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1 Introduction

The Riesz transforms 9;A~'/? play an important role in classical harmonic analysis. These
operators are bounded on Ly(R?) by Fourier theory and on the spaces L,(R%), with
p € (1,00), by singular integration theory. All higher order transforms are automati-
cally bounded because the partial differential operators commute, for example, 9;0,A™! =
(0:A=Y2)(9; A='/2). The situation for the analogous transforms on a Lie group (' is much
more complicated. The transforms of all orders are bounded if G is compact [BER] or
nilpotent [NRS] [ERS] but it is also known that there are quite simple groups for which
the second-order transforms are unbounded [GQS] [Alel]. Alexopoulos [Alel] has shown
that the second-order transforms are unbounded for the covering group of the group of
Euclidean motions in the plane. This example is somewhat surprising as this group only
has polynomial growth. Our aim is to analyze this phenomenon in the context of groups
with polynomial growth and demonstrate that it always occurs unless the group is the local
direct product of a compact group and a nilpotent group.

The unboundedness of the Riesz transforms is directly related to the large time be-
haviour of the corresponding heat kernel. If the group has polynomial growth then the
L.-norm of the heat kernel decreases like V(t)_1/2 where V(1) is the volume of the ball of
radius ¢ measured with respect to a canonical distance. Moreover, Saloff-Coste [Sal] has
shown that the derivatives of the heat kernel have a similar asymptotic behaviour with an
additional factor t='/2. Higher derivatives can also be bounded with an additional factor
t=1/2 for each derivative and an overall factor e** with w > 0. The latter drastically changes
the asymptotics. We establish that it is impossible to have w = 0 for all higher derivatives
unless (& is the local direct product of a compact and a nilpotent. To be more precise we
must introduce some notation. In general we adopt the notation of [Rob] and [EIR2].

Let aq,...,aq be an algebraic basis of the Lie algebra g of the connected Lie group G and
Ay =dL(ay),..., Ay = dL(ag) the corresponding representatives of left translations L on
the spaces L, = L,(G;dg). We use a multi-index notation. Let J(d') = U>2{1,...,d'}".
If o= (21,...,0,) € J(d') set AY = A; ... A; and |a] = n. The subspace Nz, D(AY)

of L, formed by the n-times differentiable functions is denoted by L. . Furthermore

i

(g,h) — d(g;h) denotes the right invariant distance associated with the basis and g —
lg|" = d'(g;e) the modulus. Then V(r) denotes the volume (Haar measure) of the ball
B ={g€ G : |g <r}. We assume throughout that G has polynomial growth, i.e., one
has bounds

P <V(r) <er?

for some integer D > 1 and all r > 1. These bounds automatically imply that G is
unimodular. Note that as D > 1 compact groups are excluded from our considerations.

Next let H = — 5% A? denote the sublaplacian associated with the basis. Then H is
positive, self-adjoint, on Ly and since we have excluded compact groups the inverse H 1
is a densely defined and self-adjoint operator. It follows readily that

d/
1Y 20|13 = > 1Al (1)
=1

for all ¢ € D(H'?) = Ly, i.e., the first-order Riesz transforms A;H='/? are bounded for
all i € {1,...,d'}. It is a much deeper result that D(H™?) = L) for all n € N (see
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[EIR1]). The operator H generates a self-adjoint contraction semigroup S with a strictly
positive integral kernel K. Moreover, for each ¢ > 0 there is a ¢. > 0 such that the
Gaussian bounds

0 < Ki(g) <e. V(t)_1/26_(|9|/)2(4(1+6)t)—1 @)

and

(AK)(g)] < cct™ 2V (1) 712 (ol 00+ (3)

are valid for all ¢ € {1,...,d'}, g € G and t > 0. (See, for example, [Rob], Corollary
IV.4.19 and Proposition 1V.4.21.) The advantage of these bounds is that they incorporate
the behaviour anticipated for large ¢ on groups of polynomial growth. We will show that a
similar asymptotic behaviour for all the second derivatives of the kernel is both necessary
and sufficient for the boundedness of the Riesz transforms of all orders.

We will establish the following statement.

Theorem 1.1 Let GG be a connected Lie group of polynomial growth. The following con-
ditions are equivalent.

1. There is a ¢ > 0 such that

ivfer?l??id/} |AAH  p—y < c

i.e., the second-order Riesz transforms are bounded on Ls.

IT. There is a ¢ > 0 such that

AA _ < t_l
i,jer?l??id/}” ¢ JStH2 2 S ¢

for all t > 0.
III. There are b,c > 0 such that

ALK < o1y (1)~ 1Bl
Z»,jgﬁ??id/}|(A2Af]‘f)(9)| SctTV(t) e

forallg € G and t > 0.

IV. The group G s the local direct product of a connected compact Lie group K and a
connected nilpotent Lie group N, i.e., G = K - N where K and N commute and
K NN is discrete.

The equivalence of Conditions I and IV of the theorem states that the second-order
Riesz transforms are bounded if, and only if, the group is the local direct product of a
compact group and a nilpotent group. The situation is more straightforward if G is simply
connected. Then the local direct product becomes a direct product and the groups K
and N are also simply connected. In general one has a direct product structure at the
Lie algebra level but in some situations there is a possible obstruction which prevents this
being lifted to the groups.

Note that the equivalence of Conditions Il and I1I gives the rather surprising conclusion
that the pointwise Gaussian bounds on the semigroup kernel hold if, and only if, the
derivatives of the semigroup satisfy appropriate Ly-bounds.



The theorem only gives a partial illustration of our results. In fact if ' is the local
direct product of a connected compact Lie group K and a connected nilpotent Lie group
N then all the Riesz transforms A®H~121/2 are bounded and all the derivatives A®K, of
the semigroup kernel satisfy Gaussian bounds with an additional factor t=11/2 for all ¢ > 0.
Thus boundedness of the second-order Riesz transforms is equivalent to boundedness of
the transforms of all orders and a good asymptotic behaviour of the second derivatives of
the kernel K is equivalent to a good asymptotic behaviour of all higher order derivatives.
Moreover, we demonstrate that Gaussian bounds on a particular derivative A*K; of the
kernel are equivalent with appropriate Ly-bounds on the corresponding derivative A%S; of
the semigroup.

If one introduces a notion of fractional derivative then the statements of the theorem
can be strengthened in a different direction. For example the four conditions of the theorem
are equivalent to each of the following statements.

I,. There arev € (0,1] and ¢ > 0 such that

I — LAy < c(|h|) || H+)/2
ieg%}!\( (h))Asplla < c([h]")"]] ©ll2

for all h € G and p € D(H+)/2),
II,. There is a ¢ > 0 such that

max _|[(I — L(h))A;S¢]|2—2 < C(|h|’t_1/2)”t_1/2

ie{1,...d'}
for all t > 0.
II1,. There are v € (0,1] and b,c > 0 such that

max (I = L(h))AiKo)(g)| < e([R[471 /2712y ()7 2ol

ie{1,..,d'}
for all g,h € G and t > 0 with |h| < tY/2,

Thus the structure of the theory simplifies once one has good control of derivatives of
order strictly larger than one. This automatically implies good behaviour of derivatives of
all orders.

Although the theorem concentrates on the Riesz transforms on Ly(G'; dg) its conditions
ensure that these transforms are bounded on the spaces L,(G;dg) with p € (1,00). In
particular one can combine our results with the standard techniques of singular integration
theory to deduce that the Riesz transforms of all orders are bounded on L,(G';dg) with
p € (1,00) whenever any of the equivalent conditions I-IV or I,—II1, is satisfied.

The theorem has some conceptual interest as it identifies purely analytic properties with
an algebraic property. Consequently part of the proof of the theorem is purely analytic and
will be described in Section 2 and part is algebraic. The algebraic arguments are developed
in Section 3 and the proof of the theorem is completed in Section 4.

2 Analytic structure

In this section we consider various estimates related to the Riesz transforms together with
asymptotic estimates on the semigroup S generated by H and on the kernel K of S.



The general thrust is to prove that boundedness of the Riesz transforms implies good
asymptotic behaviour of S and K. We begin with properties involving monomials of
derivatives. Subsequently, we consider Holder bounds and thereby introduce a continuous
scale of derivatives. Finally we examine properties which are uniform in the number of
derivatives. The group G is always assumed to have polynomial growth.

First note that D(H™?) = D((H + I)"?) = Ly, = Njaj<n D(AY) for all n € N by

[EIR1]. Then for each multi-index « consider the following conditions.
l,. There is a ¢ > 0 such that
147l < e[ H1V2g]),

for all p € D(H21/2).
24. There are b,c¢ > 0 such that

(A"K,)(g)] < ct™oV2y ()12 Hal Ve

for all ¢ € G and ¢ > 0.
3,. Thereis a ¢ > 0 such that
| A%S|[3—p < ct™II/2
for all £ > 0.
4,. There is a ¢ > 0 such that

| A% K || < ct™1o12y(1)71/2
for all £ > 0.

The bounds (1) and (3) establish Conditions 1, and 2, for all a with || = 1. But
Condition 4, follows immediately from Condition 2, and as (G has polynomial growth
Condition 3, also follows from Condition 2, by a quadrature argument. Therefore all four
conditions are fulfilled if || = 1. The general situation is more complex but one has the
following relations.

Theorem 2.1 The following implications are valid
lo = 2, & 3, & 4,

for each multi-index o«. Moreover, the exponent b in Condition 2, may be chosen arbitrarily
close to, but strictly smaller than, 1/4.

Remark For compact groups the inequalities of Condition 1, are established for all « in
[BER]. Moreover, if (¢ is nilpotent then Conditions 1, and 2, are established for all « in
[ERS]. Therefore in both these cases the theorem implies that all the conditions are valid
for all multi-indices. Conversely, the example of Alexopoulos [Ale2] is a solvable group
with polynomial growth for which Condition 1, fails for an « with |a| = 2.

Proof of Theorem 2.1 The main burden of the proof is to establish that Condition 1,
and Condition 4, imply Condition 2,. The other implications are all straightforward and
we deal with these first.



As (G has polynomial growth a standard quadrature argument establishes 2, = 3,.
Next as K satisfies the Gaussian bounds (2) it follows by a second quadrature argument
that || Kyl|2 < cV(t)_1/4 for some ¢ > 0 and all ¢ > 0. Therefore

A" Kal|oo < [ASail[1—00
< (A" Sae][2— o0 [|9¢][1-2

= A" Kyl G2 < JA" S [[a—2 112 (4)
for all £ > 0. Hence 3, = 4,. Alternatively, if 6 > 0 then Condition 3, implies that
A% (M 4 H)=6HeD2), ) < o /OOO dt t= e M EHeD/2) A28 1,
< ccs /OOO dt+ e M2 = ces I'(6/2) 2972
for all A > 0 with ¢s = T((6 + |a)/2)7". Thus
1A%l < ces T(8/2) A7 ||(M + H)CHD g |
for all p € D(H@F12D/2) Therefore
|A%pll2 < 20HD e s D6/2) (N2l + A2 | g )

for all A > 0 and all ¢ € D(H*+1D/2) Optimization over A then establishes the following
weak form of Condition 1,:

1. For each 6 > 0 there is a ¢ > 0 such that
1A%l < e (|H D))l @l () /D
for all ¢ € D(HEHD/2),
Since 1, = 1/, the implication 1, = 2, is a consequence of the following result.

Proposition 2.2 Condition 1/, implies Condition 2, with an exponent b arbitrarily close
to, but smaller than, 1/4. In particular Conditions 1/, and 2, are equivalent.

We establish Condition 2, as a consequence of an integral bound on A*K; which indi-
cates in a precise way that high speed propagation is unlikely. The argument we use is of
some independent interest so we separate it into the following lemma.

Lemma 2.3 Let K denote the kernel of a semigroup generated by a (possibly complex)
right invariant operator on a Lie group G of polynomial growth. Fiz b > 0. Suppose that
for each ¢ € (0,1) there exists an a > 0 such that

Ku(9)] < a V(012 a-anaer .

forall g € G and t > 0.
Then for each multi-index « the following conditions are equivalent.
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I For each ¢ € (0,1) there exists an a > 0 such that
(A*Ky)(g)] < at—|cv|/2v(t)—1/26—6(1—6)(Igl’)Qt‘1 (6)
forallg € G and t > 0.

II.  For each ¢ € (0,1) there exists an a > 0 such that

d AO‘[( 2 < at—|a|v 1 _1/26_2b(1—6)p2
‘/{96G1|g|’2pt1/2} g|( t)(9)| > ()

for all p,t > 0.

Proof “I=1I". Let ¢ € (0,27!) and suppose the bounds (6) are valid. Then by a
quadrature estimate there exists an a’ > 0 such that

d A°K 2 Cl2 t—|oz| da V(1 —16—26(1—5)(|9|/)2t_1
/{gEG:|9|’20t1/2} al Jll < {9€G:|g|">pt1/2} gvit)
< t—|a|V(t)—1/2€—26(1—25)p2/ dg V (1)~ M2 2=l
N {9€G:lg>ptt/2}

<d t—|oz|V(t)—l/Ze—Zb(l—Zs)p2

for all p,t > 0.
“II = I”. First observe that

INAEN ) < | [ e (A7 K ) (1) 7 oo (071 )
G

1/2

' 1/2 '
< (/ dh e2oIhl |(Aa[(t/2)(h)|2) (/ dh e |Kt/z(h)|2)
G G

for all p > 0. But

) IRl
e2el — + Zp/ dr e*"
0

and hence

[ dne A KW < [ (A" Koy (b))
G G

9 /Ood 207“/ dh (A K, o) ()2
g [Tare [ (At

Therefore, using Condition I, one concludes that for each £ € (0,1) there exists an a > 0
such that

/ dh M [(A° Kypa) (W) < at™ V()72 (1 4 2p / dr 2 e 0=

G 0
< at—|a|v(t)—1/2(1 + 71'1/26_1/2(1 . 5)—1/2pt1/2€p2t(4b(1—6))_1)
S Cl/ t—|oz|V(t)—1/2€p2t(1+6)(4b(1—5))_1

for all p,t > 0. Similarly, using the bounds (5) one has

1

b P (R < ol V(52 00—
G
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Hence

o1 : 1 y—lal/2 —1/2,—plg|'+p%t(1+e)(4b(1—e)) !
(A" Ka)] < infa 17H12V (1)1

— a’t_|O‘|/2V(t)_1/26—5(1—6)(1+6)_1(|g|’)2t_1

for all ¢ € G and ¢ > 0. O

The principal element in the proof of Proposition 2.2 is the following result on finite
propagation speed.

Lemma 2.4 Let ¢v € C(R) be an increasing function with (x) = 0 if v < —1 and
Y(x)=1if > 0. Define the family of functions (F,),s2 by

Fy(z) = ¢(p(|z] — p)) e/

and denote the Fourier transforms by Fp. Then the kernel Kz (cH)1/2) of the self-adjoint
operators Fp((tH)l/z) satisfies

Kﬁp((tH)m)(g) = Ki(g)

for all ¢ € G and all t > 0 with |g|' > pt'/?. Moreover, for each m € N one has bounds

R p2m—1 274
£, (A)] < Cmme_p / (7)
forall p>2 and A € R.

Proof This follows from (17) and Lemma 3 in [Sik1] but we have used a slightly different
convention. O

Proof of Proposition 2.2 The kernel K satisfies the Gaussian bounds (2). Hence to
deduce that Condition 2, is satisfied with an exponent b arbitrarily close to 1/4 it suffices,
by Lemma 2.3, to establish bounds

/ dg [(A“K,)(g)]? < at™lely(1)=1/2¢= 0=/ (8)
{g€G|g|">pt!/2}

for all p,t > 0. This we achieve by the arguments of [Sik1].
First one has

dg |(A"K 2 < || AYK|3
L o 40 (ATE ) < A7

< c? (HH(5+|a|)/2KtH2)2|a|/(5+|a|) (HKtHZ)%/(HIaI) (9)
by Condition 1/,. But for each 4 > 0 one has

VK = 1Sy Kool < Sl Ko 3 < S0l Kole)



where the last identity follows from the semigroup property and self-adjointness. Then,

however, the Gaussian bounds and spectral theory give

|HY K5 < a if_zw‘/(t)_l/2 sup()\QWe_A)
A>0

This estimate, with v = (6 4 |a])/2 and v = 0, in combination with (9) establishes (8) for

all p < 2. Hence we may now assume p > 2.

Secondly, let (F),),>2 be the family of functions and (¢, )men the constants as in

Lemma 2.4. Then

dg [(A"K) (9| = dg (A K5 o))

/{g6G1|9|’20t1/2}
< A7k
el

/{g6G1|9|’20t1/2}

2
((tH)l/?)H2
< Ci,é(HH(Ma')/zKﬁp((tH)l/z)H?)QMV(SHQD .

. (H[(ﬁp((t}[)lﬁ) "2)26/(5+|a|)

where we have again used Condition 1/,.
Next it follows that for each v > 0 and m > 1 with m +~ € N that

1K gyl N F () oo

S| HY (0P 1+ tH) ™ ol (02 1 + LH) ™ F(LH)?) |2
NPT+ )™ |20
S 7 Crmtry p2(m+w)—le—p2/4 H(p2] + tH)_mHQ—u)o

by (7) and spectral theory. Moreover,
(P20 LH) ™ o < Dm) ™ [ dss™ e 287 Syt 2o
— T'(m)™! /OOO ds s~ 5™ | Kol
< da,, /OOO ds 5_16_p253mV(3t)_1/4
for all p,t > 0. But there is a ¢ > 0 and an integer N such that
V(St)_1/4 <c(l+ S_N/4)V(t)_1/4
for all s, > 0 because GG has polynomial growth. Hence if m > N/4 one has bounds
1(p* 1+ tH )" |2—co < a V()71

uniformly for p > 1. Finally combination of (10), (11) and (12) establishes bounds

dg |(A“K)(g)|> < at™lely(1)=1/2ptm=2+2lal  =0"/2
‘/{QEG:|g|/2pt1/2} g|( t)(g)| >~ () p

(10)

(11)

(12)



for all p > 2. Therefore for each ¢ € (0,1) there is an a. > 0 such that

J g (A K < a. oWV (1) 20012
{geG:lg|'>pt1 12}

for all p > 2 and all £ > 0. This completes the proof of the first statement of Proposition
2.2. The second statement follows because we now have 1/ = 2, = 3, = 1/. O

To complete the proof of Theorem 2.1 it suffices to show that 4, = 2,. The proof is
similar to the preceding proof that 1, = 2, but uses a different functional description of S
and K which again incorporates the property of finite propagation speed. We now follow
the arguments of [Sik2].

Lemma 2.5 For each > —1 and r > 0 introduce F} as the Fourier transform of the
function x — 71/2 ((r2 — 2V 0)M from R into Ry.
Then the kernel Kpp g2y of the self-adjoint operator Fr(HY?) satisfies

supp Kpp g2y © B! (13)
for all r > 0. Moreover,

e~ = 27 T (p + 1) (4t)_(“+3/2) /OOO dr re_T2(4t)_1FT“()\)
for all \,;t > 0 and there is a ¢, > 0 such that
[FAN)] < er® (1 4 p22%) 7t/
for all \,r > 0.
Proof This follows from the proof of Lemma 3 in [Sik2]. 0

One immediate consequence of Lemma 2.5 and spectral theory is the representation
Sy = 27T (p + 1) (44)=¥3/2) /OOO drre 07 P2y
and the corresponding representation
Ky = 27T (p 4 1) (44)~ 043/ /0 S e O K
for the semigroup kernel. The support property (13) implies that

(Ao‘[(t)(g) = 2_1F(IM + 1) (4t)_(“+3/2) - dr Te_T2(4t)_1 (AQI(F#(H1/2))(9) (14)

lgl’

and hence pointwise bounds on A“K; can be inferred from the following result.

Lemma 2.6 If Condition 4, is valid then for all large positive p there is an a, > 0 such
that
HAOZ[(F#(H1/2)HOO S a,, TQM-HT_'O['V(T)_I

for all r > 0.



Proof One has the operator estimate
IAK g syl oo = 1A FL(CHY?) 12
<A+ H) ™" i |( + 72 H)" FA(HY?) | oo (15)

for each positive integer m.

The first term on the right hand side of (15) is bounded by
1A 4+ P2 H) ™ ||—oo < r(m)—l/ ds 5716 AT K 2, oo
0
< ¢, rll /Oo ds S_Ie_ssm_laWV(rzs)_l/z
0

for all r > 0 where the second estimate uses Condition 4,. Then since G has polynomial
growth there is a ¢ > 0 and an integer N such that

V(i) V2 < c(1 4 s VH)V(r)™
for all r, s > 0. Hence if m > (N + |«|)/2 one has bounds
1A+ 2 H) "l < €™V ()7 (16)

for all » > 0.
The second term on the right hand side of (15) is, however, bounded by

[T+ 72 H) B CHY) e = (T4 72 H) K g
SV PN+ 2 H)" K g |2
= V() N+ 2 )" FE ) oo (17)
where the estimate follows because supp (I + T2H)m[(FTM(H1/2) C B.. But
(L 42 )" FECHY) oo < (A4 0 H)" 002y
N+ 2R oy . (18)

The first term on the right hand side of this last estimate is, however, bounded by (12).
Specifically there is an @ > 0 such that

(7 + P2 ) =0 D2y < a V(r) 712 (19)

for all r > 0 whenever (p+1)/2 > m + N/4. Moreover, the second term on the right hand
side of (18) satisfies bounds

(T -+ 2 B DR EA ),y < sup (14 r2A)) D2 FEO)] < 230 (20)
A>0

for a suitable ¢, > 0 uniformly for all » > 0 by Lemma 2.5. Combination of (17), (18),
(19) and (20) then yields bounds

(T + r2H)" FHHY?)|omoe < ¢, r?t! (21)

10



for all r > 0 whenever yu is sufficiently large relative to m.
Finally combining (15), (16) and (21) one obtains the desired estimates. O

The proof of the implication 4, = 2, in Theorem 2.1 is now completed by noting that
(14) and Lemma 2.6 give

|(AaKt)(g)| < a|a|t_(“+3/2) dr 6_7,2(415)—1rz(u+1)—|a|v(r)—1

lal’
< Aol t—(ﬂ+3/2)e—(l—£)(|g|/)2(4t)—1 0 dr e_sr2(4t)—1r2(u-|—1)—|oz|v(r)—1
a ol

forall g € G, t >0 and € € (0,1). Hence by a change of integration variable
AR g)] < a2 1m0 [ g e iy 112
0

and then since V(Stl/z)_l <c(l+ S_N)V(t)_1/2 one obtains bounds
(AK)(g)] < o t—|cv|/2v(t)—1/26—(1—6)(|g|’)2(4t)‘1

forall g € G, t >0 and € € (0,1), if u is large enough.
This completes the proof of Theorem 2.1. a

Theorem 2.1 relates various pointwise estimates with L, estimates and one has similar
relationships with L, estimates. For each multi-index o and p € [1, 00| define Conditions
1o, and 3, , analogous to Conditions 1, and 3,, but with the Ly-norm replaced by the
L,-norm. Thus Conditions 1, and 3, are identical to Conditions 1, and 3, 2. Note that
Conditions 1, and 1, ., fail in general, even if G = R*.

Corollary 2.7 If a € J(d') then

for all p € (1,00) and p € [1,00].
Proof If p € [1,o0] and Condition 3, is valid then it follows as in the proof of (4) that
A" Katlloo < [[A"Sillp—p 1] [ Kl

for all £ > 0, where ¢ is the dual exponent of p. Hence Condition 3, , implies Condition 4,.
Conversely, if Condition 4, is valid then the Gaussian bounds of Condition 2, are valid
and Condition 3, , follows by quadrature, as before.
Finally we show that Condition 1,, implies Condition 3, , for all p € (1, 00). It follows
from [DuR], Theorem 3.4, that the operator H has a bounded H.. -functional calculus on
L,. Hence there exists a ¢ > 0 such that

HHM/QSth—m = HH|a|/2€_tHHp—>p < ctlel2

11



uniformly for all £ > 0. Then Condition 1, , implies that
A% S|lp—p < d HHM/QSth—m < cd ol

for all £ > 0 and Condition 3, , is valid. O

Next we consider the analogue of Theorem 2.1 for fractional derivatives. There are
various ways of introducing fractional derivatives but in the context of semigroup kernels
the most appropriate appears to be in terms of Holder, or Lipschitz, properties. Therefore
for each multi-index o and v € (0,1) we introduce the following conditions.

lo,. There is a ¢ > 0 such that
(1 = L(R) A%l < e(|h])|[HIH 20,

for all h € G and ¢ € D(HU+1)/2),
2. For each k > 0 there are b, ¢ > 0 such that

(1 = L(R)ATK)(g)] < e([h]/172) 171172y (1)1 2l

for all g,h € G and t > 0 with |h|' < x1'/2,
3a.. Thereis a ¢ > 0 such that

(L — L(h)) A% Sy|[a—a < c(|h]"t7H/2) 71012

for all h € G and t > 0.
44,. Thereis a ¢ > 0 such that

(7 = L) A K|oo < e([R]'tH2) a0y (1)=172
for all h € G and t > 0.
One now has the following implications analogous to those of Theorem 2.1.

Proposition 2.8 Let v € (0,1). Then 1o, = 2,5, and (24, + 24) = 30, = 4oy =
20 for each multi-index «. Moreover, the exponent b in Condition 2,, may be chosen
arbitrarily close to, but strictly smaller than, 1/4.

Proof It follows by a quadrature estimate that 2, , = 3, , under the additional restraint
|h|" < kY2, But if |h|" > #t'/? then Condition 2, implies

(I — L(h))A%St|[3m2 < 2||AYS, ||z < 2¢t710V2 < 2 7 (||/t71/2) 1012

Hence 2,, + 2, = 34,
A slight modification of the argument that 3, = 4, establishes that 3,, = 4.,
Next Condition 3, , implies the following weak form of Condition 1, :

1;,,. For each 6 > 0 there is a ¢s > 0 such that
(1 = LAl < co (L2 o5 i tlote

for all h € G and all p € D(HEHlel+1)/2),
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The proof is a repetition of the argument used to establish that 3, = 1/.

To complete the proof of the proposition it suffices to prove that 1}, , = 2, , and 4, , =
24.. The proof of the first of these implications is a variation of the previous reasoning
with Condition 1], replaced by Condition 1/, ,. First one observes that a straightforward
generalization of Lemma 2.3 shows the bounds of Condition 2, ,, with b arbitrarily close
to 1/4, to be equivalent to bounds

J g (1 = L) A" K,) ) < a (A7) 4121V (11201
{g€G:lgl’>(14<)pt1/2}

for all p,t > 0, ¢ € (0,1] and h € G with |h|" < kt'/2. For small p these latter bounds
follow from Condition 17, , by the argument in the first step of the proof of Proposition 2.2.
Hence it suffices to consider the case p > x/e and |h|' < k1'/2. Then, however,

(T = LA K (9) = (I — LINA K (yp7)(9)

for all ¢ € G and t > 0 with |g] > (1 + &)pt'/? where F, is the family of functions
introduced in Lemma 2.4. This follows because ||’ < x1'/? < pt'/2. Therefore one has
both |h=tg|" > pt'/? and |g|' > pt'/?. Then, arguing as before,

dg |((I — LR A“K) ()] < |I(I = L(W)A“ K5 oo |12
/{gEG:|g|,Z(1+E)ptl/2} g (I = LM AR (9" < (T = LIR)A K g (ypy02) |12

< (HH 2

L ((tH)1/2) H2)2(|a|+”)/(5+|a|+y)

. (H[(ﬁp((t}[)lﬁ) "2)25/(5+|a|+u)

by use of Condition 1], ,. Hence reasoning as in the proof of Proposition 2.2 one deduces
that 1, , = 24,

The proof that 4,, = 2,, is similar to the proof that 4, = 2,. First one can make
estimates analogous to those of Lemma 2.6. One obtains

(2 = L) A K gy lloo < aye (B) w2t ey ()~
for all r > 0. But one also has the analogue
(1 = L(h)A®K1)(g) = 27" + 1)(41) "0+

iy e T L = A K 1))

gl Algh=1|
of (14). Therefore repeating the arguments used to prove 4, = 2, one obtains bounds
(= LA K@) € apae (B 17274102 (1) 20l =70

for all g,h € G, t > 0 and ¢ € (0,1). If |g|" < |gh™!|" the proof is complete. But in any
case one has

(lgh=1)* = (gl = 1A)* = (1 = 8)(lgl")* = (67" = 1)([A]')*
for all 6 € (0,1) and if |h|' < x1'/? this gives

(Igh™' [ 47 > (1= §)(Jgl? 17" = w267 1)
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Therefore one again obtains the desired bounds although possibly with redefined values of
¢ and a)q|.. O

Theorem 2.1 and Proposition 2.8 deal with individual multi-derivatives A® and next
we consider properties uniform in the number |a| of derivatives. For this we need uniform
versions of the previous conditions and we introduce a continuous scale of conditions which
incorporates the Holder bounds as fractional derivatives.

Let s > 1. If s € N we define Condition N,, where N € {1,...,4}, to be valid if
Condition N, holds for all & with |a| = s. If, however, s = n + v with n € Ny and
v € (0,1) we define Condition Ny to be valid if Condition N, , holds for all a with |a| = n.

In addition we introduce a fifth family of conditions involving ‘cutoff’” functions.

hs.  Thereare o € (0,1), ¢ > 0 and a family of C*°-functions (9gr)grso such that suppnr C
By, nr(g) =1for all g € Bl and 0 < np < 1. In addition, if s € N then

1A%nRllo < c R

for all multi-indices @ with |a| = s uniformly for R > 0. Alternatively, if s =n + v
with n € Ng and v € (0,1) then

17 = L(h) A%l < c(|A]' BT RV
for all multi-indices o with |a| = n, uniformly for & € G and R > 0.

The existence of cutoff functions of this type on a general Lie group, with s € N, has
been established in [EIR3], Lemma 2.3, for all R in a finite subinterval of (0, 00) and any
multi-index «. The crucial feature of Condition 55 is the requirement that the functions
exist with the appropriate bounds on their derivatives uniformly for all £ > 0. If s = 1
then there is no problem and cutoff functions of this type always exist by the following
construction.

The kernel K has Gaussian lower bounds with w = 0, by [Rob], Proposition 1V.4.21,
i.e., there exist b,¢ > 0 such that

Ki(g) > cV (1)~ /2etlol*e (22)

for all £ > 0 and g € GG. Together with the upper bounds (2) it follows that there are a > 1
and by, by > 0 such that

a~Lte—t(lal'/R)? < Kpelg) < qet2 (ol /RY?
- [X’R2(€) -

for all ¢ € GG and R > 0. Fix an increasing function ¢ € C*(R) such that ¢(z) = 0 if
v < (4a)™' and ¢(x) =1 if x > (2a)~*. Then define

vr(g) = 99(22 E“Z;) (23)

for all ¢ € G and R > 0. Next choose 71,7 > 0 so that e ™ > 27! and e™727% < (4a*)~t
Then ¢r(g) = 1 for all R > 0 and g € G with |¢|' < nR and ¢gr(g) = 0 if |g|" > nR.
Therefore the functions

IR = ¥R (24)
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satisfy the required domain properties.
Next we show that the derivatives have the right decay. It suffices to establish this for
the functions ppr. But

KR2(g)) (AiKg2)(9)

(Aivr)(9) = 99/([(]32(6) Kpe(e)

for all € {1,...,d'} uniformly for all ¢ € G and R > 0. Then

(Aipr)(g)| < ¢ R7

by (3) and (22) uniformly for ¢ € G and R > 0. Condition 5; follows immediately.

Our ultimate aim is to prove that all the Conditions 1,5, are equivalent and if they
hold for one s > 1 then they hold for all s > 1. But the proof of these statements requires
detailed examination of the algebraic structure which we defer to the next section. At this
point we have the following preliminary results.

Proposition 2.9 If m,n € N with m > n then N,, = N,, for all N € {2,3,4,5}.
Ifn € N and v € (0,1) then Ny, = N, for all N € {2,3,4,5}.

Proof First, as translations on the L,-spaces are isometric it follows as in [Rob], Lemma
[11.3.3, that for all m € N and p € [1, 00| there exists a ¢ > 0 such that

1A%p]l, < et max 1A%, + el (25)

forall o € L., e > 0and a € J(d') with 1 < |a| < m. Using these inequalities on L
and L., one immediately deduces that 3,, = 3,, 4,, = 4,,, and 5,, = 5, for all m,n € N
with m > n. Hence 2,, = 2,, because 2,, & 3,, = 3, < 2,.

Secondly, since Conditions 21, 37,44 and 5; are always valid we may assume n > 2.

Thirdly, it follows from the Duhamel formula and some rearrangement that

fe) = (o +u) = f@) = [Cds (e +5) = f2)
Therefore

max | A%l < 20 max A%l
|a|=n |o|l=n—1

+u™" max  max /Ou ds || (] — L(exp(sai)))AiAQLpHQ

|o|l=n—1 i€{1,...,d"}

< 207 (emax [ A% [l2 + e [lo]l2)
+u™" max  max /udSH(I—L(exp(sai)))AiAa(pHZ
0

|o|l=n—1 i€{1,...,d"}

for all w > 0 and € > 0, by (25) with p = 2. Setting ¢ = u/4 it follows that

A%y < 201 /ud -1 ) A4 T
max [ A%l < 207! max | max [ ds (1= Lexp(sa)) Al + ¢ u” el
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for a suitable ¢’ > 0, uniformly for all u > 0 and ¢ € Lj,,. Therefore, if Condition 3,4, is
valid with n > 2 and v € (0,1) then

|m|aX |A“St|l2=2 < & u_l/ ds (St_l)”t_”/2 +cu™"
al=n 0

=c¢(l+ y)_lu”t_(”+”)/2 +epu"

for all £ > 0 and u € (0,t'/?] for suitable ¢;,¢; > 0. Choosing u = ¢'/? implies that
Condition 3, is valid. The comparable implication for the fourth and fifth condition follows
by similar reasoning but starting from (25) with p = oo.

Finally, by quadrature, Condition 2,4, implies that the bounds of Condition 3,,, are
valid with the extra restriction ||’ < xt'/2. But this does not affect the previous argument
and one deduces that Condition 3, is valid. But 3, < 2, as a corollary of Theorem 2.1.
Therefore 2,4, = 2,. O

Combination of the foregoing results leads to the following conclusion.

Proposition 2.10 The following implications are valid

ly,= 2, <3, &4, = 5,

el

234 =5
fors>t>1.

Proof First, it follows from Theorems 2.1 that 1, = 2, & 3, < 4, and from Proposi-
tion 2.8 that 1,4, = 2,4, and (2,4, + 2,) = 3040 = 4utr = 2040, But 2,4, = 2, by
Proposition 2.9 and hence 1,4, = 2,4, < 3,1, € 4,4,. Then for N € {2,3,4} one has
Nuto = N, = N,,, whenever m < n, by Proposition 2.9, and (Ny41 + Ni) = Nopgo, by a
simple interpolation argument. Therefore one concludes that

1, =2, 3, &4,

L

2 & 3 & 4

for s > t > 1. Thus it remains to incorporate the fifth condition involving the cutoff
functions.

Let ¢r and ng be as in (23) and (24). It suffices to prove the appropriate bounds on
the derivatives of p.

Let n € N and suppose that Condition 4,, is valid. Then Condition 4,, is valid for all
m < n by the foregoing. Let a = (i1,...,7,) € J(d'). Then

(Agn)la) = ¥ o0 (Rrele)y pp A2 K] 2

]X’R2(€) p=1 ]X’R2(€)

uniformly for all ¢ € G and R > 0, where the sum is finite and over a subset of all [ €
{1,...,n}and Bq,..., 0 € J(d') with |5,| > 1 forall p € {1,...,I} and |B1|+...+|5] = n.
Then l 5 l l

(A pKR?)(g)‘ —1 =Byl —n -

————| < || g R =R || cs,
11 Kpe(e) IT e p[ll &

p=1 p=1
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uniformly for ¢ € G and R > 0. Condition 5,, follows immediately.
Next Condition 4,4, with n € N and v € (0,1) implies Condition 4, for all s <n 4 v
by the foregoing reasoning. Hence

(1 = L(R) A Kol|oo < e ([RE72) 71012y (1)=12
and
| A K ||oo < ctloV2y(3)=1/2

forall h € G, t > 0 and a with |a] < n. Since ||(I = L(2))(T0y)|[oo < |7 ]|col|({ = L(h))%]] oo

and |[(1 = L(2)) (41 - ¥2)llce < ([ llool[(1 = L(R))2lloo 4 1tb2lool|(L — L(R))th1]|o for all
7€ CX(R), ¥,1,12 € Lo and h € G it follows from (26) that there exists a ¢ > 0 such
that ||(I — L(R))A%R|lee < c(|h]'R™Y)YR™" for all h € G and R > 0, i.e., Condition 5,,
is valid. a

Remark 2.11 One can also introduce p-dependent versions 1, ,,,, 3, ., of Conditions 1, ,
and 3,, and generic versions 1,, and 3, of Conditions 1, and 3, in place of the L,-
versions. Then p-versions of Propositions 2.8, 2.9 and 2.10 are valid similar to Corollary
2.7 of Theorem 2.1. We leave the formulation and proof to the reader.

The cutoff functions introduced by Conditions 5; play the crucial role in linking the
current analytic arguments with the subsequent algebraic reasoning. Their significance lies
in the following observation.

Proposition 2.12 [f Condition 514, is valid for some v € (0,1) then there exist an in-
finitely differentiable function ¢:G — R and for all hy,hy € G a ¢ > 0 such that

(1 = Lhahah3 h3 ")) (9)] < e (lgl) ™
for all g € G with |g|" > 2(|h1|" + |h2|"). Moreover,

lg]" =1 < ¢(g)
forallg € G.

Proof Let (nr)rso be the family of functions and o € (0,1) the parameter in Condi-
tion 514,. Then 1 —n,(g) = 0 for all ¢ € G and n > o7 |g|. Therefore we can define
¢:G — R by

plg) = il (1= na(9))

Then
g =1 < @(g) <o 'gl (27)

forallg e G. Ifg € G,n € Nandn & [|g|',07"|g|'], then 5, is constant on a neighbourhood
of ¢ and therefore all derivatives of n, vanish. So

(Aip)(g) = — > (Aina)(9) (28)

n€N; |g|'<n<o=1]g|!
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forall g € G and 2 € {1,...,d'}. Since sup,cn 1 ||Aifn]le < oo it follows that A;p € Ly
forall i € {1,...,d'}.

Now let g, h € G with g # e and suppose that |h|' < 27t|g|". Then 27 |g|' < |7 lg| <
2|g|" and therefore

(1= L) Aig) (9)] < "> _1H,\(<I—L<h>>Amn)<g>\
< > ¢ (|hn=") 0™ < 2% e (K')(lgl') ™

n€N; 27 g/ <n<20 1 g|!

for all ¢ € {1,...,d'}, by Condition 514,. But since A;p is bounded it follows that there
exists a ¢ > 0 such that

(7 = L) Ase) (9] < e(I) (lg])™

for all g, h € G with g # e.
Next let ¢, hi,hy € G with ¢ # ¢ and |hy]" < 37'g|. There exists an absolutely
continuous path ~:[0,1] — G such that v(0) = e, v(1) = ha,

(1) = Y () 4

(1)
for almost every ¢t € [0,1] and [ dt (Zflzl |7¢(t)|2)1/2 < 2]hy|". Then

(7= L)) LG(0) A ) 9)] = (L0 (T = LG b (1) A (9)
< (0 by (O (131
< 8% ([hal + 4lhaf)" (gl )

for all t € [0,1] and 7 € {1,...,d"}. Therefore

(7 = L) = Lik))e) (9)] < [ L X (0 (7 = L(h))L(5(1)) Aigp) (9)]
< 2-8cd [ho (|l + 4lha]')" (lg]) ™
<2-12%d (|| + [haf )+ (lg]) ™

Since (1) < o~ HI| for all I € G it follows that there exists a ¢ > 0 such that
(1 = L) = L(h2)2 ) (9)] < (Bl + [hal )+ (lg]) ™

for all g, hq, hy € GG with g # e.
Finally let Ay, hy € G and set k = hlhghflhz_l. Using the identity

I — L{hihohy hy') = —L(hy) (I = L(hy))(1 = L(h3"))
= L(hahy") (I = L(h2))(I = L(h2hy k3 )
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it follows that there exists a ¢/ > 0 such that

(7= L(kD@) (9)] < el + [hal V(BT )™ + e (bl + [hahi B3 ) (Jhabi gl) ™
<< (gl

for all g € G with |g|' > 2(|h1| + |R)). O

Corollary 2.13 [fv € (0,1), h1,hy € G and ¢1,¢o > 0 are such that |k="|" > ern for all
n € N with n > ¢y, where k = hyhyh7 h3" then Condition 54, fails.

Proof Suppose that hy, hs, ¢1, ¢y exist with the described properties and Condition 514,
is valid. By Proposition 2.12 there exists a ¢ > 0 and an infinitely differentiable function
@: G — R such that ¢(g) > |g|" — 1 and |[(({ — L(k))e)(9)] < c(|g|')~" for all g € G with
lg|" > 2(|h1]" + |h2]"). Apply the last inequality to ¢ = k7". Let N € N be such that
N > ¢ and ¢4 N > 2(|h1|" + |h2|"). Then for all n > N one has

(k™) = (k=00 = (T = L(k))e) (57)

Sc(k7) < elan)™

and hence
(N +m) =1 = (k™) < p(k=OF) — (k™)
< chl_”(N + 1)
=1
<ceV (1 - 1/)_1 ((N + m)l_” — Nl_”)
for all m € N, by a quadrature estimate. But this is impossible for large m. a

Note that if Condition 514, fails then Conditions 1,—5; must also fail for s > 1 + v by
Proposition 2.9.

In the next section we demonstrate that Condition 514, has strong implications for the
group structure. Our line of argument is most easily illustrated by examining Condition 5s.
If this condition is valid then it follows from (27) and (28) that there exists a ¢ > 0 such
that

(A%0)(9)] < e (p(9))

for all ¢ € G with |g|" > 2 and all multi-indices o with |a| = 2. Let 4,57 € {1,...,d'} and
set b= [a;,a;]. Then

%cp(exp th) = —(dL(b) c,o) (expth) = (Ain - AiAj)c,o) (expth) < 2¢ (c,o(exptb))_l . (29)

Integrating this differential inequality it follows that there is a ¢ > 0 such that
lexpth| — 1 < w(exptb) < ¢ t1/?

for all t > 1. If (G is the covering group of the Euclidean motion group one has, however,
lower bounds |exptb|" > ¢t for large ¢, if b # 0. This then contradicts Condition 5y. More
generally Condition 55, and hence Condition 15, fail for any group for which one can find
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an element b which is a commutator and such that |exptb|’ > ¢t for large t. On nilpotent
and compact groups this is impossible. On a solvable group which is not nilpotent one can
find such a b, but then it is unlikely that it equals a commutator of order 2 in the algebraic
basis. Thus one needs careful analysis of the underlying Lie algebraic structure.

The foregoing results provide a similar analysis based on Condition 5y4,. If one merely
assumes Condition 54, there does not appear to be any easy analogue of the differen-
tial inequality (29). Therefore it is appropriate to estimate a group commutator as in
Proposition 2.12. Moreover, in Corollary 2.13 the time variable ¢ in the key lower bound
|exptb|" > ct has been discretized. The main problem in the next section is to find the
candidates for the k in Corollary 2.13.

3 Algebraic structure

In the previous section we demonstrated that boundedness of the Riesz transforms implies
that the derivatives of the semigroup kernel satisfy Gaussian bounds with the correct
asymptotic behaviour. In this section we establish that bounds of the latter form are only
possible on a group with polynomial growth if the group is the local direct product of a
compact group and a nilpotent group. The previous arguments were largely analytic but
the proofs of this section are largely algebraic. We rely heavily on the structure theory of
Lie groups.

We begin with some geometric observations. First note that two moduli on a Lie group
associated with two algebraic bases are equivalent on the complement of any neighbourhood
of the identity by [VSC], Proposition 111.4.2.

Secondly one has the following simple relationship.

Lemma 3.1 Let Q, E be Lie groups with moduli |- |g and |- |g and V: Q — E a Lie group
homomorphism. Then there exists a ¢ > 0 such that |V(g)|g < ¢lglg for all g € G with
Y (g)lz = 1.

Proof The proof is elementary once one realizes that one can assume that the modulus
on I can be taken with respect to a vector space basis. We omit the details. O

Next let g, n and m be the radical, the nil-radical and a Levi-subalgebra of g and @,
M the connected analytic subgroups of G which have Lie algebras q and m. Then the
Killing form on m is negative-definite since all eigenvalues of the adjoint representation on
a group of polynomial growth are purely imaginary (see [Gui]). Hence M is compact and
therefore closed in GG by [Hoc], Theorems XIII.1.1 and XIII.1.3. In addition, G = QM and
@ is closed in G (see [Var], Theorem 3.18.13).

Since M is compact the moduli on G and ) do not differ much.

Lemma 3.2 There exist ¢1,¢c5 > 0 such that ¢1lglg < |g| for all g € Q with |g|g > 2,
where | - |g is a modulus on Q) with respect to some basis.

Proof Since M is compact in GG there exists a ¢; > 0 such that |m| < ¢ for all m € M.
Let B=1{g € G:l|g/ <1+2c}. Then B is compact in (G and @ is closed in (&. Therefore
Q N B is compact in G and hence in Q, thus bounded in Q. Let C' > 0 be such that
lglo < C for all g € QN B.
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Now let g € @) and suppose |g|g > C. Then |g|" > 1 +2¢; > 1. There exists an € N
such that n — 1 < |g' < n and a sequence ¢ = ¢o,91,---,9n-1,9, = ¢ in G such that
lg7gi_1|” < 1 for all i. Moreover, for all i there exist ¢; € Q, m; € M such that g; = ¢;m;
where we may assume that mg = m, = e¢. Then gi_lgi_l = mflqi_lqi_lmi_l and hence

107 i < g7 gia |+ m ) + fmal <14 2¢

But also ¢7'¢;1 € Q. Therefore ¢7'¢;.1 € QN B and |¢7'¢i_1]lg < C. Hence |glg =
[l < Cn < C(lgl" +1) < 2Cg]" =

Proposition 3.3 Ifv € (0,1) and Condition 514, is valid then the radical of g is nilpotent,
te., g=n.

Proof Forall a € qlet S(a) and K(a) be the semisimple and nilpotent part of the Jordan
decomposition of the derivation ada. Note that S(a) = 0 for all @ € n. Set dg = dimq and
dp = dimq — dimn. Let @ be the universal covering of () and =: @ — () the natural map.
Set I' = Ker . We identity the Lie algebras of ) and Q. By [Alel], Sections 2 and 3, there
exist a basis by, ...,bq, for g, an r € N, for all i € {1,...,dg} there are R; € {{0},Z} and

w; € {1,...,r} and, moreover, there are a Lie bracket [-, -]y on g, ideals q,,...,q,,, of
(q,[-, -]) and vector subspaces a,...,a 001,000, b11 -+, By, of g with the following
properties.

1. S(b;)b; = 0 for all 7,5 € {1,...,do} and n = span{bg,41,...,bq,}

II.  [b;,bj]n = [bi, )], [bi,a]n = K(b)a and [a, by = [a,b] for all ¢ € {1,...,do} and
a,ben.

ITI. The Lie algebra (q,[-, - |n~) is nilpotent.

IV. g, =gqand g, = [q.q;]n for all 2 € {1,...,r}. Moreover, g, # {0} and q,,, = {0},
i.e., r is the rank of the nilpotent Lie algebra (q,[, - |n)-

V. q,=a;3q,,, and a; =bhy; Dby, forall j € {1,...,r}. Also by, = {a € a; : S(b;)a =
Oforalle € {1,...,do} and [b,a] = 0 for all b € m} and the vector space b,; is
invariant under the S(b;) with « € {1,...,do} and the S(a) with ¢ € m. Moreover,
bi € hoy, Uby,, foralli € {1,...,dg} and 1 =wy = ... = wygy < wge1 < ... < wg,.

VI. Ifie{l,...,do}, 5 € {l,...,dg} and S(b;))b; # 0 then R; = {0} and there exist
) € {—1,1} and )\1,. . .,)\do - R such that S(bz)b] == )\Z b]‘_|_5 and S(bi)bﬂ_(g == _)\i b]‘
for all ¢ € {1,...,do}.

VIL Ifaem, i€ {l,...,dy} and [a,b;] # 0 then R; = {0}.

VIIL The map ®: R% — @ given by

&)(tl, s tay) = expé(tdedQ) .. .expé(tlbl)
is a diffeomorphism and I' = &)(Rl X .o X Ry,).
Lemma 3.4 The Lie algebra (q,[-, -]) is the smallest subalgebra of (g,[-, -]) which con-

tains ay.
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Proof For the proof we need to introduce one more Lie bracket on q. For all £ > 0 define
the linear map v;:q — q by

7e(bi) =1 by
for all e € {1,...,dg}. We define a scale of Lie brackets on the vector space q. For ¢ > 0
define [+, - |ni:qg X g — g by

[Cl, b]Nt = 715_1([%5(@)7 ’Vt(b)]N)
By [NRS], Section 3, lim;_..[a, b]n+ exists and we set

[a, by = tlirglo[a, bl Nt
for all a,b € q. Obviously y:([a, b)) = [v:(a),v:(b)]y for all a,b € g and ¢ > 0.

The proof now follows by establishing that the elements by, ..., bs, form an algebraic
basis first for the Lie algebra (q,[-, -] ), then for the Lie algebra (q,[-, -]n) and finally
for the Lie algebra (q,[-, -]), where dy = dimay. If o = (¢4,...,4,) € J(d) with n € N
then set ||a|| = wiy1 +... +w;, and bjay = [bi,, [ .- [bi,_,, 0] - - .]] € q. Define similarly by,
and by,y,. Then

braly = blaly (mOquaH-I—l) (30)
for all @ € J(d) with |a| # 0.

We first show that by,..., by, is an algebraic basis for (q,[-, -]g). Let k€ {1,...,r}

and a € a. Then for all a € J(d) with |a| > k there exist ¢, € R such that

a= Z Ca b[a]N

a€gJ(d)
k<]a|<r

By (30) there exists a b € g, such that

a="b+ Z cab[a]H

a€gJ(d)
k<]a|<r

Since (g,[-, - ]u) is homogeneous one deduces that

a4 = Z Ca b[a]H

a€gJ(d)
k<]a|<r
[leel|=k

But if a € J(d) with ||a]| = k and |a| > k then a € J(d1). So
a= > by (31)

OzEJ(dl)
lo|=Fk
and by, ..., by, is an algebraic basis for (q,[-, - |m)-
Next we prove by induction that by,..., by is an algebraic basis for (q,[-, - |n). Obvi-

ously for all @ € g, = a, there exist ¢, € R such that

a= Y cabuly= D, Cabluy
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by (31) and (30). Let k € {1,...,r — 1} and suppose that

Qeyr © span{b[a]N ca € J(d)} . (32)

Let a € ai. Then there exist ¢, € R such that (31) is valid. Let b € g;,, be such that

a=10b-+ Z cab[a]N

a€eJ(dy)
jal=k
Then together with (32) it follows that a € span{by, : a € J(dy)}.

Finally we show that ay,...,aq, is an algebraic basis for (q,[-, -]). It suffices to prove
that bp.), € span{bps : 3 € J(dy)} for all @ € J(dq). But [a, by = [a,b] — S(a)b+ S(b)a
for all a,b € {by,...,bg} Un and S(a) is a polynomial in ada without constant term.
Therefore expanding the commutator by,), from inside in terms of the Lie brackets [-, -]
one deduces that by, € span{by : 8 € J(dy)}. 0

The next lemma is the main step in the proot of Proposition 3.3. To formulate it
we need the Lie algebra ¢ of the Euclidean motion group, i.e., the Lie algebra with basis
€1, €2, €3 and commutation relations [e1, €3] = 27es, [e1, €3] = —2mey and [eq, €3] = 0. This
algebra provided the counterexample of Alexopoulos [Alel] on the boundedness of the Riesz
transforms. Let Es be the connected simply connected Lie group with Lie algebra ¢ and let
E = E/T'g,, where 'y, = {expy, (key) : k € Z} = Z(F,), the centre of I,. It follows from
the structure theory of [Alel], in particular Property VIII, that £ is, up to isomorphism,
the connected not-simply connected Lie group with Lie algebra e.

Lemma 3.5 Let () be a connected solvable Lie group with Lie algebra q and let n be the
nil-radical of q. The following are equivalent.

I q#n.
II.  There is a surjective Lie group homomorphism from () to the FEuclidean motion
group F.

Proof Clearly if the second condition is valid then ), and hence g, cannot be nilpotent.
Conversely, if g # nthen dy > 1. Then S(b1) # 0 because otherwise adby = K (by) would be
nilpotent and b; € n (see [Var], Corollary 3.8.4). But (q,[-, -]) is spanned as a Lie algebra
by a; and S(by) is a derivation. Hence there is a j € {1,...,d;} such that S(by)b; # 0,
where d; = dima;. Then j > dy by Property I and b; € n. By Property VI there exist
) € {—1, 1} and )\17 .. .,)\do - R such that S(bz)b] == )\Z b]‘_|_5 and S(bi)bﬂ_(g == _)\i b]‘ for all
i € {1l,...,do}. Moreover, bj,s = A\["S(b1)b; € a; by Property V.
Next define the linear map :q — ¢ by

V(b)) =€y,  Pb)=02r)  Ne ifie{l,... . do} ,
Plbjas) =ca . (b)) =0 Tk {L,....dojj +0)

Let ¢ € {1, ce ,do}. Then [b“ b]‘]N - qds and @/)([b“ b]‘]N) = 0. Hence @/)([b“ b]]) == @/)(S(bz)b])—l-
PR (bi)b) = (A bjgs) + 1p([bi, bj]n) = Aies = [(2m) 7 Ai €1, €2] = [16(bi), 0 (b;)]. By analo-

gous arguments it follows that ¢ is a Lie algebra homomorphism.
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We lift ¢ to a Lie group homomorphism from Q to the Euclidean motion group E. There
exists a unique Lie group homomorphism W: () — £ such that q/(expé a) = expg (a) for
all a € q.

We next show that WU(I') = {e}, so that U factors over Q. Let i € {1,...,dy} and
suppose that exXpg b; € I'. Let ()3 be the (normal) analytic subgroup of Q which has Lie al-
gebra q,. Then for all ¢ € R one has expy th; = expy b; expg th; expé(—bi) = expé(teadbi b;)
and hence

epr(tb )Q2 - eXpQ( adblb )Q2 - epr(te )Q2 - eXpQ(t(COS()\ )b —I_Sln()‘ )bJ+5))Q

Therefore A; € 2xZ. But then \Tl(expé b;) = expg (b)) = expp((27)'Aier) = {e} since
expp, ((27) ' Xie1) € I'g..

Thus W(I') = {e} and there exists a unique Lie group homomorphism W: () — £ such
that ¥ o # = ¥. Then U(expa) = \Il(ﬂ'eXpQ a) = \I/(eXpQ a) = expg ¥(a) for all a € q.

Finally, since Ay # 0 the map ¥ is surjective. O

Now we are prepared to complete the proof of Proposition 3.3.

Assume Condition 514, is valid and g # n. Then the foregoing Lie group homomorphism
U from () to the Fuclidean motion group K exists. We use the notation of the proof of
Lemma 3.5. Set hy = exp(A'7hi), hy = exp(b;) and k = hihohi'hy'. Then U(k) =
expp(—2ez) and W(k™) = expy(—2ney) for all n € Z. Let |- |g be the modulus on F with
respect to the vector basis ey, €3, €5. Obviously |expg(—2nes)|g < 2|n| for all n € Z. We
next show that the inequality is actually an equality. There exists a unique ¢: £ — R such
that

plexpp(€ses) expp(&zez) expy(bier)) = &
for all (&1,&2,&3) € R®. Then

(dR(e1)e ) (expp(Eses) expp(&aes) expp(érer)) = 0,

(dR(e2)¢) (expp(Eses) expp(&aea) expp(rer)) = cos 2ré

and

(dR ) (expp(&ses) expp(£aea) expp(rer)) = —sin 2wy

for all (&1,&,63) € R®. Now let 4:[0,1] — FE be an absolutely continuous path with
(0) = e and ¥(1) = expy(—2ney). Then

2n| = —sgnn/ol dt4(t) o = —sgnn/ol dtz%'(t) (dR(ei)‘P) (v(1) < /01 dt(; |%(t)|2)1/2 :

Therefore 2|n| < |expg(—2nes)|g and |U(k")|g = 2|n| for all n € Z.

By Lemmas 3.1 and 3.2 there exist ¢1,¢; > 0 such that ¢ |[W(g)|g < |g| for all ¢ € Q
with |W(g)|g > ¢2. Hence |k"|" > 2¢; |n]| for all n € Z with |n| > ¢2/2.

By Corollary 2.13 this implies that Condition 574, is not valid. This is a contradiction
and hence q = n. O

We are now in a position to establish the principle conclusion of this section.
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Theorem 3.6 [fv € (0,1) and Condition 514, is valid then G is the local direct product
of a compact and a nilpotent group.

Proof We use the notation and basis as in the proof of Proposition 3.3. Let ¢ € mand b €
g. Since k — Ad(k)b from the compact K into g is bounded and, moreover, all eigenvalues
of S(a) are purely imaginary, it follows from the identity e"*(*)p = ¢=*(*) Ad(exp(ta))b that
the function ¢ > e*(p is bounded from R into g. Hence K(a)b =0 and [a,b] = S(a)b.

It follows from Proposition 3.3 that the radical q of g is nilpotent, i.e., ¢ = n. If the
semidirect product of m and g is not direct then by Lemma 3.4 there exists an a € m such
that S(a)ay # {0}. Then S(a)h;; # {0}. In addition S(a)h;; C by by Property VI. If one
complexifies the space h;; and the semisimple operator S(a), also denoted by S(a), then
S(a) can be diagonalized. Since (G has polynomial growth, each eigenvalue of ada = S(a)
is purely imaginary. Then the operator S(a) must have a complex eigenvector in h;; whose
eigenvalue is not zero. Passing back to the real vector space this implies that there exist
A € R\{0}, b,c € h;;\{0} such that S(a)b = Ac and S(a)c = —Ab. Set hy = exp(A~'7a)
and hy = expb. Then k = hihyhi'hy' = exp(—2b).

Let d{ = dimb,;. We may assume that b, € h,, for all ¢ € {1,...,d|} and b; € b,
for all ¢ € {d] +1,...,dimay;}. Write b = Z?il ;b with 4;,...,1; € R. Then there
exists an 79 € {1,...,d}} such that ¢;; # 0 and obviously b;, € bh;;. But by, = {a € a; :
there exists a b € m such that [@,5] # 0} since n = q and dy = 0. Therefore R;, = {0}
by Property VII. Hence there exists a Lie group homomorphism ¥:(¢) — R such that
U(exp(thi,)) = t and U(exp(th;)) = 0 for all t € R and j € {1,...,dg}\{io}. Then

U(k™) = —2nt;, for all n € Z and one deduces a contradiction as before.
Thus g is the direct product of the Lie algebras m and n. But also G = QM = NM.
Therefore G is the local direct product of M and N. a

4 Dénouement

In this section we complete the chain of reasoning required to prove Theorem 1.1 by
establishing two results. First we prove that if G is the local direct product of a compact
group and a nilpotent group then all Riesz transforms are bounded. Secondly, we use
interpolation arguments to deduce that the ‘fractional” Riesz transforms are bounded.

Proposition 4.1 Let G be the local direct product of a connected compact Lie group K
and a connected nilpotent Lie group N and let aq,...,aqy be an arbitrary algebraic basis of
the Lie algebra of G'. If A; are the left representatives and H the sublaplacian associated
with the algebraic basis then for each n € N there is a ¢, > 1 such that

et I P ollz < sup [|A%ll2 < e || H o]

|a|=n
for all ¢ € D(H"?).

Proof First suppose that G is the direct product of K and N.
Let g = (k,n) with k € K and n € N denote a general element of Gi. Further let dk and
dn denote the Haar measures on K and N and £ and n the Lie algebras. We normalize the
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Haar measure on K by |K| = 1. Let Lg, Li and Ly denote the left regular representations
of G, K and N.

Define the projection Py: Ly(G;dg) — Ly(N ;dn) by
(Pyg)(n) = | dk (k™" n)
for almost every n € N and the isometric lifting T Lo(N ;dn) — Lo(Gdg) by
(Te)(k,n) = p(n)
for almost every (k,n) € G. Define the projection P: Ly(G';dg) — Ly(G ;dg) by
P=TPy= [ dkLa(ke)

Then Lg(k,n)P = TLn(n) Py = PLg(k,n) for all (k,n) € G. Hence the subspace
PLy(G 5 dg) and its orthogonal complement (I — P)Ly(G'; dg) are both L-invariant. There-
fore the restrictions of H to the spaces PLy(G';dg) and (I — P)Ly(G5dg) are both self-

adjoint. Moreover, H commutes with P.

Each a; has a unique decomposition a; = aEK) + aEN) with agK) € tand agN) € n. The
(K) () (V) (V)

ajy ’,...,ay ~ are an algebraic basis for € and the ay ’,...,a,; ' an algebraic basis for n.

Let A, = dLa(a;), K; = dLK(aEK)) and N; = dLN(a(N)) and set

d’ d’
HK:—Z[X’E and HN:_ZNE
=1 =1

If o € D(A;) then Pp € D(A;) and A;Pp = PA;p. Moreover, A;P = TN;Py, A°P =
TN*Py and HP =T Hy Py by the various definitions. Therefore one has bounds

14" Pellz = N Prpllz < ey [ HNY* Prveplls = cjog |2 Po) (33)

for all o and all ¢ € D(H!*/?) because the Riesz transforms on a nilpotent group are

bounded by [ERS], Lemma 4.2.

Next we establish similar bounds on (I — P)L2(G ;dg). The basic idea is to prove that
the restriction H(I — P) of H to (I — P)Lx(G ; dg) has spectrum in an interval [y, oo) where
> 0.

Fix n € N. Then for each ¢ € C.(G) introduce @, € L2(K ;dk) by setting ¢, (k) =
o(k,n). The set {¢, : ¢ € CX(G)} is dense in Ly(K ;dk) and ((I — P)y), is orthogonal
to the constant functions on K. Moreover, (La(k,e) (I — P)p), = Lx(k) (I — P)g), for
all k € K, n € N and ¢ € C.(G). Therefore (dLg(a"™) (I = P)g), = KA((I — P)g), if
@ € C(G). Now Hg acting on Ly(K ;dk) has a compact resolvent and there is a A > 0
such that Hx > Al on the orthogonal complement of the constant functions. Therefore

d’ d’
K -
SlldLa(a )1 = Pigll3 = 3 [ dnlIK((1 = Pye)all
=1

= [ dn ({1 = Pe)as Hic((1 = P)g))
20 [ dn (= PYo)lli = M= PIell} (30

for all ¢ € C°(G). Next we derive an upper bound on the sum with the aid of the following
asymptotic estimates.
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Lemma 4.2 Let S denote the semigroup generated by H on Ly(G;dg). Then for each
n € N there exist ¢, 0 > 0 and ¢,1 > 0 such that

sup ||A%St]|2—2 < eno 1 4 Cn,lt_1/4

|a|=n

for all t > 0. Hence for each N > n there is a Cny > 0 such that

—2N+1 HHN/2

sup [[A%plls < ene plla +ellellz

Jal=n
for all ¢ € D(HN?) and all ¢ € (0,1].
Proof Let a = (f,i,) with || =n. Then

1A% Supll3 = (As, S, (= 1) 1A% AS0) <[ Az, Silla—se [ A% A% Sy o2 [0 13
where 3, is the reversal of 3. But

[Ai, Siellz—z < [[H'2Si|oe < ct™'2
by (1) and spectral theory. Moreover,
A% A% S la=r < e (ISilaa + 170725 o)
for a suitable ¢, > 0 by [EIR1], Theorem 7.2.IV. Then
1A% A% S ls—y < €, (14 177F12)

by another application of spectral theory. Combining these estimates gives the first bounds
of the lemma.
The second bounds follow from the first using the Laplace transform estimate,

1A°(H 4+ D) < TN/2)™ [T et e A o e

which is valid for all ¢ € Ly and all ¢ > 0, and rearranging. O

Next since aq,...,aq is an algebraic basis each aEK) can be expressed as a polynomial
in the a;. The lowest order term in these polynomials is at least one and the highest order
term at most r, the rank of the basis. Therefore, by the second estimate of Lemma 4.2,

for each N > 2r there is a ¢y > 0 such that
& (K) 2 1/2 2N N/2
(X lara(af)el) ™ < ex = 1]l + <
=1

for all p € D(HN/?) and all ¢ € (0,1]. Replacing ¢ by (I — P)@ and appealing to (34) one
then deduces that

en e HN2(I = Phplly = (A — &) |(1 — P2
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forall ¢ € C°(G) and ¢ € (0, 1]. Therefore choosing ¢ smaller than A one readily concludes
that there is a g > 0 such that

YT = Pl = ™2 11 = Pl (35)

for all p € C=(G) and, since C=(G) is dense in D(HN/?), for all p € D(HN/?). Hence the
spectrum of H restricted to (I — P)L2(G;dg) must lie in [g, o0) and the bounds (35) are
valid for all N € N.

Now consider the unitary representation ¢ — L(g)(I — P) of G on (I — P)Ly(G';dg).
It follows from [EIR1], Theorem 7.2.1V, that one has bounds

1A*(1 = P)pll2 < epay (VAL = Ppllz + 11 = P)ell2)

for some ¢j,| > 0 and all ¢ € (I — P)D(H*1/?). Then using (35) with N = |a| one obtains
bounds

1A*(1 = P)pll2 < el VAL = Pl (36)

for all ¢ € (I — P)D(H21/%),
Finally combination of (33) and (36) yields

[A%¢lls < [[A*Polla + [|A*(1 = P)glls
< pog V2Pl + el (V2T = P)olly < Opa [V 0]

for a suitable C},| > 0 and all ¢ € D(H/?), This completes the proof Proposition 4.3 if
(G is the direct product of K and N.

Secondly, we drop the condition that (G is the direct product, but merely assume that
G is a local direct product of K and N. Let G = K - N be the direct product of K and N
and let D = K N N. Then D is a discrete central subgroup of G and D C K. Therefore
D is finite. Moreover, (G is isomorphic with G/D Hence it suffices to show that the Riesz
transforms on (/D are bounded. Let 7:G — G/D be the quotient map. We normalize
the Haar measure on D by |D| = 1. Next normalize the Haar measure on G'/D such that

Jodaet@) = [ di [ dhoiah)

for all ¢ € C.(G), where § = w(g). For all functions ¢:G/D — C define 7*p: G — C
by 7*¢ = ¢ on. Then [z7"¢ = fé/Dc,o and hence |[7*¢||; = ||¢|l2 for all ¢ € C.(G/D),
where || || and || - ||2 denote the Ly-norms on (i and G/ D. Since D is zero-dimensional we
can and do identify the Lie algebras of G and G. Let gz and A; denote the infinitesimal
generators on ( and G/D. Then A;7*p = 7= A;p for all ¢ € C2(G/D).

Let o € J(d'). By the above there exists a ¢ > 0 such that Hga;/)Hi < c[\ﬁ|a|/2¢]\§ for

all ¢» € C°(G). Hence
1A%l = |7 A%ll; = AT pll; < e[ HV2m"p||; = e[ V7"l

for all ¢ € Cfo(é/D) and the proposition follows by a density argument.

Finally, the lower bounds of the proposition are easy. For even n they are obvious
and the case n = 1 follows from (1). But then the case n = 2k + 1 with £ € N is also
elementary. a
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At this point we have proved that if G is a noncompact group which is the local
direct product of a compact group K and a nilpotent group N then the Riesz transforms
A2 H=121/2 are bounded for all a. Alternatively stated if for each n € N the space Ly, is
equipped with the norm

# = No(p) = max [[A%]),

and if for each v > 0 the space D(H") is equipped with the norm

v = llellpam = [H ¢l

then D(H”/Q) C I

extended to intermediate spaces by interpolation theory but one needs to exercise care

5., and the embedding is continuous. This latter conclusion can be

since the normed spaces (Lj.,, N)) and (D(H"),| - ||p(z~)) are not complete. This gives
some difficulty with the application of standard complex interpolation theory.

Proposition 4.3 If G is the local direct product of a connected compact group and a
connected nilpotent group, n € N and v € (0,1) then there exists a ¢ > 0 such that

sup max (|h]") (I — L(h))A%p|ls < ¢ |HE+ 20,
heG\{e} lol=n

for all ¢ € D(HU+)/?%),

Proof lLeta € J(d') with || = n. Since H is self-adjoint it has a bounded H,-functional
calculus and hence

Mo = sup [[A*(H +el)7?|la—y < Sup. JASH 2| || (H + € 1) ™[22 < o0

e€[0,1]

Similarly,
M, = sup max HAZ AY(H + 1)~ 2|5, < o0

e€[0,1]7€{1:-.

Next for all ¢ € (0,1] and v > 0 equip the spaces D((H + ¢l)”) with the norm ¢ —
el p(a+eny = |(H 4+ eI)Yp||2. Note that these spaces are complete.

Let € > 0 and h € (. Then the operator (I — L(h))A” is a bounded operator from
D((H 4 cI)™?) into Ly, with norm less than or equal to 2M,. Moreover, the operator
(I — L(h))A” is a bounded operator from D((H + 5])(”"'1)/2) into Ly with norm less than

or equal to M |h|". Then complex interpolation gives

(T = L) A%l < (2Mo) = (My B Wl enyossy pirseriosory,

uniformly for all ¢ € [D((H + 5])”/2),D((H + 5])(”"'1)/2)]1,. Since the operators H + ¢l
have bounded imaginary powers, uniformly for € > 0, it follows from the proof of Step 3 of
Theorem 1.15.3 in [Tri78] that there exists a ¢ > 0, independent of ¢ € (0,1] and &, such
that

HS‘QH[D((H-I—EI)"/2)7 D((Ht=D)mD/2)], < € |(H + 5])(”+V /Q‘PH
uniformly for all ¢ € D((H + I)")/%). Combining the two estimates it follows that

17 = L{R) A%ll2 < e (1) I(H + D)2l
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uniformly for all ¢ € D((H + eI)"*)/2) where ¢; = (2My)' ™" MY ¢ is independent of ¢
and h.
The estimates of the proposition now follow by taking the limit & — 0. O

In the language of Section 2 we have demonstrated that if n € N and Conditions 1,,
and 1,41 are satisfied then Condition 1; is satisfied for all ¢ € (n,n 4 1). But on any group
with polynomial growth, Condition 1,, is valid for n = 1. Therefore the last argument
establishes the following statement.

Corollary 4.4 If G is a group with polynomial growth then Condition 1, is satisfied for
all t € (0,1].

In summary one has the following set of conclusions. Let s > 1. First Condition 1,
implies Conditions 2,—5; for all ¢t € (1, s] by Proposition 2.10. But Condition 5; for ¢ close
to, but larger than, one implies that G is the local direct product of a compact group and
a nilpotent group by Theorem 3.6. Then this implies that Condition 1, is satisfied for all
n € N by Proposition 4.1. Finally the foregoing argument in the proot of Proposition 4.3
establishes that Condition 1; is valid for all £ > 1. Hence we have the following conclusion.

Theorem 4.5 Conditions 1,-5, are equivalent for all s > 1 and are valid if, and only if,
G is the local direct product of a connected compact group and a connected nilpotent group.

This theorem incorporates Theorem 1.1 and the related statements made in the intro-
duction concerning the Holder bounds.

5 Concluding remarks

The foregoing discussion focussed on the Riesz transforms associated with the sublaplacian
H acting on Ly(G;dg). But one can also deduce boundedness properties etc. on the L,-
spaces with p € (1,00). If G is the local direct product of a connected compact group
and a connected nilpotent group, then one has boundedness of the Riesz transforms on the
L,-spaces and, in addition, optimal kernel bounds of any order.

Proposition 5.1 If G is the local direct product of a connected compact group and a
connected nilpotent group, p € (1,00) and n € N then there exists a ¢, > 1 such that

e HH 2 oll, < sup (|4, < e [H o],

|a|=n
for all ¢ € D(H"?).

Proof It follows as in the proof of Proposition 4.7 in [ERS] that the operator A®H~1°l/2
is of weak type (1,1). (There is a small gap in the proof of Proposition 4.7 in [ERS]: it has
to be mentioned that the kernel k.., given by (7) in [ERS] is right differentiable on G'\{e}
and |(dR(a;)ka.)(9)] < a(lg])'V(lg")~" uniformly for all ¢ € G\{e} and v > 0.) Hence
by interpolation the Riesz transforms are bounded on L, for all p € (1,2]. But the dual
operators of the Riesz transforms are bounded on L, and one has similar kernel estimates
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for these operators. So the same argument applies and the Riesz transforms are bounded
on L, for all p € [2,00). This proves the upper bounds of the proposition.

The lower bounds are again easy, except for the case n = 1. Let ¢ € D(H) C L, and
€ D(H™'Y?) C L,, where ¢ is the dual exponent. Then

d’ d’
(0, H'?0) = (0, H™ VP Ho) = (H V2, Ho) = = Y (H V%, Alp) = > (AH P4, Aigp)

1/2 ;

since the range of H~'/“ is contained in the domain of the operator A; in L,. But the Riesz

transforms are bounded on L, and therefore there exists a ¢ > 0 such that

a
(&b, H' )| < e 3 14llq [ Asell
=1

uniformly for all ¢ € D(H) and ¢» € D(H~'/?). Since D(H~"/?) is dense in L, it follows
that ||[H%p||, < e¢S%, || Asel|, for all ¢ € D(H) and then, by density, for all ¢ € L., O

Finally, since the operator H on L, has a bounded H. -functional calculus (see, for
example, [DuR], Theorem 3.4) the proof of Proposition 4.3 can be carried over line by line
and one deduces boundedness of the fractional Riesz transforms on the L,-spaces.

Proposition 5.2 If G is the local direct product of a connected compact group and a
connected nilpotent group, n € No, v € (0,1) and p € (1,00) then there exists a ¢ > 0 such
that
sup  max (A1) I(] — L(R) A%gll, < ¢ [ HE2g)),
heG\{e} lol=n

for all ¢ € D(HU+)/?%),

Propositions 5.1 and 5.2 state that if G is the local direct product of a connected
compact group and a connected nilpotent group then Condition 1, , is valid for all s > 0
and p € (1,00). Conversely if Condition 15, is valid for one s > 1 and one p € (1, 00) then
it follows from Remark 2.11 that Condition 2; is valid. Hence G is a local direct product
by Theorem 4.5.

Acknowledgements

An essential part of this work was carried out whilst the second named author was visiting
the Eindhoven University of Technology with partial support from the EUT. The work was
completed while the first named author was visiting the School of Mathematical Sciences
at The Australian National University with financial support from the ANU.

References

[Alel] ALEXOPOULOS, G., An application of homogenization theory to harmonic anal-
ysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial

growth. Can. J. Math. 44 (1992), 691-727.

31



[Ale2]

[BER]

[DuR]

[EIR1]

[EIR2]

[EIR3]

[ERS]

[GQS]

[Gui]

[Hoc]

[NRS]

[Rob]

[Sal]

[Sik1]

[Sik2]

[Tri78]

——, An application of homogenization theory to harmonic analysis on solvable
Lie groups of polynomial growth. Pacific J. Math. 159 (1993), 19-45.

Burns, R.J., ELsT, A.F.M. TER, and ROBINSON, D.W., L, -regularity of
subelliptic operators on Lie groups. J. Operator Theory 31 (1994), 165-187.

Duona, X.T., and ROBINSON, D.W., Semigroup kernels, Poisson bounds,
and holomorphic functional calculus. J. Funct. Anal. 142 (1996), 89-129.

Erst, A.F.M. TER, and ROBINSON, D.W., Subelliptic operators on Lie
groups: regularity. J. Austr. Math. Soc. (Series A) 57 (1994), 179-229.

—, Subcoercivity and subelliptic operators on Lie groups I: Free nilpotent

groups. Potential Anal. 3 (1994), 283-337.

—, Second-order subelliptic operators on Lie groups I: complex uniformly
continuous principal coefficients. Research Report MRR 035-96, The Australian
National University, Canberra, Australia, 1996.

Erst, A.F.M. TER, ROBINSON, D.W., and SIKORA, A., Heat kernels and
Riesz transforms on nilpotent Lie groups. Coll. Math. 74 (1997), 191-218.

GAUDRY, G.I., QiaN, T., and SJIOGREN, P., Singular integrals associated to
the Laplacian on the affine group ax + b. Ark. Mat. 30 (1992), 259-281.

GUIVARC'H, Y., Croissance polynomiale et périodes des fonctions harmonique.

Bull. Soc. Math. France 101 (1973), 333-379.

HocuscHiLp, G., The structure of Lie groups. Holden-Day, San Francisco etc.,
1965.

NAGEL, A., Riccl, F., and STEIN, E.M., Harmonic analysis and fundamental
solutions on nilpotent Lie groups. In SADOSKY, C., ed., Analysis and partial dif-
ferential equations, Lecture Notes in pure and applied Mathematics 122. Marcel

Dekker, New York etc., 1990, 249-275.

RoBiNsoN, D.W.. Elliptic operators and Lie groups. Oxford Mathematical
Monographs. Oxford University Press, Oxford etc., 1991.

SALOFF-COSTE, L., Analyse sur les groupes de Lie a croissance polynomiale.
Arkiv for Mat. 28 (1990), 315-331.

SIKORA, A., Sharp pointwise estimates on heat kernels. Quart. J. Math. Ozford
47 (1996), 371-382.

——, On-diagonal estimates on Schrodinger semigroup kernels and reduced heat

kernels. Commun. Math. Phys. 188 (1997), 233-249.

TRIEBEL, H., Interpolation theory, function spaces, differential operators.
North-Holland, Amsterdam, 1978.

32



[Var] VARADARAJAN, V.S., Lie groups, Lie algebras, and their representations.
Graduate Texts in Mathematics 102. Springer-Verlag, New York etc., 1984.

[VSC] VAROPOULOS, N.T., SALOFF-COSTE, L., and COULHON, T., Analysis and
geometry on groups. Cambridge Tracts in Mathematics 100. Cambridge Uni-
versity Press, Cambridge, 1992.

33



