chapter 2 

a = ( a 1, ••. , aN l denotes the intensities of the laser sourees and b = (b1 , .. . , bN )T 

denotes the intensities measured by the detectors. Due to the addition in intensity, 
the (real) matrix elements are restricted to Cnm ;:::: 0. lt is also possible to let the 
laser sourees originate from one main source. In that case the addition is coherent 
and the matrix elements Cnm can be complex. Optica! interconnections are for 
example found in optica! systems for signa! processing, optica! computers and in 
optica! implementations of neural networks (Keiler and Gmitro, 1993). 

In a second example, 'spatial filtering', the optica! setup of Figure 2.3 is ex­
tended with an additional lens. In the resulting 4f-system, shown in Figure 2.5, the 

f f f f 

input hologram output 

Figure 2.5: A Fourier hologram m a 4/ system acts as the transfer function of a 
linear shift-invariant system. 

compliter-generated hologram is placed in the intermediate plane and acts as the 
transfer function of a linear shift-invariant system. The underlying function from 
which it is derived by means of a Fourier transformation, plays the role of a 'point 
spread function' (impulse response). With this optica! system reai-time pattem 
recognition can be realized. 

In both applications the des i red signa! \11( u, v) in the output plane is given. 
The accompanying input signa\ in the hologram plane is approximately realized by 
illuminating a binary hologram. While the incident wave in Figure 2.4 is planar, this 
is not the case in Figure 2.5. In the remainder of this thesis, however, we assume 
that the incident wave is planar and has unit amplitude. The design procedure 
from a desired object to a binary hologram consists of a number of steps as shown 
in Figure 2.6. Given ll!(u,v) in the output plane, henceforth designated as 'the 
object', we calculate the associated complex amplitude '1/J(x, y) by means of the 
inverse Fourier transformation. Since this transformation and the subsequent coding 
is performed with the aid of a digital computer, only a finite number of samples 
1/J[n1 , n 2] is calculated. The consequences of this limitation are considered later on 
in this section. The next step in Figure 2.6 is to transfarm the calculated complex 
signa! samples 1/J[nl! n 2] into real signa! samples cfo[nt, n2] by means of the coding 
operator C1 . This will be the subject of Section 2.3. The real signa! samples are 
then quantized into binary samples b[n1 , n 2] using a coding operator C2 . The output 
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1l!(u, v) b(x, y) 

Figure 2.6: The operations involved in the calculation and realization of a computer­
generated Fourier hologram. 

device performs the digital-to-analog conversion of this binary signa! to the physical 
hologram. Some aspects consiclering quantization and realization of the hologram 
transmittance are considered in Section 2.4. Finally the binary hologram is used in 
an optica! system to generate the reconstruction. 

We end this section with a discussion of the implications involved in the calcu­
lation of the complex transmittance of the hologram. The complex transmittance 
'1/;(x,y) is calculated by means of the inverse Fourier transformation 

(2.10) 

To make physical realization possible, the hologram must have finite size. The 
complex transmittance '1/;(x,y) is therefore required to vanish outside the domain 

(2.11) 

corresponding to a hologram with finite size ~x x ~y· This means that the object 
1l!(u,v) has to he bandlimited. As stated before, we calculate '1/;(x,y) in a finite 
number of sampling points in lH, which are assumed to he equidistant. Without 
consiclering numerical implications for the moment, this is achieved by evaluation 
of (2.10) for x = 2;kr!"1 ~x and y = 2;J,.f ~Y with n 1 = -!Nt, ... , !Nt - 1 and 
n2 = - !N2, ... , !N2 - 1. (This implies that N1 and N2 are even.) The distance 
between neighbouring sampling points (the 'sampling distance') equals X = ~,J N1 

for the x-coordinate and Y = ~Y/ N2 for the y-coordinate. The optima) choice for 
the sampling distance is the result of a campromise between computàtional effort 
and loss of information. To settie this problem we consider the Fourier transfarm of 
the discrete signa! '1/;[nt, n2], defined at:cording to 

1lld(Ot,02) = L L 'if;[nt,n2]e-i2lf(B,n,+B~n2). 
n, E(N,) n,E(N2) 

(2.12) 

The summation is over n 1 = - ~N1 , • . • ,~N1 -1 and n2 = - !N2 , ... ,!N2 -1, 
denoted by (N1 ) and (N2). The subscriptdis introduced to avoid confusion between 
the Fourier transfarm 1l1 d( 01 , 02) of a discrete signa) and the Fourier transfarm 1ll( u, v) 
of a continuous signa!. The Fourier transfarm 1l1 a( 01 , 02 ) is periadie according to 
1lla(Oh02) = 1l!a(Ot + mt,02 + m2), with mt,m2 E 7L. We take the fundamental 
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interval according to -~ < 01 ~ ~ and -~ < 02 ~ ~, each denoted by (1). The 
discrete signa! 1/l[n1 ; n 2] arises from sampling 1/J(x, y ), according to 

(2.13) 

In Appendix A it is shown that the Fourier transfarms \l!d(0~,02 ) and \l!(u,v) are 
then related through 

The frequencies 01 = X u and 02 = Yv are normalized with respect to the sampling 
frequencies x-1 and Y- 1 • According to (2.14) the Fourier transfarm of 1/J[n~, n 2 ] 

consistsof the original object (m1 = 0, m 2 = 0) plus shifted replica.s of the original 
object. The additional factors ér(Ot+82 l, (-1)m1 and (-1)m2 arise from our choice 
of the sampling points. 

The bandlimited object \11( u, v) ha.s infinite support and therefore overlap of 
the replica.s ( alia.sing) will always occur when the transmittance function 1/1( x, y) is 
sampled. As a consequence, reconstruction of the original object from the samples 
1/l[n1 , n 2] is impossible. Ho wever, we a.ssume that the des i red object \11( u, v) has its 
main contribution within a region lui ~ ~b.", lvl ~ ~ D." and decrea.ses rapidly 
for larger spatial frequencies. In this case alia.sing can be made small by choosing 
the sampling distances X ~ D..;:-1 and Y ~ D.;1 . For our computer-generated 
holograms we have used 4 times oversampling in both directions: X = ~ D..;:-1 and 
y = ~ b-;1. 

Often the desired object \l!(u,v) is not known analytically but in a sampled 
form. Due to the band-limitation of \11( u, v) such a description preserves the ent i re 
information provided that the sampling raster is dense enough. In concrete terms, 
sampling of \l!(u,v) at u= k1U, v = k2V with k1 ,k2 E 7l.. is permitted if U~ D.~1 

and V ~ D.;1 . This also means that we should be able to calculate the samples 
1/l[n1 ,n2] from the sampled values \l!(k1U,k2 V). This is shown in the following way. 
We introduce the discrete signa! 

(2.15) 

Th is signa! is the result of taking N1 x N2 samples in each period of \11 d( 01 , 02 ). 

In terms of u and v this means that we have used the maximal sampling .distance 
U = t,.;I" and V= b-;1. Moreover, we define ~[n~, n2] according to 

(2.16) 
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According to (2.16) we find that J,[n1, n2] is also periadie with period length N1 and 
N2 for both coordinates. The inverse formula of (2.16) reads 

(2.17) 

where the summation is again over one period. The discrete signals llt(k1 , k2] and 
J,[n1, n 2 ] form a discrete Fourier transfarm pair, and (2.17) and (2.16) are known as 
the discrete Fourîer transformation (DFT) and the inverse discrete Fourier transfor­
mation (IDFT), respectively. 

In a straightforward way it can be shown that J,[n~, n 2] and 1/>[n~, n 2] are related 
according to 

J,[nt, n2] = L:L:1/J[nt- mtNt, n2- m2N2]. (2.18) 
mt m2 

This equation states that due to the sampling in the reconstruction plane a periadie 
repetition takes place in the hologram plane, possibly leading to aliasing. In our case, 
however, 7/![n1 , n2] is a fini te two-dimensional sequence consisting of N1 x N2 samples. 
Thus overlap of the shifted replicas does not occur and we have 7/![nt, n2] = J,[nt, n2] 
for n1 E (Nt) and n2 E (N2). 

Given the samples llt(k1U,k2V) we use (2.14) in order to calculate llt[k1,k2J = 
wd(k1U, k2V). By means of the inverse discrete Fourier transformation (2.16) we 
then find the periodic sequence J,[n1, n2] and therefore 7/! [nt, n2] . Due to the (non­
avoidable) aliasing it is impossible to reconstruct the original samples llt( k1 U, k2 V). 
For this reason we use the discrete Fourier transfarm pair J,[n1, n2] f-4 llt[k1, k2] for 
the calculation of Fourier holograms. 

We note that the assumption that the object is concentrated within a window 
of finite dimensions b." x b." in the reconstruction plane is in contradîction with 
the requirement of bandlimitation due to the finite size b."' x b.y of the hologram. 
This is the reason for the appearance of fluctuations in the reconstruction plane, 
known as speckle. In some applications (e.g. display applications) the intensity of 
the object is of interest only. Wethen have the freedom to multiply th~ intensity of 
the object by an arbitrary phase distribution. This gives rise to a better use of the 
limited dynamica[ range of the photographic material of the hologram. In genera!, 
the resulting (complex) transmittance, however, is not bandlimited, and needs a 
larger hologram size than available. If the original hologram size is chosen, part of 
the required transmittance is replaced by zero. This leads to speekte in the recon- · 
struction plane. In order to avoid this effect a bandlimited phase distribution can 
he applied (Wyrowski and Bryngdahl, 1988). With discrete objects ( cf. Figure 2.4), 
the speckle is known to appear between the sample points and does not affect the 
object samples. Since a periadie repetition of the hologram in the input plane leàds 
to sampling of the reconstructed signa! in the output plane, this provides another 
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means to attenuate the speckle {Lesem et al., 1968). The phase can then he chosen 
freely. With the exception of Chapter 3 we have assumed the object to he discrete 
and we have multiplied the object's intensity by a random phase distribution. 

2.3 Determination of the real transmittance 

Under the assumption that the hologram placed in the input plane of the Fourier 
transformation lens is illuminated by a unit-amplitude plane wave, the hologram 
transmittance function has to hetheinverse Fourier transfarm of the object function 
111{ u, v ), yielding a complex-valued function 1/J(x, y ). For amplitude holograms the 
complex 1/J(x,y) has to he transformed into a positive real signal4>(x,y) that can 
he directly realized as the transmittance function of a transparency. Therefore a 
( f1rst) coding step C1 is necessary, cf. Figure 2.6. Although the coding operator 
C1 applies to the sampled signa! 1/J(n1 , n2], we choose a continuous treatment to 
elucidate the basic transition from complex to real transparenee functions . The 
discrete case is treated further down . We remark that by varying the refractive 
index or the thickness of the transparent material we achieve phase modulation. 
Fora phase hologram 1/J(x,y) has to be transformed into a complex signa! with unit 
amplitude. For both kinds of hologram amplitude and phase information of the 
calculated complex transmittance are encoded in the transparency. This justif1es 
the name (computer-generated) hologram. 

Here we confine ourselves to the encoding of amplitude holograms. First the 
complex amplitude 1/J(x, y) is multiplied by a complex 'carrier' ei21r(uoz+voy). In a 
next step the real part of this modulated complex signa! is taken. This results in a 
real transmission function Re [1/J(x, y )eil>r(uoZ+voy) ]. {In some sen se this corresponds 
to the procedure foliowed in optica! holography where a complex carrier was added, 
cf. (2.2) ). Finally a positive real bias function f3(x, y) is added to obtain a positive 
transmission function. The desired 4>(x,y) thus assumes the form 

4>(x, y) = 11/J(x, y )I cos[27r( U 0 X + V 0 Y) + arg 1/J(x, y )] + {3( x, y) . (2.19) 

An obvious choice is a constant value 3 f3(x,y) = {30rect(x/l:!.~,yjl:!.y) such t hat 
min 4>(x, y) = 0, but alternativescan he considered (Burch, 1967). (With the non­
constantbias f3(x,y) = 1 + 11/J(x,y)l2 for (x,y) E lH we can exactly simulate the 
recording procedure (2.2) used in optica! holography.) In the remainder of this 
thesis we further assume that the transmittance 1>(x,y) of the amplitude hologram 
satisfies the condition 0 :::; 4>( x, y) :::; 1, which is imposed by the physical requirement 

3The two-dimensional rectangular function is defined as rect(z,y) = rect(x)rect(y) with 

{ 
I lzl < 1/2 

rect(z) = l/2 izl = 1/2 . 
0 izl > 1/2 

(2.20) 
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of passivity. This condition amounts to an amplitude bound of the reconstruction 
in the output plane. 

The Fourier transform of r/>(x,y) with a constant bias (J(x,y) = f3o for (x,y) E lH 
reacis 

ei>( u, v) = ~W(u- U0 , v- V 0 ) + ~w*( -u- U0 , -v- vo) + 
fJoLlxLlysinc(Llxu, Llyv) . (2.21) 

Thus, due to the modulation on a complex carrier the object w(u,v) is (spatially) 
shifted over (uo, Vo)· In addition, a twin object w•( -u- Uo, -v- Vo) belonging to 
the conjugate input signa! appears. This is the result of taking the real part of the 
complex transmittance. The constant bias finally gives rise to a 'sinc-peak' 4 in the 
origin of the output plane. Under our (previous) assumption that the (unmodulated) 
object is concentrated near the origin in the output plane, for spatial frequencies 
lul ::; ~Ll,., lvl :S: ~Llv, we can avoid overlap of the original object with its twin 
image by choosing U0 > ~Ll,. and/or V 0 > ~Llv. The two-dimensional sinc-function 
in (2.21) has small dimensions (si ze L1;1 x L1;1 ) and, as such, is of minor concern. 
A possible configuration in the output plane satisfying this condition is shown in 
Figure 2.7. We refer to the rectangular window lF defined according to 

V 

Ll,. 

V 0 --Cl-, JF Ll 
' V 

' 
' -U0 • 

D-- Vo 

Figure 2.7: A possible contiguration in the reconstruction plane where overlap of 
the object window lF and the twin object window IF* is avoided. 

(2.22) 

as the object window, sirree in this window the (shifted) object appears. The twin 
object occurs in a twin object window denoted by IF*. 

4The two-dimensional sinc-function is defined as sine( x , y) = sinc(x)sinc(y), with sine( x) = 
oinJ;"'>; sine( u, v) is the two-dimensional Fourier transform ofrect(x, y). 
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In the ahove we have considered the transformation of a continuous complex 
signall/J(x,y) into a real signa! <P(x,y), while the coding operator cl transfarms 
a discrete complex signa! 1/J[n~, n2] into a real signa! <P[nt, n2]. In analogy with 
continuous signals we find 

(2.23) 

with a Fourier transfarm 

cl.>d(01, 02) = illtd(01 - 01o, 02- 02o) + iwd( -01 -Oio, 02- 02o) + 
f3o N1 N2sinc~N10t, N202) e-i"(81 +B2 ) • ( 2.24) 

sine 01 , 02) 

Again we assume the discrete signa! to he scaled according to 0 :=; 4>[ n 1 , n 2] :=; 1. The 
Fourier transfarm of the signa! <P[nb n2 ] is periadie and consists of two-dimensional 
repetitions of the contiguration shown in Figure 2. 7. With sampling di stances X 
and Y the repetition in the frequency variables u and v is over a distance x-1 and 
y-I, respectively. Due to the oversampling (X- 1 = 4t.u, y - I = 4t.v) overlap of 
the windows does not occur. 

2.4 Quantization and realization of the 
transmittance 

To realize the hologram transmittance as a transparency we use an output device 
with certain characteristics. This means that we must adapt our signa! to the prop­
erties of the output device. Most of the used devices, such as a plotter, laserprinter, 
laserwriter or e-heam writer generate hinary output. The continuously-valued holo­
gram samples have thus to he transformed into hinary-valued samples. 

In the early days holograms were drawn with a pen plotter, foliowed hy a photo­
graphic reduction step to scale the hologram toa proper size. The smallest achiev­
ahle dot size for plotters is large compared to the pen's elementary steps. When the 
raster points of the plotter are addressed individually, overlap of the dots can occur. 
Since the nonlinear effects of such an event are difficult to analyze, a cell-oriented 
(Dallas, 1980) approach has been proposed (Brown and Lohmann, 1966). To this 
end the hologram is divided in cells and within each cell the (sampled) signa! value 
is represented hy a transparent inner cel!. The area of the inner cell is modulated 
according to the signa! amplitude, while the signa! phase is cocled in the position 
of the inner cell (Figure 2.8). Both position (phase) and area (amplitude) can he 
realized with high accuracy on a plotter device. 

Later on output devices were developed that made individual addressing of raster 
points possihle. The laser writer with a raster period of 10 J-Lm and a dot with size 
10 J-Lm was constructed for writing hologram distrihutions directly in holographic 
film . Today the e-heam lithograph is also applied to write holograms. This device 
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Figure 2.8: Cell-oriented cocled computer-generated hologram. The transparent 
inner cells are shown black. 

has been developed for the production of masks for the integrated circuit fabrication 
and can work in the sub-micron region. With e-beam lithography the number of 
addressable points is very large so that holograms with a large space-bandwidth 
product can be obtained. For such devices new kinds of algorithms with a point­
oriented approach were developed which are also the subject of the present thesis. 

The signa) generated by the output device consists of shifted versions of a given 
basic pulse. We therefore have to try to eneode the information of the real input 
signa! </>(x, y) in a varying pulse density. All techniques stuclied in this thesis are 
based on this pulse-density modulation principle. In general the positioning of the 
pulses is restricted to certain places only. We then speak about discrete pulse­
density modulation. In Chapter 3, however, we leave this restrietion (except for 
overlap of the pulses) and consider the case of continuous pulse-density modulation. 
The output signa! is then modeled according to 

M 

b(x,y) = L s(x- Xm,Y- Ym), (2.25) 
m=l 

where the basic pulse s(x, y) assumes the value 1 inside a smal! region (x, y) E a and 
the value 0 outside a. Given the real signa! <f>(x,y), or in sampled form <f>[nl>n2 ], 

the pulse positions (xm, Ym) have to be calculated. 
With continuous pulse-density modulation we have to calculate where each pulse 

is desired. For discrete pulse-density modulation, which is considered in Chapter 4 
and Chapter 5, this problem is reduced to deciding for each raster point whether 
a pulse is placed or not . We assume that the allowed pulse positions define a 
rectangular raster with periods X and Y for the x- and y-directions, respectively, 
and model the output signa! according to 

b(x,y) = L L b[n1,n2]rect(;- n1- ~' ~- n2- ~) . (2.26) 
nt E(Nt) no,E(N,) 



16 Chapter 2 

The elementary pulseis the rectangular pulse rect(x/X,y/Y) with pulsewidth X x 
Y. Since the raster distance equals the pulse-width in both dimensions overlap does 
not occur. The binary hologram consistsof N1 x N2 cells with a binary transmittance 
b[n~,n2] and has a total size ll.., = N1X, ll.y = N2Y . The binary number b[n~,n2] E 
{ 0, 1} denotes whether the cell on raster point ( n~, n2 ) is opaque and thus blocks 
the incident light (b = 0), or the cellis transparentand thus transmits the incident 
light (b = 1). 

With discrete pulse-density modulation the coding operator C2 transforms (quan­
tizes) the real samples 1/l[n~, n 2], continuous in amplitude, into the binary samples 
b[n~, n 2]. In order to analyze the properties of this nonlinear mapping we interpret 
C2 as the ad dition of coding noise e[n1, n2], i.e. b[n~, n2] = 1/l[n~> n 2] + e[n1, n 2]. Due 
to the linearity of the Fourier transformation we find that Bd( 0~> 02 ) ( the Fourier 
transform of b[nh n 2]) consistsof the original object (and twin image) <I>d(Oh 02 ) and 
a disturbance Ed(01 , 02 ), the Fourier transform of the coding noise. For convenience 
we call the last contribution simply coding noise. It will be clear from the context 
whether we are referring to coding noise in the hologram plane or to coding noise in 
the reconstruction plane. In order to disturb the original object as little as possible, 
<I>d( 01 , 02) and Ed( 01 , 02) should be spatially separated. Due to the oversampling 
in the hologram plane this is possible to some degree. Although the mapping is a 
purely deterministic operation, a statistica] approach will appear advantageous in 
the design of the coding operator c2 that achieves this goal. 

Some of the algorithms for the coding operator C2 originate from the field of im­
age processing, where similar problems exist. For instance, the grey-tones in images 
printed in newspapers or by fax-apparatus are simulated with binary dot structures. 
For this technique, called halftoning, numerous algorithms such as dithering and 
error-diffusion have been developed. In particular the error-diffusion halftorring al­
gorithm, considered in Chapter 4, has been applied with succes to calculate binary 
holograms. As computers became faster, more complex coding algorithms were de­
veloped. These algorithms, such as direct binary search (Seldowitz et al., 1987), the 
iterative Fourier-transform algorithm (Wyrowski and Bryngdahl, 1989), Hoptield's 
neural network (Just and Ling, 1991) and the Boltzmann machine, arealso point­
oriented butworkin an iterative way. Hoptield's neural network and the Boltzmann 
machine are considered in Chapter 5 of this thesis. 

In Figure 2.9a we have shown an example of a binary hologram calculated with a 
Hopfield neural network. In Figure 2.9b the fundamental interval of the (calculated) 
reconstruction of the binary hologram is shown. (For the results in this thesis we 
show the fundamental interval - !X-1 < u :::; !X-1 and -!Y-1 < v:::; !Y-1 only.) 
The coding noise is almost completely located outside the object window and the 
twin object window, where we can clearly observe the original object and the twin 
object. The (large) sinc-peak in the reconstruétion of the hologram is not shown. 

Finally, the output device transforms the binary samples b[n1 , n2] into a contin-
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Figure 2.9: a . Example of a binary point-oriented Fourier hologram. b. The calcu­
lated reconstruction of the binary hologram. The sinc-peak in the reconstruction is 
not shown. 

uous signa! b(x,y), i.e. (2.26) with a Fourier transfarm 

B(u, v) = XYsinc(Xu, Yv)e-i"(Xu+Yv) Bd(Xu, Yv) . 

Using (2.14) we find for the reconstruction of the hologram 

'"''"' m1 m2 B(u, v) = sinc(Xu, Yv) LJL) - 1)m'( -1)m2 <l>(u +X' v + -y-) + 
m1 m2 

(2.27) 

XYsinc(Xu, Vy)e-'"(Xu+Vy)Ed(Xu, Vy). (2.28) 

We conclude that the binary hologram reconstructs shifted versions of the original 
object ( and the twin object). Due to the rectangular interpolation of b[n~, n 2] the 
higher-order repetitions in the spectrum, which are not shown in Figure 2.9, are 
attenuated by the factor sinc(Xu, Yv). 

2.5 Quality measures 

Although the coding noise is shifted outside the object window, some noise will 
disturb the original object. This distartion is expressed in a signal-to-noise ratio 
(SNR). Insome applications the binary hologram has togeneratea desired amplitude 
and phase distribution in the reconstruction. In that case the signal-to-noise ratio 
has to express both amplitude and phase errors and therefore wedefine 

SNR = ffF I <I>( u, v)!Zdudv . 
ffF IB( u, v)- <I>( u, v) l2dudv 

(2.29) 
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In other applications we are interested only in the amplitude (intensity) of the object. 
An appropriate definition of the signal-to-noise ratio then reads 

SNR = .JJF I<I>(u, v)l2dudv 2 . 
.JJF (IE( u, v)I-I<I>(u, v)l) dudv 

(2.30) 

We remark that a definition for the signal-to-noise ratio different from (2.29) is used 
in liter at ure. The co ding noise is then taken e[n~, n 2] = b[n~, n 2] - Àt/>[n1 , n 2] rather 
than e[n~, n 2] = b[n1 , n 2]-t/>[nb n 2]. The (complex) sealing constant À is taken such 
that the coding noise E( u, v) is orthogonal to <I>( u, v ), according to 

jjiFE(u,v)<I>*(u,v)dudv = 0. 

The accompanying value for À reads 

À = .JJF B( u, v )<I>*( u, v )dudv . 
.JJF I<I>(u, v)l2dudv 

(2.31) 

(2.32) 

One could say that part of the coding noise contributes to the object. The alternative 
signal-to-noise ratio is then found by replacing <I>( u, v) by À <I>( u, v) in (2.29). A lso, 
(2.30) is sometimes used with I <I>( u, v) I replaced by À I <I>( u, v )I. For the real constant 
À we then find 

À= .JJF IB(u,v)II<I>(u,v)ldudv. 
.JJF I <I>( u, v )12dudv 

In this thesis, however, we require that À equals 1. 

(2.33) 

Maximizing the signal-to-noise ratio (2.29) of the amplitude-phase optimization 
(AP) problem also gives rise to a large (but suboptimal) signal-to-noise ratio (2.30) 
for the amplitude-only optimization (AO) problem. (The other way around is in 
general not true.) Si nee (2.29) is mathematically more traetabie than (2.30) it will 
form the starting point for further analysis. 

The coding noise which is generated outside the object windows represents part 
of the light that is not used to form the desired object. In order to quantify the 
power contained in the object we introduce the hologram efficiency"'· This efficiency 
is the product of the transmission efficiency '1/t and the diffraction efficiency '1/d· With 
binary amplitude holograms part of the incident light power P; is blocked by the 
opaque cells. The transmission efficiency, defined according to 

'1/t = ~ = t.."1t..Y jjiH lb(x,y)l 2dxdy, (2.34) 

expresses the percentage of the light power transmitted by the binary hologram. 
Only part of the transmitted power Po is used to generate the object. This is 
expressed by the diffraction efficiency 

.JJF IE( u, v )12dudv 
'1/d = , JJ IE( u, v )l 2dudv 

(2.35) 
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where the integration in the denominator extends over the entire uv-plane. Due 
to Parseval's theorem the total transmitted power equals the total power in the 
reconstruction plane and therefore we find for the hologram efficiency 

TJ = 'f/t'f/d = t,.x1t,.Y JJJF IB( u, V Wdudv . (2.36) 

An estimate for the upper limit of the efficiency can easily be given (Wyrowski, 
1990) . Under the assumption that one half of the cells in the binary amplitude 
hologram are opaque, only half of the incident light power is transmitted. One half 
of the transmitted noise power goes to the dc-peak, the remaining part is divided 
among the two windows in the best case. The theoretica! maximum of the efficiency 
thus equals TJ = 0.125. 

The efficiency of an amplitude hologram is rather small due to the blocking of the 
light by the opaque cells. A bleaching procedure transfarms the binary amplitude 
hologram into a binary phase hologram, which does not suffer from this problem. 
An alternative way to generate a phase hologram is to etch a calculated phase 
distribution in a glass substrate. This makes it possible to realize quantized phase 
holograms with more than two levels. We remark that by means of a modification, 
the techniques considered in this thesis can be adjusted to the calculation of multi­
level phase holograms (see for example (Weissbach et al., 1989)). With multilevel 
phase holograms (number of levels :;::: 3) the transformation of the complex signa! 
1/;( x, y) to a real signa) <f>(x, y) is not necessary. As a result, the twin object does 
not exist. 



20 Chapter 3 



Chapter 3 

Continuous pulse-density 
modulation 

3.1 Introduetion 

In this chapter we consider the approximation of a given signa! by a signa! consisting 
of a number of nonoverlapping identical pulses, whose positions have to be deter­
mined. We assume that these pulses can be placed with infinite precision and for 
this reason we call this kind of approximation continuous pulse-density modulation. 

Although actual output devices are not able to position pulses continuously in 
space, we still feel that this approach makes sense. Using a continuous-space ap­
proach we hope to acquire a better understanding of the problem and use the ob­
tained insights for the discrete case, where pulses are restricted to fixed positions. 

The starting point for continuous pulse-density modulation is a continuous real 
signa! <P(x,y), with 0 :::; <P(x,y) :::; 1. According to the previous chapter, <P(x,y) 
represents the transmittance function of an amplitude hologram . When the input 
signa! is not known analytically but is given in sampled form , a continuous signa! is 
generated by interpolation. The approximating signa! 

M 

b(x, y) = Z::: s(x- Xm, y- y";) ~<IJ( x, y) (3.1) 
m=l 

is a set of shifted replicasof the elementary two-dimensional pulse s(x,y), which is 
nonzero only in a region (x,y) E 0'. To avoid overlap of the pulses, the distance 
between neighbouring pulses bas a lower bound. The set of pulses can be considered. 
as a set of two-dimensional Dirac-functions convolved with the elementary putse, 
according to 

M 

b(x,y) = s(x,y) * Z::: h(x- Xm,Y- Ym). (3.2) 
m=l 

21 
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Introducing the Fourier transfarm S( u, v) of the elementary pul se s( x, y) we find for 
the Fourier transfarm of b(x, y): 

M 
B(u,v) = S(u,v) E e-i21f(uxm+VYm)- (3.3) 

m=l 

When we consider both amplitude and phase errors, the quality of the approximation 
is expressed as the signal-to-noise ratio (2.29) defined in Chapter 2. In order to 
maximize the signal-to-noise ratio we try to minimize the denominator 

jjiFIB(u,v)-4>(u,vWdudv . (3.4) 

Obviously, only spatial frequencies within the object window IF are involved in the 
error. Stated otherwise, (3.4) represents the noise power in the object window, due 
to the pulse-density approximation. According to the previous chapter, IF is centered 
around ( u 0 , v0 ) and has si ze ll,. x llv. Within this object window the desired object 
is located. For convenience we define the frequency weighting function 

IA(u vW= { 1 (u,v)EIFUIF* 
' 0 elsewhere 

(3.5) 

and write for the noise power 

P = jj IA( u, vWIB(u, v)- 4>(u, vWdudv- (3.6) 

We remark that both the object window and the twin object window are taken into 
account in (3.6) . This does not imply any restrietion since the real signals </>(x, y) 
and b(x, y) have a symmetrie Fourier transform. In order to express the noise power 
P in the spatial domain we apply Parseval's theorem 

jj IG(u, vWdudv = jj lg(x, y)l2dxdy (3.7) 

to (3.6). We then find that the noise power is expressed m the spati al domain 
according to 

P = jj ia( x, y) * [b(x, y)- </>(x, y)Wdxdy , (3.8) 

with a(x,y) the inverse Fourier transfarm of A(u,v). 
Our goal is todetermine the positions ( Xm, Ym) of the individual pulses contained 

in b(x, y) such that (3 .8) is minimized. In order to derive an expression for the 
explicit dependenee of the noise power on the pulse positions, we introduce the 
filtered input signa! ~(x,y) = a(x,y) * <f>(x,y) and the filtered pulse-density signa! 
b(x,y) = a(x,y)*b(x,y) = l.:~=l s(x -xm,Y-Ym) with s(x ,y) = a(x,y)*s(x,y). 
This allows us to write for (3.8) 

(3.9) 
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In a straightforward way the following identities can be derived: 

M M 

jjJi(x,y)dxdy= L": L":s(xm-Xn,Ym-Yn) 
m=l n=l 

(3.10) 

and 
M 

jjb(x,y)J(x,y)dxdy = L ~(xm,Ym), 
m=l 

(3.11) 

with s = s * s = s *a* s and ~ = s * J = s *a* </!. The autocorrelation function 

a(x,y) = a(x,y)*a(x,y) = JJ a(Ç- X,TJ- y)a(Ç,7J)dÇd7J (3.12) 

is the inverse Fourier transform of the frequency weighting function IA( u, v)il. Using 
these simplifications we find for the noise power 

M M M 

p = EL s(xm- x,.,ym- Yn)- 2 L ~(xm,Ym) + JJ J2(x,y)dxdy . (3.13) 
m=l n=l m=l 

The first term in (3.13) represents the mutual interaction of the pulses, while the 
infiuence of the ( external) input signa] is represented by the second term. The last 
term is independent of the pulse positions and can be omitted in the minimization 
of P . The necessary conditions fora pulse distribution to be optima! are found by 
differentiation of (3.13) with respect to the pulse positions and setting the derivatives 
equal to zero: 

grad P = o. (3.14) 

A number of gradient-search algorithms can be constructed based on the optimality 
conditions (3.14). Using such an algorithm will in general result in a pulse distribu­
tion with a local minimal noise power. 

We remark that minimization of the energy in the present form does not guar­
antee that the pulses will not overlap. Moreover, it is possible (and probable) that 
the pulses are shifted outside the domain Hf. Both problems are avoided by the 
introduetion of penalty fundions that become large whenever the pulses approach 
each other or the boundary. 

Due to the interaction between the pulses, an iterative procedure is needed in 
order to determine the (Iocally) optima! pulse distribution. In the next section, 
we consider an approach for one-dimensional signals where this interaction is left 
out. In this way we are able to determine each pulse position separately. Also in 
Section 3.2 we consider similar (non-iterative) methods todetermine pulse positions 
in blocks (pairs, triples). In Section 3.3 we discuss how this approach, which is 
based on numerical integration, is applied in two dimensions. Next, in Section 3.4 
we discuss some clustering techniques that are related to pulse-density modulation. 
Finally, we consider in Section 3.5 how continuous pulse-density modulation can be 
adapted in order to obtain a pulse train with pulses at fixed positions. 
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3.2 One-dimensional continuons pulse-density 
modulation 

3.2.1 Introduetion 

In this section we consider continuous pulse-density modulation for one-dimensional 
signals. A positive real signa! 0 < <P(x)-::; 1 with a Fourier transfarm <I>(u) is defined 
on the interval -~.0." -::;x-::; ~.0.x. We assume that </J(x) = 0 outside this interval. 
In the one-dimensional case the approximating signa! is a pulse train 

M 

b(x) = L s(x- xm) , (3.15) 
m=l 

in which the replicas of the elementary pulse s(x) are not allowed to overlap each 
other. For the elementary pulse we take the rectangular pulse rect(x/a), of width 
a, and write 

X M 

b(x)=rect(-)* 2:ó(x-xm) . 
(]" m=l 

(3 .16) 

In this equation * stands for one-dimensional convolution and ó(x) ts the one­
dimensional Dirac function. The Fourier transfarm of the pulse train 

M 

B(u) = asinc(au) L e-i2"""'m , (3.17) 
m=l 

must approximate the Fourier transfarm <I>( u) within the object window 

(3.18) 

Here we take the object window centered around the origin, and we remark that in 
this case the twin object window IF* coincides with the object window IF. (As a con­
sequence we can realize objects with an even distribution I<I>(u)IZ only.) Expressed in 
the frequency domain the approximation error for a one-dimensional signa! becomes 

P = ~ IB(u)- <I>(uWdu. 
. lF 

(3.19) 

Fora high pulse density the width a of the nonoverlapping pulses has to become very 
smal!, which allows thè approximation 1 asinc( au) ~ a · l = h. Th is approximation is 
allowed as long as a <t: 2.0.;; 1 • In the spatial domain this means that the rectangular 
pulse is replaced by a Dirac pulse with equal area, and the approximating signa\ 
becomes the impulse train 

M 

b(x) =hL ó(x-xm). (3.20) 
m=l 

1 We introduce h on account of dimensionality reasons. Note that [ó(x)] = [xJ-l 
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We still have to avoid overlap of the original rectangular pulses, and therefore the 
distance between the successive pulse positions must not besmaller than u. 

Since IF is centered around the origin we try to equate the spectra ~(u) and 
B(u) for very small spatial frequencies u. Particularly, for u= 0 the value of ~(u) 
equals the total area 

1 

12.0.~ 

A= _!A~ rf>(x)dx 
2 

(3.21) 

of the signa! r/>(x) and the same consideration holds for B(u). This means that the 
total area of b(x) has to equal the total area of rf>(x) . For M pulses with area h this 
requirement is fulfilled 2 if h = A/M. However, merely consiclering u = 0 yields 
not more than a strictly local error measure in the frequency domain. As a result 
the error measure in the spatial domain is only of a global nature and gives us no 
information where to place the pulses. The positioning of the pulses can thus be 
used to achieve a satisfactory approximation for other frequencies u E IF as well, 
that is, in the vicinity of u = 0. 

Although this does not lead to the exact minimum of the approximation error, 
we discuss a simple approach where the pulse positions are calculated independently. 
For that purpose we write r/>( x) as a sum of part ia! signals r/>m (x) with part i al Fourier 
transfarms ~m(u): 

M M 
r/>(x) = L r/>m(x) +-+~(u)= L ~m(u) . (3.22) 

m=l m=l 

In the same way the pulse tráin b(x) is written as a sum of partial signals bm(x) 
with partial Fourier transfarms Bm(u): 

M M 

b(x) = L bm(x) +-+ B(u) = L Bm(u) . (3.23) 
m=l m=l 

The obvious choice for the partial signals bm(x) is bm(x) = M(x- xm) and we find 
for the accompanying partial Fourier transfarms Bm(u) = he-i21r=m. Next each 
partial signa! r/>m(x) is approximated by one partial signa! bm(x) and thus by one 
pulse. This means that each partial signa! should have an area h. One possible 
choice to achieve this reads 

r/>m(x) = { r/>{x) XE Lxm-t,Xm] (3.24) 
0 elsewhere 

In this way the total interval[-~~",~~"] is divided in subintervals 3 [Xm-J,Xm] for 
m = 1, ... , M with Xo = -~~"' and XM = ~~,.. The interval boundaries Xm are 
taken such that the partial signals r/>m(x) have equal area 

j r/>m(x)dx =i:~, 1/>(x)dx = h. (3.25) 

2 In the remaioder of this chapter we assume that h di vides A. 
3 Note that the pulse positions are indicated with Xm and the interval boundaries with Xm· 
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With this approach every partial signa! rPm( x) is approximated by a Dirac-pulse 
bm(x) = M(x- Xm) having exactly the same area, where the pulse position Xm 
depends on ,P(x) for x E [Xm-l,Xm] only. This concept was introduced by Eschbach 
and Hauck ( 1987). Although the exact pulse positions still have to be determined, 
we ex peet that Xm E [X m-I, Xm]· Summing up all the part i al approximations gives 
the desired pulse train b(x). The area of b(x) equals the area of ,P(x) and thus we 
have B(O) = cfi(O). Moreover, by increasing the number of pulses we can force the 
total approximation error on IF to zero, as will be shown later. 

In each subinterval the input signa! ,P(x) has an area h =A/Mand exactly one 
pulse with the same area is placed. Since the subintervals are narrow in regions 
where ,P( x) takes large val u es, a high pulse-density will be the result. In regions 
where the input signa! takes small values, the pulse-density wiJl be low. This is in 
accordance with our intuition. 

In order to calculate the interval boundaries Xm we introduce the function 

g(x) = jxl <fl(s)ds. 
-2 <l., 

(3.26) 

with boundary values g(- ~~x) = 0 and g( ~~x) =A. Under our assumption that 
<P(x) is positive, g(x) is a monotonically increasing function which allows inversion, 
i.e. x = x(g). Equation (3.26) reads in differential form ,P(x)dx = dg. The co­
ordinate transformation g(x) maps the interval [-~~x, ~~x] in the x-domain onto 
[0, A] in the g-domain. Dividing the interval [0, A] in sub-intervals bm-l, lm] with 
equal length Îm - Îm- l = h then implies a division of the interval [-~~x, ~~x] in 
the desired subintervals [Xm-l, XmL as shown in Figure 3.1. The boundaries of the 
subintervals are Xm = x(!m) with Îm = mh; the boundaries of the total domain are 
Xo = x(!o) = x(O) =-~~x and XM = x(/M) = x(A) =~~x-

Applying the coordinate transformation in the expression of the Fourier trans­
farm of <P( x) yields 

M M 

E 1"/m e-i2"-ux(g)dg = E <Pm(u) . (3.27) 
m=l "Ym-1 m=l 

Next, for each partial Fourier transform ~~>m(u) the function x(g) is approximated 
by a constant Xm = x (gm)- The result is the Fourier transfarm 

M M 
B(u) = E Bm(u) =hE e - ihuxm (3 .28) 

m=l m=l 

of the desired pulse train. The pulse positions depend on the approximation Xm ::::: 
x(g) used in each sub-interval. 
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x 

Figure 3.1: The input signa! if>(x) defines the coordinate transformation g(x) 
which maps the equal-length intervals !Tm-I, lm] on the non-equal-length intervals 
[Xm-t,Xm]· 

We note that when the coordinate transformation is not applied the approxima­
tion leads to a sampling problem. In that case we have 

I 

~(u)= j_~:·. tft(x)e-'2'""'dx = 
2 

M M 

E j"X.m if>(x)e-i21ruxdx ~XL if>(xm)e-&2.-uxm = B(u) . (3.29) 
m=t Xrn-1 m.=l 

The subintervals (Xm-1> Xm] are now of equal length X = tl.,./ M and again within 
each interval one pulseis placed. The result B(u) of the above approximation is the 
Fourier transfarm of 

M 

b(x) =XL if>(xm)h(x- Xm). (3.30) 
m=l 

When we choose the middle of each interval Xm = Hxm-l + Xm) for the pulse 
positions, the pulse train consists of equidistant Dirac pulses with varying area. 
This approximation can be considered as the result of sampling the input signa! 
if>(x) with a constant sampling distance X= tl.:r)M. Shannon's sampling theorem 
states that when bandlimited signals are sampled with a sufficiently high sampling 
rate, perfect reconstruction of the original signa! from the sampled signa! is possible. 
This is because B(u) equals the original ~(u) within IF, and thus the approximation 
error P vanishes. The varying pulse area and equidistant pulse positions for ordinary 
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sampling are exchanged fora constant pulse area and non-equidistant pulse positions 
for pulse-density modulation. A perfect reconstruction is now only possible in the 
limiting case h -. 0. 

Since pulse-density modulation appears to be related to numerical integration, 
we investigate in the next subsections which known numerical integration methods 
are applicable to generate equal-area pulse trains. In genera), numerical integration 
of a fundion f(g) defined on the interval [a, b] is based on 

t f(g)dg = eof(go) + ctf(g!) + ... cKf(gK) + R(f). (3.31) 

The integration nodes g0 , . .. , gK and weights Co, ... , CK are chosen such that the 
remainder R(f) vanishes for a certain class of functions, which are polynomials in 
our case. Expanding f(g) in a Taylor series this means that the numerical integration 
becomes exact for a certain truncation of this series. For pulse-density modulation, 
where we have J(g) = e-i2.-ux(g), we require the integration weights to he identical. 
Only in that case equal-area (Dirac) pulses are generated. 

3.2.2 Gauss' integration methods 

With Gauss' I -point integration method ('Gauss-I') we find for the integration node 
g0 =!(a+ b) and for the integration weight Co= (b-a). Applying these results in 
the approximation of the partial signa) ~m(u) on the interval bm- t ,'Ym] we have 

~m(u) = 1-v~ e-i2".ux(g)dg ~ he-i21fux(gm) = Bm(u) ' 
"Ym -1 

(3.32) 

where 9m = ~bm-1 + 'Ym)· Obviously, we have 9m - 'Ym-1 = 'Ym - 9m = ~h, which 
is identical to 

19~ r-r~ 

dg= Ja dg = ~h . 
'Ym.-1 9m 

(3.33) 

After applying the inverse coordinate transformation x(g) we find in the space do­
main 

JXm 1Xm 
Xm-t 1/>(x)dx = x~ 1/>(x)dx = ~h . (3.34) 

We conclude that with Gauss' 1-point integration formula the pulse position Xm 

is given as the (normalized) median value of the input signa( on each interval 
[Xm- t,Xml· As a consequence, the area of 1/>(x) between two successive pulse posi­
tions also equals h, and we have 

h = 1:~. 1/>(x)dx .::; 1:~. dx = (xm - Xm-d · 1 . (3.35) 

Using h = a · 1 we find a .::; Xm - Xm-l , which states that with Gauss' I-point 
integration method, overlap of the pulses cannot occur. 
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Figure 3.2: With Gauss' I-point integration formula the pulse position is Xm = x(gm) 

with 9m = H1m-1 + /m)· 

In our approach we have determined one pulse position Xm in one interval 
[Xm-l, Xm], but we might a.s well try todetermine two adjacent pulse positions Xzm- 1 , 

Xzm in a double interval [Xzm- 2, Xzm] or three adjacent pulse positions X3rn-2, X3m- 1 

and X3m in a triple interval [X3m-3, X3m], and so on. 
To determine the pulse positions in pairs, we combine two adjacent intervals and 

use Gauss' 2-points integration formula (Abramowitz and Stegun, 1970) ('Gauss-2') 
a.s a numerical approximation for 

~zm(u) + ~2m-1(u) = j'Ylm e-i21fU.x(g)dg. 
'l"2m.-2 

(3.36) 

The resulting approximation is then 

(3.37) 

where the integration nocles are given by 

= /2m + /2m-2 ± /2m - 12m-2 ± h 
92m,2m-1 2 2J3 = /2m- 1 · J3 · (3.38) 

Combining more intervals and using Gauss' higher-order integration formula.s is 
not possible since the integration weights are not equal, resulting in a non-equal 
area pulse train. However, using Chebyshev's integration formula it is possible to 
use higher-order methods. 
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3.2.3 Chebyshev's integration methods 

With Chebyshev's integration metbod the integration nocles in (3.31 ) are determined 
under the constraint that all weights are equal. This allows us to simultaneously 
determine the positions of J( (3 :::; K :::; 9, with the exception of K = 8) Dirac 
pulses in K intervals. We assume that K divides Mand use Chebyshev's K-points 
('Cheby-I<') integration formula for m = 1, . . . , M / J( on the interval bKm-K, /Km] 
(Abramowitz and Stegun , 1970), according to 

K - 1 K - 1 

hL e-i21rux(gK~-k) = L BKm-k(u) . (3.39) 
k=O k=O 

The integration nocles are 9Km-k = HIKm + /Km-K) + !f.kK h, with f.k (for k = 
0, 1, ... , I<- 1) the I< zerosof the polynomial part of 

(3.40) 

We remark that Chebyshev's 1- and 2-points integration formulas yield the same 
results as Gauss' 1- and 2-points integration formulas, respectively. 

Example 
We determine the integration nodes for Chebyshev's 2-points integration for­
mula (K = 2) and show that the result agrees with Gauss' 2-points formula. 
For k = 0, 1 the integration nodes are given by 

92m t{"Y2m + "Y2m-2) + !~o2h = "Y2m-1 +~oh 
92m-1 = ~("Y2m + "Y2m-2) + !~12h = "Y2m-1 + ~1h · (3.41) 

To find ~0 , ~1 we have to consider the polynomial part of 

(3.42) 

and determine its zeros. Using the Taylor expansion ex = 1 + x + ~x2 + ... 
we find 

e + e [-2 c. ~e + .. ·)] + !e [-2 c. ~e + .. ·) r + .. . ) (3.43) 

with a polynomial part ç2- &· The zeros ~0 = 1/VJ, 6 = -1/VJ indeed give 
rise to the integration nodes of Gauss' 2-points integration formula. 
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As a second example the integration nodes for Chebyshev's 3-points integra­
tion formula (K = 3) are calculated. For k = 0, 1, 2 the integration nodes are 
given by 

92m = KY3m + 1'3m-3) + Ho3h 
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92m-1 !b3m + 1'3m-3) + !~13h (3.44) 

92m-2 !b3m + 1'3m-3) + ~63h · 
In this case ~o, 6 and 6 are the zeros of the polynomial part of 

i.e. the zeros of e- !~· For K = 3 we thus find the integration nodes in 
(3.44) with ~o = 1/.J2,6 = 0,6 = -1/.J'i. 

3.2.4 Integration methods based on moments 

The above integration methods are based on exact integration of a number of terms 
(polynomials) in the Taylor series expansion of e-i21rux(g) ing. The integration error 
( caused by the next term) depends on the spa ti al frequency 4 u. As a result, the 
approximation in the frequency domain is good in the vicinity of u = 0, and the 
errors are 'shifted' towards higher frequencies. 

In the present subsection we consider an alternative way to achieve this goal. 
We reeall that we have to approximate the partial Fourier transfarms 

(3.46) 

by 

(3.4 7) 

In the vicinity of u= 0 we can write ~m(u) and Bm(u) in a Taylor series expansion 

and 

~m(u) ~m(O) + ~~(O)u + ... 

Bm(u) 

= j tPm(x)dx-i27ru j XtPm(x)dx+ ... 

Bm(O) + B~(O)u + .. . 
h - i21rXmhu + . . . . 

(3.48) 

(3.49) 

4 A comparable situation occurs in a Taylor series expansion for cos(2:~rux) in x . The higher the 
frequency u the more terrns we need in order to achieve a desired accuracy. 
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Due to (3.25) the zero-order terms in the two Taylor series expansions (3.48) and 
(3.49) are equal. With an appropriate choice of the pulse position we can also equate 
the tirst-order termsin the expansions and obtain B'(O) = ~'(0) . The solution reads 

1 jXm 1 J Xm = h xl/>(x)dx = h xif>m(x)dx. 
Xm-1 

(3.50) 

The obtained pulse position Xm is the normalized first-order moment of 1/>m(x) (the 
'center of gravity') and for this choice of Xm we have the equalities 

j 1/>m(x)dx = 

j xif>m(x)dx 

j bm(x)dx = h 

j xbm(x)dx = hxm . (3 .51) 

In this way the zero- and tirst-order momentsof 4>m(x) and bm( x) are equated, hence 
the name 'moment-I' method. 

We might as well try to equate the second-order derivative for u = 0 by con­
siclering also thesecond-order moment ('moment-2') . Again we combine two adja­

. cent intervals and determine two pulse positions Xzm- 1, Xzm in the double interval 
[Xzm- 2 , Xzm] by equating the zero-, first- and second-order moments . In that case 
we approximate 

~zm(u) + ~2m-1(u) = 1"/lm e-;z"ux(g)dg 
"l'2rn-2 

by 

We have to solve Xzm and Xzm- 1 (and eliminate h) from thesetof equations 

j [1/>zm(x) + 4>zm-1(x )] dx = j [bzm(x) + bzm-1 (x)] dx = 2h 

hm1 = j x [1/>zm(x) + 1/>zm-1 (x)] dx = 

(3.52) 

(3 .53) 

j X [bzm(x) + bzm-1(x)]dx = h(xzm + Xzm-d (3.54) 

hmz = j x2 [4>zm(x) + 1/>zm-1 (x)] dx = 

j x2 [bzm(x)+bzm-1(x)]dx=h(x~m+x~m-1) · 

The solution reads 

m 1 ± J2mz- m~ 
Xzm,Zm-1 = 2 · (3 .55) 

Using Schwarz' inequality 

Ij p(x)q(x)dxl 2 :::; j lp(xWdx j lq(xWdx (3 .56) 



Continuous pulse-density modulation 

with p( x) = x [i{;) and q( x) = [i{;), we have the property 

(hmd = [! x[<P2m(x) + <P2m-l(x)]dxr 

< [! x2[<P2m(x) + <P2m-J(x)]dx] [j[<P2m(x) + <P2m-J(x)]dx] 
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(hm2)(2h) , (3.57) 

which implies that the two positions x 2m and x 2m-J are real and non-coïncident. The 
equality sign in Schwarz' inequality holds only if p(x) = cq•(x) with c an arbitrary 
real constant; this condition is not satisfied here. We remark that the extension to 
higher-order moments may not he possible, because in that casethereis no guarantee 
that the solutions are real and non-coïncident. 

3.2.5 Error analysis for the integration methods 

In the previous subsections we have proposed several methods to calculate the pulse 
positions. For all methods we expect that the approximation error will decrease to 
zero when the number of pulses is continuously increased. In this section we will 
analyze this error behaviour. Since all methods are based on numerical integration 
it is natura! to use the error analysis known from numerical integration (Davis and 
Rabinowitz, 1984). Consiclering the approximation error in the spatial domain, we 
try to minimize 

P = j ia(x) * [b(x)- <P(x)]l2dx. (3.58) 

Under the assumption that A(u) = rect(uf!::,.,.) we have a(x) = /::,.,.sinc(/::,.ux). For 
convenience we define the filtered signals J( x) = a( x) * <P( x) and b( x)_= a( x) * b( x). 
Miniruizing (3 .58) then implies minimizing the signa] power of é(x) = b(x)- <P(x). To 
determine J( x) we use the coordinate transformation g( x) foliowed by a numerical 
approximation: 

_ l~f>x {A 
<P(x) = _16x a(x- s)<P(s)ds =Jo a(x- s(g))dg ~ 

2 
M 

hL a( x- s(gm)) = b(x), (3.59) 
m=l 

where s(g) is the solution of the differential equation ds/dg = <P-1(s). By definition 
the filtered error signa) é(x) is then the approximation error caused by the numerical 
integration. When Gauss' 1-point integration rule is used to determine the pulse 
position x(gm) in the interval bm-1, /m], we can write for the approximation error 

l~m h3 d2 
a[x- s(g)]dg = ha[x- s(gm)] + -2 -d 2 a[x- s(g)]l9=em , 

~m-1 4 9 
(3.60) 
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method order method order 
Gauss-I M-2 Cheby-5 M6 
Gauss-2 M-4 Cheby-6 M-6 

moment-I M-2 Cheby-7 M-B 
moment-2 M-4 Cheby-8 --

Cheby-3 M-4 Cheby-9 M-lO 

Cheby-4 M-6 

Table 3.I: Error behaviour for the various integrations methods. 

with f.m E bm-1 >"Ym)· After summing up the contributions of all intervals we find 
for the total filtered error signa! 

The left-hand summation in (3 .61) can be considered as a Riemann sum for the 
integral on the right-hand side. Interchanging differentiation and integration we 
find 

h2 d 
e(x) = 24 dg (a[x- s(A)]- a[x- s(O)]) + O(h4 ). 

With the chain rule for differentiation 

d d dx a'(x) 
-a(x) = -a(x) ·- = -­
dg · dx dg <P(x) 

we finally find 

_( ) = h2 [a'(x + ~.6-x) _ a'(x - ~.6-x)] O(h4 ) 

ex 24 <P(-~.6-x) <P(~.6.x) + · 

(3.62) 

(3.63) 

(3.64) 

This equation shows that the filtered error signa! decreases quadratically to zero 
when the (average) pulse-density is increased, since h = A/M. We remark that the 
given derivation is only va lid for signals <P( x) > 0. A more general derivation is given 
in (Jagerman, 1966), which is valid for signals <P(x) 2: 0. For this class of signals 
the approximation error does not decrease as fast as O(M-2 ). However, with the 
application of amplitude holograms we can always add a smal! constant in order to 
ensure that <P(x) > 0, and therefore our error analysis is appropriate. 

A similar analysis can be carried out for the other methods. The results for the 
various numerical integration methods are summarized in Table 3.1. We conclude 
that with the higher-order methods a smaller approximation error can be achieved . 
However, the higher-order methods require a( x- s(g)) to admit differentiations of 
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sufficient order, meaning that </>(x) should be sufficiently smooth. lf 4>( x) does not 
fulfill this constraint, the approximation error will not decrease as fast as shown 
in Table 3.1. A notabie fact is that with the Chebyshev integration methods the 
approximation error does not decrease monotonically with increasing order. 

3.2.6 Computer simulation results 

Using the various pulse-density modulation methods, we have generated pulse trains 
fora given input signa! </>(x) and calculated the approximation error as a function of 
the number of pulses M. Togeneratea continuous !ow-pass signa! 4>(x ), a sequence 

x/X 

4 

c 3 
-~ 

1 
0.. 

2 

0 
-200 -150 -100 -50 0 50 100 150 200 

x/X 

Figure 3.3: Input signa! </>(x) and generated pulse train b(x) (M = 100, Gauss-I). 

of uniformly distributed noise samples is filtered by a discrete !ow-pass filter with 
cut-off frequency 0 = fö. From the output of the digital filter we take a sequence of 
2N + 1 successive samples </>In]; n = -N, ... , N. This discrete signa! is converted to 
a continuous signa! by means of linear interpolation using the linear spline 5 trian( x). 

5The function trian(z) is defined as 

. ( ) { 1 -JzJ lzl < 1 
tnan z = 0 elsewhere (3.65) 
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The resulting polygon 

(x- nX) </>(x)= l::<f>[n]trian X 
n 

(3.66) 

is set to zero outside the interval [-~llx, ~llx]- Finally a positive constant is added 
and the result is scaled according to 0 < </>(x) ::::; 1. In Figure 3.3 we show a polygon 
(N = 200), with a total number of 401 samples. 

In addition a pulse train with M = 100 pulses, resulting from Gauss ' 1-point 
integration method is shown. We observe that the local pulse density of the pulse 
train is modulated by the local amplitude of the input signa! </>(x): large amplitudes 
of </>(x) cause a high pulse density of b(x), while smal! amplitudes cause a low pulse 
density. Next, both signals <f>(x) and b(x) are filtered by an ideal !ow-pass filter 
A( u) with cut-off frequency ~él" = ;JoX-1 . The accompanying output signals J(x) 
and b( x) are shown in Figure 3.4. Even for M = 100, the approximation with 
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Figure 3.4 : Filte red input signa! J(x) and filtered pulse train b(x). 

pulse-density modulation is quite good. (Note that with a cut-off frequency () = oJo 
we have <f>(x) oversampled with a factor 10, and therefore M = 100 is only about 
2.5 times the minimum number of samples.) Th is is expressed more adequately by 
consiclering the noise powerPof the error signa! ê(x) . For the calculation of P we 
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have used the approximation 

1 N 
P ~ -- L: é2[n] 

2N + 1 n=-N 

37 

{3.67) 

for {3.58) . Numerical results for the various integration methods as a function of the 
total number of pulses are given in Figure 3.5. In order to make a comparison with 
the theoretica) expectation possible, we have shown Prrns = v'Ji. In agreement with 

JO·I 

J0·2 

~ 
"" g 

)0·3 ., 
" : Gauss-I 0 

'D 
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~ • : moment- I 
8 10 .. 
!! 0 : moment-2 
~ : Cbeby·3 c 
00 
'0 x : Cheby-4 

JO·S 

J0-6 
JOl JOl 

number of pulses M 

Figure 3.5: Error Prms as function of total number of pulses for various integration 
methods. 

the given theoretica) analysis the Gauss-I integration method introduces an error of 
O(M-2 ) . A lso the results of the moment-I, Gauss-2, the moment-2 and the Cheby-3 
integration methods verify the theoretica! values of Table 3.1. For the higher-order 
methods (we have shown only Cheby-4), however, the experimental results are not 
in agreement with the theoretica) values. We have already noted that the higher­
order methods impose more severe demands on the smoothness of the continuous 
signal. In our case, 4>(x) is generated using linear interpolation . Therefore, even the 
second-order derivative of 4>(x) does not exist. This probably causes probieros for 
the higher-order integration methods, and higher-order splines should he used for 
the interpolation. Of course, this requires extra computation . Although moment-I 
takes the Ihst-order moment into account its does not perform as good as Gauss-1. 
Furthermore we note that we have added a relatively large constant to the input 
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signa!, leading to a small efficiency of the hologram . For smaller constants the 
difference in performance between higher- and lower-order methods disappears . 

3 .2.7 Condusion 

In this section we have discussed the approximation of a given signa! by a pulse­
density signa! for the one-dimensional case. While the original problem is formulated 
as a multidimensional minimization problem, we have considered an approach which 
makes it possible todetermine the positions of small groups of pulses independently. 
This leads to several methods for various group-sizes, all based on numerical inte­
gration. For a large number of pulses, the approximation error is forced to zero. 
However, only the lower-order methods turn out to be of practical interest. 

3.3 Two-dimensional continuous pulse-density 
modulation 

3.3.1 Introduetion 

In the previous sections we have proposed several methods to determine the pulse 
positions for one-dimensional signals. All methods arebasedon dividing the (input) 
signa! in equal-area parts, teadingto a division of the (one-dimensional) domain in 
subintervals. This approach can be generalized to the two-dimensional case, where 
the two-dimensional domain IH has thus to be divided in M nonoverlapping cells 
Cm with equal 'area' 

h = Jfcm t/>(x, y)dxdy . (3.68) 

Again, the total area of tf>(x,y) is assumed to equal A= Mh. 
While for the one-dimensional case the salution of the division-problem is unique, 

an infinite number of solutions exists in the two-dimensional case. As a result 
a number of different approaches have been proposed. In (Eschbach and Hauck, 
1987) a sequentia] algorithm for the determination of the cells is descri bed . Starting 
in one corner of the domain IH the signa! samples (the input signa! is assumed to 
be discrete) are processed in a well-defined order and grouped into clusters. Each 
cluster ( or cel!) is represented by one pulse. Variations on this concept can be 
found in (Eschbach, 1990) and in (Koppelaar, 1992) where also a 'recursive domain 
di vision' algorithm is considered. 

Here, we carry the generalization of the one-dimensional approach further by 
means of the introduetion of a two-dimensional coordinate transformation f = 
f (x, y), g = g( x, y) analogous to the one-di mension al coordinate transformation 
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g = g(x). In this way the coordinates (x,y) are transformed toa new set of coor­
dinates (J,g). With the infinitesimal relation <f>(x,y )dxdy = dfdg we find for the 
Fourier transform of </>(x, y) in terms of the new coordinates 

<I>(u,v) =IJ </>(x,y)e-ih(ux+vy)dxdy =IJ e-i2".[ux(f ,g)+vy(f,g)]dfdg . (3.69) 

Next, the fg-domain is divided in M = M1M2 cells êm,m2 = [(m1 -l)Jh,m1 Jh] x 
[(m2- l)Jh, m2Jh]: 

(3.70) 

Applying a numerical approximation within each cel\ we find 

M, M2 
B(u,v) = h 2.:: 2.:: e - i2".f=Um1 ,gm2 )+vy(fm1 ,gm2 )J . (3. 71) 

m1=l m2=l 

The result is the Fourier transform of a set of two-dimensional pulses with equal 
area h: 

M, M2 

b(x,y) = h 2.:: 2.:: b(x-Xm1m.,Y-Ym1m 2 ) · (3. 72) 

For one-dimensional signals the interval boundary Xm is the solution of g( x) = mh 
with m = 0, .. . , M. In two dimensions the cells Cm1m2 in the xy-domain are formed 
by the coordinate curves f(x,y) = m 1Jh and g(x, y) = m 2Jh. In case Gauss' I­
point integration method is applied to determine the pulse position within each cell 
the solution is given as the intersection ofthe coordinate curves J(x,y) = (m1 -~)Jh 
and g(x, y) = (m2 - ~)Jh. 

In differential notation the coordinate transformation f = f(x, y), g = g(x, y) 
reads 

dJ 
of of 
- dx+ - dy 
ox oy 

dg 
og o9 
ox dx + oy dy. (3. 73) 

The determinant of this set of equations, also known as the Jacobian (Kreyszig, 
1983), follows from dfdg = </>(x,y)dxdy as 

(3.74) 

For convenience we have introduced the shorthand notation fx for of fox etc. Due 
tothefact that <f>(x,y) -::j:. 0, the mapping of (x,y) onto (f,g) is one-to-one. 

In order to determine the coordinate transformation we have to solve the nonlin­
ear partial differential equation (3.74). However, the problem is underdetermined, 
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so an additional equation needs to be formulated. A reasonable choice is to take the 
set of curves f(x,y) = fm, and g(x , y) = 9m2 orthogonal, leading to the differential 
equation 

(3.75) 

According to (3.74) grad f = Ux, jy) and grad g = (gx,gy) form a cel! with area 
</>(x, y) and (3.75) states that grad f and grad gare perpendicular. Finally, a set of 
boundary conditions has to be formulated in order to describe the mapping of the 
boundary of lH in the (x, y )-plane onto the boundary in the (!, g )-plane. 

Remark 
One is tempted to solve (3.74), (3.75) using the Cauchy-Riemann equations 
fx = gy and /y = -gx. However, it can he shown that this approach does 
not yield a salution for general signals lf>(x,y). First, wedefine the analytic 
function w(z ) = f(x, y) + ig(x, y) and rewrite (3.74) and (3.75) into 

lw'( zW = lj>(x,y), (3 .76) 

where the differentiation is carried out with respect to the complex variabie 
z = x + iy. Next, we introduce v(z ) according to w'( z) = ev(z) and remark 
that for an analytic function w(z) also v(z) will be analytic. With (3 .76) 
we find Re v( z ) =~In lj>(x,y). Since the real part of an analytic function is 
harmonie ( this holds also for the imaginary part) , we have 

div grad In 4>( x, y) = 0 . (3 .77) 

Th is is a severe res trietion on the signa] lf>(x, y) . We remark th at (3.77) implies 

grad 4> · grad 4> = 4> div grad 4> . (3.78) 

As an example we consider the particular case where lf>( x,y) = x2 + y2 . Re­
striction (3.77) is then satisfied and we are able to use the Cauchy-Riema nn 
equa tion s to solve (3 .74), (3 .75) . In this case we have for (3.76) 

( 3. 79) 

The solution reads w(z ) = ~(x2 - y 2 ) + ixy + c, with ca complex constant. 
Under the assumption that c = 0 the curves f(x, y) and g(x, y) are the hy­
perbolas 

f(x , y) 

g( x , y) (3.80) 

The pulse positions are determined as the intersections of the coordinate 
curves f(x, y) = (mt- ~ )Vh and g(x, y) = (m2- ~ )Vh, shown in Figure 3.6. 
The pulse density increases with increasing distance r = Jx 2 + y2 . Note t hat 
the boundary of IH is not considered in this solution. 
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Figure 3.6: Pulse-density modulation for <fo(x, y) = x2 + y2 by means of the Cauchy­
Riemann equations. 

For a general input signa\ lfo( x, y) we try to solve the prob\em numerically. It appears 
that dividing the problem in finding f(x,y) and g(x ,y) foliowed by the determina­
tion of the pulse positions by calculating the intersections of the set of curves is 
inappropriate. lnstead, we combine both sub-problems and so\ve them simultane­
ously. This is the subject of the next subsection. 

3.3.2 Coordinate meshes with manageable density 

In order to find the pulse positions by numerical means we follow the approach 
proposed by Christov (1982) . This approach is concerned with the generation of a 
grid with a manageable density. Such grids are applied in numerical methods for 
solving partial differential equations. This way one is able to adapt the calculation 
precision to the structure of the underlying problem. 

This approach is elucidated by consiclering the one-dimensional case first, where 
the coordinate transformation g( x) was defined ( cf. (3.26)) according to 

9x (X) = <fo( X) 
g(-~~x) = 0 · (3.81) 

The interval boundaries and pulse positions are easily determined if the accompa­
nying inverse coordinate transformation x(g) is known. According to (3.81) x(g) is 
the salution of 

x9 (g) = <fo-1(x) 
x(O) = -~~x. (3.82) 

In order to determine the interval boundaries we solve (3.82) for 9m = mh. Since 
the area of <fo(x) equals A we know (without solving (3.82)) that x( A)= ~~x- The 
two constraints are the boundary conditions of a second-order differential equation, 
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which is found by rewriting x9 (g) = </>-1(x) into <f>(x)x9 =I foliowed by a differen­
tiation with respect to g: 

(<f>(x)x9 ) 9 = 0 

x(O) = -~.0-x 
x(A) = ~.0-x · 

(3.83) 

Due to our choice of the boundary conditions, the problems (3.82) and (3.83) are 
equivalent. Solving (3.83) numerically for 9m = mh is thus an alternative way 
to determine the interval boundaries Xm = x(gm)· To this end we replace the 
differentials by finite differences, according to 

Jm+l - Jm_l 
f ~ 2 2 
g~ h (3.84) 

This leads to the finite difference problem 

- </>m_lXm-1 + (</>m_l + </>m+dXm- </>m+lX,;,+l = 0 
2 2 2 2 

Xo = - ~.0-x 

XM = ~.0-x , (3.85) 

with m = 1, ... , M - 1. For the evaluation of</> 1 and </> 1 we use 
m-2 m+2 

(3.86) 

The resulting set of M - 1 equations in M - 1 unknown variables is solved using 
Gauss elimination. After having determined the boundaries Xm of the cells the pulse 
positions are found using an appropriate approximation. 

The approach of Christov (1982) is the two-dimensional generalization of the 
previous boundary-value problem. Starting point is thesetof equations 

XJYg- YJXg 

XjXg + YJYg (3.87) 

which can be easily derived from (and are equivalent to) (3.74) and (3.75) . The 
boundary conditions are chosen such that the boundaries of lH coincide with coor­
dinate curves: f(-~.0-x,y) = 0, f(~.0.x,Y) =VA, g(x, - ~.0-y) = 0 and g(x,~.0.y) = 
VA. This way the entire domain lH in the xy-domain is covered by the coordinate 
mesh and we have 

jjlH </>(x, y)dxdy = 1../A 1../A dfdg = A . (3.88) 
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Figure 3.7: The boundary conditions for x(J,g) and y(f,g) are derived from the 
choice of the coordinate curves on the boundary in the xy-plane. 

The value of the coordinate curves for the right and the upper boundary of lH is 
arbitrary as long as the product equals the total area A. Our choice implies an 
equal number of pulses in the horizontal and vertical direction. Since the coor­
dinate transformation is one-to-one the above choice for the coordinate curves at 
the boundary implies: x(O,g) = -~Ll.,, x(VA,g) = ~Llx, y(f,O) = -~Ll11 and 
y(J, VA) = ~Ll11 • Using (3.87) we find an additional set of 4 boundary conditions: 
Xf(j,O) = 0, Xf(f,VA) = 0 and y9 (0,g) = 0, y9 (VA,g) = 0. In this way either the 
value or the derivative of both x(f,g) and y(J,g) is prescribed on the boundary in 
f g-domain. Figure 3. 7 summarizes the derivation of boundary conditions. 

In a straightforward way we can derive from the equations (3.87) the equivalent 
set of equations 

<,b(x,y)(x; + y;)xJ 

<,b(x,y)(x; + y;)YJ (3.89) 

Note that this is a nonlinear generalization of the Cauchy-Riemann equations. An 
alternative (but not independent) set of equations is 

<,b(x,y)(x}+y})y9 Xf 

<,b(x, y)(x} + y})x9 = -yf · (3.90) 

Next (3.89) and (3.90) are combined in order to achieve a form which 1s more 
convenient to solve numerically: 

(<PH;xJ)J + (<PH}x9 )9 

( <,bH;YJ )J + ( <,bH}y9 ) 9 

0 

0. (3.91) 

This result can he considered as the two-dimensional generalization of (3 .83), where 
we now have the additional coordinate sealing factors HJ = x}+y] and H; = x;+y;. 
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In order to solve the problem stated by thesetof equations (3.91) tagether with 
the boundary conditions, an approximation based on fini te differences ( similar to 
the one-dimensional case) is applied. The resulting set of equations is solved using 
the alternating direction implicit method (ADI) with Gauss elimination (Kreyszig, 
1983). A set of 900 pulses obtained with Gauss' I-point inlegration for the signa! 
</>(x, y) = x 2 + y2 is shown in Figure 3.8. The density of the pulses is adapted to 

Figure 3.8: Pulse density modulation for <f>(x,y) = x2 + y2 , determined by numeri­
cally solving the generalized Cauchy-Riemann problem. 

the local signa! val ue of </>(x, y). Wh en Figure 3.8 is viewed from a large di stance 
(this is !ow-pass filtering) a radially increasing gray-tonelevel is observed. However, 
in contradiction with (3. 75) the resulting coordinate curves for t he input signa! 
1/J(x,y) are not orthogonal! In order to explain this we assume that an input signa!, 
which is invariant under the exchange of the coordinates x and y, gives rise to a 
coordinate mesh possessing the same symmetry. (The coordinate curves are then 
related according to f(x , y) = g(y, x)). A closer inspeetion of the first quadrant 
in Figure 3.8 shows that in general an orthogonal coordinate mesh will not exist. 
The proposed method tries to minimize the orthogonality error, as can be shown by 
calculation of (3.75) during iteration. 

3.3.3 Discussion 

One-dimensional pulse-density modulation based on a coordinate transformation 
can he generalized to the two-dimensional case. By means of the approach proposed 
by (Christov, 1982) a set of coordinate curves with a given density is determined. 
Although one of the basic assumptions of this method is the construction of an 
orthogonal mesh, the result turns out to he non-orthogonal. Since our objective is 
to obtain a coordinate mesh with a prescribed density (not necessarily orthogonal) 
we still fee! this method is applicable. 

While the one-dimensional pulse positions are determined independently, the 
problem has to he solved iteratively in the two-dimensional case. Due to the com-
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putational complexity, we have applied this method only for the determination of 
a small number of pulses for simple input functions. For hologram transmittances, 
where a large number of pulses is required in order to obtain a good approximation, 
our present implementation is too complex. In order to reduce the complexity one 
could think of gradually decreasing the step-size (increasing the number of pulses) 
during iteration. 

3.4 Related topics 

3.4.1 Introduetion 

In this section we discuss some techniques for clustering, which turn out to be 
related to pulse-density modulation. This relation is based on the consideration 
that when the positive input signa! is normalized such that its total area equals 
unity we can regard the resulting <P(x, y) as the probability density function of the 
two-dimensional vector z = (x,y)T. From this point of view the Fourier transform 
«<>(u, v) equals the expectation of e-'2"(u:z:+vy): 

«<>(u,v) = Exp [e-'2"(=+vy)] = jj tjJ(x,y)e-i21r(ux+vy)dxdy, (3.92) 

also known as the charaderistic function (Papoulis, 1965). Next , we consider a 
souree which generates veetors Zn = (xn, Ynf in accordance with the probability 
density function <P( x, y) defined on liL We then find that the average 

1 N 
B( u, V) = - E e- i21r(uxn+vy,..) 

N n=l 

(3.93) 

equals the Fourier transfarm of the pulse-density signa! b( x, y) consisting of Dirac­
pulses located at positions (xn, Yn)· In the limiting case N ----. oo the average (3.93) 
approaches the ensemble average (3.92). Of course, finding a method toselect veetors 
according to fixed probability density function is (for the continuous case, not for 
the discrete case) as difficult as the original pulse-density modulation problem. 

While the above consideration requires a large number of vectors~ we are par­
ticularly interested in a representation of the probability density function t/J( x, y) 
with a fini te number of ' representation' veetors (xm, Ym)T. To settie this problem a 
clustering of the generated veetors (xn, Ynf is introduced. Th is is briefly considered 
for vector quantization and the Kohonen network in the next sections. For a more 
detailed discussion and experimental results, see (Koppelaar, 1992). 

3.4.2 Vector quantization 

The mapping of a vector z E ID onto a finite set of representation veetors Zm E ID 
with m = 1, ... , M is known as vector quantization. To this end the domain D is 
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divided in M (connected) cells Cm, according to 

M 

[) = U Cm , where Cn n Cm = 0 for n # m . (3.94) 
m=l 

All veetors within cell Cm are represented by Xm. The mapping thus implies finding 
out to which cel! a given input vector belongs. This leaves us the problem how to 
determine the optima! cells and their representation vectors. 

The design of a non-uniform quantizer for the one-dimensional case, where the 
veetors become scalars and the cells become intervals, is due to Max (1960). In 
accordance with the notation of Section 3.2 the representation scalars are denoted 
by Xm, the interval boundaries by Xm· Moreover, the probability density function 
is denoted by <P(x) defined on the domain lH. The optima! interval boundaries and 
representation veetors are determined by minimizing 

Exp [d(x, x)]= j d(x, x)<P(x)dx, (3.95) 

with d(x, x) an appropriate distance function. In the one-dimensional case the map­
ping rule x -> x of the quantizer reads 

x = Xm if Xm-1 < x ~ Xm ; m = 1, ... , M . (3.96) 

In our case we have Xo = -~Llx and XM = ~Llx. It has been shown (Max, 1960) 
that for the (squared) Euclidean distance d(x, x) = lx - xl 2 the optima! salution 
satisfies 

Xm Hxm + Xm+d 

J;:;:_, x</J(x)dx 

J;:;:_, <P( x )dx 

In order todetermine the optima! salution an iterative algorithm is applied. 

(3.97) 

By means of (3.95) the quantization errors are given more weight in regions 
where <P( x) is large. As a result the optima! quantizer reserves more representation 
scalars Xm in regions where x is selected with a higher probability. Regarding the 
representation scatars as the positions of the pulses, the pulse density is thus adapted 
to the input signa\ <P( x). As for the first-order moment methad of Subsection 3.2.4 
the representation scatars are given as the center of gravity of each cel!. Note, 
however, that the representation veetors are not equiprobable. 

Of course, we can regard Gauss' I -point integration method as the mapping rule 
of a scalar quantizer: 

(3.98) 



Continuous pulse-density modulation 47 

where g( x) is defined accordlng to (3.26). For a stochast ie variabie x with a proba­
bility density function </>(x), the quantizer output x will have a probability density 
function 

1 M 

b(x) = M L ó(x- xm). 
m=l 

(3.99) 

Obviously, the possible outputs of the quantizer are equiprobable and the quantizer 
can be regarcled as a souree with maximum entropy. 

The design of a two-dimensional quantizer, i.e. a vector quantizer, is the gen­
eralization of the one-dimensional case. The optima! set of representation veetors 
mmimizes 

Exp[d(z,x)] = j d(z,x)<f>(x)dx, (3.100) 

where the distance is assumed to be the (squared) Euclidean distance. Consiclering 
(3.97), the cells Cm are now defined according to 

(3.101) 

The resulting cell-structure in Figure 3.9 is known as the Voronoi tessellation of the 
domain lH in the two-dimensional plane (Voronoi, 1907). On the other hand, the 

Figure 3.9: Voronoi tessellation of the two-dimensional plane. The representation 
veetors are shown as black dots. 

representation vector is the center of gravity of the accompanying cell: 

lJc x<f>(x,y)dxdy ffc y<f>(x,y)dxdy 
x - m and Ym = m , 
m- ffcm </>(x,y)dxdy ffcm </>(x,y)dxdy 

(3.102) 
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as follows from (3.97). Obviously, the representation veetors completely specify the 
cells (3.101), which in turn completely specify the representation veetors (3.102). 

In contrast to the one-dimensional case an explicit mapping rule x -> Xm can 
not be formulated. Instead, the representation vector Xm of a given vector x is 
found by means of 

(3.103) 

lf a vector has equal distance to more than one decision vector (the boundary of a 
cell) we select the decision vector with the smallest index. 

Based on the above considerations Linde, Buzo and Gray (1982) have proposed 
an iterative algorithm, known as the LBG-algorithm, in order to determine the 
optima! set of representation vectors. First, a training set of N veetors (with N ::;}> 

M) is generated in accordance with the probability function 4>(x, y). In addition 
an initia[ set of representation veetors is assumed. For each training vector the 
accompanying representation vector is determined using (3.103), i.e. the training 
veetors are clustered. Next, the representation for each cluster (the set of veetors 
in the same cell) is determined by calculating the center of gravity. Given the new 
set of representation veetors the process is repeated ( using the same set of training 
vectors) until a desirabie solution is obtained. 

We remark that in both the one-dimensional and the two-dimensional case the 
density of the obtained set of representation veetors (pulse positions) is matched to 
the probability density function (input signa!). However, the representation veetors 
wiJl have a non-equal probability 

P[xm] = f r/>(x)dx . (3.104) Jcm 
In termsof pulse-density modulation this means that the pulses have non-equal area. 

3.4.3 Kohonen's neural network 

The problem of determining a set of equiprobable representation veetors has been 
addressed by Kohonen ( 1984 ). Th is resulted in an algorithm which describes a 
specific type of neural network, known as the Kohonen neural net work, which is 
briefly discussed. 

A neural network (Figure 3.10) is built of a number of processing elements (of­
ten called neurons) arranged in a certain structure by means of connections. The 
connections maintain an instantaneous, uni-directional signa! transport between the 
processing elements. Each processing element combines its incoming signals and 
generates one output signa!, where the particular input-output relation is defined 
by a transfer function. In the neural network we can distinguish layers consisting of 
processing elements with the same transfer function. 

Often, the first operation of the transfer fundion of a processing element is to 
weight and add the incoming signals. (Weights are stored in the processing ele­
ment 's local memory.) Ou ring a training session adaptation of the weights takes 



Contïnuous pulse-density modulatïon 49 

place according to a specific learning rule. In this way the network is given desired 
properties. For the Kohonen network, which belongs to the special class of networks 
capable of self-organization, the training is unsupervised. In this case only input 
signals are presented to the network. The network adapts its weights without any 
knowledge of desired output signals or without knowing how wel! it is performing, 
hence the name self-organizing network. The learning rule for such networks, pro­
posed by Kohonen, is explained by means of the example shown in Figure 3.10. Two 

connections 

input layer 

Figure 3.10: Architecture of the Kohonen neural network. 

input signals x1 , x 2 are applied in the input layer, which distributes these signals 
unchanged to each of the M processing elements in the second layer. Processing 
element m (m = 1, ... , M) weights its input signa! x; (i= 1, 2) with Wmi· For con­
venience we introduce the weight veetors Wm = ( Wm1 , Wm2)T and the input vector 
x = ( x1 , x 2 f. We assume that the input vector x is selected in accordance with 
a fixed probability density function p( x). Next, each neuron in the up per layer 
calculates the Euclidean distance 6 

(3.105) 

The neuron with the smallest distance is called ' the winner', other neurons are 
'the losers'. The main objective of Kohonen was to find a set of M equiprobable 
weight vectors, meaning that (given the probability density function p) each of the 
M neurons is selected as winner with equal probability 1/M. To achieve this the 
following learning rule is proposed. During the training session a number of input 
veetors x are applied. For each input vector the processing element with the smallest 
distance ( the winner) is allowed to adapt its weights according to 

w' = (1- a)w + ax . (3.106) 

6 0ther distances can be used as wel!. 
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Th is equation states that the weight-vector w of the winner is shifted towards x. The 
weights of the other neurons (the losers) remain unchanged. By slowly decreasing a 
to zero during the training the weight-vectors will converge toa stabie configuration. 
For obvious reasons, this learning process is known as competitive learning. With 
the present learning law, however, equiprobability is achieved for specific probability 
density fundions only. A solution for this problem is to build in a ' conscience 
mechanism' (Hecht-Nielsen, 1989). When a neuron is selected substantially more 
often than a fraction 1/ M of the time it leaves the competition fora while, in order 
to give less fortunate neurons a chance to win. 

At the end of the training the weight-vectors are distributed with a density pro­
portional to the probability density function p( x). Each neuron is selected with 
(approximately) the same probability. Consequently, if we generate input veetors 
x = (x, yf according toa fixed probability density function equal to t he (normal­
ized) input signa! </J( x, y) the resulting distri bution of the weight-vectors gives rise 
to the desired pulse-density signa) b(x,y). However, in order to train the network a 
large number of trials is necessary. 

3.4.4 Discussion 

In this section we have briefty discussed the relation between pulse-density roodu­
lation and vector quantization. For vector quantization the representation veetors 
act as the pulses. By means of the LBG-algorithm the optima! set of representation 
veetors is determined in order to minimize a well-defined function (3.100). However, 
since this object function seemsincompatible with our desired object function (3.8) , 
the applicability of the LBG-algorithm for pulse-density modulation is limited. 

For the Kohonen network the weight veetors act as the pulses. Given a proba­
bility density function <fi(x,y), the Kohonen networkis able to distribute its weight 
veetors in such a configuration that each weight vector is equiprobable. The desired 
pulse-density signa! is thus found as the probabi lity density function of the weights . 
Provided that the number of weight veetors (pulses) is very large a good approxi­
mation can he obtained using the Kohonen network. We remark, however, that the 
Kohonen network is known to converge slowly. 

3.5 From continuons to discrete pulse-density 
modulation 

So far we have discussed pulse-density modulation without consiclering prec1s1on 
requirements. We did notrestriet the pulse positions (except for overlap) , hence the 
name continuous pulse-density modulation . Actual output devices, however, can 
place pulses with finite precision only. When this property is taken into account, 
the pulses are allowed to he placed on fixed positions only. In this case we have 
discrete pulse-density modulation. 
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Since discrete pulse-density modulation is a special case of continuous pulse­
density modulation we can expect that discrete pulse-density modulation can be 
achieved by adjusting the known methods. For Gauss' 1-point integration method, 
the pul se positions were found by integrating the input signa! </>(x) until the area h is 
reached. (For the first pulse the integration goes to !h.) Then a (Dirac) pulse with 
area h is placed and the process is repeated. With discrete pulse-density modulation 
we integrate </>(x) up to a certain position. If the area exceeds the threshold mh a 
pulse with area h is placed at this position. With the remaining area as starting­
value the integration then proceeds till the next position with threshold ( m + 1 )h. 
This results in an equal-area pulse-density signa! consisting of Dirac-functions placed 
at fixed positions. We remark that this is not a discrete signa!. 

In general</>(x) is known in sampled form. This means that we have to interpolate 
the signa! in order to generate the pulses. In the remainder of this section we con si der 
a system, basedon Gauss' I-point integration formula that converts a discrete input 
signa! directly to a binary output signa!. For convenience we assume that 4>( x) is 
defined on x E ( -oo, oo ). (Th is is in contrast with the finite-length assumption for 
the signals in the preceding of this chapter. Using infinite-length signals is merely a 
matter of notation, the derived results also hold for the original case.) 

</>(x) 

J Q d 
dx 

'------' g( x) '---------' 9Q (x)'--------' b(x) 

Figure 3.11: Equivalent block-diagram for Gauss' 1-point integration method. 

An equivalent block-diagram for this integration method is shown in Figure 3.11. 
Th is system first integrates the input signa! 4>( x) resulting in 

g(x) = j_: </>(s)ds, (3.107) 

which is the input for the quantizer Q. The input-output relation of the quantizer, 
shown in Figure 3.12, is defined according to 

Qg = mh for (m- !)h:::; g < (m + !)h . (3.108) 

The quantization charaderistic consistsof a linear termand a remainder, according 
to Qg = g + (g). The differentiation operator, which is the inverse operation of the 
integration, is applied to the quantized signa! gQ(x) = Qg(x). Since the step-size of 
the quantizer equals h, this results in the desired pulse train 

b(x) = dg~;x) . (3.109) 
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9Q 

g g 

Figure 3.12: The input-output relation of the quantizer Q (shown on the left) con­
sistsof a linear term g and a remainder (g) (shown on the right). 

In the limiting case h --+ 0 the effect of the quantizer disappears and the output 
signa! equals the input signa! (after appropriate smoothing). This again shows 
that for an increasing average pulse-density the approximation error wil! decrease. 
Moreover, we conclude from Figure 3.11 that, since the quantizer represents an 
irreversible operation, exact reconstruction of the input signa! from the output signa! 
is impossible. (Except for the trivia] case where </J(x) is constant.) According to 
Figure 3.12 the effect of the quantizer can be modeled as the addition of a signa! 
(g( x)), that is, 9Q (x) = g( x)+ (g(x )). As a consequence we find for the output signa! 
b(x) = <P(x) + e(x) with e(x) = d(g(x))/dx. Since the differentiation operator acts 
as a high-pass filter the low-frequency content of (g(x)) is attenuated. This means 
that the low-frequency content of the pulse-density signa! b( x) (al most) equals the 
low-frequency content of the input signa! <P(x). 

Remark 
It is possible to show that Figure 3.11 is the block-diagram for Gauss' I-point 
integration method . To this end we first derive an equivalent expression for 
the pulse train 

(3.110) 
m 

Since each pulse position Xm is the (unique) solution of g(x) = (m- ~)h, we 
have (Bracewell, 1978) 

b(g(x) _ mh) = b(x - Xm) = ó(x - Xm) . 
lg'(xm)l </>(xm) 

(3.111) 

In combination with the sifting property (Bracewell, 1978) of the Dirac func­
tion we find 

b(x) = h</>(x) l:ó(g(x)- (m- ~)h] . (3.112) 
m 
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Next, using the sealing property t5[g- (m- ~)h] = h-1 t5[gjh- (m- ~)] 
of the Dira.c function a.nd Poisson's summa.tion formula. (Bra.cewell, 1978) 
Equa.tion (3.112} passes into 

(3.113) 
m 

(In this result we have used e-i1rm = ( -1 )m.) Th is function is periodic in g 

(with period length h) and can therefore he written in a Fourier series. In a 
straightforward way the result 

d [ ~ (-l)mh . mg(x)] 
b(x) = dx g(x)+ ,2

1 
----:;;;:-sm(27r-h-) (3.114) 

is found. The second term in (3.114) is the Fourier series (with coefficients 
(-~rh) of the saw-tooth function (g) which together with the linear term g 

forms the quantization curve shown in Figure 3.12. In summary we have 

d 1"' b(x) = dx Q -oo <f>(s)ds, (3.115) 

this equation describes the system shown in Figure 3.11. 
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Figure 3.11 suggests replacement of the integrator and the differentiator by their 
discrete counterparts in order to acquire a system for discrete pulse-density modu­
lation. The resulting system with a discrete input signa! <P[n] and a discrete output 
signa! b[n] is shown in Figure 3.13. For the ' discrete integrator' we have taken the 

Q 

<P[n] g[n] '---------' 9Q [n] '-------' b[n] 

Figure 3.13: Block-diagram for discrete pulse-density modulation. 

summation (I:), with the transfer fundion H(z) = (1- z-1 t 1 • In that case g[n] is 
given by 

n 

g[n] = ~ </l[m] . (3.116) 
m:-oo 

Next, using the same quantizer as in the continuous case g[n] is mapped to 9Q[n]. 
The differentiation is replaced by the first-order difference (~), which has a transfer 
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function H(z) = 1- z- 1 • So, in the discrete case the last operator is the inverse of 
the first operator as wel!. For the output signa! we find 

b[n] = 9Q[n]- 9Q[n- 1] . (3.117) 

Of course, the discrete system has to convert the input 1/>[n] toa binary-valued output 
b[n] . This is not guaranteed for an arbitrary value for the step-size h. However, for 
input signals with an amplitude range [0, 1] the increase in two successive samples of 
g[n] cannot exceed unity. Taking the quantizer step-size equal to h = 1 results in an 
increase after quantization of either 0 or 1. The output signa! is then binary-valued. 

We remark the resemblance of Figure 3.13 with the class of coding systems known 
as analysis-synthesis systems. By means of an analysis operation (here: 'integra­
tion ') a set of parameters is extracted from the input signa!. In ordertomeet storage 
or transmission requirements the parameters are quantized and coded. After decod­
ing the synthesis operation (here: 'differentiation') reconstructs an approximation 
of the input signa!. An example of such a coding system is block transform coding. 

We end this chapter with the derivation of an equivalent block-diagram for the 
· discrete pulse-density modulation system. To this end we write for the output signa! 

b[n] = 9Q[n]- 9Q[n- 1] 
= Q(g[n]- 9Q[n- 1)) . (3.118) 

This equation states that it makes no difference whether 9Q[n- 1] is subtracted 
before or after the quantization operation is applied. This is shown in Figure 3.14. 
The first block-diagram equals the block-diagram of Figure 3.13 with the summation 
and the finite difference shown in detail. In the second block-diagram 9Q[n- 1] is 
subtracted before quantization. The last block-diagram follows when both delay 
operators z"""' 1 are combined. According to (3 .118) the input of the quantizer reads 
g[n]- 9Q[n- 1], which can be written as 1/>[n] + g[n- 1]- 9Q[n- 1] = 4>[n]- (g[n]). 
Under the assumption that 0 S 1/>[n] S 1 and h = 1 this implies that the amplitude­
range of the input of the quantizer is [ -0.5, 1.5). As a result we are allowed to 
replace the quantizer by a threshold-device with an input-output relation 

Qs = { 1 s ~ 0.5 
0 s < 0.5 

(3.119) 

The resulting system is then known as first-order (one-dimensional) error diffusion, 
which in a more general form is the subject of the next chapter. 

3.6 Discussion 

In this chapter we have discussed continuous pulse-density modulation, where the 
positions of the pulses in the approximating signa! are not restricted to fixed posi­
tions. Finding the optima! set of pulses is a multidimensional optimization problem, 
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g[n]l I gQ[n] 
4>[n] 

~ 
Q rb[n[ 

~ ~ z-1 z-1 

g[n]- go[n- 1] 

4>[n] + + b[n] 

Figure 3.14: Derivation of an equivalent block-diagram for discrete-pulse density 
modulation. The result is known as first-order error-diffusion. 

which can be solved by means of gradient search techniques. However, for a large 
number of pulses such an approach requires much computation. 

Based on the considerations in (Eschbach and Hauck, 1987) we have discussed 
a simpler approach for the one-dimensional case. The input signa] 4>(x) is divided 
in partial signals with equal area, each approximated by one pulse with the same 
area. By combining several adjacent partial signals to be represented by a number 
of pulses, we developed several methods (all basedon a coordinate transformation) 
to determine the position of the whole group. Although this approach does not lead 
to the optima! set of pulses, a good approximation can he obtained fora large pulse 
density. 

Generalization of this concept to the two-dimensional case implies dividing the 
two-dimensional domain in cells of equal-area partsof the input signa! 4>(x, y ). When 
the input signa! is known in discrete form this problem is solved by means of a dus-
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tering of the signa! samples. In general this is clone recursively (Eschbach and Hauck, 
1987; Koppelaar , 1992). In this chapter we have considered an approach which is 
basedon a two-dimensional coordinate transformation (Jacobian). Given a contin­
uous input function, a set of pulses is then determined following the method for the 
generation of coordinate meshes with manageable density, as proposed by Christov 
(1982). Although the results obtained for simpleinput functions are promising, a 
numerical implementation with reduced complexity has to be found in order to make 
this method feasible for a large number of pulses. 

Finally, we have considered how (one-dimensional) continuous pulse-density mod­
ulation can be adapted for discrete signals. The resulting discrete method for pulse­
density modulation is also known as first-order error diffusion . In the next chapter 
both higher-order one-dimensional and two-dimensional error ditfusion are consid­
ered in more detail. 
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Error ditfusion 

4.1 Introduetion 

The previous chapter was concluded with a recursive realization of discrete pulse­
density modulation for one-dimensional signals. This system, which is also known 
as (first-order) error diffusion, transforms a discrete input signa! </>[n] into a binary 
output signa! b[n]. By means of a feedback loop the decision of the quantizer is 
infiuenced by errors caused by the quantization of previous signa! samples. The 
result is (just as with the original continuous pulse-density modulation system in 
Figure 3.11) a high-pass filtering of the error caused by the quantizer. We remark 
that first-order error ditfusion is also known in literature as 1:~-modulation or ~1:­
modulation (Candy and Ternes, 1992). This relation was first noted by Anastassiou 
(1989). 

Two-dimensional error ditfusion was originally introduced on a heuristic basis 
by Floyd and Steinberg (1976) for the transformation of digital gray-tone images 
into binary images (half-toning). The idea is to diffuse the error (introduced by the 
quantizer) to neighbouring samples (pixels) that have not been quantized yet. In this 
way bina.ry images are obtained that resembie the original gray-tone images quite 
well. Error ditfusion was first applied to the quantization of amplitude holograms 
by Hauck and Bryngdahl (1984). Later error ditfusion has also been a.pplied for the 
quantization of multilevel phase holograms (Weissbach et al., 1989). 

With first-order error ditfusion the unit delay z-1 is applied in the feedback 
loop. In the next section we consider error-ditfusion systems with a more genera.! 
feedback filter. Although our main interest is in two-dimensional error diffusion, 
we first restriet ourselves to the one-dimensional case. In this way a number of 
specifically two-dimensional problems are avoided in a first discussion. Moreover, 
one-dimensional error ditfusion can he applied in the two-dimensiona.l case as a 
suboptimal solution. Due to its recursive nature, the error-ditfusion system can 
become unstable. In order to prevent such a situation, stability conditions are 
considered in Section 4.2. Next, a linear model is introduced in order to derive a 
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relation between the feedback filter and the filtering of t he error introduced by the 
quantizer. Basedon this model a methad for designing stabie error-ditfusion systems 
with desired filtering properties is proposed. 

In Section 4.3 the one-dimensional theory of Section 4.2 is generalized for two di­
mensions. Some feedback filters designed for the quantization of computer-generated 
holograms are considered in Section 4.4. In Section 4.5 symmetrical error ditfusion 
is introduced. We remark that the methods for the design of feedback filters for the 
calculation of binary amplitude and binary phase holograms as considered in this 
chapter are also applicable for multilevel phase holograms. 

4.2 One-dimensional error diffusion 

4.2.1 Internal and external error ditfusion 

In Figure 4.1 we show the block-diagram for error diffusion, where the uni t delay 
in the feedback loop is replaced by a more general shift-invariant linear system. 
For symmetry reasons, we take the input signa\ </>[n] of this system bipolar (with 
max 1</>[n]l = 1 ). The error-ditfusion system transfarms the input signa\ into the 
output signa! b[n] E { -1, 1} which can be considered the (discrete) transmittance 
function of a binary phase hologram. The characterist ic of the quantizer is given by 

Figure 4.1: Block-diagram for one-dimensional (internal) error diffusion. 

Q(s) = { +1 ~f s 2: 0 
-1 lf s < 0 

( 4.1) 

where s[n] denotes the input signa\ of the quantizer. At every instant n the quantizer 
introduces a 'quantizer ' error q[n]. By means of the feedback loop previous quantizer 
errors are t aken into account in the decision of the quantizer. While for first-order 
error ditfusion only the last quantizer error (with weight 1) is considered, the system 
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in Figure 4.1 considers (at instant n) the weighted sum 

M 

I: d[m]q[n- m] = d[n] * q[n] . 
m=l 
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(4.2) 

The error-dilfusion coefficients d[n] form the impulse response of a linear filter, re­
ferred to as the error-feedback filter. According to Figure 4.1 the error-dilfusion 
system is descri bed by the set of equations 

s[n] <fl[n]- d[n] * q[n] 
b[n] = Qs[n] ( 4.3) 

q[n] = b[n]- s[n] . 

We assume that the error-feedback filter contains at least one elementary delay, in 
order to make a recursive realization possible (no delay-free loops). Moreover, we 
assume that the filter has an impulse response of fini te length M (FIR-filter ). Hence 
we have d[n] = 0 for n ::=; 0 and n > M. 

Instead of the quantizer error q[n] we can also feed the quantization error e[n] = 
b[n]- <P[n] back to the input of the quantizer. This gives rise to the system shown in 
Figure 4.2. In this case the quantization error e[n] is the input of the error-feedback 

<fl[n] b[n] 

Figure 4.2: Block-diagram for one-dimensional (external) error diffusion. 

filter with impulse response c[n]. For this filter the previous considerations (recursive 
computability, FIR) hold. Now, the error-dilfusion system is described by thesetof 
equations 

s[n] = <fl[n]- c[n] * e[n] 
b[n] Qs[n] ( 4.4) 

e[n] b[n]- <P[n] . 

Note that in the first system the input signa! of the feedback filter is an internat 
signa!. For this reason we wiJl refer to this system as internat error diffusion. In the 
second case the input signa! of the feedback filter is formed at the terminals, hence 
the name external error diffusion. 
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Both systems consist of a linear part and a nonlinear element. In the study of 
linear systems the z-transformation has proved to be useful. The z-transform of the 
impulse response of a linear system is called the system function or transfer function. 
The system function of the feedback filter in the internat error-ditfusion system is 
found according to 

M 

D(z) = L d[n] z-n . ( 4.5) 
n=l 

In the same way we introduce the system function C(z) of the feedback filter in 
the external error-ditfusion system. The two systems with internat and external 
error ditfusion turn out to be equivalent provided that C(z) and D(z) are related 
according to 

C(z) = D(z) 
1 - D(z) ' 

which is equivalent with 

C(z) 
D(z) = 1 + C(z) 

Example 
For first-order error ditfusion the system function of the error-feedback filter 
equals D(z) = z- 1 • According to (4.6) we find for the system function of the 
external error-ditfusion system 

z -1 

C(z) = 1- z-1 . ( 4.8) 

This is the system function of a discrete integrator ( delayed over one sample). 
Obviously, first -order error ditfusion takes all previous quantization errors e[n] 
with equal weight into account. 

( 4.6) 

(4.7) 

We remark that an FIR-filter D(z) is transformed into a filter C(z) with an impulse 
response of infinite length (IIR-filter) and vice versa. The general rationat function 
C(z), containing both poles and zeros, can obviously be realized by a combination 
of the two structures (Figure 4.1 and Figure 4.2) merely using FIR-filters, as shown 
in Figure 4.3. 

4.2.2 Stability 

Due to the feedback loop the error-ditfusion system can become unstable. The 
decision of the quantizer is then independent of the input signal applied to the 
system. In order to prevent such a situation we at least have to require that the 
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lj)[n] 

Figure 4.3: Block-diagram for one-dimensional (genera!) error diffusion. 

input of the quantizer s[n] can not grow without bound. To this end we consider 
the z-transform 

S(z) = L s[n]z-n . (4.9) 
n 

In the same way the z-transforms <I>(z), B(z) and Q(z) are defined . We remark 
that for finite length sequences the z-transform is defined in the entire z-plane. 
Consiclering the block-diagram for general error-diffusion (Figure 4.3) we find for 
the input of the quantizer 

S(z) = 1 + C(z ) <I>(z) _ C(z) + D(z) B(z) . 
1-D(z) 1-D(z) 

(4.10) 

The input of the quantizer can not grow exponentially if the zerosof the denominator 
1 - D( z) in ( 4.10) are within the unit circle, that is 

1-D(z)#O for lzl>l. ( 4.11) 

This condition guarantees that the linear part of the error-diffusion system is BIBO­
stable (bounded-input bounded-output) . However, when the zerosof 1- D(z ) are 
inside but close to the unit circle, the amplitude of is[n]l can become quite large, re­
sulting in an input-independent behaviour. Condition (4.11) is thus a necessary but 
not a sufficient condition for an error-diffusion system to have desirabie quantization 
properties. 

Remark 
Broja et al. ( 1986) have formulated a sufticient condition fora stabie intern al 
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error-ditfusion system (C(z) = 0): 

M 

L ld[m)l::; 1. (4.12) 
m=l 

This condition is found by requiring that at some instant n the internat signa! 
s[n] is bounded by ls[nJI ::; 1 + c if aU previous s satisfy the same bound . With 
c ;::: 1 the quantizer error is bounded according to lql ::; c and therefore we 
have 

M 

ls[n]l = I«P[n] + L d[m]q[n- m]l 
m=l 

M 

::; I«P[n]l + L id[m]IJq(n- mJI (4.13) 
m=l 

M 

::; 1 + c L ld[m)l . 
m=l 

Stability condition ( 4.12) is thus suftkient to keep the intern al signa! s[n] 
bounded in ampütude. 

Under this stabiüty condition the roots of 1 - D(z) are within the unit 
circle. Outside the unit circle, that is for lzl > 1, we have 

M M M 

ID(z)l = I L d[m]z-ml ::; L ld[m]llzl-m < L ld(m]l . (4.14) 
m=l m=1 m=l 

Stabiüty condition (4.12) impües that ID(z)l < 1 for lzl > 1 and therefore 
1- D(z) = 0 does not have solutions outside the unit circle. The converse, 
however, is not true. Equation ( 4.12) is a very severe and most likely not 
necessary condition. For large filter-orders M the set of allowed ditfusion 
coefficients in the coefficient space becomes very small, which reduces the 
freedom in the choice of the (internal) ditfusion coefficients considerably. 

According to the block-diagram in Figure 4.3 the input of the FIR filter C(z) 
is bounded, resulting in a bounded contribution to the input of the quantizer. A 
constraint for the external ditfusion coefficients c[n] concerning the maximal contri­
bution to s[n] can be derived in a way similar to (4.13). A less severe constraint for 
the external ditfusion coefficients is 

1 + C(z) f- 0 for lzl > 1 . (4.15) 

This condition is found by requiring BIBO-stability when the quantizer is replaced 
by a simple through connection. When the quantizer is placed back the feedback 
signa) b[n] is bounded. Since the quantizer increases the energy in the feedback 
signa) only if lsl < 1, it is fair to assume that the quantizer input will not become 
substantially larger. 
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We remark that stability in the BIBO-sense does not imply that the error­
diffusion system is free of limit cycles. Actually, the presence of limit cycles is 
exploited in the quantization of the input signa!. With zero input the f'irst-order 
(internal) error-diffusion system generates the output sequence ... 1, - 1, 1, -1 .... 
This way the average of the output signa] equals the input signa!. 

4.2.3 A linear model for error diffusion 

Due to the presence of the quantizer in the error-diffusion system the input-output 
relation is nonlinear. In order to understand the quantization effects, a linear model 
for error diffusion is introduced by regarding the effect of the quantizer as the addi­
tion of an external signa! q[n]. In this way we obtain for the general error-diffusion 
system ( consisting of internat and external error diffusion) the linear system shown 
in Figure 4.4. The input-output relation for the linear model reads 

b[n] 

Figure 4.4: Linear model for error diffusion. 

1 - D(z) 
B(z) = <I>(z) + l + C(z) Q(z). (4.16) 

Consiclering the z-transform E(z) of the quantizat ion error e[n] = b[n]- <f>[n] we thus 
find that the quantization error e[n] is related to the quantizer error q[n] according 
to 

1- D(z) 
E(z) = 1 + C(z) Q(z) = H(z)Q(z) . ( 4.17) 

For computer-generated Fourier holograms we are particularly interested in the de­
viation between the Fourier transfarms Bd(O) and clld(O) . For z on the unit circle 
lz l = 1 the z-transform passes into the Fourier transform: 

<I>d(O) = <I>(e'2"0) = L </>[n]e-il..On, 
nE{N) 

( 4.18) 
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with the summation over n = -~N- 1, . .. , ~N, denoted by (N). According to 
(4.16) the Fourier transform of the binary hologram thus consistsof two parts: the 
original object lfld(O) and the Fourier transfarm of the quantizer error multiplied by 
the transfer function 

1 D( i21r8) 
H(ei21r8) = - e 

1 + C( e•21r8) 
( 4.19) 

The original object lfld(é2""8) appears in the window IF which, due to the assumed 
oversampling (cf. p. 10), constitutes a small part of the fundamental interval -~ < 
() ~ ~· This means that by choosing appropriate feedback filters we are able to 
shape the Fourier transform of the quantization error and lower the contribution in 
IF. This result is obtained at the expense of an increase of the noise contribution 
outside IF. For obvious reasans we call H(z) the noise shaping transfer function. 

Example 
In the case of first-order intern al error ditfusion ( C = 0) we find for the noise 
shaping transfer function \ 

z-1 
H(z) = 1- D(z) = 1- z-1 = -- . 

z 
( 4.20) 

Due to the zero for z = 1 the quantization error wil! have a small contri bution 
at low frequencies () ::::: 0. This is shown in more detail by consiclering z = é 2""8 . 

The resulting amplitude transfer function 

(4 .21) 

is shown in Figure 4.5. When we take the object window lF in the vicinity 
of the origin, we obtain with this error-ditfusion system a ( one-dimensional) 
binary hologram with quantization noise in the reconstruction that is sub­
stantially lower than fora hologram obtained without error ditfusion (D = 0). 

In order to design an appropriate filter we first have to consider the properties of 
the quantization error ( cf. ( 4.17)). An overview on the analysis of quantization 
effects in digital filters is given by Butterweck et al. (1988). Modeling the action 
of a quantizer by the introduetion of a noise souree is a well-known technique in 
the study of digital systems (Oppenheim and Schafer, 1975). Often, the noise is 
assumed to be uncorrelated with the quantizer's input signa! and to have a flat 
power spectrum (white noise). Such an assumption is justified if the amplitude 
range of the quantizer's input is covered by a large number of quantization levels. 
Moreover, the fluctuation in the input of the quantizer is supposed to be of such 
a nature that the difference in two consecutive signa! samples is large compared to 
the step-size of the quantizer's characteristic. 

In the case of quantizing Fourier holograms neither of the two conditions is 
satisfied. Not only has the quantizer merely two levels but also the input signa! 
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Figure 4.5: a. Zero-pole plot of first-order one-dimensional internal error diffusion . 
b. Squared modulus of the transfer function. 

of the error-diffusion system (and therefore the input of the quantizer) is smooth 
due to the oversampling. Still, we adopt the above assumption about the quantizer 
error. Stated otherwise, we assume that the sequence q[n] consists of N consecutive 
samples of a white random process with expectation 

Exp [q[n]] = 0 ( 4.22) 

and autocorrelation 

rqq[n, m] = Exp [q[n]q[m]] = 0';5[n- m] , ( 4.23) 

where 0'; denotes the variance. The (squared) amplitude of the Fourier transform 

Q( ei21r8) = L q[n]e-i21r8n 
nE(N) 

(4.24) 

is known as periodogram (Oppenheim, Schafer, 1975). Consiclering the expectation 
of the (squared) amplitude 

Exp [IQ(ei2"9W] = L L Exp[q[n]q[m]]e- i21f9(n- m) =NO';' 
nE(N)mE(N) 

( 4.25) 

we find that the ensemble average is proportional to the power spectrum (the Fourier 
transfarm of the autocorrelation function) of the random process . In a single pe­
riodogram large fluctuations are superimposed on the expectation, and only after 
appropriate smoothing IQ( ei2" 8 )12 becomes N 0';. So, under the assumption that the 
quantization error has a flat amplitude spectrum, t he distribution of the quantiza­
tion error in the reconstruction plane is (af ter appropriate smoothing) proportion al 
to IH(ei2 .. ow. 

By means of an appropriate choice of the feedback filters D(z) and C(z) a desired 
distribution of the quantization error can be approximately realized. One approach 



66 Cbapter 4 

to design the feedback filters is to minimize the (expected) total contri bution of the 
quantization error in the object window lF 

r ll- n(e<z,.ew 
Exp [P] =Nu; }IF ll + C(éZlfB)I2d9. ( 4.26) 

In the special case of internat error dilfusion only (C(z) = 0), determining the 
optima! dilfusion coefficients turns out to be a linear problem. For internat error 
dilfusion we minimize 

( 4.27) 

where IA(B)i2 is defined on the fundamental interval-~< 9:::; ~ (denoted by (1)) 
according to 

IA((;l)l2 _ { 1 9 E IFU lF* - a; elsewhere 
( 4.28) 

The role of the smal! constant a., which equals 0 in ( 4.26) wil! be explained later. 
By means of Parseval's theorem we can write for ( 4.27) in the spatial domain 

Exp [P] =Nu; 2: (a[n] * (8[n] - d[n]))2 = 
n 

Nu;~ ( a[n] - f
1 
d[m]a[n- m]) 

2 
( 4.29) 

The discrete signa! a[n] is found as the inverse Fourier transform of the A(9). We 
remark that since the phase of A(9) is undetermined (only IAI2 is prescribed), the 
discrete signa] a[n] is not known. However, a[n] serves merely as an intermediate 
signa! in the derivation of an appropriate expression for the noise power. Apart from 
the constant Nu; the right-hand term of ( 4.29) is a quadratic form in the dilfusion 
coefficients d[m] and reads more specifically 

M M M 

2: 2: d[m]d[1Jl:a[n- m]a[n- 1] - 2 2: d[mJl: a[n]a[n- m]+ l:a2 [n] .(4.30) 
m=l 1=1 n m=l n n 

In this equation we recognize the (deterministic) autocorrelation r[n] = a[n] * a[n]: 

r[m] = l:a[n]a[n- m] . (4.31) 
n 

In this way the quadratic expression can he simplified according to 

M M M 

2: 2: d[m]d[1]r[m- 1]- 2 2: d[m]r[m] + r[O] = dT Rd- 2rT d + r[O] ,( 4.32) 
m=ll=l m=l 

where we have introduced the coefficient vector d = (d[l], . . . , d[M]f, the vector 
r = (r[l], ... , r[M]f and the Toeplitz matrix R with elements Rmt = rlm-1]. Since 
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the autocorrelation r[n] is the inverse Fourier transform of IA( ew the coefficients 
are easily determined using 

r[n] = j IA(OWe-iz.-nod(;l = j IA( OW cos(27rn8)d(;l . 
(1) (1) 

( 4.33) 

The last equation follows from the fact that IA( ew = I A( -OW. Rewriting ( 4.32) 
into 

(d- R-1r)T R(d- R- 1r) + r[O]- rT R-1r , 

we find that the minimum of ( 4.27) occurs for 

d = R-1r. 

( 4.34) 

(4.35) 

The matrix R is positive definite (Haykin, 1987) , hence the solution exists and is 
unique. Equation ( 4.35) is similar to the Wiener-Hopf equation (Haykin, 1987). We 
remark that this result is also derived in a different context by Laakso and Hartimo 
( 1992). With the optima! set of ditfusion coefficients the expected noise power equals 

Exp [P] = Na; (r[O] - rT d) . ( 4.36) 

Actually, the design of an optima! error-feedback filter is a constrained optimiza­
tion problem. We have to minimize the quadratic object function ( 4.27) subject to 
the constraint that the zerosof 1- D(z) are within the unit circle lzl = I. However, 
designing an error-feedback filter by minimizing ( 4.27) has the nice property that 
the salution is automatically stable. This is due tothefact that an unstable solution 
for which 1 - D(z ) vanishes for some z outside the unit circle can never minimize 
(4.27). To understand this we factorize 1- D(z) in the form 

M 

1-D(z)= TI (1- zmz-1), ( 4.37) 
m=l 

with Zm,m = 1 ... M, the zerosof 1- D(z) . In (4.27) weneed 

M 

11- D(e;z"oW = IJ 11- zmé2""812 . ( 4.38) 
m=1 

Now imagine that some zero Zm is outside the unit circle. The corresponding factor 
in ( 4.38) then satisfies 

ll- Zme;z".ol = izm llz;;;t - e;z".ol = lzm ll e- i21!"8- z;;;t.l = 
lzmll1- z;;;t.ei2"91 > ll - z;;;t•eiz".ol . ( 4.39) 

This means that the 'mirrored' zero z;;;to inside the unit circle leads to a smaller 
factor and hence to a smaller transfer function in ( 4.38). Thus a noise shaper 
1- D(z) with zeros outside the unit circle assumes larger values on the unit circle 
than its counterpart with the zeros 'outside' replaced by microred zeros 'inside'. 
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Example 
As an example we have determined the optima] ditfusion coefficients for an 
internal error-ditfusion system with a feedback filter of order M = 20. For 
the object window IF we have taken 1/16 < 0 ::; 3/16, the constant a5 equals 
0.01. After having calculated the correlation coefficients, the optima] ditfusion 
coefficients are determined using ( 4.35). According to Figure 4.6a, showing 
the roots of I - D(z), the linear part of the error-ditfusion system is stable. 
With the obtained set of ditfusion coefficients a test-signa! has been quantized. 
The Fourier transform of the test-signa! equals zero for frequencies outside IF. 
Inside the object window the amplitude is constant while the phase has a ran­
dom distribution. In Figure 4.6b the Fourier transform of the quantization 
error e(n] is shown, together with the expected distri bution of the transformed 
quantization error. Obviously, the contribution of the quantization error is 
lowered within the object window at the expense of a large contribution out­
side the window. The noise shaping charaderistic describes the distribution 
well, but large fluctuations occur in the periodogram. 

Im 

Re 

THHTA 

Figure 4.6: a. Roots of 1 - D(z) for an optima! set of dilfusion coefficients. b. 
Expected distribution of transformed quantization error and computer simulation 
result. 

With the error-ditfusion system in the above example a desired noise-shaping was 
achieved. However, if the constant a, is taken too small the roots of 1 - D(z) are 
very close to (but inside) the unit circle. In that case the linear part of the error­
ditfusion system is still stable, but the input of the quantizer becomes very large 
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and the system will oscillate. In order to find a sufficiently large parameter a., a 
number of computer simulations have to he carried out. 

Finding the optima! external diffusion coefficients c[n] in (4 .26) is a nonlinear 
problem and not as easy to solve as the linear problem for the internal diffusion 
coefficients. 

4.3 Two-dimensional error ditfusion 

4.3.1 Two-dimensionalrecursive systems 

In this section we discuss error diffusion for two-dimensional signals. The block­
diagram for two-dimensional general error diffusion is shown in Figure 4.7. Al­
though this diagram seems a straightforward generalization of its one-dimensional 
counterpart in Figure 4.3, there are some major differences between one-dimensional 

Figure 4.7: Block-diagram for general two-dimensional error diffusion. 

and two-dimensional error diffusion, which are considered in this section. The two­
dimensional discrete input signa! c/>[n~, n2] (with max cf>[n~, n2 ] = 1) is transformed 
into a binary output signa! b[n 1 , n2]. Again, by means of the error-feedback filters 
' previous' quantizer and quantization errors are taken into account in the decision 
of the quantizer 1 . This is described by the set of equations 

s[n,,n2] 

b[n" n2] 

q[n,,n2J 

c/>[n1 , n2] ~ d[n1 , n 2] * q[n1 , n2] - c[n1 , n2] * e[n1 , n2] 

Qs[n1, n2] 

b[n1 , n2] - s [n1 , n 2] ( 4.40) 

1 The concepts of two-dimensional ordering as well as of past and future are discussed further 
down . 



70 Chapter 4 

with d[n1 , n2] and c[n~, n2] the impulse response of the internal and the external 
error feedback, respectively. In the one-dimensional case we required the error­
feedback filters to be causa! (with at least one elementary delay) in order to have a 
recursive computable system. In the two-dimensional case a closer look on recursive 
computability is appropriate. 

From ( 4.40) we derive the nonlinear ditference equation 

s[nb n2] = .P[n~, nz] - d[n1 , nz] * ( Qs[n1 , nz] - s[n~, nz]) 

- c[nhnz] * (Qs[n1 , nz]- .P [n~,nz]) (4.41 ) 

for the error-ditfusion system. A general theory for linear shift-invariant two­
dimensional systems governed by a ditference equation is discussed by Lim (1990) . 
The ditference equation is regarcled as a computational procedure and is said to be 
recursively computable when there exists a path we can follow in computing every 
output sample recursively, one sample at a time. With the nonlinear error-ditfusion 
system we have a local nonlinear operation Q embedded in a linear shift-invariant 
two-dimensional system, which we require to be recursively computable. Due to 
the local character of the quantizer this requirement automatically gives rise to a 
recursive computable error-ditfusion system. 

We assume that both feedback filters have an impulse response whose nonzero 
values are in a particular region, called the support of the feedback filters. In order 
to make recursive computation possible, the feedback filters are restricted to have 
'wedge support' (Lim, 1990). Th is means that the support is bounded by two !i nes 
emanating from the origin, where the angle between the lines is less than 180°. An 
example of a system with wedge support is shown in Figure 4.8. The support of 

Figure 4.8: Example of an impulse response with wedge support. 

the system is indicated by the solid dots (•) . We remark that in contrast with the 
original definition of wedge support the origin is not included in the support of the 
filter. 

In accordance with one-dimensional error ditfusion we require that only a finite 
subset of the wedge support of the feedback filters is actually used (FIR). We have 
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n2 

M{: 
. . . . . . 

n1 
--...-.-- --...-.--

M M 

Figure 4.9: Feedback filter with asymmetrical half plane support of order M . 

chosen for the support shown in Figure 4.9, also known as asymmetrical half plane 
support. In this way the support of the feedback filter is described by one parameter 
M, referred to as the filter-order. The total number of ditfusion coefficients equals 
2(M2 + M) . 

Given the support of the feedback filters a number of paths can be foliowed in 
order to compute (4.40), all leading to the same result. A possible path (which 
we have used) is to process the signa! samples in a row-by-row fashion, starting in 
the bottom-left corner. This situation is shown in Figure 4.10. For convenience we 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

Figure 4.10: lnternal error ditfusion with an error-feedback filter with asymmetrical 
half plane support of order M = l. 

consider internal error ditfusion ( C = 0) only, with filter-order M = 1. The feedback 
mask is the mirrored version of the support mask d[n1, n 2 ] . By means of this mask 
a weighted sum of quantizer errors of previous signa! samples (•) is formed, which is 
taken into account in the decision of the quantizer for the present sample (x) . The 
samples denoted by open dots (o) have not yet been quantized. 

This procedure can also be regarcled in a different manner. After a sample has 
been quantized the quantizer error is propagated (or diffused) to neighbouring non­
quantized samples, as shown in Figure 4.11 . The quantizer error is weighted for 
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the different directionsas given by the coefficients of the impulse response d[n1 , n2] . 

For this reason these coefficients are often called ditfusion coefficients. The idea of 

n 2 
0 0 0 0 0 0 0 0 

0 0 0 0 

~ 
0 . . . . 0 . . . . . . . . 

n1 

3/16 5/16 1/16 

~ . . . . . . . . 7/16 

. . . . . . . . . . . . . .. . . . . 

Figure 4.11 : Error ditfusion according to Floyd and Steinberg. 

diffusing the quantizer error to non-quantized neighbouring samples was originally 
introduced by Floyd and Steinberg (1976) for the transformation of gray-tone images 
into binary images (halftoning) . The set of ditfusion coefficients as proposed by 
Floyd and Steinberg (Figure 4.11) sum up to I. In this way the total quantizer error 
is diffused, and the (local) average level of the binary pattem equals the original 
gray-tone level. Later on we shall return to the implications of such a choice for the 
set of ditfusion coefficients. 

As stated before, the row-by-row processing of the samples in Figure 4.10 is just 
one of the possible paths to follow . An alternative path for example is to process 
the samples along diagonals in the (-M -l,lf = (-2,lf direction . Note, that 
the samples on these diagonals can he quantized independently. This is of interest 
for parallel signa! processing in a multiprocessor environment . 

4.3.2 Stability 

For one-dimensional error ditfusion stability was analyzed in z-domain terms, partic­
ularly with regard to the various system functions . In the two-dimensional case the 
system fundion of the internal error-feedback filter is defined as the two-dimensional 
z-transform of the impulse response d[n 1, n2] : 

D( Z1, z2) = L L d[n1, n2Jzïn' ZÏn2 • 

(n,,n,) ERd 
( 4.42) 

The summation is over the support of the impulse response, denoted by Rd . In a 
similar way the transfer function C( zb z2 ) of the extern al feedback filter is defined, 
where the summation is over Re, the support of the impulse response c(nll n2] . 
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In accordance with the one-dimensional case stability implies that the input of 
the quantizer is not allowed to grow exponentially. A necessary condition is the 
requirement that the system with transfer function 

( 4.43) 

is stable. Th is is equivalent with the requirement that the impulse response g[n1 , n2 ] 

of this system is absolutely summable: 

( 4.44) 

Weissbach (1992) describes an approach, where (4.44) is used totest stability. In 
order to determine the impulse response g[n1 , n2 ] the ditference equation 

(4.45) 

is solved numerically. Next, the convergence of (4.44) is tested numerically by de­
termining the sum over a (sufficiently) large region of the support of g [n 1 , n 2] . 

Here, the stability of the error-ditfusion system is tested in the z-domain. The 
z-transform 

G(zt,z2) = L:;L:;g[nt,n2]zïn'z2n2 ( 4.46) 
n1 n2 

converges uniformly for those values of (z1 , z2 ) where 

( 4.4 7) 

Equation ( 4.4 7) defines the region of convergence (ROC), which depends on lz1 1 and 
jz2 1 only. According to (4.44) and (4.47) a system is stabie itf the 'unit surface' 
(lz1 1 = 1, jz2 1 = 1) is in the ROC. As we have already seen, stability testing for 
one-dimensional error ditfusion is rather straightforward. For a causal sequence we 
know that if Z 0 is in the ROC, every z with lz l > lzol must also be in the ROC. 
Consequently, the system is stabie itf the poles of G(z) are within the unit circle 
lz l = 1. Unfortunately, the situation is far more complicated in two dimensions. 
There the polynomial 1- D(z1 ,z2) has zero surfaces for which D(z1 ,z2 ) = 1 and 
which replace the isolated zero points in the one-dimensional case. 

The first step in two-dimensional stability analysis is the transformation of wedge 
support sequences to first-quadrant support sequences. In our case the support R9 of 
the sequence g[n 1, n 2 ] ( cf. ( 4.45)) follows from the support Rd, shown in Figure 4.9. 
The resulting g[n1 , n 2] has wedge support (similar to Figure 4.8, the origin included) 
with the two boundaries emanating from the origin in the respective directions 
( l, O)T and (-M, l)T. By means of the linear mapping 

( 4.48) 
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the wedge support sequence g[n1 , n 2] is transformed to the tirst-quadrant support 
sequence g[n1 , n2]. Since 

( 4.49) 

stability properties are invariant under this transformation, and we are allowed to 
analyse the stability of 

- l 
G(zi,zz) = ---=----

1- D(z~, zz) 
( 4.50) 

instead of G(z1 , z2 ). This is advantageous, since the stability analysis of tirst­
quadrant support sequences is easier than the stability analysis of wedge support 
sequences. We remark that the tirst-quadrant support sequence d[ n1 , n2] and the 
original wedge support sequence d[n1 , n 2] are related through the linear mapping 
d[n1 ,nz] = d[nt- Mnz,n2 ], similar to (4.48). 

One of the tirst theorems concerning two-dimensional stability was developed by 
Shanks (Lim, 1990). Applied to our case, this theorem reads 

(4.51) 

This can be seen as an extension of the causa! one-dimensional case, where the 
solutions of D(z) = 1 are not allowed to lie outside the unit circle. In the two­
dimensional case it is in general not possible to solve D(z~, z2 ) = 1, and therefore a 
4-D search would be necessary in order to check ( 4.51 ). Due to the enormous amount 
of work ( 4.51) is not feasible in practice as a stability test. A more convenient 
stability test, which is equivalentwith {4.51) is (Lim, 1990) 

Stability <* D(zt, zz) =/:- 1 for lz1l = 1, lz2l ~ 1 and 

D(zi,zz) =/:- 1 for lztl ~ 1, lzzl = 1. ( 4.52) 

This stability test requires two 3-D searches, but can be carried out by many 1-D 
stability tests. First, we tind the salution z2 of D( ei21rB,, z2 ) = 1 for - & < 81 ::; &· 
The resulting rootmap is sketched in the z2 plane. Next, we find the salution of z 1 

of D( z1 , e;2".o2 ) = 1 for -! < 82 ::; & and sketch the resulting root map in the z 1 

plane. If bath root-maps stay within the respective unit circles the system is stable. 

Example 
In Figure 4.12 we have shown the rootmapsof asecond-order two-dimensional 
recursive system with coefficients d[nt, n2]: 

-0.2005 0.0000 0.1702 0.0000 -0.1886 
0.0000 0.7535 0.0000 -0.4427 0.0000 ( 4.53) 

0.0000 -0.2436 

Both root maps are within the unit-circle; hence the system is stable. 
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Figure 4.12: Root-maps of asecond-order two-dimensional recursive system. 

lt is possible to reduce the amount of work further by the introduet ion of more 
sophisticated stability tests, see for example (Lim, 1990). By sketching the root­
maps, however, we get an impression how far the root-maps are from the unit 
circle. For error diffusion, where linear stability is only a necessary condition, this 
information is important. 

4.3.3 A linear model for two-dimensional error ditfusion 

In analogy with the one-dimensional case we obtain a linear model for error ditfu­
sion by consiclering the quantizer error q[n1 , n 2] as an extern al signa!, as shown in 
Figure 4.13. The two-dimensional z-transform of the input signa! 4>[n1, n 2] is defined 

Figure 4.13: A linear model for two-dimensional error diffusion . 

according to 

«<>h, z2) = L L cf>[n!, n2Jzïn' z2n2 
n, E(N) ~E(N) 

( 4.54) 



76 Chapter 4 

In a similar way the z-transforms B(z1 , z2), S(zh z2) and Q(z1 , z2) are defined. No te 
that for signals with finite support the z-transform is defined in the entire z1zT 
plane. The input-output relation of the linear model in Figure 4.13 reads in terms 
of z-transforms 

1-D(z1,z2) 
B(z1,z2) = ~(z1,z2) + C( ) Q(z1>z2). 

1 + ZJ,Z2 
(4.55) 

With the application of Fourier holograms we are particularly interested in the 
deviation between the two-dimensional Fourier transforms of the discrete signals 
b[nh n2] and 1/>[nh n 2]. To this end we evaluate the z-transform for values of ZJ, z2 

on the bi-circle lz1 1 = 1, lz21 = 1. In that case, the two-dimensional z-transform 
passes into the two-dimensional Fourier transfarm for discrete signals: 

~d(B!, 02) = ~(ei2".o,' ei2>r02) = L L 1/>[nl, n2]e-i2>r(O,n,+82n2) ' 
n,E(N)n,E(N) 

( 4.56) 

with similar expressions for B(z1,z2) and Q(z~,z2). With E(z1 ,z2 ) = B(zl>z2 )­

~(z1 , z2) we thus find for the quantization error in the Fourier plane 

( 4.57) 

According to ( 4.57) we abserve in the hologram plane the Fourier transfarm of the 
quantizer error q[n1, n 2] filtered by 

1 D(é2".o, é2?r02) H( e;2".o, e;2".o2) = - , 
' 1 + C ( ei2>rO, 1 ei21r82) ( 4.58) 

Example 
The set of ditfusion coefficients as proposed by Floyd and Steinberg ( cf. Fig­
ure 4.11) has the special property that 

L L d(m1,m2] = 1. ( 4.59) 
m1,m2 ER& 

Under this condition the noise shaping transfer function 

H(z1,z2) = 1- D(z1,z2) = 1- L L d[mhm2]z}m1 Zzm2 ( 4.60) 
mt,m2 ERrJ 

vanishes for (z1 = 1, z2 = 1). As a result the contri bution of the quantiza­
tion error is smal! near (91 = 0, 92 = 0) in the Fourier plane. This effect is 
shown in Figure 4.14, where we have shown the modulus of the transformed 
quantization error which is the result of quantizing a digital image using the 
Floyd-Steinberg ditfusion coefficients. When this image is viewed from a suf­
ficiently large distance, the high-frequency quantization noise is attenuated 
by the !ow-pass visual system and the observed image resembles the original 
quite wel!. 
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Figure 4.14: a. Digital image halftoned with error diffusion. b. Modulus of the 
quantization error in the Fourier plane. 

Likewise it is possible to use feedback filters for the quantization of computer 
generated holograms in order to decrease the contri bution of the transformed quan­
tization error in the object window. In this thesis we restriet ourselves to internal 
feedback filters ( C = 0). An attractive method based on separable two-dimensional 
filters is proposed by Weissbach (1992). There, the desired noise shaping effect is 
obtained by generating zero lines in the reconstruction plane. An example of such 
a feedback filter is discussed in Sectien 4.4. In the next subsectien we discuss how 
the least-square design method is applied in two dimensions. We remark that find­
ing the optima! external error-feedback filter is a nonlinear problem which has been 
considered by Kim and Kim (1986). 

4.3.4 Least-square feedback filter design 

In accordance with the one-dimensional case, the design of an optima! internal error­
feedback filter is a linear problem. Consiclering ( 4.57) we have to find a set of 
ditfusion coefficients in order to minimize 

ffw 11- D(ei21rB,, ei2.-B2WdBldB2. 

For stability reasons, however, we minimize 

jj IA( BI, B2Wil - D(ei21rB,, ei2d 2 WdB1dB2, 

where the weight-function IA(B1,B2 )j2 is chosen according to 

BE IF U IF* 
elsewhere 

( 4.61) 

( 4.62) 

( 4.63) 
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In the original formulation ( 4.61) we have a, = 0. If the filter turns out to he 
unstable, a; has to ·be increased. Also some form of smoothing at the boundary of 
lF can he taken into consideration. This possibility will, however, not he explored 
here. 

Using Parseval's theorem for two-dimensional signals we can express the object 
function ( 4.62) in the spatial domain: 

LL(a(nt,n2] * (ó[n~,n2]- d[n1,n2]))2 = 

The two-dimensional convolution gives rise to a finite sum over the support Rd of 
the internat feedback filter, according to 

L L (a[nl, n2]- L L d[m1, m2]a[n1 - m1 , n2 - m2]) 
2 

( 4.65) 
nt ~ mt,m2 ERd 

In a straightforward way (4.65) is written as 

r[O, 0] - 2 L L d[mb m2]r[m1, m2] + 

L L LLd[mbm2]d[li , /2]r[mi-/I,m2-/2], (4.66) 
m,,m,ERd lthERd 

where we have introduced the two-dimensional ( deterministic) autocorrelation 

r[n1, n2] = a[n1 , n2] * a[nb n2] = L L a[ml> m2]a[m1 - n1, m2 - n2] . ( 4.67) 

In order to express ( 4.66) in a standard quadratic form ~quivalent to ( 4.32) we label 
the diffusion coefficients in the support Rd according to n1(m),n2(m) with m = 
1 ... 2(M2 + M), where the specific order of the coefficients is not important. Next, 
we introduce the diffusion coefficient vector d with elements dm= d[n1(m), n2(m)] 
and rewrite (4 .66) into 

r[O, 0] - 2rT d + dT Rd , ( 4.68) 

where we have the correlation vector r with elements Tm = r[n1(m), n2(m)] and the 
correlation matrix R with elements Rm1 = r[n1(m)- n1(l),n2(m)- n2(l)]. Con­
trary to the one-dimensional case the matrix R is not a Toeplitz matrix. The 
two-dimensional autocorrelation coefficients are determined using 

r[n1 ,n2) = f f IA(OI>82)i2 cos(27r(n181 +n282))d01d82 . (4.69) 
lp) 1(1) 

The minimum of (4.68) occurs for 

d = R-1 r . (4.70) 

In contrast with the one-dimensional case, mini mi zing ( 4.62) does not give automat­
ically rise toa set of diffusion coefficients with zero surfaces of 1 - D(z1 , z2) within 
the unit bi-circle. 
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4.4 Quantizing hologram distributions with 
error ditfusion 
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In this section we compare a number of (internal) error-feedback filters designed for 
the calculation of binary amplitude holograms. The original intensity-object and 
the accompanying hologram are shown in Figure 4.15. The object's intensity has 
been multiplied by a random phase distribution. The respective sizes of the object 

Figure 4.15: a . Original hologram distribution. b. Modulus of the Fourier transform 
of the hologram. 

and the hologram are 322 and 1282 samples, which means that we have used 4 times 
oversampling in the determination of the hologram samples. The (discrete) object 
is located in the Fourier plane within the object window 

( 4. 71) 

In order to obtain an amplitude hologram, the bipolar output b[n1 , n2 ] of the error­
dilfusion system is transformed into a unipolar signa!. In the results both the binary 
holograms and the modulus of its Fourier transform are shown. The large dc-peak 
in the reconstruction plane has been suppressed. 

A comparison of the results of the computer simulations for the different feedback 
filters is made by calculation of the signal-to-noise ratio (2 .30), where amplitude­
errors are considered only. To this end we consider the numerical approximation: 

E E I<P[kh k2W 
SNR = ___ k...:.';_•k.:._> .:..EF _______ , 

L: E (IB[kt,k2]1-I«<>[kt,k2]1)2 
k, ,k2 EF 

( 4.72) 
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For the calculation of the hologram efficiency TJ = TJtTJd we have used: 

and 

1 . 
TJt = N2 L L b2[n~, n2] 

nt,"2 Eli 

L: L: IB[k~, k2W 
kt ,k2 EF T}d = _ _:_:__.::_::._---,----,------,--
L L: IB[k~, k2JI2 ' 

k1 E(N) k, E(N) 
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(4.73) 

(4.74) 

which follow from (2.34) and (2.35). Using Parseval's theorem we find for the total 
efficiency 

(4.75) 

Next we discuss the results of three different filters: 'hardclipping', a filter with zero 
lines in the reconstruction plane, and a least-square optima! filter of order M = 2. 

Hardclipping 

With hardclipping of the hologram distribution no error feedback is applied at all 
(d[n] = 0). The resulting binary hologram and its Fourier transform are shown in 
Figure 4.16. A large contribution of the quantization error is observed in the object 

Figure 4.16: a . Binary hologram distribution when no error feedback is applied 
(hardclipping). b. Modulus of the Fourier transform of the binary hologram. 

window in the reconstruction plane. As a result, the signal-to-noise ratio is small 
(SNR = 0.1 ). The efficiency of the binary amplitude hologram, on the other hand, 
is rather large: TJ = 0.1. 
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Zero Lines 

In the one-dimensional case it is possible to lower the contri bution of the transformed 
quantization error in the object window by placing a zero of the noise shaping 
transfer function at an appropriate position on the unit circle. A similar approach 
with separable noise shaping filters is possible in the two-dimensional case where 
the zeros become zero lines on the unit surface. We remark that in that case the 
error-ditfusion system is marginally stable. For our choice of the object window we 
take the lines 81 - 82 = 0 and 81 + 82 = i (Weissbach, 1992). In termsof z1 and z2 

we have z1z21 = 1 and zï 1z21 = -1. For the noise shaping function we find 

H( ) (1 + -1 -1)(1 -1) 1 -1 -1 -1 -2 z1,z2 = z1 Zz -ZJZ2 = + z1 Zz -z1z2 - z2 . ( 4. 76) 

With H (z1 , z2 ) = 1- D(z1 , z2 ) the ditfusion coefficients are found to be d[1, 1] = -1, 
d[-1 , 1] = 1 and d[O, 2] = 1. The quantized hologram and its Fourier transfarm 
are shown in Figure 4.17. Due to the zero lines, which can be observed clearly in 

Figure 4.17: a. Binary hologram distri bution obtained with the zero lines approach. 
b. Modulus of the Fourier transfarm of the binary hologram . 

the reconstruction plane, the contribution of the transformed quantization error is 
lowered in the object window. In this case we have SNR = 12, which is much larger 
than for the previous case. The error-feedback filter has the disadvantage that the 
transformed quantization error is also reduced in regions where it is nat necessary. 
The gain .in the signal-to-noise ratio is obt ained a t the expense of a lower efficiency, 
which is reduced t o 1J = 0.007. 
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Least-square filter design 

Using the least-square design method for a filter of order M = 2, a stabie filter is 
found for a~ = 0.01. The ditfusion coefficients and the zero surfaces of this filter 
were given in the example on p. 74. Quantization of the hologram with the obtained 
ditfusion coefficients results in the binary hologram shown in Figure 4.18. The 

Figure 4.18: a. Binary hologram distribution obtained with a least-square optima! 
filter of order M = 2. b. Modulus of the Fourier transform of the binary hologram. 

signal-to-noise ratio of the reconstructed object ( also shown in Figure 4.18) equals 
SNR = 25. Again, the efficiency equals TJ = 0.007. Note that the two-dimensional 
version of stability condition ( 4.12) does not hold for the obtained set of ditfusion 
coefficients. Determining the ditfusion coefficients under this constraint has been 
considered by Barnard (1988) for an error-feedback filter of order M = 1. 

We remark that calculation of the sealing factor À (2.33) using the approximation 

E E IB[k1, k2lll~[k~> k2ll 
À= kt,~ EF (4 77) 

E L: l~[k1,k2]12 · 
kt,~EF 

showed that inthelast two cases À ~ 1, as was required. For hardclipping, however, 
we found a rather large sealing factor (À ~ 3.5), which is the underlying reason 
for the large efficiency. With À taken into account in the signal-to-noise ratio for 
hardclipping we fo\md SNR = 6. 

4.5 Symmetrical error ditfusion 

So far, the error-feedback filters were required to have wedge support in order to 
make recursive computation possible. The finiteness of the hologram, however, 
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admits other approaches for the determination of the binary hologram samples. 
Consequently, error-feedback filters with four quadrant support can be applied. The 
ditfusion coefficients then possess eertaio symmetry properties due to the symmetry 
in the contiguration in the Fourier plane. For this reason we speak of symmetrical 
error ditfusion {Anastassiou, 1989). 

For convenience we consider an error-ditfusion system with external feedback 
only, which is described by 

s[n1, n2] 

b[n1,n2] 

e[n1,n2] 

<P[n1, n2] - c[nh n2] * e[n1, n2] 

Qs[n1,n2] 

b[nh n2] - <P[nl! n2] . 

By means of substitution we derive from the above set of equations 

( 4. 78) 

( 4. 79) 

With a wedge support external error-feedback filter (c[n1,n2] = 0) the binary holo­
gram samples are determined recursively, one sample at a time. In the next chapter 
we consider how to solve ( 4. 79) in the more general case where c[n1, n2] has four 
quadrant support (again with c[n~, n2] = 0). We remark that symmetrical internal 
error-ditfusion was introduced by Anastassiou { 1989). 

4.6 Discussi~n 

In this chapter we have considered the quantization of computer-generated Fourier 
holograms by means of error ditfusion. A linear model for error ditfusion is obtained 
by modeling the quantization error as an additive noise term. In this linear approx­
imation the quantization noise in the Fourier plane is determined by the ditfusion 
coefficients through the transfer function of a noise shaping filter. The internal dif­
fusion coefficients determine the numerator, while the external ditfusion coefficients 
determine the denominator of the transfer function. We have restricted ourselves to 
the design of intern al error-feedback filters, which cao be formulated as a least-square 
optimization problem. 

Due to its recursive nature, the error-ditfusion system can become unstable. In 
order to avoid such a situation a stability criterion for the {internal) ditfusion coeffi­
cients is formulated, which states that the zero surfaces of the noise shaping transfer 
function have to lie within the unit bi-circle. The accompanying root-maps show to 
which degree the stability boundary is approached for a calculated set of ditfusion 
coefficients. In the design of the internal error-feedback filter one parameter has to 
be adjusted manually until a stabie error-ditfusion system is obtained. F'ormulat­
ing necessary and sufficient stability conditions for error-dilfusion systems is still an 
unsolved problem. 
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Designing an external feedback filter is a nonlinear problem. A solution to this 
· problem has been proposed by Kim and Kim (1986). In this approach a filter ap­
proximation error and a stability error for the feedback filter is determined. The 
approximation error is a measure for the deviation between the realized and the 
desired noise shaping transfer function. The stability error is a measure for the sta­
bility of the error diffusion system, and is determined by means of complex cepstrum 
techniques (Ekstrom et al., 1976; 1980). Using nonlinear optimization techniques 
both the approximation error and the stability error are minimized. In (Kant, 1993) 
this method is applied for both internal and external feedback filters. Computer 
simulations show that with internal error feedback in general a higher signal-to­
noise ratio is obtained than with external error feedback. Cernparabie results are 
achieved with least-square optima! feedback filters, which are calculated within a 
fraction of the time needed for the nonlinear optimization. 

The least-square design method for the (internal) feedback filters is based on 
the minimization of the signal-to-noise ratio. Consequently, the contribution of the 
quantization noise in the Fourier plane can become quite large outside the object 
window, resulting in a small diffraction efficiency. In order to optimize the diffraction 
efficiency as well, the desired noise shaping charaderistic should also be specified 
outside the object window. In (Kant, 1993) feedback filters have been designed which 
give rise to a higher diffraction efficiency. This result is achieved at the expense of 
a lower signal-to-noise ratio. Applying the least-square filter design method for the 
optimization of both the signal-to-noise ratio and the diffraction efficiency is an 
interesting subject for further research. 



Chapter 5 

Hoptield's neural network 

5.1 Introduetion 

In the previous chapter we have seen that recursive computability is an important 
aspect of error diffusion. We already noted that with a finite number of samples 
recursive computabi lity is an unnecessary restriction . In this chapter we shall find 
that the sequentia! updating law of a discrete-time Hopfield neural network is a 
generalization of error diffusion. The question then arises whether it is possible to 
obtain better holograms by means of a Hopfield neural network. After an introdue­
tion to Hoptield 's neural networkin Section 5.2, we discuss in Section 5.3 how such 
a network is applied for the calculation of binary holograms. The combination of 
a Hopfield network with simulated annealing, known as the Boltzmann machine, is 
the subject of Section 5.4. 

With Hopfield 's neural network the hologram samples are calculated in an it­
erative way rather than a recursive way. A number of iterative methods for the 
calculation of holograms are known in literature, such as t he iterative-Fourier trans­
farm algorithm (IFTA), the direct binary search method (DBS) and projections on 
convex sets (POCS). In this chapter we restriet ourselves to Hopfield's neural net­
work and the Boltzmann machine, but some similarit ies and differences in relation 
with the other methods will be mentioned. 

In the remainder of this introduetion we reform u late the original problem defini­
tion (3.6) for discrete signals. Equation (3.6) is a measure for the deviation between 
the original and the binary hologram. The starting point for discrete signals is 
slightly different, and is discussed below. In order to avoid tedious notation we first 
consider one-dimensional signals; later on the results are generalized for two dimen­
sions. Given the hologram samples .P[n] for n E (N) our goal is to find the binary 
signa! b[n] which minimizes the 'distance' 

(5.1) 

85 
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where the frequency weighting function IA(0)12 is given by 

IA(O)I2 _ { 1 0 E IF u IF* 
- 0 elsewhere · 

We reeall that the Fourier transfarm of b[n] is defined by 

B(ei27r8) = L b[n]e-i2?f8n ' 
nE(N} 

Chapter 5 

(5.2) 

(5.3) 

and a similar expression holds for «P(é2" 8). Note that (5.1) is similar to (4.27); 
we can also write (5.1) as a quadratic form, but now in the binary samples b[n]. 
Here, we give a derivation in the frequency domain instead of the spatial domain. 
Consiclering the fact that 

IB(ei2"8)- «P(ei2,..8)12 = L L (b[n]- tP[n])(b[m]- tP[m])e-i21!"8(n-m) (5.4) 
nE(N}mE(N} 

we can rewrite (5.1) into 

d= L L (b[n]-tP[n])(b[m]-t/>[m])R,..m (5.5) 
nE(N}mE(N} 

with the correlation coefficients R...m given by 

R...m = r IA(OWe-i211"(n-m)8dO. 
. l(t} 

(5.6) 

With the introduetion of the signa! vector ljJ = ( 4>[-tNJ, . .. , t/>[!N- l]f and the 
binary signa! vector b = (b[-!NJ, ... , b[!N- l])T we find for (5.5) 

(5.7) 

According to (5.6) the matrix R has a Toeplitz structure. 
Equation (5.1) considers the difference between the Fourier. transfarms of the 

original hologram and the binary hologram for a continuous frequency region. In­
stead we could consider discrete frequencies 0 = k / N, with k E ( N). Our goal is 
then to minimize 

d = ~ L IA~oi 2 IB[k]- «P[kW, 
kE(N} 

(5.8) 

with B[k] = B(é211"kfN) and «P[k] = «P(é211"kfN). lntroducing the Fourier transfarm 
veetors B = (B[-!N], ... , B[!N- 1jf and ~ = («P[-!N], ... , «P[!N- l]f we 
rewrite (5.8) into 

(5.9) 
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where AH A is a diagonal matrix with elements (AH A)kk = IAe;:;kW. In accordance 
with (5.2) we could take (AH A)kk = 1 for k E IF and (AH A)kk = 0 elsewhere. The 
signa! veetors and the accompanying Fourier transfarm veetors are related according 
to 

B Fb, (5.10) 

where F is the Fourier transformation matrix, with elements Fkn = e-iZtrkn/N. The 
Fourier transformation matrix is symmetrie (FT = F) and has an inverse p-l 
"fiF*, hence pH = pT• = NF-1. Using the last property we find for (5.9) 

(5.11) 

Now the correlation matrix reads R = p-l AH AF, and has a circulant structure. 
With the above choice of (AH A)u the correlation matrixRis positive semidefinite. 

The discrete-time signa! 4> can he considered as a point in an N-dimensional 
signa! space. Since the amplitude of <P[n] is assumed to he bounded according to 
max I<P[n]l = 1, this point is somewhere in the N-dimensional hypercube CN = 
[ -1, l]N. Each binary signa! b is one of the 2N vertices of the hypereu he. Given the 
signa! 4> we thus have to find the ciosest vertex, where the distance between two 
signals is defined according to (5.7) or (5.11). Thesetof equidistant signals x with 
respect to </>, according to d( x, 4>) = c2 , forms an ellipsoid with center of gravity cp. 
(The directions and the lengths of the axes are determined by the eigenveetors and 
eigenvalues of R, many of which are zero.) Finding the ciosest vertex can thus be 
visualized in the following way. Starting with c = 0 ( corresponding to x = 4>) the 
ellipsoïde is expanded by increasing c until a vertex is reached. When more vertices 
are reached simultaneously, we select the vertex with the smallest index. 

By repeating this process we assign to every point x in the hypercube the ciosest 
vertex. The signa! space is thus divided in connected regions 

C; = {x E [- 1, 1]N I d(x, b;) :::; d(x, bj);j =/=i} . (5.12) 

All points in a certain region C; are mapped onto the accompanying vertex b;. The 
regions are convex and farm the so-called Voronoi or Dirichlet partitioning of the 
hypercube (Voronoi, 1907). The set of points z with equal distance to the pair of 
vertices b; and bi is defined according to 

( 5.13) 

In a straightforward way it can be shown that the set S;j is the hyperplane 

(5.14) 

For each pair of vertices b; and bi the accompanying hyperplane goes through 
!(b; + bj) and has a normal vector R(bi- b;) . Clearly, the hyperplanes are the 
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basis for the partitioning of the hypercube in decision regions, in the sense that 
each boundary is part of such a hyperplane. As can be concluded from (5.14) the 
partitioning is completely determined by the correlation matrix Rand hence by the 
weighting function IA(0)12. 

Example 
We consider a few examples of decision regions for a signa] space of di mension 
N = 2, where we have the input signa] 4> = ( tJ>I, t/>2 )T and the binary signa! 
b = (b1, b2)T . We follow the discrete frequency treatment, where we need the 
Fourier transformation matrices 

F = [ 1 1 ] and p-1 = l [ 1 1 ] 
1 -1 2 1 -1 

(5.15) 

Without loss of generality we write for the correlation matrix 

R = p-IAHAF 

= ! [ ~ -~ ] [ ~ ~ ][ ~ -~ ] = ! [ ~ ~: ~ ~ :] ) (5.16) 

with a real parameter a 2: 0. 
For a = 1 both frequencies are equally weighted in the error measure (5.8). 

The resulting correlation matrix then reads 

(5.17) 

so that the distance d in (5 .8) becomes the Euclidean distance. Points of equal 
distance from the origin are on circles 

(5.18) 

Using (5.14) we find the decision regions as shown in Figure 5.la. Given a 
vector 4> the ciosest vertex is determined by means of 

b1 = sign ( <!>!) 
b2 = sign ( <!>2) . (5.19) 

Obviously, with Euclidean distance (when all frequencies are equally weighted) 
we quantize each sample independently (hardclipping). 

When a is decreased to a = ~ the correlation matrix turns into 

R 2[1 !] = 3 ! 1 . (5.20) 
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Points of equal distance from the origin are now on ellipses 

(5.21) 

The accompanying decision regions are shown in Figure 5.1 b. It can now be 
shown that the dosest vertex for a given signa! can be determined by solving 
the set of nonlinear equations 

b1 sign[</>1 - !( <1>2)] 

b2 = sign[</>2 - f( <PJ)] , (5.22) 

where J(-) is a piece-wise linear function . 
In the last example a is further decreased toa = 0. Now, only the de-term 

is considered in the frequency domain, resulting in a correlation matrix 

1 [ 1 1 ] R ='i 1 1 . (5.23) 

Points of equal distance from the origin for this degenerate case are now on 
the lines 

(5.24) 

The boundaries of the Voronoi cells are shown in Figure 5.1c. Note that input 
signals in the middle decision region don 't have a unique binary representation. 

+ . ~ 
. . :\ . 

-~ 

-~ • 
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Figure 5.1: Voronoi cells in a t wo-dimensional signa! space fora = 1 (a ), a= ~ (b) 
and a= 0 (c). The vertices {±1 , ±1} are denoted by solid dots. 

In the p revious examples we have seen how the matrix R gives rise to decision 
regions in the signa! space. In order to find t he optima! binary representation b 
for a given signa! tjJ we have to determine in which decision region tjJ is located. 
Unfortunately, in a high-dimensional signa! space it is not clear which hyperplanes 
contribute to the boundary of each decision region . Checking a ll possible vert ices, 
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on the other hand, is not a feasible solution, as the number of vertices grows expo­
nentially as a function of the dimension N. 

For the optima! binary hologram, however, we only desire a good approximation 
within the object window in the reconstruction plane. Due to the resulting degrees 
of freedom (outside the object window), we can expect that a number of reasonably 
good solutions exist. For such kind of probierus local search methods can provide 
an alternative. Given an initia! binary hologram (vertex), the idea is to search a 
local neighbourhood (vertices) for a better solution. As soon as a better salution 
is found, the local neighbourhood of this binary hologram is searched. Repeating 
this process, we find in a finite number of steps a binary hologram which is locally 
optima! with respect to its neighbourhood. So, instead of trying to find the optima! 
hologram we content ourselves with a good hologram, which can be found with a 
reasanabie amount of computation. 

Consiclering (5.7) or (5.11) we thus try to find the binary vector b that miniruizes 
the cost function 

C(b) = bT Rb- 2cpT Rb . (5.25) 

The term cpT Rep does not depend on the choice of b and has therefore been omit­
ted. Hopfield's neural network, which is discussed in the next section, provides 
a local search methad that can be applied to solve this combinatorial, quadratic 
optimization problem. 

We conclude this introduetion with the remark that in the error measures (5.1) 
and (5.8) both amplitude and phase errors are considered. For amplitude-only prob­
Ierus ( cf. (2.30) ), the error measure becomes 

(5.26) 

A similar expression holds for the discrete frequency case. In order to derive an 
expression for the distance in terms of the binary hologram samples it is convenient 
however to consider the deviation (IBI2 - 1<1>1 2 ) 2 insteadof (IEl ~ 1<1>1)2 in (5.26). It 
is possible to show (van Gompel, 1993) that the distance canthen be written as 

(5.27) 
m n o p m n 

Higher-order neural networks (Guyon et al., 1988) can be applied to solve such 
higher-order optimization problems. Because of the complexity we shall not follow 
this approach here. An alternative solution to this problem is based on the idea 
that under the assumption that the phase of <I> equals the phase of B, the di stance 
(5.1) passes into (5.26). Since the amplitude I<I>I is prescribed only, we are able 
to solve the amplitude-only optimization problem by solving the amplitude-phase 
optimization problem. In Subsection 5.3.3 we discuss this approach in more detail. 
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5.2 Hoptield's neural network 

In this section we give a short introduetion to Hoptleld's neural network. We consider 
a discrete, non-deterministic model (Hopfield, 1 982) and a continuous, deterministic 
model (Hopfield, 1984). 

5.2.1 A discrete, non-deterministic model 

In 1982 J. Hopfield introduced a mathematica! model in order to study the properties 
of physical systems built of a large number of interacting elements. In this model 
we have a number of processing elements (or neurons), which we label according to 
n = 1, ... , N. Each of the N neurons has two states Vn = { -1, +1 }. By means of 
interconnections between the neurons the state of a neuron is passed on to other 
neurons. With the interconnection from neuron m to neuron n an interconnection 
weight Wnm is associated. 

Each neuron samples its input at random times and adjusts its state according 
to the updating law 

{ 
+1 

vnew = vold 
n n 

-1 

if L;;:=l WnmV~d >in 
if r;;;:=, Wnm v~d = tn 
if r;;;:=1 Wnm v~d < tn 

(5.28) 

where tn is the threshold value of neuron n. The interrogation by each neuron is 
of stochastic nature, independent of the updating of other neurons. The average 
updating rate is assumed to be equal for all neurons. 

A network with symmetrie interconnection (Wnm = Wmn) and no direct coupling 
from a neuron output to its input (Wnn = 0) always converges toa stabie state in a 
finite number of updatings (Goles et al., 1985). To show this we associate with the 
tot al state v = ( v 1, .. . , VN f of the network the energy function 

N N N 

H(v) =- L L WnmVnVm + 2 L imVm = -vTWv + 2tT V. (5.29) 
n = ! m = l m = l 

The interconnections and the thresholds are specified by means of the matrix W = 
[Wnm] and the vector t = (t~, ... , iN )T Next we consider the change in energy 

(5.30) 

Under the assumption that (only) the state of neuron kis updated (5.30) simplifies 
to 

( 5.31) 
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where we have used the fact that Wnm = Wmn and Wnn = 0. When we combine 
(5.31) with the updating law (5.28) we find that during each update the energy is 
non-increasing, i.e. 

D.H ::; 0 , (5.32) 

and decreasing if a state transition occurs. Since the energy has an absolute mini­
mum, the system must converge to a stabie state within a finite number of updates. 
This state has either local minimal energy or global minimal energy. 

In order to simulate the above model on a digital computer we introduce discrete 
time-steps and select by means of a selection rule one neuron every time-step. (The 
selection rule should be of such a form that the neurons are selected with equal 
probability.) Only the selected neuron is allowed to change its state, using (5.28). 
For this reason we refer to this algorithm as sequentia! updating. Using the above 
energy argument we can conclude that this algorithm reaches a stabie solution within 
a finite number of steps. 

We remark that if :L;;;=l Wnm Vm = tn the state of the neuron remains unchanged. 
Since such an event hardly ever occurs we can reformulate the updating law as 

(5.33) 

with the sign-function defined according to ( 4.1 ). The notation := for the transition 
of v~1dto v~ew is also used in the remainder of this chapter. 

5.2.2 A continuous, deterministic model 

In the previous model the neurons have two states and the updating of the neurons 
is instantaneous at random times. Biologica! neurons and operational amplifiers (in 
a hardware realization of the mathematica! model) have a continuous input-output 
relation. Moreover, due to non-avoidabie integrative time-delays the dynamic be­
haviour of the system is described by a differential equation, rather than an updating 
law without memory. In this context, a continuous, deterministic model based on 
the above properties has been proposed by Hopfield (1984). 

The input-output relation of the neurons is now modeled by a sigmoid function, 
shown in Figure 5.2. This continuous function is monotonically increasing and 
bounded. In accordance with the previous model we take for the asymptotical 
values ±1. 

An electrical model for the continuous, deterministic system is shown in Fig­
ure 5.3. The sigmoid function represents the input-output charaderistic Vn = f(un) 
of nonlinear amplifiers with negligible response time and negligible input current. 
Output Vm is fed back to input Un by means of a resistor Rnm. The differential equa­
tion which describes the dynamic behaviour of the system is found by formulating 
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+1 

Figure 5.2: The sigmoid function as a continuous input-output relation of a neuron. 

Kirchhoff's current relation for the input of the amplifiers: 

.;j.., Un- Vm Un C dun . _ O 
~1 Rnm + Rn + n di + )n - ' (5.34) 

where Rnm, Rn and Cn are assumed to be positive. Equation (5.34) is simplified by 
means of the introduetion of the total conductance to ground 

1 1 N 1 
- = - + 2:: - , (5.35) 
Pn Rn m=1 Rnm 

for each neuron. This leads to 

dUn ..:!-- Pn · 
PnCndt + Un = L...J D Vm- Pn)n · 

m==l JLnm 

(5.36) 

Furthermore, under the assumption that the neurons have identical time constants 
r = PnCn we finally find thesetof N nonlinear differential equations 

(5.37) 

The interconnection weights are given by Wnm = Pnf Rnm, while the thresholds are 
chosen according to tn = PnJn· With passive resistors only positive weight factorscan 
be obtained. Negative weight factors are obtained by means of additional inverting 
amplifiers and 'negative signa] wires' . This is not shown in Figure 5.3. 

In order to show that the continuous model also converges to a stabie state, 
Hopfield (1984) introduces the energy filnction 

N N N N Vn 

H =-E ];1 WnmVnVm + 2 E lnVn + 2 E fo r 1(s)ds. (5.38) 
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Vt 

Figure 5.3: Electrical model for Hoptield's neural network 

For a symmetrie W we find for the derivative of H: 

dH N dv,. ( N ) dt = -2 :E d :E W,.mVm- Un- t,. 
n=l t m=I 

(5.39) 

Combining this result with (5.37) we have 

dH = _2T f. j}_ (dun) 2 
. 

dt n=l du,. dt 
(5.40) 

Since f(-) is a monotonically increasing function, the energy must decrease in time. 
Moreover dHfdt = 0 implies that the system is in equilibrium: du,.fdt = 0 for 
n = 1, ... , N. In combination with the boundedness of the energy, we can conclude 
that the system alwayll converges to a stabie state with local minimal energy. 

Apart from the last term, the energy function (5.38) of the contim.tous model 
is similar to the energy fundion (5.29) of the previous model. Note, however, that 
the vector v is binary-valued in the previous model and continuous in t he present 
model. When we replace the sigmoid fundion f(u) in Figure 5.2 with f(f3u) the 
last term in (5.38) turns into 

(5.41) 
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With the constant fJ the gain of the sigmoid function can be adjusted; in the high­
gain limit fJ ---+ oo the sigmoid function becomes the sign-function and v is binary­
valued. As the last term in (5.38) vanishes for fJ ---+ oo we find that for the stabie 
states of the continuous model the outputs of the neurons are binary-valued. More­
over, if we take the diagonal elements of W equal to zero, the stabie states of the 
continuous model coincide with those of the discrete model. In contrast wit h the 
previous model such an assumption was not necessary to prove that the continuous 
model converges to a stabie state. 

For convenience we rewrite (5.37) as 

du 
Tdt+u=WJ(u)-t, (5.42) 

where we have introduced the state vector u = ( u 1 , . . . , UN )Y and the threshold 
vector t = (t1, ... ,tNf· The sigmoid function is applied component-wise. The 
right-hand term in (5.42) depends nonlinearly on u. However, in the high-gain limit 
the right-hand term changes only if the sign of (at least) one of the elementsof u 
changes. Between such events, the right-hand term remains constant, resulting in 
a linear differential equation which can he solved analytically (Klijn, 1991). Given 
the state u, we determine the moment when one of the neurons changes its output 
first. Next, the right-hand term is updated and the process is repeated. In this way 
exact simuiatien of the system (5.42) is possible. 

An alternative way to solve (5.42) numerically, which is not restricted to the 
high-gain limit, is to introduce discrete time-steps t = j f:.t and approximate the 
derivative in (5.42) by a finite difference. Using a first-order approximation this 
leads to 

7 u(j) -u(j - 1) +u(j -1) = WJ(u(j -1)) -t, 
f:.t 

( 5.43) 

with u(j) = u(jt..t). With the introduetion of the constant a= f:.tjT we find that 
the new state u(j) is determined by the old state according to 

u(j) = a [W f(u(j- 1)) - t] + (1 - a)u(j - 1) . (5.44) 

The step-size f:.t should he smal! compared to the time constant T of the neurons, 
that is, we should take a « 1. 

In genera!, a number of neurons change their binary output when the sign­
function is applied in the iteration (5.44) . This is in cont rast with the exact simu­
lation of (5.42), where only one neuron changes its binary output at a time. This 
method, which we call parallel updating, is thus an approximate simuiatien of the 
dynamic behaviour of the continuous model. 

In equilibrium we have 

v = sign[Wv- t] , (5.45) 
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where we have used v = sign( u). With sequentia! updating (5.33) we try to satisfy 
(5.45) for one element of v at a time. The same set of equations is derived from 
the parallel updating law (5.44) when a= 1. In that case we apply the sequentia! 
updating law for all neurons in parallel. lt is possible to show (Bruck and Goodman, 
1988) that this results in an oscillatory behaviour (a cycle of length 2) of the state 
of the network. 

5.3 Finding a binary hologram with a Hopfield 
neural network 

5.3.1 Introduetion 

In the previous section we have discussed the two models proposed by Hopfield: 
a discrete, non-deterministic model and a continuous, deterministic model. Both 
systems converge to a stabie state with local minimal energy 

(5.46) 

(For the continuous model we have assumed the high-gain limit of the sigmoid func­
tion !). This property suggests applying the Hopfield network in combinatorial 
optimization problems where the cost function can he formulated as an energy func­
tion (Hopfield and Tank, 1985). This is the case with binary holograms, where the 
cost function 

(5.4 7) 

is of the same form as the energy function (5.46). This approach has been suggested 
by Anastasslou (1989) for the related problem of digital image quantization, and 
was first applied for computer-generated holograms by Justand Ling (1991 ). 

Equating (5.47) and (5.46) we shall find that the weights and the thresholds of 
the network are given by 

W = -R+ri 
t -RTt:/J=-t:/J. (5.48) 

In the discrete model, the matrix W is assumed to be symmetrie with zero elements 
on its main diagonal. In Section 5.1 we have seen that the matrix R is symmetrie, 
but has a nonzero main diagonal with equal elements Rnn = r. For this reason, 
the additional term r I (with I the identity matrix) has been introduced in (5.48). 
Since the object is assumed to vanish outside the object window, the filtering by the 
matrix R has no effect and we have t = -t:/J. Given the weights and the thresholds 
the neural network is completely determined. Starting with an initia! contiguration 
we let the network converge to a stabie state. The binary samples of the (local) 
optima! hologram are then given as the neuron outputs. 
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The simulation of the discrete model on a digital computer results in an al­
gorithm where only one neuron is updated every time-step (sequentia! updating). 
The simuiatien of the continuous model results in an algorithm where all neurons 
are allowed to change their state simultaneously (parallel updating) . In the next 
subsections both approaches are discussed. 

5.3.2 Sequentia} updating 

In this section we elaborate on sequentia! updating. Following the previous sec­
tions, we consider one-dimensional signals. Later, the results are extended to two­
dimensional signals. Furthermore, the relation between sequentia! updating and the 
direct binary search method (Seldowitz et al., 1987) is discussed. 

When we substitute the weights and the thresholds (5.48) in the sequentia! up­
dating law 

(5.49) 

we find 

(5.50) 

For convenience we derive an explicit expression for the diagonal elements r of the 
matrix R. If a continuous frequency region lF is considered in the optimization 
problem we find 

r = Rnn = 1 IA(O)I2d0 . 
{I) 

(5.51) 

This fellows directly from (5.6). When discrete frequencies are considered, we can 
write for the correlation matrix 

N N 

Rnm = (F-1 AH AF)nm = L L:F;k1(AH A)k1F1m . (5.52) 
k=1 1=1 

Since (AH A) is a diagonal matrix, we have 

N 

Rnm = L F;k1 (AH A)kkFkm. (5.53) 
k= l 

Using the properties F;k1 = Fk.n/N and 1Fknl2 = 1 of the Fourier transferm matrix, 
the diagonal elements are given by 

~ -1 H 1 ~ H 1 H 
r = Rnn = L., Fnk (A A)kkFkn = N L.,(A A)kk = N Trace A A . 

k=l k=l 

(5.54) 
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We now show that the sequentia] updating law of a discrete-time Hopfield neural 
network can he seen as a generalization of error diffusion. To this end we write for 
the correlation matrix in (5.48) R = I+ C, with Cnn = 0. Sealing the diagonal 
elements of R to unity can he clone without loss of generality. Since the Toeplitz 
matrix C acts as a convolution-operator, we find for the updating law (5.49) 

b[n] := sign ( -c[n] * b[n] + </>[n] + c[n] * </>[n]) . (5.55) 

Camparing this result with ( 4. 79) we conclude that with the sequentia! updating 
law we are able to find a salution of the symmetrical error-ditfusion problem. 

With sequentia! updating we start with an initia! configuration b, where each 
sample bn has been assigned a value ±1 with equal probability. Next, the neurons 
are selected in random order (with equal frequency). To this end a sequence of 
integers is generated using a (pseudo) random number generator with a uniform 
distribution on {1, 2, ... , N}. For one neuron at a t ime (5.50) is applied. This 
algorithm requires O(N) multiplicat ions per neuron update. Due to the Toeplitz 
structure of R we only need O(N) storage. 

The matrix-vector product Rb in (5 .50) describes a one-dimensional convolu­
tion. A generalization for two-dimensional signals thus implies replacement by a 
two-dimensional convolution, where the filter coefficients are determined by the 
two-dimensional object window IF. Following the vector-representation of one­
dimensional signals, the most natura! way to represent a two-dimensional signa! 
is by a matrix: 

(5.56) 

The two-dimensional signa) b[n1, n 2] is considered as a number of one-dimensional 
signals bn2 , which form the columns of the matrix 1 . In the same way we int roduce 
the matrix cll for </>[n1 , n2]. The formulation of a two-dimensional convolut ion in 
matrix-notation is in general not convenient. In order to adopt the one-dimensional 
formulation we concatenate the columns of B and construct a N 2 x 1 vector b 
according to 

b =[bi .. . b~f (5.57) 

The accompanying matrix R in (5.50) is a N 2 x N 2 matrix with a highly redun­
dant structure (R has only N 2 freedoms). In genera! , we have to calculate O(N2 ) 

multiplications per neuron update, and we have to store O(N2 ) coefficients. 
However, in the special case where the object window is separable we can lower 

the number of multiplications per neuron update to O(N) and the number of storage 
units to O(N). A separable object window can he written as lF = lf't x IF2 , with the 
one-dimensional object windows IF1 and lF 2 for the respective coordinates 81 and 

1 Note the difference between the spectrum vector B, defined in the Fourier domain, and the 
matrix B, defined in the spatial domain . 
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02 . The accompanying correlation matrices are denoted by Re and R:. The two­
dimensional convolution (Rb) can now be formulated in a matrix notation, where 
we have a column operator Re foliowed by a row operator R:, according to 

(5.58) 

Since the row operator Rr is a symmetrical matrix, the transpose operation T is 
omitted in the remainder of this section. The N 2 x N 2 matrix R is related to Re 
and R: through the Kronecker tensor product (Barnett, 1990) 

(5.59) 

It is possible to show that the term diag (R)b in (5.50) can be written as 

diag (Re)Bdiag (R: ) . (5.60) 

The (constant) diagonal terms r e = R~n and rr = R~n are determined by (5.51) or 
( 5.54). The sequentia! updating law for two-dimensional signals thus becomes 

(5.61) 

The index n 1 : stands for row n 1 of the matrix in question, while : n 2 stands for 
column n2 . Equation (5.61) still requires O(N2 ) multiplications per neuron update, 
the storage requirement for the matrices Re and Rr is only O(N) memory units. 

The number of multiplications can be lowered by selecting the neurons in a 
specific order. First, we select a column. Next, every neuron in this column is 
selected once. The process is then repeated for the next selected column. As soon 
as a column, say with index n2 , has been selected we calculate the intermediate 
vector 

{5.62) 

The updating law for the neurons in column n 2 reads 

(5.63) 

Wh en a transition B~, 712 = -En, n 2 occurs, we have to correct the intermediate 
vector, according to 

(5.64) 

For the updating of N neurons (in the same column) we have to determine the 
vector h once, which casts O(N2 ) multiplications. With O(N) multiplications due 
to the corrections we find that the complexity per neuron update is lowered to O(N) 
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multiplications. The columns (and the neurons within each column) are selected 
Using 

n2 := 1 + [-1 + n 2 + p] modN, (5 .65) 

with the constant p E { 1, 2, ... , N}. When N and pare taken coprime, each column 
is selected exactly once in N successive updates. 

In the computer simulations of sequentia! updating we have placed the original 
object in a separable object window, chosen according to 

(5.66) 

Again, the (discrete) object is multiplied by a random phase factor. The respective 
sizes of the hologram and the object are 1282 and 322 samples. In a first experiment 
we have calculated a binary hologram using (5.61 ), where the neurons are selected in 
random order. The initia! binary hologram is a random binary pattern, generated 
by setting the output of each neuron to ±1 with equal probability. After about 
10N2 updatings the Hopfield neural netwerk converged to the (suboptimal) binary 
pattem shown in Figure 5.4a. The modulus of the Fourier transfarm of the binary 

Figure 5.4: a. Binary hologram distribution obtained by means of a Hopfield neural 
network with sequentia! updating. b. Modulus of the Fourier t ransform of the 
binary hologram. 

hologram is shown in Figure 5.4b. Outside the object windows the quantization 
noise is uniformly distributed over the reconstruction plane. The signal-to-noise 
ratio ( 4. 72) of the reconstructed object equals SNR = 24, while the efficiency ( 4. 75) 
equals 71 = 0.007. When the calculation of the hologram was repeated with different 
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(random) initia! binary patterns, we obtained holograms with about the same signal­
to-noise ratio and efficiency. Moreover, also the required number of updatings does 
not seem to depend on the initia! (random) binary hologram. 

In a second experiment we have applied the accelerated version of sequentia) 
updating (5.63), where the neurons are selected per column. In about 10 itera.tions 
a (sub)optimal binary hologram with SNR = 23 and TJ = 0.007 was obtained. The 
binary hologram and its reconstruction resembie those shown in Figure 5.4. The 
results did not significantly change when the order of selection of the columns (and 
the neurons within each column) was altered. Apparently, selecting the neurons in 
a special order does not have a major inftuence on the required number of updatings 
nor on the quality of the binary hologram. 

In order to make a comparison with recursive error diffusion possible we have 
designed an (internal) error feedback filter of order 2 using the least-square approach 
of Chapter 4. Applying the error diffusion algorithm resulted in a binary hologram 
with a signal-to-noise ratio of 30 and an efficiency TJ = 0.007. In spite of the ex­
tra computation, a smaller signal-to-noise ratio is obtained with Hoptield's neural 
network. 

Still, applying a Hopfield neural network can he profitable. We have taken the 
binary hologram obtained with error diffusion as the initia! neuron outputs. During 
8 iterations the Hopfield network can improve the binary hologram, resulting in the 
binary pattem shown in Figure 5.5a. In the binary hologram we can still observe a 

Figure 5.5: a. Binary hologram distribution obtained by means of a Hopfield neural 
network with sequentia! updating. The initia! binary hologram is determined with 
error diffusion. b. Modulus of the Fourier transform of the binary hologram. 

structure due to the initia! binary hologram. As aresult the quantization noise is not 
uniformly distributed outside the object windows (Figure 5.5b); the noise sha.ping 
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charaderistic of the error ditfusion system is still present. The signal-to-noise ratio 
is improved to SNR = 37, while the efficiency remains TJ = 0.007. 

We conclude this section with a short discussion of the direct binary search 
algorithm (Seldowitz et al., 1987). This algorithm starts with a random binary 
configuration and searches for a better hologram in a local neighbourhood. To this 
end the effect of the transition of one binary sample on the approximation of the 
original object is considered. The local neighbourhood of a given binary hologram 
is thus defined as the set of binary holograms which differ exactly in one pixel 
(Hamming distance 1). If the approximation has improved we accept the transition, 
otherwise the old value is restored. This process is repeated until a local optima! 
solution is obtained. 

Although the direct binary search (DBS) algorithm and sequentia! updating 
are based on the same concept, there are important differences. In contrast to the 
quadratic energy function of Hopfield's neural network, the cost function of the DBS 
tnethod is less restricted. While the neural network in its present form minimizes 
both amplitude and phase errors, a DBS algorithm can be easily constructed for 
the minimization of amplitude errors only. Since the DBS method is rather slow, 
an accelerated version has been proposed (Jennison et al., 1991). However, only for 
amplitude-phase optimization problems acceptable calculation times are obtained. 
The authors suggest to solve amplitude-only optimization problems as an amplitude­
phase optimization problem, with an arbitrarily chosen phase (see also p. 12). With 
Hopfield's neural network the complexity can be further decreased by means of 
parallel updating, which is discussed in the next subsection. 

5.3.3 Parallel updating 

In the discussion of parallel updating we first consider one-dimensional signals. With 
the weights and thresholds given by (5.48), the parallel updating law (5.44) turns 
into 

u(j) 
b(j) 

a [-Rb(j- 1) + rb(j- 1) + cp] + (1 - a)u(j- 1) 
sign [u(j)] . (5.67) 

Although the continuous model does not require that the diagonal elements of W 
are equal to zero, such a choice is appropriate in the numerical approximation of the 
continuous model. With O(N2 ) multiplications for the updating of N neurons, we 
find that the complexity per neuron update is the same as with sequentia) updating. 
However, with the discrete frequency approximation, we can make use of the fast 
Fourier transformation and lower the complexity. Such an approach did not make 
sense for sequentia] updating, where one neuron was updated at a time. With the 
discrete frequency approximation we haveR= F-1 AAH F, and (5.67) turns into 

u(j) = a [-F-1 AH AFb(j- 1) + rb(j- 1) + c/J] + (1 - a)u(j- 1) 

b(j) = sign [u(j)] . (5.68) 
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When we use the fast Fourier transformation for the operation p-t AH AF we need 
O(N log N) multiplications per iteration or only O(log N) multiplications per neuron 
update, which leads to considerable computational savings. 

The parallel updating law is easily generalized for two-dimensional signals, where 
b[nt, n2 ], tP[n1 , n2J and u[n1, n2j are denoted by the respective matrices B, ~ and U. 
For the discrete Fourier transfarm of B we can write FBFT = FBF since the 
discrete Fourier transformation is a separable operation (cf. (5.58)). In this way we 
find for the two-dimensional updating law 

U(j) =a [-F- 1 (AH A o (F B(j- l)F))F-1 + rB(j- 1) + ~l + 
(1- a)U(j- 1) 

B(j) = sign [U(j)J . (5.69) 

The filtering in the frequency domain with the mask AH A is denoted by means of 
the Hadamard product o, which stands for component-wise multiplication (Barnett, 
1990), that is 

According to (5.69) the fast Fourier transformation is applied separately on the 
rows and the columns of B, resulting in O(N2 log N) multiplications per iteration. 
Consequently, we have O(log N) multiplications per neuron update. 

In order todetermine the constant r for the 'diagonal terms', we have to calculate 
the contribution of an (arbitrary) sample Bnm to the product 

This contribution reads 

N N 

r = LLF","k1(AHA)kzFknFmz.F/:;.1 , 

k=t l=t 

and can be simplified to 

1 N N 

r = N2 LL(AHA)kl' 
k=l 1= 1 

· F p-t t d F p-t t Stnce kn nk = N an mi lm = ""jj· 

(5.72) 

(5.73) 

The choice of the step-size a in the parallel updating law is a rompromise between 
speed and quality. For a smal! value of a only a smal! number of neurons wil\ change 
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their output in each iteration step. As a result, a large number of iteration steps are 
required befare a reasanabie signal-to-noise ratio is obtained. For larger values of a 
the convergence speed is higher, but due to the increased inaccuracy in the numerical 
approximation (5.67) a larger number of neurons will make a wrong decision in the 
updating. As a result, the signal-to-noise ratio is smaller. The binary output of the 
network shows an oscillatory behaviour when the the step-size is increased further 
(a -+ 1 ). In Figure 5.6 the evaJution of signal-to-noise ratio for different choices 
of a is shown. Starting with a rather large step-size which is gradually decreased 

J02c---~--~----r---~--~----~---r--~----~--~ 

JOl 

-x : alp ha = 0.1 

-o : alpha = 0.2 

: alpha = 0.3 

- : alpha = 1.0 

I 0-1 '-----'------'------'-----'------'------..__---'------'-----..__--....J 
0 5 JO 15 20 25 30 35 40 45 50 

iteration number 

Figure 5.6: EvaJution of the signal-to-noise ratio for different choices of the step­
size a. 

during the process, one obtains a 'good' signal-to-noise ratio in a minimal number 
of iteration steps. In our experiments, however, we have taken a constant step-size 
a = 0.2, which gives a good campromise between convergence speed and quality. 
This implies that the network does not converge to a stabie state; the process is 
stopped as soon as the signal-to-noise ratio does not change significantly. After 
30 iterations the signal-to-noise ratio equals 22, which is about the same as for 
sequentia] updating. Also the diffraction efficiency remains 1J = 0.007. The initia] 
value of the matrix U is chosenat random, with IUn1n2 1 :5 1. In genera!, the required 
number of iterations is larger for parallel updating than for sequentia] updating 
(about 10). Still, the reduction in complexity (per iteration) for parallel updating 
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causes a decrea.se in computation time. Compared to error diffusion , however, the 
performance of the Hopfield neural network remains rather disappointing. 

So far wetried to generate the (discrete) object w[k1 , k2J within the object win­
dow, where the accompanying </>[n1 , n2J is scaled according to max </> = 1. lnstead 
we could try to generate p..if! within the object window, with the real factor p.. > 1. 
Provided that the noise power does not increa.se, this will result in a larger signal­
to-noise ratio. Moreover, the efficiency will increa.se due to the larger. diffraction 
efficiency. The binary hologram obtained with p.. = 2 is shown in Figure 5.7. The 

Figure 5.7: a. Binary hologram distribution obtained by means of a Hopfield neural 
network with parallel updating and p.. = 2. b. Modulus of the Fourier transfarm of 
the binary hologram. 

signal-to-noise ratio equals 80, while the efficiency is increa.sed to 0.03. In the binary 
hologram we recognize the structure of the original hologram. According to (5.45) 
we have in equilibrium (for one-dimensional signals) 

b = sign [-Rb+ rb +!HP] . (5.74) 

For a large factor p.. the stationary state goes toward b = sign ( c/> ), which explains 
the structure of binary hologram. This means that when p.. is taken too large, the 
signal-to-noise ratio decrea.ses. With p.. = 2 a sealing factor À ~ 1 is obtained. 

In amplitude-only optimization we have the freedom to choose the pha.se of ifl 

(Wyrowski, 1990). So far, the pha.se freedom ha.s been exploited by t he introduetion 
of a random pha.se distribution for the original object. A salution for the amplitude­
only optimization problem (2.30) was found by minimizing the amplitude-pha.se 
mea.sure (2.29). However, since this approach implies the approximation of the 
(randomly chosen) pha.se of the object, a suboptimal result is obtained. In Sec­
tion 5.1 we have already noted that the amplitude-pha.se optimization problem and 
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the amplitude-only optimization problem are equivalent if the phase of 4> is taken 
equal to the phase of B. Of course, in order to know the phase of B the hologram 
samples are needed, and vice versa. To settie this problem, we try to determine the 
phase of 4> in an iterative way, according to tl>(j) = lti>Ié"'gB(j-l). For the Hopfield 
neural network this means that the thresholds are adapted during updating. In 
our computer simulations we always found that the thresholds converged to stabie 
configuration. Consequently, the network converges to a stabie state. A proper ex­
planation, however, of this surprising property bas not been found yet. Sequentia] 
updating requires adaptation of all thresholds for every single neuron transition and 
is therefore not considered. 

Using the phase freedom allows us to increase the factor p. further and improve 
both the efficiency and the signal-to-noise ratio. For p. = 3 a binary hologram with 
an improved signal-to-noise ratio of 120 and an efficiency TJ = 0.05 is obtained. We 
remark that the sealing of the input signa! can also he applied with error ditfusion 
in order to obtain a better signal-to-noise ratio and efficiency. Exploiting the phase 
freedom is, due to its iterative eh araeter, not possible in the error ditfusion process. 

We end this section with a discussion of the similarities of parallel updating 
with the iterative Fourier-transform algorithm. The parallel updating law (5.68) 
describes an iteration between the hologram plane and the reconstruction plane, as 
shown in Figure 5.8 (for one-dimensional signals). The sign-operation (or otherwise 

b 

b = sign (u) 

u 

F 

F -I 

B 

u 

u = a [-AH AB + r B + ~] 
+(1- a)U 

Figure 5.8: lteration between hologram plane and reconstruction plane. 

the sigmoide-operation) is applied in the hologram plane, while in the reconstruction 
plane the Fourier transfarm of the state U is adjusted. The structure of the parallel 
updating algorithm is also found with the iterative Fourier-transform algorithm. 
This algorithm is applied in order to generate a signa! subject to constraints in 
both the hologram and the reconstruction plane. For each constraint there is a 
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set consisting of signals which satisfy this constraint. Provided that the iterative 
process converges, a memher of the intersectien of the sets is found. 

In the special case where applying a eenstraint implies a projection on a closed 
convex set, the iterative process is guaranteed to converge (the intersection of the 
sets is assumed non-empty). This method is known as 'projections on convex sets' 
(Stark, 1992). For example, the properties -1 S bn :S:: 1 and Bk = ~k for kEF both 
define convex sets b. In order to find a signa! with both properties, the projections 

and 

Un > 1 
if juni < 1 

Un < -1 

Uk= { ~k if k E lF U F* 
Bk elsewhere 

(5.75) 

(5.76) 

are applied in the hologram and the reconstruction plane, respectively. With the 
quantization of Fourier holograms, however, we have the sign-operator, which is not 
a projection on a convex set. Apparently, when the above operatien U = -AH AB+ 
B+.P is adjusted to the operation in Figure 5.8, the process still converges. With the 
iterative Fourier-transform algorithm more sophisticated constraints are imposed on 
the signals in both planes. This has been successfully applied in the quantization of 
Fourier holograms by Wyrowski (1989). 

5.4 The Boltzmann machine 

5.4.1 Simulated annealing 

The discrete-time Hopfield neural network with sequentia! updating accepts only a 
transition to a new state if this results in a decrease in energy. lt is due to this 
condition that the discrete-time Hopfield netwerk is guaranteed to converge to a 
stabie state in a finite number of transitions. Such a strict downhili search, however, 
has a major disadvantage. The energy of a stabie state is (by definitîon) minimal 
in a local sense. Since the Hopfield netwerk is unable to escape from such states, it 
is thus possible that the netwerk converges to a state with an energy much higher 
than the g\obal minimal energy. By means of a stochastic technique called simulated 
annealing it is, however, possible to circumvent such an undesirable situation. 

In metallurgical annealing a metallic body is heated in a heat bath to a temper­
ature at which the body (nearly) melts. At melting temperature the particles in the 
solid arrange themselves randomly, and dislocations in the lattice are eliminated. 
Next, the temperature of the heat bath is decreased very slowly, which prevents the 
formation of new dislocations. In this way one obtains a highly structured lattice at 
room temper at ure. The energy function of the metal is minimal for this state. When 
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the temperature of the heat bath is lowered too quickly, the metal will hefrozen into 
a meta-stabie state with a higher energy due to lattice dislocations. The extreme 
case in which the temperature is lowered instantaneously, is known as quenching. 

In 1953 Metropolis et al. introduced an algorithm, based on Monte Carlo tech­
niques, for the simulation of a solid at thermal equilibrium. Given the state of the 
system, a new state is proposed by means of the introduetion of a small change in 
(a part of) the system. If this change gives rise to a state with lower system energy, 
this new state is accepted. In case the change results in an increase of the system 
energy one accepts the new state with probability 

E"ew -Eold 
p = e- kaT (5. 77) 

where enew denotes the system energy of the proposed state and eold denotes the 
system energy of the current state. The constant kB is known as the Boltzmann con­
stant, T is the temperature of the system. When a large number of state transitions 
is considered (at a constant temperature), the solid reaches thermal equilibrium 
which is characterized by the Boltzmann distribution (Aarts and Korst , 1989). This 
algorithm is known as the Metropolis algorithm. The simulation of metallurgical 
annealing was introduced by Kirkpatrick et al. (1982, 1983) and independently by 
Cerny (1985). With simulated annealing the Metropolis algorithm is applied with 
a slowly decreasing temperature. This way a state with an energy equal (or very 
close) to the global minimum of the system energy is obtained. Due to this property 
simulated annealing is applied as a technique to solve combinatorial optimization 
problems. The solutions of the optimization problem are the states of the physical 
system, while the cost fundion of each salution is represented by the energy of the 
accompanying state. 

Combining simulated annealing with the updating law of a Hopfield neural net­
work makes escaping from local minima possible. The resulting neural network, 
which is known as the Boltzmann machine was introduced by Rinton et al. (1984). 
In the next subsection the Boltzmann machine is considered in more detail. 

5.4.2 Sequentia! updating 

Given a discrete-time Hopfield neural network in a certain state, we propose a new 
state by means of the inversion of one neuron output: v:;•ew = -vk1d. According to 
(5.31) the change in energy due to this transition reads 

(5.78) 

where we have introduced the neuron input 

M 
ttnew _ ~ W Vold _ t 
k-w kmm k· (5. 79) 

m=l 
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With the original Hopfield neural network the proposed transition is accepted only 
if this results in a decrease in energy. For a Boltzrn'ann machine the updating law 
(5.33) is modified according to (Hecht-Nielsen, 1990) 

{ 

- vkld 

Vnew- vold 
k - - k 

vold 
k 

if tlH < 0 
if tlH ~ 0 and Ç < e-t:>.Hfc 

otherwise 
(5.80) 

In contrast with the original discrete-time Hopfield neural network, transitions which 
lead to an increase in energy are accepted with a certain probability. To this end the 
random number Ç is chosenon [0, 1) with a uniform probability density function. The 
control parameter c plays the role of a temperature. The initia\ value of cis chosen 
such that almost all transitions are accepted. During the process the 'temperature' 
is decreased slowly. As the temperature goes towards zero only energy-decreasing 
transitions are accepted. The Boltzmann machine then functions as a true discrete­
time Hopfield network, and thus must reach a stabie state. 

5.4.3 Parallel updating 

In Subsection 5.3.3 we have seen that the complexity of a discrete-time Hopfield 
network with (fully) parallel updating is much smaller than for a Hopfield network 
with sequentia! updating. From this point of view we would like to construct a 
Boltzmann machine with parallel updating. In principle, a new state can be gen­
erated by inverting the output of a selected number of neurons. If this leads to a 
decrease in energy the new state is accepted; for an energy-increasing transition the 
Metropolis criterion (5.77) is applied. This way, however, a decision is made for 
a group of neurons rather than for individual neurons. This is in contrast to the 
main idea behind parallel computation with neural networks: each neuron is able 
to make its own decision. Moreover, this approach is not suitable for fully parallel 
updating. Here, we discuss a parallel Boltzmann machine which is based on the 
parallel updating law (5.44) for the Hopfield network. In analogy with (5.79) for 
sequentia! updating, we first determine 

u(j) = a[Wv(j -1)- t) + (1- a)u(j -1). 

Next, the acceptance-criterion 

{ 
- Vf<(j- 1) 

Vk(j) = - Vk(j - 1) 
Vk(j - 1) 

if Llih < 0 
if Llfh ~ 0 and Ç < e-Ûhfc 

otherwise 

(5.81) 

(5.82) 

is applied for all neurons. For the 'change in energy per neuron' Llfh we introduce 

(5.83) 
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similar to (5.78) for sequentia! updating. We admit that the term 'change in energy 
per neuron' is misleading. Each neuron is able to decide whether a transition is 
appropriate or not, dependent on the value of its partial energy. The sum of all 
the partial energy-changes D..fh, however, is not equal to the change in the total 
energy D..H. When the temperature goes to zero, only energy-decreasing transitions 
are accepted. The parallel Boltzmann machine then fundions as the original Hop­
field network with parallel updating. Under the assumption that a is smal!, the 
Boltzmann machine thus reaches a stabie state. 

In the last computer experiment we have simulated a Boltzmann machine with 
adaptive thresholds. The step-size a is taken 0.1, while the sealing factor equals 
p, = 3. With a starting value of the control parameter c = 50 all neuron transitions 
are accepted. During the process c is slowly decreased, according to 

c(j) = -yc(j- 1) . (5.84) 

The evolution of the signal-to-noise ratio is shown in Figure 5.9 for the respective 
-y-values 0.95 and 0.85. In addition, the signal-to-noise ratio for a Hopfield net­
work with parallel updating (c = 0) is shown as a reference. When the cooling is 

300.---~---r--~----r---~---r--~----r---~--, 

-x : gamma = 0.95 
-o : gamma= 0.85 

- : Hopfield 

300 350 400 450 500 

iteration number 

Figure 5.9: Evolution of the signal-to-noise ratio for a Hopfield neural network and 
for a parallel Boltzmann machine for various values of I· 
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sufficiently slow we obtain a binary hologram with a signal-to-noise ratio of about 
260 which is significantly larger than the result obtained with a Hopfield network. 
The efficiency equals 0.06. A major disadvantage of the Boltzmann machine is the 
large number of required iterations. Still, with a less slow cooling procedure a signifi­
cantly gain in the signal-to-noise ratio can be achieved, while the number of required 
iterations remains acceptable. 

5.5 Condusion 

In this chapter we have reformulated the hologram quantization problem as a com­
binatorial optimization problem. A Hopfield network, which is the generalization of 
error diffusion, can be applied in order to solve such a problem. Given the object 
and the object window in the reconstruction plane, the weights and the thresholds of 
the network are determined. Starting with an initia! solution, the Hopfield network 
adjusts its state until a stabie state is reached. The local optima! binary hologram 
is then given by the neuron outputs. 

For the simulation of a Hopfield network on a digital computer, we can apply 
sequentia! updating or parallel updating. With sequentia! updating the state of 
one neuron is updated at a time. Selecting the neurons in a specific order makes 
a reduction in complexity from O(N2 ) multiplications per neuron update to O(N) 
possible, while the total number of updatings remains the same. The signal-to­
noise ratio of the holograms obtained with a Hopfield neural network is, compared 
to recursive error-diffusion, rather disappointing. The local search process of the 
Hopfield neural network stops at a local optima! solution, while better solutions 
exist. The Boltzmann machine, which combines the sequentia! updating law with 
simulated annealing, is able to escape from local optima! solutions. Due to its 
complexity, the 'sequentia!' Boltzmann machine has not been implemented. 

With parallel updating all neurons are allowed to change their state simultane­
ously. Due to the special structure of the weight matrix, the fast Fourier transforma­
tion can be applied in order to reduce the complexity per neuron update further to 
O(log N). Although parallel updating requires more neuron updates than sequentia! 
updating an overall savings in computation is obtained for large holograms. The 
holograms obtained with parallel updating, however, have in general a somewhat 
smaller signal-to-noise ratio than those obtained with sequentia! updating. The pro­
posed Boltzmann machine with parallel updating finds holograms with an improved 
signal-to-noise ratio within a reasonable amount of time. 
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Discussion 

In this thesis we have investigated how pulse-density modulation can be applied 
in order to transform a continuous hologram transmittance function into a binary 
function. Both continuous and discrete pulse-density modulation are considered. 
With continuous pulse-density modulat ion the positions of the pulses contained in 
the binary signa! can be chosen continuously in space. This is in contrast with 
discrete modulation, where the pulses can be placed at fixed raster points only. 
Given the continuous hologram transmittance function a pulse distribution of the 
binary hologram has to be determined which forms a good approximation of the 
original hologram. For Fourier holograms this means that the deviation between 
the Fourier spectra of the original and the binary hologram should be a smal! as 
possible within a given frequency band, called the object window. 

Finding the optima! continuous pulse distribution is a multi-dimensional opti­
mization problem with the pulse positions as free parameters. However, solving 
this problem with standard techniques is intraetabie for a large number of pulses. A 
suboptimal solution can easily be found using a simple approach. By means of a run­
ning integration a one-dimensional transmittance function can be divided in partial 
functions with equal 'area ' . When each partial signa! is replaced by a binary pulse 
with the same area, a pulse-density signa! with a local pulse density proport ional 
to the amplitude of the positive transmittance fundion is obtained. Equating the 
(local) area of the transmittance fundion and the (local) area of the pulse-density 
signa! has the effect that the speetral approximation error vanishes in the vicinity 
of the origin. With this approach the object window should thus be chosen around 
or near the origin. 

In variations on this concept the position of smal! groups of pulses is determined 
for adjacent part i al fundions simultaneously. Theoretically, a smaller approximation 
error is obtained for the higher-order methods. Computer simulations, however, have 
shown the practical limitation of most of the higher-order methods. For the lower­
order methods (Gauss-I, Gauss-2, moment-I, moment-2 and Cheby-3) the results of 
the computer simulations are in agreement with the theoretica! expedation. This 
does not hold true for the other methods, which is probably caused by the inaccurate 
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type of interpolation used in the determination of the pulse positions. Of course, this 
demonstrates the limitation of the higher-order methods. An interesting experiment 
to he carried out is to apply the integration concept to a periodic t ransmittance 
function belonging toa discrete object. 

Unfortunately the one-dimensional integration concept is not directly applica­
ble to continuous two-dimensional signals. Reformulating the integration concept 
in a differential form makes an extension to two dimensions possible. The two­
dimensional pulse density signa! is then found by solving the resulting set of nonlin­
ear differential equations numerically. Although the use of the alternating direction 
implicit method reduces the complexity considerably, our present implementation 
still requires too much computation for a large number of pulses. A further reduc­
tion in computation time could be achieved by gradually increasing the number of 
pulses. Besides, we mention that an investigation of other types of differential equa­
tions which are easier to solve, e.g. the eikonal equation, could lead to interesting 
possibilities for two-dimensional pulse-density modulation. 

When the hologram transmittance function is regarcled as a probability density 
function, the continuous pulse-density modulation problem bears a resemblance to 
the vector quantization and the vector clustering problem. In this context the Linde­
Euzo-Gray (LBG) algorithm and the Kohonen neural network have been discussed 
shortly. The LBG algorithm is designed to minimize a distortion function. Although 
currently used distortion fundions give rise to an adaptation of the pulse density 
to the probability density function it is not obvious what kind of effect this has 
in the Fourier domain. On the other hand, formulat ing an appropriate distartion 
functiön in order to obtain a desirabie effect in the Fourier domain is not trivia!. 
The Kohonen network is able to generate a set of equiprobable (in pulse-density 
modulation terms: equal-area) pulses. However, this network is known to converge 
slowly. Further research has to be carried out to establish whether these approaches 
are applicable for pulse-density modulation. 

When the positions of the pulses are restricted to fixed raster points we speak 
of discrete pulse-density modulation. The problem is now reduced to deciding for 
each raster point whether a pulse is placed or not. Under this condition the in­
t egration concept leads to tirst-order error diffusion. Due to its discrete character 
one-dimensional error diffusion can he easily extended to two-dimensional signals. 
To this end an appropriate processing order of the points in the two-dimensional 
raster is introduced. A threshold device or quantizer makes the decision for the 
consecutive raster points, introducing an error in each decision. The basic idea of 
error diffusion is to take the errors introduced at previous raster points into account 
in the decision of the raster point under consideration. To this end a weighted sum 
of the previous errors is formed by means of an error feedback filter. A linear model 
for error diffusion shows how the diffusion coefficients contained in this sum can 
be applied in order to obtain a desired shaping of the spectrum of the noise intro­
duced by the quantizer. In this thesis we have concentrated on so-called internal 
error diffusion, for which the design of the feedback filter turns out to he a linear 
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problem. Due to the recursive character, however, the error-ditfusion system can 
become unstable. In order to avoid such a situation the choice of the ditfusion co­
efficients is restricted by a stability condition. With the proposed design methad 
stabie sets of (internal) ditfusion coefficients with desirabie noise shaping properties 
are obtained. The formulation of necessary and suftkient stability conditions for the 
ditfusion coefficients is still an unsolved problem. 

The proposed design metbod for the error-feedback filter is merely based on the 
minimization of the contribution of the error within t he object window. Conse­
quently, the contribution of the error outside the object window can become quite 
large, resulting in smal! efficiency of the hologram. A larger efficiency can be ob­
tained at the expense of a decrease in the signal-to-noise ratio by prescrihing the 
noise shaping characteristic outside the object window as wel!. 

With error ditfusion a decision is made for one raster point at a time. Similar to 
the higher-order integration methods for continuous pulse-density modulation smal! 
groups of raster points could be considered simultaneously, leading to vector quan­
tization with error feedback. It can be safely expected that with such an approach 
an impravement in the signal-to-noise ratio can be achieved. 

In order to make a recursive order of processing of the raster points possible the 
error-feedback filter is required to have wedge support. If a four-quadrant support is 
desired, the resulting nonlinear ditference equation has to be solved iteratively. This 
leads to the sequentia! updating rule of a discrete-time Hopfield neural network, 
where the weights and the thresholds of the network are determined by the original 
hologram and the object window. With a separable contiguration of the object 
window and its twin window in the reconstruction plane, a reduction in complexity 
is achieved. To this end the neurons are selected in a special order . In spite of 
the extra amount of computation, compared to error diffusion, the performance 
of Hoptield's network is rather disappointing. This can be explained by the fact 
that during updating the network performs a local search process which halts at a 
local optima! solution. With a Boltzmann machine, which combines the sequentia! 
updating law with simulated annealing, escape from local optima! solutions is made 
possible. Due to its complexity, the sequentia! Boltzmann machine has not been 
implemented. 

In principle, parallel updating allows all neurons to change their state simul­
taneously. Actually, the number of simultaneous transitions is large in the initia! 
stage and decreases during the iteration process. Due to the special structure of 
the interconnections weights, the fast Fourier transformation can be applied to par­
allel updating in order to lower the complexity per neuron update. Although 'the 
required number of iterations is larger for parallel updat ing than for sequentia! 
updating an overall reduction in computational effort is obtained. The presented 
parallel Boltzmann machine combines the faster parallel updating algorithm with 
simulated annealing. In applications where only the intensity of the object is of 
interest, the phase-freedom leads to a Boltzmann machine with thresholds that are 
adapted during updating. Especially for scaled intensity objects holograms with a 
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significantly improved signal-to-noise ratio are obtained. 
Both sequentia) and parallel updating are closely related to other it.erative meth­

ods used for the calculation of binary holograms (direct binary search, the iterative 
Fourier-transform algorithm, projections on convex sets). A comparative study con­
cerning the roerits of the different iterative approaches seems therefore desirable. 



Appendix A 

In this appendix we derive (2.14). In order to avoid cumhersome notation we con­
sider the one-dimensional case. In a straightforward way the derivation can he 
carried out in two dimensions. For the continuous signa! 1/J(x) we have the Fourier 
transform pair 

ll!(u) j 1/J(x)e-i2"-uxdx 

1/J(x) = j ll!(u)e12n"du, 

while the Fourier transform pair for the discrete signal?/J[n] reads 

7/J[n] 

n 

J ll!d(8)ei2..0nd8. 
(1) 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

Next, we derive the relation between the spectra \ll( u) and \ll d( 8) in case the discrete 
signal?/J[n] is the result of a sampling of the continuous signal?/J(x) at sampling points 
x= (n +~)X. Evaluation of (A.2) at these sampling points gives 

(A.5) 

Under our assumption, (A.5) must equal (A.4). To this end we intro<;luce 8 =X u 
and divide the 8-domain in intervals of unit length. In this way we derive 

where we have used ei"m = ( -1 )m and e i2'mm = 1. Consequently, we find the relation 

\ll d( 8) = _.!:._e1" 8 2) -1 )mw( 8 + m) 
X m X 

(A.7) 

for the spectra ll!d(8) and ll!(u). 
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Samenvatting 

Voor de realisatie van computer-gegenereerde hologrammen wordt vaak gebruik ge­
maakt van apparatuur waarmee alleen binaire uitvoer gegenereerd kan worden. Een 
omzetting van de berekende transparantie-functie naar een binair hologram is dan 
noodzakelijk. Indien hiervoor uitgegaan wordt van pulsdichtheidsmodulatie bestaat 
de binaire transparantie-functie uit identieke binaire pulsen. De gewenste opti­
sche eigenschappen worden bij benadering verkregen door een lokale variatie in de 
pulsdichtheid. Voor Fourier-hologrammen eisen we dat de Fourier-spectra van het 
originele en het binaire hologram in een bepaalde frequentieband zo goed mogelijk 
overeenkomen. 

Bij continue pulsdichtheidsmodulatie wordt geen beperking opgelegd aan de 
posities van de pulsen. Voor ééndimensionale signalen wordt uitgegaan van een 
integratie-concept, waarbij de pulsposities achtereenvolgens voor individuele pul­
sen of voor groepjes pulsen worden bepaald. Voor deze methodes is een schatting 
gegeven voor de benaderingsfout als functie van de pulsdichtheid. De resultaten 
van computer-simulaties zijn voor de lagere-orde methodes in overeenstemming met 
de theorie. Door het integratie-concept in differentiaalvorm te formuleren is een 
uitbreiding naar twee dimensies mogelijk. Het gevonden stelsel niet-lineaire dif­
ferentiaalvergelijkingen is voor een relatief klein aantal pulsen numeriek opgelost. 
Voor een groot aantal pulsen vereist de methode in de huidige vorm echter te veel 
rekenwerk. Ter afsluiting is de relatie tussen continue pulsdichtheidsmodulatie en 
een aantal clustering-technieken besproken. 

Bij discrete pulsdichtheidsmodulatie is de plaatsing van de pulsen beperkt tot 
vaste posities. Onder deze voorwaarde gaat het integratie-concept ~ver in 'error 
diffusion', waarbij de toegelaten posities één voor één afgewerkt worden. Error dif­
fusion kan eenvoudig op een tweedimensionaal raster toegepast worden door een 
tijdvolgorde in dit raster aan te geven. Bij de beslissing om op een gegeven raster­
punt al dan niet een puls te zetten, worden de fouten van voorgaande rasterpunten 
via een gewogen som in aanmerking genomen. Een lineair model beschrijft de in­
vloed van de in deze som voorkomende diffusie-coëfficiënten op de afwijking tussen 
de spectra. Om instabiliteit van dit recursieve systeem te voorkomen, zijn er voor­
waarden gesteld aan de keuze van de diffusie-coëfficiënten. Voor de berekening van 
geschikte, stabiele diffusie-coëffiënten behorende bij een gegeven frequentieband is 
een methode ontwikkeld. Met de hiermee gevonden coëfficiënten zijn hologrammen 
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berekend die een goede benadering van het origineel in de gegeven frequentieband 
opleveren. 

De uitbreiding op error diffusion, waarvoor de pulsverdeling niet meer recursief te 
bepalen is, komt overeen met een Hopfield-netwerk. Het te benaderen spectrum en 
de frequentieband leggen de drempelwaarden en de gewichten van de verbindingen 
in dit neuraal netwerk vast. Startend vanuit een willekeurige pulsverdeling converge­
ren de uitgangswaarden van de neuronen naar een optimale pulsverdeling. Ondanks 
de extra hoeveelheid rekenwerk blijkt het Hopfield-netwerk geen verbetering ten op­
zichte van error ditfusion op te leveren. Aangezien het netwerk een lokaal zoekproces 
uitvoert, eindigt het convergentietraject in een lokaal optimale pulsverdeling. Met 
een Boltzmann machine, die ontstaat door een Hopfield netwerk te combineren met 
'simulated annealing', wordt ontsnapping uit een lokaal optimum mogelijk gemaakt 
en kunnen betere oplossingen gevonden worden. Door de speciale struktuur van de 
verbindingen tussen de neuronen, kan het Hopfield netwerk op een efficiënte manier 
geïmplementeerd worden. Deze eigenschap wordt ook bij de voorgestelde Boltzmann 
machine met parallel updating benut. Op deze manier is het mogelijk gebleken om 
binnen redelijke tijd een aanmerkelijk betere pulsverdeling te berekenen. 



Stellingen 

1. De diffusie-coëfficiënten in het artikel 'Optima! error dilfusion for computer-generated 
holograms' worden bepaald onder een stabiliteitsvoorwaarde die voldoende maar niet 
nodig is. Dit leidt weliswaar tot een stabiele maar geenszins tot een optimale oplos­
sing. 

E. Barnard, Optima/ error dijfusion for computer-generaled holograms, 
J. Opt. Soc. Am. A 5, 1803-1817, 1988. 

2. De conclusie in het artikel 'Neural networks for binarizing computer-generated holo­
grams' dat een Hopfield netwerk in het algemeen betere hologrammen oplevert dan 
error diJfusion is door de eenvoudige keuze van de diffusie-coëfficiënten voorbarig. 

D. Just, D. T. Ling, Neural networks for binarizing computer-generaled holograms, 
Opt. Commun. 51, 1-8, 1991. 

3. De recent ontwikkelde algoritmes voor computer-genereerde hologrammen leveren be­
tere resultaten op dan de oorspronkelijke door A.W. Lohmann geïntroduceerde me­
thode. Om onduidelijke redenen wordt toch teruggegrepen naar de laatstgenoemde 
methode of varianten hierop. 

4. Het jarenlange onafhankelijke bestaan van de benamingen 'error diffusion' en 'l::él.­
modulation' voor dezelfde techniek toont aan dat er een informatieprobleem in de 
wetenschappelijke communicatie bestaat. 

5. Het belang van de rol die de optica kan spelen voor het aanreiken van nieuwe techno­
logieën voor de ontwikkeling van hardware wordt door het bedrijfsleven onderschat. 

6. Het aantal proefschriften op het gebied van computer-gegenereerde hologrammen 
weerspiegelt niet de praktische betekenis van dit vak. Het aantal toepassingen is 
gering en hierin zal waarschijnlijk geen verandering komen. 

G. Saxby, Practical Holography, Prentice Hall, 1988. 

7. Het verschil tussen een Nederlander en een Vlaming is dat de Vlaming zich minder 
afvraagt wat dit verschil is. 

Antwerpen, 18 april 1994 
P. van den Bulck 


