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Abstract

Let G be a Lie group of polynomial growth� We prove that the second�
order Riesz transforms on L��G � dg� are bounded if� and only if� the
group is a local direct product of a compact group and a nilpotent

group� in which case the transforms of all orders are bounded�
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� Introduction

The Riesz transforms �i����� play an important role in classical harmonic analysis� These
operators are bounded on L��Rd� by Fourier theory and on the spaces Lp�Rd�� with

p � h���i� by singular integration theory� All higher order transforms are automati�
cally bounded because the partial di�erential operators commute� for example� �i�j��� �
��i��������j������� The situation for the analogous transforms on a Lie group G is much
more complicated� The transforms of all orders are bounded if G is compact �BER� or

nilpotent �NRS� �ERS� but it is also known that there are quite simple groups for which
the second�order transforms are unbounded �GQS� �Ale��� Alexopoulos �Ale�� has shown
that the second�order transforms are unbounded for the covering group of the group of
Euclidean motions in the plane� This example is somewhat surprising as this group only

has polynomial growth� Our aim is to analyze this phenomenon in the context of groups
with polynomial growth and demonstrate that it always occurs unless the group is the local
direct product of a compact group and a nilpotent group�

The unboundedness of the Riesz transforms is directly related to the large time be�
haviour of the corresponding heat kernel� If the group has polynomial growth then the
L��norm of the heat kernel decreases like V �t����� where V �t� is the volume of the ball of
radius t measured with respect to a canonical distance� Moreover� Salo��Coste �Sal� has

shown that the derivatives of the heat kernel have a similar asymptotic behaviour with an
additional factor t����� Higher derivatives can also be bounded with an additional factor
t���� for each derivative and an overall factor e�t with � � �� The latter drastically changes
the asymptotics� We establish that it is impossible to have � � � for all higher derivatives

unless G is the local direct product of a compact and a nilpotent� To be more precise we
must introduce some notation� In general we adopt the notation of �Rob� and �ElR��

Let a�� � � � � ad� be an algebraic basis of the Lie algebra g of the connected Lie group G and
A� � dL�a��� � � � � Ad� � dL�ad�� the corresponding representatives of left translations L on
the spaces Lp � Lp�G � dg�� We use a multi�index notation� Let J�d�� �

S�
n��f�� � � � � d

�gn�
If � � �i�� � � � � in� � J�d�� set A� � Ai� � � � Ain and j�j � n� The subspace

T
j�j�nD�A��

of Lp formed by the n�times di�erentiable functions is denoted by L�p�n� Furthermore
�g� h� �� d��g �h� denotes the right invariant distance associated with the basis and g ��
jgj� � d��g � e� the modulus� Then V �r� denotes the volume �Haar measure� of the ball

B�
r � fg � G � jgj� � r g� We assume throughout that G has polynomial growth� i�e�� one

has bounds
c�� rD � V �r� � c rD

for some integer D � � and all r � �� These bounds automatically imply that G is
unimodular� Note that as D � � compact groups are excluded from our considerations�

Next let H � �
Pd�

i��A
�
i denote the sublaplacian associated with the basis� Then H is

positive� self�adjoint� on L� and since we have excluded compact groups the inverse H��

is a densely de�ned and self�adjoint operator� It follows readily that

kH���	k�� �
d�X
i��

kAi	k
�
� ���

for all 	 � D�H���� � L����� i�e�� the �rst�order Riesz transforms AiH
���� are bounded for

all i � f�� � � � � d�g� It is a much deeper result that D�Hn��� � L���n for all n � N �see

�



�ElR���� The operator H generates a self�adjoint contraction semigroup S with a strictly
positive integral kernel K� Moreover� for each 
 � � there is a c� � � such that the

Gaussian bounds
� � Kt�g� � c� V �t�����e��jgj�������	��t���

��

and
j�AiKt��g�j � c� t

����V �t�����e��jgj�������	��t���
���

are valid for all i � f�� � � � � d�g� g � G and t � �� �See� for example� �Rob�� Corollary
IV����	 and Proposition IV������ The advantage of these bounds is that they incorporate
the behaviour anticipated for large t on groups of polynomial growth� We will show that a
similar asymptotic behaviour for all the second derivatives of the kernel is both necessary

and su�cient for the boundedness of the Riesz transforms of all orders�
We will establish the following statement�

Theorem ��� Let G be a connected Lie group of polynomial growth� The following con�

ditions are equivalent�

I� There is a c � � such that

max
i�j�f������d�g

kAiAjH
��k��� � c �

i�e�� the second�order Riesz transforms are bounded on L��

II� There is a c � � such that

max
i�j�f������d�g

kAiAjStk��� � c t��

for all t � ��

III� There are b� c � � such that

max
i�j�f������d�g

j�AiAjKt��g�j � c t��V �t���e�b�jgj
���t��

for all g � G and t � ��

IV� The group G is the local direct product of a connected compact Lie group K and a

connected nilpotent Lie group N � i�e�� G � K � N where K and N commute and

K 	N is discrete�

The equivalence of Conditions I and IV of the theorem states that the second�order
Riesz transforms are bounded if� and only if� the group is the local direct product of a
compact group and a nilpotent group� The situation is more straightforward if G is simply

connected� Then the local direct product becomes a direct product and the groups K

and N are also simply connected� In general one has a direct product structure at the
Lie algebra level but in some situations there is a possible obstruction which prevents this

being lifted to the groups�
Note that the equivalence of Conditions II and III gives the rather surprising conclusion

that the pointwise Gaussian bounds on the semigroup kernel hold if� and only if� the
derivatives of the semigroup satisfy appropriate L��bounds�





The theorem only gives a partial illustration of our results� In fact if G is the local
direct product of a connected compact Lie group K and a connected nilpotent Lie group

N then all the Riesz transforms A�H�j�j�� are bounded and all the derivatives A�Kt of
the semigroup kernel satisfy Gaussian bounds with an additional factor t�j�j�� for all t � ��
Thus boundedness of the second�order Riesz transforms is equivalent to boundedness of
the transforms of all orders and a good asymptotic behaviour of the second derivatives of

the kernel K is equivalent to a good asymptotic behaviour of all higher order derivatives�
Moreover� we demonstrate that Gaussian bounds on a particular derivative A�Kt of the
kernel are equivalent with appropriate L��bounds on the corresponding derivative A�St of

the semigroup�
If one introduces a notion of fractional derivative then the statements of the theorem

can be strengthened in a di�erent direction� For example the four conditions of the theorem
are equivalent to each of the following statements�

I�� There are � � h�� �� and c � � such that

max
i�f������d�g

k�I � L�h��Ai	k� � c �jhj���kH��	����	k�

for all h � G and 	 � D�H��	������

II�� There is a c � � such that

max
i�f������d�g

k�I � L�h��AiStk��� � c �jhj�t������t����

for all t � ��

III�� There are � � h�� �� and b� c � � such that

max
i�f������d�g

j��I � L�h��AiKt��g�j � c �jhj�t������t����V �t�����e�b�jgj
���t��

for all g� h � G and t � � with jhj� � t����

Thus the structure of the theory simpli�es once one has good control of derivatives of
order strictly larger than one� This automatically implies good behaviour of derivatives of

all orders�
Although the theorem concentrates on the Riesz transforms on L��G � dg� its conditions

ensure that these transforms are bounded on the spaces Lp�G � dg� with p � h���i� In
particular one can combine our results with the standard techniques of singular integration

theory to deduce that the Riesz transforms of all orders are bounded on Lp�G � dg� with
p � h���i whenever any of the equivalent conditions I�IV or I��III� is satis�ed�

The theorem has some conceptual interest as it identi�es purely analytic properties with
an algebraic property� Consequently part of the proof of the theorem is purely analytic and

will be described in Section  and part is algebraic� The algebraic arguments are developed
in Section � and the proof of the theorem is completed in Section ��

� Analytic structure

In this section we consider various estimates related to the Riesz transforms together with
asymptotic estimates on the semigroup S generated by H and on the kernel K of S�

�



The general thrust is to prove that boundedness of the Riesz transforms implies good
asymptotic behaviour of S and K� We begin with properties involving monomials of

derivatives� Subsequently� we consider H�older bounds and thereby introduce a continuous
scale of derivatives� Finally we examine properties which are uniform in the number of
derivatives� The group G is always assumed to have polynomial growth�

First note that D�Hn��� � D��H � I�n��� � L���n �
T
j�j�nD�A�� for all n � N by

�ElR��� Then for each multi�index � consider the following conditions�

��� There is a c � � such that

kA�	k� � c kH j�j��	k�

for all 	 � D�H j�j����

�� There are b� c � � such that

j�A�Kt��g�j � c t�j�j��V �t�����e�b�jgj
���t��

for all g � G and t � ��

��� There is a c � � such that

kA�Stk��� � c t�j�j��

for all t � ��

��� There is a c � � such that

kA�Ktk� � c t�j�j��V �t�����

for all t � ��

The bounds ��� and ��� establish Conditions �� and � for all � with j�j � �� But

Condition �� follows immediately from Condition � and as G has polynomial growth
Condition �� also follows from Condition � by a quadrature argument� Therefore all four
conditions are ful�lled if j�j � �� The general situation is more complex but one has the
following relations�

Theorem ��� The following implications are valid

�� 
 � � �� � ��

for each multi�index �� Moreover� the exponent b in Condition � may be chosen arbitrarily

close to� but strictly smaller than� ����

Remark For compact groups the inequalities of Condition �� are established for all � in
�BER�� Moreover� if G is nilpotent then Conditions �� and � are established for all � in
�ERS�� Therefore in both these cases the theorem implies that all the conditions are valid

for all multi�indices� Conversely� the example of Alexopoulos �Ale� is a solvable group
with polynomial growth for which Condition �� fails for an � with j�j � �

Proof of Theorem ��� The main burden of the proof is to establish that Condition ��
and Condition �� imply Condition �� The other implications are all straightforward and
we deal with these �rst�

�



As G has polynomial growth a standard quadrature argument establishes � 
 ���
Next as K satis�es the Gaussian bounds �� it follows by a second quadrature argument

that kKtk� � c V �t����� for some c � � and all t � �� Therefore

kA�K
tk� � kA�S
tk���

� kA�S�tk��� kStk���

� kA�K�tk� kKtk� � kA�Stk��� kKtk
�
� ���

for all t � �� Hence �� 
 ��� Alternatively� if  � � then Condition �� implies that

kA���I �H���		j�j���k��� � c	

Z �

�
dt t��e�
tt�		j�j���kA�Stk���

� c c	

Z �

�
dt t��e�
tt	�� � c c	 �����

�	��

for all � � � with c	 � ��� � j�j������ Thus

kA�	k� � c c	 �����
�	��k��I �H��		j�j���	k�

for all 	 � D�H�		j�j����� Therefore

kA�	k� � �		j�j���c c	 ����
�
�j�j��k	k� � ��	��kH�		j�j���	k�

�

for all � � � and all 	 � D�H�		j�j����� Optimization over � then establishes the following
weak form of Condition ���

���� For each  � � there is a c�	 � � such that

kA�	k� � c�	 �kH
�		j�j���	k��

j�j��		j�j� �k	k��
	��		j�j�

for all 	 � D�H�		j�j�����

Since �� 
 ��� the implication �� 
 � is a consequence of the following result�

Proposition ��� Condition ��� implies Condition � with an exponent b arbitrarily close

to� but smaller than� ���� In particular Conditions ��� and � are equivalent�

We establish Condition � as a consequence of an integral bound on A�Kt which indi�
cates in a precise way that high speed propagation is unlikely� The argument we use is of

some independent interest so we separate it into the following lemma�

Lemma ��� Let K denote the kernel of a semigroup generated by a �possibly complex�
right invariant operator on a Lie group G of polynomial growth� Fix b � �� Suppose that

for each 
 � h�� �i there exists an a � � such that

jKt�g�j � aV �t�����e�b������jgj
���t��

���

for all g � G and t � ��
Then for each multi�index � the following conditions are equivalent�

�



I� For each 
 � h�� �i there exists an a � � such that

j�A�Kt��g�j � a t�j�j��V �t�����e�b������jgj
���t��

���

for all g � G and t � ��

II� For each 
 � h�� �i there exists an a � � such thatZ
fg�G�jgj���t���g

dg j�A�Kt��g�j
� � a t�j�jV �t�����e��b�������

for all �� t � ��

Proof �I
 II�� Let 
 � h�� ��i and suppose the bounds ��� are valid� Then by a
quadrature estimate there exists an a� � � such thatZ

fg�G�jgj���t���g
dg j�A�Kt��g�j

� � a� t�j�j
Z
fg�G�jgj���t���g

dg V �t���e��b������jgj���t��

� a� t�j�jV �t�����e��b��������
Z
fg�G�jgj���t���g

dg V �t�����e��b��jgj���t��

� a� t�j�jV �t�����e��b��������

for all �� t � ��
�II
 I�� First observe that

e�jgj
�

j�A�Kt��g�j �
����
Z
G
dh e�jhj

�

�A�Kt����h� e
�jh��gj�Kt���h

��g�

����
�
�Z

G
dh e��jhj

�

j�A�Kt����h�j
�
�����Z

G
dh e��jhj

�

jKt���h�j
�
����

for all � � �� But

e��jhj
�

� � � �
Z jhj�

�
dr e��r

and henceZ
G
dh e��jhj

�

j�A�Kt����h�j
� �

Z
G
dh j�A�Kt����h�j

�

� �
Z �

�
dr e��r

Z
fh�G�jhj��rg

dh j�A�Kt����h�j
� �

Therefore� using Condition II� one concludes that for each 
 � h�� �i there exists an a � �
such thatZ

G
dh e��jhj

�

j�A�Kt����h�j
� � a t�j�jV �t�����

�
� � �

Z �

�
dr e��re��b�����r�t��

�

� a t�j�jV �t������� � ����b������� 
������ t���e�
�t��b��������

�

� a� t�j�jV �t�����e�
�t��	����b��������

for all �� t � �� Similarly� using the bounds ��� one hasZ
G
dh e��jhj

�

jKt���h�j
� � a� V �t�����e�

�t��	����b��������

�



Hence

j�A�Kt��g�j � inf
���

a� t�j�j��V �t�����e��jgj
�	��t��	����b��������

� a� t�j�j��V �t�����e�b�������	��
���jgj���t��

for all g � G and t � �� �

The principal element in the proof of Proposition � is the following result on �nite
propagation speed�

Lemma ��� Let � � C��R� be an increasing function with ��x� � � if x � �� and

��x� � � if x � �� De�ne the family of functions �F����� by

F��x� � ����jxj � ��� e�x
���

and denote the Fourier transforms by bF�� Then the kernel KbF���tH�����
of the self�adjoint

operators bF���tH����� satis�es

KbF���tH�����
�g� � Kt�g�

for all g � G and all t � � with jgj� � �t���� Moreover� for each m � N one has bounds

j bF����j � cm
��m��

��� � ���m
e��

��� ���

for all � �  and � � R�

Proof This follows from ���� and Lemma � in �Sik�� but we have used a slightly di�erent

convention� �

Proof of Proposition ��� The kernel K satis�es the Gaussian bounds ��� Hence to

deduce that Condition � is satis�ed with an exponent b arbitrarily close to ��� it su�ces�
by Lemma ��� to establish boundsZ

fg�G�jgj���t���g
dg j�A�Kt��g�j

� � a t�j�jV �t�����e���������� �
�

for all �� t � �� This we achieve by the arguments of �Sik���
First one hasZ

fg�G�jgj���t���g
dg j�A�Kt��g�j

� � kA�Ktk
�
�

� c�	 �kH
�		j�j���Ktk��

�j�j��		j�j� �kKtk��
�	��		j�j� �	�

by Condition ���� But for each � � � one has

kHKtk
�
� � kHSt��Kt��k

�
� � kHSt��k

�
��� kKt��k

�
� � kHSt��k

�
���Kt�e�

�



where the last identity follows from the semigroup property and self�adjointness� Then�
however� the Gaussian bounds and spectral theory give

kHKtk
�
� � a t��V �t����� sup


��
���e�
� �

This estimate� with � � � � j�j�� and � � �� in combination with �	� establishes �
� for

all � � � Hence we may now assume � � �
Secondly� let �F����� be the family of functions and �cm�m�N the constants as in

Lemma ��� ThenZ
fg�G�jgj���t���g

dg j�A�Kt��g�j
� �

Z
fg�G�jgj���t���g

dg j�A�KbF���tH�����
��g�j�

� kA�KbF���tH�����
k��

� c���	�kH
�		j�j���KbF���tH�����

k��
�j�j��		j�j� �

� �kKbF���tH�����
k��

�	��		j�j� ����

where we have again used Condition ����
Next it follows that for each � � � and m � � with m� � � N that

kHKbF���tH�����
k� � kH bF���tH�����k���

� kH���I � tH��k���k��
�I � tH�m	 bF���tH�����k��� �

� k���I � tH��mk���

� t� cm	 �
��m	���e��

��� k���I � tH��mk��� ����

by ��� and spectral theory� Moreover�

k���I � tH��mk��� � ��m���
Z �

�
ds s��e��

�ssmkSstk���

� ��m���
Z �

�
ds s��e��

�ssmkKstk�

� am

Z �

�
ds s��e��

�ssmV �st�����

for all �� t � �� But there is a c � � and an integer N such that

V �st����� � c �� � s�N���V �t�����

for all s� t � � because G has polynomial growth� Hence if m � N�� one has bounds

k���I � tH��mk��� � aV �t����� ���

uniformly for � � �� Finally combination of ����� ���� and ��� establishes bounds

Z
fg�G�jgj���t���g

dg j�A�Kt��g�j
� � a t�j�jV �t�������m��	�j�j e��

���






for all � � � Therefore for each 
 � h�� �i there is an a� � � such thatZ
fg�G�jgj���t���g

dg j�A�Kt��g�j
� � a� t

�j�jV �t�����e����������

for all � �  and all t � �� This completes the proof of the �rst statement of Proposition
�� The second statement follows because we now have ��� 
 � 
 �� 
 ���� �

To complete the proof of Theorem �� it su�ces to show that �� 
 �� The proof is

similar to the preceding proof that �� 
 � but uses a di�erent functional description of S
and K which again incorporates the property of �nite propagation speed� We now follow
the arguments of �Sik��

Lemma ��� For each � � �� and r � � introduce F �
r as the Fourier transform of the

function x �� �����
�
�r� � x�� � �

��
from R into R	�

Then the kernel KF�
r �H���� of the self�adjoint operator F �

r �H
���� satis�es

suppKF�
r �H����  B�

r ����

for all r � �� Moreover�

e�t

�
� ������ �� ��t����	
���

Z �

�
dr re�r

���t���
F �
r ���

for all �� t � � and there is a c� � � such that

jF �
r ���j � c� r

��	��� � r�������	����

for all �� r � ��

Proof This follows from the proof of Lemma � in �Sik�� �

One immediate consequence of Lemma �� and spectral theory is the representation

St � ����� � �� ��t����	
���
Z �

�
dr re�r

���t���
F �
r �H

����

and the corresponding representation

Kt � ����� � �� ��t����	
���
Z �

�
dr re�r

���t���
KF�

r �H����

for the semigroup kernel� The support property ���� implies that

�A�Kt��g� � ����� � �� ��t����	
���
Z �

jgj�
dr re�r

���t���

�A�KF�
r �H������g� ����

and hence pointwise bounds on A�Kt can be inferred from the following result�

Lemma ��	 If Condition �� is valid then for all large positive � there is an a� � � such

that

kA�KF�
r �H����k� � a� r

��	�r�j�jV �r���

for all r � ��

	



Proof One has the operator estimate

kA�KF
�
r �H����k� � kA�F �

r �H
����k���

� kA��I � r�H��mk���k�I � r�H�mF �
r �H

����k��� ����

for each positive integer m�
The �rst term on the right hand side of ���� is bounded by

kA��I � r�H��mk��� � ��m���
Z �

�
ds s��e�ssmkA�Kr�sk�

� cmr
�j�j

Z �

�
ds s��e�ssm�j�j��V �r�s�����

for all r � � where the second estimate uses Condition ��� Then since G has polynomial
growth there is a c � � and an integer N such that

V �r�s����� � c �� � s�N���V �r���

for all r� s � �� Hence if m � �N � j�j�� one has bounds

kA��I � r�H��mk��� � c�m r�j�jV �r��� ����

for all r � ��

The second term on the right hand side of ���� is� however� bounded by

k�I � r�H�mF �
r �H

����k��� � k�I � r�H�mKF�
r �H����k�

� V �r���� k�I � r�H�mKF
�
r �H����k�

� V �r���� k�I � r�H�mF �
r �H

����k��� ����

where the estimate follows because supp �I � r�H�mKF�
r �H����  B�

r� But

k�I � r�H�mF �
r �H

����k��� � k�I � r�H�m���	����k��� �

� k�I � r�H���	����F �
r �H

����k��� � ��
�

The �rst term on the right hand side of this last estimate is� however� bounded by ����
Speci�cally there is an a � � such that

k�I � r�H�m���	����k��� � aV �r����� ��	�

for all r � � whenever ������ � m�N��� Moreover� the second term on the right hand
side of ��
� satis�es bounds

k�I � r�H���	����F �
r �H

����k��� � sup

��

�� � r������	����jF �
r ���j � c� r

��	� ���

for a suitable c� � � uniformly for all r � � by Lemma ��� Combination of ����� ��
��
��	� and ��� then yields bounds

k�I � r�H�mF �
r �H

����k��� � c�� r
��	� ���

��



for all r � � whenever � is su�ciently large relative to m�
Finally combining ����� ���� and ��� one obtains the desired estimates� �

The proof of the implication �� 
 � in Theorem �� is now completed by noting that
���� and Lemma �� give

j�A�Kt��g�j � aj�j t
���	
���

Z �

jgj�
dr e�r

���t���

r���	���j�jV �r���

� aj�j t
���	
���e�������jgj�����t���

Z �

jgj�
dr e��r

���t���
r���	���j�jV �r���

for all g � G� t � � and 
 � h�� �i� Hence by a change of integration variable

j�A�Kt��g�j � aj�j t
�j�j��e�������jgj�����t���

Z �

�
ds e��s

���s���	���j�jV �st������

and then since V �st������ � c �� � s�N �V �t����� one obtains bounds

j�A�Kt��g�j � aj�j�� t
�j�j��V �t�����e�������jgj�����t���

for all g � G� t � � and 
 � h�� �i� if � is large enough�

This completes the proof of Theorem ��� �

Theorem �� relates various pointwise estimates with L� estimates and one has similar

relationships with Lp estimates� For each multi�index � and p � ����� de�ne Conditions
���p and ���p analogous to Conditions �� and ��� but with the L��norm replaced by the
Lp�norm� Thus Conditions �� and �� are identical to Conditions ���� and ����� Note that
Conditions ���� and ���� fail in general� even if G � R��

Corollary ��
 If � � J�d�� then

���p ����p
� m

�� 
 � � �� � ��

for all p � h���i and  p � ������

Proof If p � ����� and Condition ���p is valid then it follows as in the proof of ��� that

kA�K
tk� � kA�Stkp�p kKtkp kKtkq

for all t � �� where q is the dual exponent of p� Hence Condition ���p implies Condition ���
Conversely� if Condition �� is valid then the Gaussian bounds of Condition � are valid

and Condition ���p follows by quadrature� as before�
Finally we show that Condition ���p implies Condition ���p for all p � h���i� It follows

from �DuR�� Theorem ���� that the operator H has a bounded H��functional calculus on
Lp� Hence there exists a c � � such that

kH j�j��Stkp�p � kH j�j��e�tHkp�p � c t�j�j��

��



uniformly for all t � �� Then Condition ���p implies that

kA�Stkp�p � c� kH j�j��Stkp�p � c c� t�j�j��

for all t � � and Condition ���p is valid� �

Next we consider the analogue of Theorem �� for fractional derivatives� There are

various ways of introducing fractional derivatives but in the context of semigroup kernels
the most appropriate appears to be in terms of H�older� or Lipschitz� properties� Therefore
for each multi�index � and � � h�� �i we introduce the following conditions�

����� There is a c � � such that

k�I � L�h��A�	k� � c �jhj���kH�j�j	����	k�

for all h � G and 	 � D�H�j�j	������

���� For each � � � there are b� c � � such that

j��I � L�h��A�Kt��g�j � c �jhj�t������t�j�j��V �t�����e�b�jgj
���t��

for all g� h � G and t � � with jhj� � � t����

����� There is a c � � such that

k�I � L�h��A�Stk��� � c �jhj�t������t�j�j��

for all h � G and t � ��

����� There is a c � � such that

k�I � L�h��A�Ktk� � c �jhj�t������t�j�j��V �t�����

for all h � G and t � ��

One now has the following implications analogous to those of Theorem ���

Proposition ��� Let � � h�� �i� Then ���� 
 ��� and ���� � �� 
 ���� 
 ���� 

��� for each multi�index �� Moreover� the exponent b in Condition ��� may be chosen

arbitrarily close to� but strictly smaller than� ����

Proof It follows by a quadrature estimate that ��� 
 ���� under the additional restraint

jhj� � �t���� But if jhj� � �t��� then Condition � implies

k�I � L�h��A�Stk��� �  kA�Stk��� � c t�j�j�� � c ��� �jhj�t������t�j�j�� �

Hence ��� � � 
 �����
A slight modi�cation of the argument that �� 
 �� establishes that ���� 
 ����
Next Condition ���� implies the following weak form of Condition ���� �

������ For each  � � there is a c	 � � such that

k�I � L�h��A�	k� � c	 �jhj
����kH�		j�j	����	k��

�j�j	����		j�j	�� �k	k��
	��		j�j	��

for all h � G and all 	 � D�H�		j�j	������

�



The proof is a repetition of the argument used to establish that �� 
 ����
To complete the proof of the proposition it su�ces to prove that ����� 
 ��� and ���� 


���� The proof of the �rst of these implications is a variation of the previous reasoning
with Condition ��� replaced by Condition ����� � First one observes that a straightforward
generalization of Lemma �� shows the bounds of Condition ���� with b arbitrarily close
to ���� to be equivalent to boundsZ

fg�G�jgj����	���t���g
dg j��I � L�h��A�Kt��g�j

� � a� �jhj
�t������t�j�jV �t�����e����������

for all �� t � �� 
 � h�� �� and h � G with jhj� � � t���� For small � these latter bounds
follow from Condition ����� by the argument in the �rst step of the proof of Proposition ��

Hence it su�ces to consider the case � � ��
 and jhj� � � t���� Then� however�

��I � L�h��A�Kt��g� � ��I � L�h��A�KbF���tH�����
��g�

for all g � G and t � � with jgj� � �� � 
��t��� where F� is the family of functions
introduced in Lemma ��� This follows because jhj� � � t��� � 
� t���� Therefore one has
both jh��gj� � � t��� and jgj� � � t���� Then� arguing as before�Z
fg�G�jgj����	���t���g

dg j��I � L�h��A�Kt��g�j
� � k�I � L�h��A�KbF���tH�����

k��

� c�	 �kH
�		j�j	����KbF���tH�����

k��
��j�j	����		j�j	��

� �kKbF���tH�����
k��

�	��		j�j	��

by use of Condition ������ Hence reasoning as in the proof of Proposition � one deduces

that ����� 
 ��� �
The proof that ���� 
 ��� is similar to the proof that �� 
 �� First one can make

estimates analogous to those of Lemma ��� One obtains

k�I � L�h��A�KF�
r �H����k� � a� �jhj

� r����r��	�r�j�jV �r���

for all r � �� But one also has the analogue

��I � L�h��A�Kt��g� � ������ ����t����	
��� �

�
Z �

jgj��jgh��j�
dr re�r

���t���
��I � L�h��A�KF�

r �H������g�

of ����� Therefore repeating the arguments used to prove �� 
 � one obtains bounds

j��I � L�h��A�Kt��g�j � aj�j�� �jhj
� t������t�j�j��V �t�����e�������jgj��jgh��j�����t���

for all g� h � G� t � � and 
 � h�� �i� If jgj� � jgh��j� the proof is complete� But in any

case one has

�jgh��j��� � �jgj� � jhj��� � ��� ��jgj��� � ��� � ���jhj���

for all  � h�� �i and if jhj� � � t��� this gives

�jgh��j��� t�� � �� � ��jgj��� t�� � ����� � �� �

��



Therefore one again obtains the desired bounds although possibly with rede�ned values of

 and aj�j��� �

Theorem �� and Proposition �
 deal with individual multi�derivatives A� and next

we consider properties uniform in the number j�j of derivatives� For this we need uniform
versions of the previous conditions and we introduce a continuous scale of conditions which
incorporates the H�older bounds as fractional derivatives�

Let s � �� If s � N we de�ne Condition Ns� where N � f�� � � � � �g� to be valid if

Condition N� holds for all � with j�j � s� If� however� s � n � � with n � N� and
� � h�� �i we de�ne Condition Ns to be valid if Condition N��� holds for all � with j�j � n�

In addition we introduce a �fth family of conditions involving !cuto�" functions�

�s� There are � � h�� �i� c � � and a family of C��functions ��R�R�� such that supp �R �
B�
R� �R�g� � � for all g � B�

�R and � � �R � �� In addition� if s � N then

kA��Rk� � cR�j�j

for all multi�indices � with j�j � s uniformly for R � �� Alternatively� if s � n� �

with n � N� and � � h�� �i then

k�I � L�h��A��Rk� � c �jhj�R����R�j�j

for all multi�indices � with j�j � n� uniformly for h � G and R � ��

The existence of cuto� functions of this type on a general Lie group� with s � N� has
been established in �ElR��� Lemma ��� for all R in a �nite subinterval of h���i and any
multi�index �� The crucial feature of Condition �s is the requirement that the functions
exist with the appropriate bounds on their derivatives uniformly for all R � �� If s � �

then there is no problem and cuto� functions of this type always exist by the following
construction�

The kernel K has Gaussian lower bounds with � � �� by �Rob�� Proposition IV�����
i�e�� there exist b� c � � such that

Kt�g� � c V �t�����e�b�jgj
���t��

��

for all t � � and g � G� Together with the upper bounds �� it follows that there are a � �
and b�� b� � � such that

a��e�b��jgj
��R�� �

KR��g�

KR��e�
� ae�b��jgj

��R��

for all g � G and R � �� Fix an increasing function 	 � C��R� such that 	�x� � � if
x � ��a��� and 	�x� � � if x � �a���� Then de�ne

	R�g� � 	
�
KR��g�

KR��e�

�
���

for all g � G and R � �� Next choose ��� �� � � so that e�b��
�
� � �� and e�b��

�
� � ��a�����

Then 	R�g� � � for all R � � and g � G with jgj� � ��R and 	R�g� � � if jgj� � ��R�

Therefore the functions
�R � 	���

� R ���

��



satisfy the required domain properties�
Next we show that the derivatives have the right decay� It su�ces to establish this for

the functions 	R� But

�Ai	R��g� � 	�
�
KR��g�

KR��e�

�
�AiKR���g�

KR��e�

for all i � f�� � � � � d�g uniformly for all g � G and R � �� Then

j�Ai	R��g�j � cR��

by ��� and �� uniformly for g � G and R � �� Condition �� follows immediately�

Our ultimate aim is to prove that all the Conditions �s� �s are equivalent and if they

hold for one s � � then they hold for all s � �� But the proof of these statements requires
detailed examination of the algebraic structure which we defer to the next section� At this
point we have the following preliminary results�

Proposition ��� If m�n � N with m � n then Nm 
 Nn for all N � f� �� �� �g�
If n � N and � � h�� �i then Nn	� 
 Nn for all N � f� �� �� �g�

Proof First� as translations on the Lp�spaces are isometric it follows as in �Rob�� Lemma
III����� that for all m � N and p � ����� there exists a c � � such that

kA�	kp � 
m�j�j max
j�j�m

kA�	kp � c 
�j�jk	kp ���

for all 	 � L�p�m� 
 � � and � � J�d�� with � � j�j � m� Using these inequalities on L�

and L� one immediately deduces that �m 
 �n� �m 
 �n� and �m 
 �n for all m�n � N

with m � n� Hence m 
 n because m � �m 
 �n � n�

Secondly� since Conditions �� ��� �� and �� are always valid we may assume n � �
Thirdly� it follows from the Duhamel formula and some rearrangement that

f ��x� � u�� �f�x� u�� f�x��� u��
Z u

�
ds
�
f ��x� s�� f ��x�

�
�

Therefore

max
j�j�n

kA�	k� � u�� max
j�j�n��

kA�	k�

� u�� max
j�j�n��

max
i�f������d�g

Z u

�
ds k

�
I � L�exp�sai��

�
AiA

�	k�

� u��
�

max
j�j�n

kA�	k� � c 
�n	�k	k�
�

� u�� max
j�j�n��

max
i�f������d�g

Z u

�
ds k

�
I � L�exp�sai��

�
AiA

�	k�

for all u � � and 
 � �� by ��� with p � � Setting 
 � u�� it follows that

max
j�j�n

kA�	k� � u�� max
j�j�n��

max
i�f������d�g

Z u

�
ds k

�
I � L�exp�sai��

�
AiA

�	k� � c� u�nk	k�

��



for a suitable c� � �� uniformly for all u � � and 	 � L���n� Therefore� if Condition �n	� is
valid with n �  and � � h�� �i then

max
j�j�n

kA�Stk��� � c� u
��
Z u

�
ds �st����t�n�� � c� u

�n

� c��� � ����u�t��n	���� � c� u
�n

for all t � � and u � h�� t���� for suitable c�� c� � �� Choosing u � t��� implies that
Condition �n is valid� The comparable implication for the fourth and �fth condition follows

by similar reasoning but starting from ��� with p ���
Finally� by quadrature� Condition n	� implies that the bounds of Condition �n	� are

valid with the extra restriction jhj� � �t���� But this does not a�ect the previous argument

and one deduces that Condition �n is valid� But �n � n as a corollary of Theorem ���
Therefore n	� 
 n� �

Combination of the foregoing results leads to the following conclusion�

Proposition ��� The following implications are valid

�s 
 s � �s � �s 
 �s
� � � �
t � �t � �t 
 �t

for s � t � ��

Proof First� it follows from Theorems �� that �n 
 n � �n � �n and from Proposi�

tion �
 that �n	� 
 n	� and �n	� � n� 
 �n	� 
 �n	� 
 n	� � But n	� 
 n by
Proposition �	 and hence �n	� 
 n	� � �n	� � �n	� � Then for N � f� �� �g one has
Nn	� 
 Nn 
 Nm whenever m � n� by Proposition �	� and �Nm	� �Nm�
 Nm	� � by a
simple interpolation argument� Therefore one concludes that

�s 
 s � �s � �s
� � �
t � �t � �t

for s � t � �� Thus it remains to incorporate the �fth condition involving the cuto�
functions�

Let 	R and �R be as in ��� and ���� It su�ces to prove the appropriate bounds on

the derivatives of 	R�
Let n � N and suppose that Condition �n is valid� Then Condition �m is valid for all

m � n by the foregoing� Let � � �i�� � � � � in� � J�d��� Then

�A�	R��g� �
X

	�l�
�
KR��g�

KR��e�

� lY
p��

�A�pKR���g�

KR��e�
���

uniformly for all g � G and R � �� where the sum is �nite and over a subset of all l �
f�� � � � � ng and ��� � � � � �l � J�d�� with j�pj � � for all p � f�� � � � � lg and j��j� � � �� j�lj � n�
Then ����

lY
p��

�A�pKR���g�

KR��e�

���� �
lY

p��

c�pc
��R�j�pj � R�nc�n

lY
p��

c�p

��



uniformly for g � G and R � �� Condition �n follows immediately�
Next Condition �n	� with n � N and � � h�� �i implies Condition �s for all s � n� �

by the foregoing reasoning� Hence

k�I � L�h��A�Ktk� � c �jhj�t������t�j�j��V �t�����

and
kA�Ktk� � c t�j�j��V �t�����

for all h � G� t � � and � with j�j � n� Since k�I�L�h���� ���k� � k� �k�k�I�L�h���k�
and k�I � L�h����� � ���k� � k��k�k�I � L�h����k� � k��k�k�I � L�h����k� for all
� � C�

c �R�� ����� �� � L� and h � G it follows from ��� that there exists a c � � such
that k�I � L�h��A�	Rk� � c �jhj�R����R�n for all h � G and R � �� i�e�� Condition �n	�
is valid� �

Remark ���� One can also introduce p�dependent versions �����p� �����p of Conditions ����
and ���� and generic versions �s�p and �s�p of Conditions �s and �s in place of the L��
versions� Then p�versions of Propositions �
� �	 and ��� are valid similar to Corollary
�� of Theorem ��� We leave the formulation and proof to the reader�

The cuto� functions introduced by Conditions �s play the crucial role in linking the
current analytic arguments with the subsequent algebraic reasoning� Their signi�cance lies
in the following observation�

Proposition ���� If Condition ��	� is valid for some � � h�� �i then there exist an in�

�nitely di�erentiable function 	�G� R and for all h�� h� � G a c � � such that�����I � L�h�h�h
��
� h��

� �	
�
�g�
��� � c �jgj����

for all g � G with jgj� � �jh�j� � jh�j��� Moreover�

jgj� � � � 	�g�

for all g � G�

Proof Let ��R�R�� be the family of functions and � � h�� �i the parameter in Condi�

tion ��	� � Then � � �n�g� � � for all g � G and n � ���jgj�� Therefore we can de�ne
	�G� R by

	�g� �
�X
n��

�
�� �n�g�

�
�

Then
jgj� � � � 	�g� � ���jgj� ���

for all g � G� If g � G� n � N and n �� �jgj�� ���jgj��� then �n is constant on a neighbourhood
of g and therefore all derivatives of �n vanish� So

�Ai	��g� � �
X

n�N� jgj��n���� jgj�

�Ai�n��g� �
�

��



for all g � G and i � f�� � � � � d�g� Since supn�N n kAi�nk� �� it follows that Ai	 � L�
for all i � f�� � � � � d�g�

Now let g� h � G with g �� e and suppose that jhj� � ��jgj�� Then ��jgj� � jh��gj� �
jgj� and therefore

�����I � L�h��Ai	
�
�g�
��� � X

n�N� ���jgj��n����� jgj�

�����I � L�h��Ai�n
�
�g�
���

�
X

n�N� ���jgj��n����� jgj�

c �jhj�n���� n�� � �	�c ����jhj����jgj����

for all i � f�� � � � � d�g� by Condition ��	� � But since Ai	 is bounded it follows that there
exists a c � � such that �����I � L�h��Ai	

�
�g�
��� � c �jhj����jgj����

for all g� h � G with g �� e�

Next let g� h�� h� � G with g �� e and jh�j
� � ���jgj�� There exists an absolutely

continuous path �� ��� ��� G such that ���� � e� ���� � h��

#��t� �
d�X
i��

�i�t�Ai

���
�t�

for almost every t � ��� �� and
R �
� dt

�Pd�

i�� j�i�t�j
�
����

� jh�j�� Then

�����I � L�h���L���t��Ai	
�
�g�
��� � ����L���t�� �I � L���t���h���t��

�
Ai	

�
�g�
���

� c �j��t���h���t�j
����j��t���gj����

� ��c �jh�j
� � �jh�j

����jgj����

for all t � ��� �� and i � f�� � � � � d�g� Therefore

�����I � L�h����I � L�h���	
�
�g�
��� � Z �

�
dt

d�X
i��

j�i�t�j
�����I � L�h���L���t��Ai	

�
�g�
���

�  � ��c d� jh�j
��jh�j

� � �jh�j
����jgj����

�  � ��c d� �jh�j
� � jh�j

���	��jgj���� �

Since 	�l� � ���jlj� for all l � G it follows that there exists a c � � such that

�����I � L�h����I � L�h���	
�
�g�
��� � c �jh�j

� � jh�j
���	��jgj����

for all g� h�� h� � G with g �� e�

Finally let h�� h� � G and set k � h�h�h
��
� h��

� � Using the identity

I � L�h�h�h
��
� h��

� � � �L�h�� �I � L�h��
� ���I � L�h��

� ��

� L�h�h
��
� � �I � L�h����I � L�h�h

��
� h��

� ��

�




it follows that there exists a c� � � such that�����I � L�k��	
�
�g�
��� � c �jh�j

� � jh�j
���	��jh��

� gj���� � c �jh�j
� � jh�h

��
� h��

� j���	��jh�h
��
� gj����

� c� �jgj����

for all g � G with jgj� � �jh�j� � jh��j�� �

Corollary ���� If � � h�� �i� h�� h� � G and c�� c� � � are such that jk�nj� � c�n for all

n � N with n � c�� where k � h�h�h
��
� h��

� then Condition ��	� fails�

Proof Suppose that h�� h�� c�� c� exist with the described properties and Condition ��	�
is valid� By Proposition �� there exists a c � � and an in�nitely di�erentiable function
	�G� R such that 	�g� � jgj� � � and j��I � L�k��	��g�j � c �jgj���� for all g � G with
jgj� � �jh�j� � jh�j��� Apply the last inequality to g � k�n� Let N � N be such that

N � c� and c�N � �jh�j
� � jh�j

��� Then for all n � N one has

j	�k�n�� 	�k��n	���j �
�����I � L�k��	

�
�k�n�

��� � c �jk�nj���� � c �c�n�
��

and hence

c��N �m�� � � 	�k�N � � 	�k��N	m��� 	�k�N �

�
mX
l��

c c��� �N � l���

� c c��� �� � ����
�
�N �m���� �N���

�
for all m � N� by a quadrature estimate� But this is impossible for large m� �

Note that if Condition ��	� fails then Conditions �s� �s must also fail for s � � � � by
Proposition �	�

In the next section we demonstrate that Condition ��	� has strong implications for the
group structure� Our line of argument is most easily illustrated by examining Condition ���

If this condition is valid then it follows from ��� and �
� that there exists a c � � such
that

j�A�	��g�j � c
�
	�g�

���

for all g � G with jgj� �  and all multi�indices � with j�j � � Let i� j � f�� � � � � d�g and
set b � �ai� aj�� Then

d

dt
	�exp tb� � �

�
dL�b�	

�
�exp tb� �

�
AjAi �AiAj�	

�
�exp tb� � c

�
	�exp tb�

���
� �	�

Integrating this di�erential inequality it follows that there is a c� � � such that

j exp tbj� � � � 	�exp tb� � c� t���

for all t � �� If G is the covering group of the Euclidean motion group one has� however�
lower bounds j exp tbj� � c�� t for large t� if b �� �� This then contradicts Condition ��� More
generally Condition ��� and hence Condition ��� fail for any group for which one can �nd

�	



an element b which is a commutator and such that j exp tbj� � c t for large t� On nilpotent
and compact groups this is impossible� On a solvable group which is not nilpotent one can

�nd such a b� but then it is unlikely that it equals a commutator of order  in the algebraic
basis� Thus one needs careful analysis of the underlying Lie algebraic structure�

The foregoing results provide a similar analysis based on Condition ��	� � If one merely
assumes Condition ��	� there does not appear to be any easy analogue of the di�eren�

tial inequality �	�� Therefore it is appropriate to estimate a group commutator as in
Proposition ��� Moreover� in Corollary ��� the time variable t in the key lower bound
j exp tbj� � c t has been discretized� The main problem in the next section is to �nd the

candidates for the k in Corollary ����

� Algebraic structure

In the previous section we demonstrated that boundedness of the Riesz transforms implies

that the derivatives of the semigroup kernel satisfy Gaussian bounds with the correct
asymptotic behaviour� In this section we establish that bounds of the latter form are only
possible on a group with polynomial growth if the group is the local direct product of a
compact group and a nilpotent group� The previous arguments were largely analytic but

the proofs of this section are largely algebraic� We rely heavily on the structure theory of
Lie groups�

We begin with some geometric observations� First note that two moduli on a Lie group
associated with two algebraic bases are equivalent on the complement of any neighbourhood

of the identity by �VSC�� Proposition III����
Secondly one has the following simple relationship�

Lemma ��� Let Q�E be Lie groups with moduli j � jQ and j � jE and $�Q� E a Lie group

homomorphism� Then there exists a c � � such that j$�g�jE � c jgjQ for all g � G with

j$�g�jE � ��

Proof The proof is elementary once one realizes that one can assume that the modulus
on E can be taken with respect to a vector space basis� We omit the details� �

Next let q� n and m be the radical� the nil�radical and a Levi�subalgebra of g and Q�
M the connected analytic subgroups of G which have Lie algebras q and m� Then the

Killing form on m is negative�de�nite since all eigenvalues of the adjoint representation on
a group of polynomial growth are purely imaginary �see �Gui��� Hence M is compact and
therefore closed in G by �Hoc�� Theorems XIII���� and XIII����� In addition� G � QM and
Q is closed in G �see �Var�� Theorem ���
�����

Since M is compact the moduli on G and Q do not di�er much�

Lemma ��� There exist c�� c� � � such that c�jgjQ � jgj� for all g � Q with jgjQ � c��

where j � jQ is a modulus on Q with respect to some basis�

Proof Since M is compact in G there exists a c� � � such that jmj� � c� for all m �M �
Let B � fg � G � jgj� � ��c�g� Then B is compact in G and Q is closed in G� Therefore
Q 	 B is compact in G and hence in Q� thus bounded in Q� Let C � � be such that
jgjQ � C for all g � Q 	 B�

�



Now let g � Q and suppose jgjQ � C� Then jgj� � � � c� � �� There exists a n � N

such that n � � � jgj� � n and a sequence e � g�� g�� � � � � gn��� gn � g in G such that

jg��
i gi��j� � � for all i� Moreover� for all i there exist qi � Q� mi � M such that gi � qimi

where we may assume that m� � mn � e� Then g��
i gi�� � m��

i q��
i qi��mi�� and hence

jq��
i qi��j

� � jg��
i gi��j

� � jm��
i j� � jmij

� � � � c� �

But also q��
i qi�� � Q� Therefore q��

i qi�� � Q 	 B and jq��
i qi��jQ � C� Hence jgjQ �

jqnjQ � C n � C�jgj� � �� � C jgj�� �

Proposition ��� If � � h�� �i and Condition ��	� is valid then the radical of g is nilpotent�

i�e�� q � n�

Proof For all a � q let S�a� and K�a� be the semisimple and nilpotent part of the Jordan
decomposition of the derivation ada� Note that S�a� � � for all a � n� Set dQ � dimq and

d� � dimq� dimn� Let eQ be the universal covering of Q and �� eQ� Q the natural map�
Set � � Ker�� We identify the Lie algebras of Q and eQ� By �Ale��� Sections  and �� there
exist a basis b�� � � � � bdQ for q� an r � N� for all i � f�� � � � � dQg there are Ri � ff�g�Zg and
wi � f�� � � � � rg and� moreover� there are a Lie bracket � � � � �N on q� ideals q�� � � � � qr	� of

�q� � � � � �� and vector subspaces a�� � � � � ar� h��� � � � � h�r� h��� � � � � h�r of q with the following
properties�

I� S�bi�bj � � for all i� j � f�� � � � � d�g and n � spanfbd�	�� � � � � bdQg�

II� �bi� bj�N � �bi� bj�� �bi� a�N � K�bi�a and �a� b�N � �a� b� for all i � f�� � � � � d�g and
a� b � n�

III� The Lie algebra �q� � � � � �N� is nilpotent�

IV� q� � q and qi	� � �q� qi�N for all i � f�� � � � � rg� Moreover� qr �� f�g and qr	� � f�g�
i�e�� r is the rank of the nilpotent Lie algebra �q� � � � � �N��

V� qj � aj � qj	� and aj � h�j � h�j for all j � f�� � � � � rg� Also h�j � fa � aj � S�bi�a �

� for all i � f�� � � � � d�g and �b� a� � � for all b � mg and the vector space h�j is
invariant under the S�bi� with i � f�� � � � � d�g and the S�a� with a � m� Moreover�
bi � h�wi � h�wi for all i � f�� � � � � dQg and � � w� � � � � � wd� � wd�	� � � � � � wdq �

VI� If i� � f�� � � � � d�g� j � f�� � � � � dQg and S�bi��bj �� � then Rj � f�g and there exist
 � f��� �g and ��� � � � � �d� � R such that S�bi�bj � �i bj		 and S�bi�bj		 � ��i bj
for all i � f�� � � � � d�g�

VII� If a � m� i � f�� � � � � dQg and �a� bi� �� � then Ri � f�g�

VIII�The map e%�RdQ � eQ given by

e%�t�� � � � � tdQ� � expeQ�tdQbdQ� � � � expeQ�t�b��
is a di�eomorphism and � � e%�R� � � � ��RdQ��

Lemma ��� The Lie algebra �q� � � � � �� is the smallest subalgebra of �g� � � � � �� which con�

tains a��

�



Proof For the proof we need to introduce one more Lie bracket on q� For all t � � de�ne
the linear map �t� q � q by

�t�bi� � twi bi

for all i � f�� � � � � dQg� We de�ne a scale of Lie brackets on the vector space q� For t � �

de�ne � � � � �Nt� q� q� q by

�a� b�Nt � ���
t ���t�a�� �t�b��N� �

By �NRS�� Section �� limt���a� b�Nt exists and we set

�a� b�H � lim
t��

�a� b�Nt

for all a� b � q� Obviously �t��a� b�H� � ��t�a�� �t�b��H for all a� b � q and t � ��
The proof now follows by establishing that the elements b�� � � � � bd� form an algebraic

basis �rst for the Lie algebra �q� � � � � �H�� then for the Lie algebra �q� � � � � �N� and �nally

for the Lie algebra �q� � � � � ��� where d� � dima�� If � � �i�� � � � � in� � J�d� with n � N

then set k�k � wi	�� � � ��win and b�� � �bi�� �� � � �bin��� bin� � � ��� � q� De�ne similarly b��N
and b��H � Then

b��N � b��H �modqk�k	�� ����

for all � � J�d� with j�j �� ��
We �rst show that b�� � � � � bd� is an algebraic basis for �q� � � � � �H�� Let k � f�� � � � � rg

and a � ak� Then for all � � J�d� with j�j � k there exist c� � R such that

a �
X

��J�d�
k�j�j�r

c� b��N �

By ���� there exists a b � qk	� such that

a � b�
X

��J�d�
k�j�j�r

c� b��H �

Since �q� � � � � �H� is homogeneous one deduces that

a �
X

��J�d�
k�j�j�r
k�k�k

c� b��H �

But if � � J�d� with k�k � k and j�j � k then � � J�d��� So

a �
X

��J�d��
j�j�k

c� b��H ����

and b�� � � � � bd� is an algebraic basis for �q� � � � � �H��
Next we prove by induction that b�� � � � � bd� is an algebraic basis for �q� � � � � �N�� Obvi�

ously for all a � qr � ar there exist c� � R such that

a �
X

��J�d��
j�j�r

c� b��H �
X

��J�d��
j�j�r

c� b��N





by ���� and ����� Let k � f�� � � � � r � �g and suppose that

qk	�  spanfb��N � � � J�d��g � ���

Let a � ak� Then there exist c� � R such that ���� is valid� Let b � qk	� be such that

a � b�
X

��J�d��
j�j�k

c� b��N �

Then together with ��� it follows that a � spanfb��N � � � J�d��g�
Finally we show that a�� � � � � ad� is an algebraic basis for �q� � � � � ��� It su�ces to prove

that b��N � spanfb�� � � � J�d��g for all � � J�d��� But �a� b�N � �a� b�� S�a�b � S�b�a
for all a� b � fb�� � � � � bd�g � n and S�a� is a polynomial in ada without constant term�
Therefore expanding the commutator b��N from inside in terms of the Lie brackets � � � � �
one deduces that b��N � spanfb�� � � � J�d��g� �

The next lemma is the main step in the proof of Proposition ���� To formulate it
we need the Lie algebra e of the Euclidean motion group� i�e�� the Lie algebra with basis

e�� e�� e
 and commutation relations �e�� e�� � �e
� �e�� e
� � ��e� and �e�� e
� � �� This
algebra provided the counterexample of Alexopoulos �Ale�� on the boundedness of the Riesz
transforms� Let Es be the connected simply connected Lie group with Lie algebra e and let
E � Es��Es� where �Es � fexpEs�ke�� � k � Zg � Z�Es�� the centre of Es� It follows from

the structure theory of �Ale��� in particular Property VIII� that E is� up to isomorphism�
the connected not�simply connected Lie group with Lie algebra e�

Lemma ��� Let Q be a connected solvable Lie group with Lie algebra q and let n be the

nil�radical of q� The following are equivalent�

I� q �� n�

II� There is a surjective Lie group homomorphism from Q to the Euclidean motion

group E�

Proof Clearly if the second condition is valid then Q� and hence q� cannot be nilpotent�
Conversely� if q �� n then d� � �� Then S�b�� �� � because otherwise adb� � K�b�� would be
nilpotent and b� � n �see �Var�� Corollary ��
���� But �q� � � � � �� is spanned as a Lie algebra

by a� and S�b�� is a derivation� Hence there is a j � f�� � � � � d�g such that S�b��bj �� ��
where d� � dima�� Then j � d� by Property I and bj � n� By Property VI there exist
 � f��� �g and ��� � � � � �d� � R such that S�bi�bj � �i bj		 and S�bi�bj		 � ��i bj for all
i � f�� � � � � d�g� Moreover� bj		 � ���

� S�b��bj � a� by Property V�

Next de�ne the linear map �� q� e by

��bj� � e� � ��bi� � ������i e� if i � f�� � � � � d�g �

��bj		� � e
 � ��bk� � � if k �� f�� � � � � d�� j� j � g �

Let i � f�� � � � � d�g� Then �bi� bj�N � q� and ���bi� bj�N� � �� Hence ���bi� bj�� � ��S�bi�bj��
��K�bi�bj� � ���i bj		� � ���bi� bj�N� � �i e
 � �������i e�� e�� � ���bi�� ��bj��� By analo�
gous arguments it follows that � is a Lie algebra homomorphism�

�



We lift � to a Lie group homomorphism from eQ to the Euclideanmotion group E� There
exists a unique Lie group homomorphism e$� eQ� E such that e$�expeQ a� � expE ��a� for
all a � q�

We next show that e$��� � feg� so that e$ factors over Q� Let i � f�� � � � � d�g and
suppose that expeQ bi � �� Let Q� be the �normal� analytic subgroup of eQ which has Lie al�

gebra q�� Then for all t � R one has expeQ tbj � expeQ bi expeQ tbj expeQ��bi� � expeQ�teadbibj�
and hence

expeQ�tbj�Q� � expeQ�teadbibj�Q� � expeQ�teS�bi�bj�Q� � expeQ�t�cos��i�bj�sin��i�bj		��Q� �

Therefore �i � �Z� But then e$�expeQ bi� � expE ��bi� � expE����
���i e�� � feg since

expEs����
���i e�� � �Es�

Thus e$��� � feg and there exists a unique Lie group homomorphism $�Q� E such
that $ � � � e$� Then $�expa� � $�� expeQ a� � e$�expeQ a� � expE ��a� for all a � q�

Finally� since �� �� � the map e$ is surjective� �

Now we are prepared to complete the proof of Proposition ����

AssumeCondition ��	� is valid and q �� n� Then the foregoing Lie group homomorphism
$ from Q to the Euclidean motion group E exists� We use the notation of the proof of
Lemma ���� Set h� � exp����

� �b��� h� � exp�bj� and k � h�h�h
��
� h��

� � Then $�k� �
expE��e�� and $�kn� � expE��ne�� for all n � Z� Let j � jE be the modulus on E with

respect to the vector basis e�� e�� e
� Obviously j expE��ne��jE � jnj for all n � Z� We
next show that the inequality is actually an equality� There exists a unique 	�E � R such
that

	�expE��
e
� expE���e�� expE���e��� � ��

for all ���� ��� �
� � R
� Then

�
dR�e��	

�
�expE��
e
� expE���e�� expE���e��� � � �

�
dR�e��	

�
�expE��
e
� expE���e�� expE���e��� � cos ���

and �
dR�e
�	

�
�expE��
e
� expE���e�� expE���e��� � � sin ���

for all ���� ��� �
� � R
� Now let �� ��� �� � E be an absolutely continuous path with
���� � e and ���� � expE��ne��� Then

jnj � � sgn n
Z �

�
dt #��t�	 � � sgn n

Z �

�
dt


X
i��

�i�t�
�
dR�ei�	

�
���t�� �

Z �

�
dt
� 
X
i��

j�i�t�j
�
����

�

Therefore jnj � j expE��ne��jE and j$�kn�jE � jnj for all n � Z�
By Lemmas ��� and �� there exist c�� c� � � such that c� j$�g�jE � jgj� for all g � Q

with j$�g�jE � c�� Hence jknj� � c� jnj for all n � Z with jnj � c���
By Corollary ��� this implies that Condition ��	� is not valid� This is a contradiction

and hence q � n� �

We are now in a position to establish the principle conclusion of this section�

�



Theorem ��	 If � � h�� �i and Condition ��	� is valid then G is the local direct product

of a compact and a nilpotent group�

Proof We use the notation and basis as in the proof of Proposition ���� Let a � m and b �
q� Since k �� Ad�k�b from the compact K into g is bounded and� moreover� all eigenvalues
of S�a� are purely imaginary� it follows from the identity etK�a�b � e�tS�a�Ad�exp�ta��b that
the function t �� etK�a�b is bounded from R into g� Hence K�a�b � � and �a� b� � S�a�b�

It follows from Proposition ��� that the radical q of g is nilpotent� i�e�� q � n� If the
semidirect product of m and q is not direct then by Lemma ��� there exists an a � m such
that S�a�a� �� f�g� Then S�a�h�� �� f�g� In addition S�a�h��  h�� by Property VI� If one

complexi�es the space h�� and the semisimple operator S�a�� also denoted by S�a�� then
S�a� can be diagonalized� Since G has polynomial growth� each eigenvalue of ada � S�a�
is purely imaginary� Then the operator S�a� must have a complex eigenvector in h�� whose
eigenvalue is not zero� Passing back to the real vector space this implies that there exist

� � Rnf�g� b� c � h��nf�g such that S�a�b � � c and S�a�c � �� b� Set h� � exp����� a�
and h� � exp b� Then k � h�h�h

��
� h��

� � exp��b��
Let d�� � dimh��� We may assume that bi � h�� for all i � f�� � � � � d��g and bi � h��

for all i � fd�� � �� � � � �dima�g� Write b �
Pd��

i�� ti bi with t�� � � � � td�� � R� Then there

exists an i� � f�� � � � � d��g such that ti� �� � and obviously bi� � h��� But h�� � f a � a� �
there exists a  b � m such that � a� b� �� �g since n � q and d� � �� Therefore Ri� � f�g
by Property VII� Hence there exists a Lie group homomorphism $�Q � R such that
$�exp�tbi��� � t and $�exp�tbj�� � � for all t � R and j � f�� � � � � dQgnfi�g� Then

$�kn� � �nti� for all n � Z and one deduces a contradiction as before�
Thus g is the direct product of the Lie algebras m and n� But also G � QM � NM �

Therefore G is the local direct product of M and N � �

� D�enouement

In this section we complete the chain of reasoning required to prove Theorem ��� by

establishing two results� First we prove that if G is the local direct product of a compact
group and a nilpotent group then all Riesz transforms are bounded� Secondly� we use
interpolation arguments to deduce that the !fractional" Riesz transforms are bounded�

Proposition ��� Let G be the local direct product of a connected compact Lie group K

and a connected nilpotent Lie group N and let a�� � � � � ad� be an arbitrary algebraic basis of

the Lie algebra of G� If Ai are the left representatives and H the sublaplacian associated

with the algebraic basis then for each n � N there is a cn � � such that

c��
n kHn��	k� � sup

j�j�n
kA�	k� � cn kH

n��	k�

for all 	 � D�Hn����

Proof First suppose that G is the direct product of K and N �

Let g � �k� n� with k � K and n � N denote a general element of G� Further let dk and
dn denote the Haar measures on K and N and k and n the Lie algebras� We normalize the

�



Haar measure on K by jKj � �� Let LG� LK and LN denote the left regular representations
of G� K and N �

De�ne the projection PN �L��G � dg� � L��N � dn� by

�PN	��n� �
Z
K
dk 	�k��� n�

for almost every n � N and the isometric lifting T �L��N � dn�� L��G � dg� by

�T	��k� n� � 	�n�

for almost every �k� n� � G� De�ne the projection P �L��G � dg� � L��G � dg� by

P � TPN �
Z
K
dk LG�k� e� �

Then LG�k� n�P � TLN�n�PN � PLG�k� n� for all �k� n� � G� Hence the subspace
PL��G � dg� and its orthogonal complement �I�P �L��G � dg� are both L�invariant� There�

fore the restrictions of H to the spaces PL��G � dg� and �I � P �L��G � dg� are both self�
adjoint� Moreover� H commutes with P �

Each ai has a unique decomposition ai � a
�K�
i � a

�N�
i with a

�K�
i � k and a

�N�
i � n� The

a
�K�
� � � � � � a

�K�
d� are an algebraic basis for k and the a�N�

� � � � � � a
�N�
d� an algebraic basis for n�

Let Ai � dLG�ai�� Ki � dLK�a
�K�
i � and Ni � dLN �a

�N�
i � and set

HK � �
d�X
i��

K�
i and HN � �

d�X
i��

N�
i �

If 	 � D�Ai� then P	 � D�Ai� and AiP	 � PAi	� Moreover� AiP � TNiPN � A
�P �

TN�PN and HP � THNPN by the various de�nitions� Therefore one has bounds

kA�P	k� � kN�PN	k� � cj�j kH
j�j��
N PN	k� � cj�j kH

j�j��P	k� ����

for all � and all 	 � D�H j�j��� because the Riesz transforms on a nilpotent group are
bounded by �ERS�� Lemma ���

Next we establish similar bounds on �I � P �L��G � dg�� The basic idea is to prove that
the restriction H�I�P � of H to �I�P �L��G � dg� has spectrum in an interval ����i where
� � ��

Fix n � N � Then for each 	 � Cc�G� introduce 	n � L��K � dk� by setting 	n�k� �
	�k� n�� The set f	n � 	 � C�

c �G�g is dense in L��K � dk� and ��I � P �	�n is orthogonal

to the constant functions on K� Moreover� �LG�k� e� �I � P �	�n � LK�k� ��I � P �	�n for

all k � K� n � N and 	 � Cc�G�� Therefore �dLG�a
�K�
i ��I � P �	�n � Ki��I � P �	�n if

	 � C�
c �G�� Now HK acting on L��K � dk� has a compact resolvent and there is a � � �

such that HK � �I on the orthogonal complement of the constant functions� Therefore

d�X
i��

kdLG�a
�K�
i ��I � P �	k�� �

d�X
i��

Z
N
dn kKi��I � P �	�nk

�
�

�
Z
N
dn ���I � P �	�n�HK��I � P �	�n�

� �
Z
N
dn k��I � P �	�nk

�
� � � k�I � P �	k�� ����

for all 	 � C�
c �G�� Next we derive an upper bound on the sum with the aid of the following

asymptotic estimates�

�



Lemma ��� Let S denote the semigroup generated by H on L��G � dg�� Then for each

n � N there exist cn�� � � and cn�� � � such that

sup
j�j�n

kA�Stk��� � cn�� t
�n�� � cn��t

����

for all t � �� Hence for each N � n there is a CN � � such that

sup
j�j�n

kA�	k� � cN 
��N	� kHN��	k� � 
 k	k�

for all 	 � D�HN��� and all 
 � h�� ���

Proof Let � � ��� in� with j�j � n� Then

kA�St	k
�
� � �AinSt	� ����j�jA��A�St	� � kAinStk��� kA

��A�Stk��� k	k
�
�

where �	 is the reversal of �� But

kAinStk��� � kH���Stk��� � c t����

by ��� and spectral theory� Moreover�

kA��A�Stk��� � cn
�
kStk��� � kH��n�����Stk���

�

for a suitable cn � � by �ElR��� Theorem ���IV� Then

kA��A�Stk��� � c�n �� � t�n	����

by another application of spectral theory� Combining these estimates gives the �rst bounds
of the lemma�

The second bounds follow from the �rst using the Laplace transform estimate�

kA��H � 
�I��N���k� � ��N����
Z �

�
dt t�� e��

�t tN��kA�Stk��� k�k� �

which is valid for all � � L� and all 
 � �� and rearranging� �

Next since a�� � � � � ad� is an algebraic basis each a
�K�
i can be expressed as a polynomial

in the aj� The lowest order term in these polynomials is at least one and the highest order

term at most r� the rank of the basis� Therefore� by the second estimate of Lemma ���
for each N � r there is a cN � � such that

� d�X
i��

kdLG�a
�K�
i �	k��

����

� cN 
��NkHN��	k� � 
 k	k�

for all 	 � D�HN��� and all 
 � h�� ��� Replacing 	 by �I �P �	 and appealing to ���� one
then deduces that

cN 
��NkHN���I � P �	k� � �� � 
� k�I � P �	k�

�



for all 	 � C�
c �G� and 
 � h�� ��� Therefore choosing 
 smaller than � one readily concludes

that there is a � � � such that

kHN���I � P �	k� � �N�� k�I � P �	k� ����

for all 	 � C�
c �G� and� since C�

c �G� is dense in D�HN���� for all 	 � D�HN���� Hence the
spectrum of H restricted to �I � P �L��G � dg� must lie in ����i and the bounds ���� are
valid for all N � N�

Now consider the unitary representation g �� L�g��I � P � of G on �I � P �L��G � dg��
It follows from �ElR��� Theorem ���IV� that one has bounds

kA��I � P �	k� � cj�j �kH
j�j���I � P �	k� � k�I � P �	k��

for some cj�j � � and all 	 � �I �P �D�H j�j���� Then using ���� with N � j�j one obtains

bounds
kA��I � P �	k� � c�j�j kH

j�j���I � P �	k� ����

for all 	 � �I � P �D�H j�j����
Finally combination of ���� and ���� yields

kA�	k� � kA�P	k� � kA��I � P �	k�

� cj�j kH
j�j��P	k� � c�j�j kH

j�j���I � P �	k� � Cj�j kH
j�j��	k�

for a suitable Cj�j � � and all 	 � D�H j�j���� This completes the proof Proposition ��� if
G is the direct product of K and N �

Secondly� we drop the condition that G is the direct product� but merely assume that
G is a local direct product of K and N � Let eG � K �N be the direct product of K and N

and let D � K 	 N � Then D is a discrete central subgroup of G and D  K� Therefore

D is �nite� Moreover� G is isomorphic with eG�D� Hence it su�ces to show that the Riesz
transforms on eG�D are bounded� Let �� eG � eG�D be the quotient map� We normalize
the Haar measure on D by jDj � �� Next normalize the Haar measure on eG�D such thatZ

eG d g 	� g� �
Z
eG�D d #g

Z
D
dh	�gh�

for all 	 � Cc� eG�� where #g � ��g�� For all functions 	� eG�D � C de�ne �		� eG � C

by �		 � 	 � �� Then
ReG �		 �

ReG�D 	 and hence k�		k�� � k	k� for all 	 � Cc� eG�D��

where k � k�� and k � k� denote the L��norms on eG and eG�D� Since D is zero�dimensional we
can and do identify the Lie algebras of eG and G� Let eAi and Ai denote the in�nitesimal

generators on eG and eG�D� Then eAi�
		 � �	Ai	 for all 	 � C�

c � eG�D��
Let � � J�d��� By the above there exists a c � � such that k eA��k�� � c kfH j�j���k�� for

all � � C�
c � eG�� Hence

kA�	k� � k�	A�	k�� � k eA��		k�� � c kfH j�j���		k�� � c kH j�j���		k�

for all 	 � C�
c � eG�D� and the proposition follows by a density argument�

Finally� the lower bounds of the proposition are easy� For even n they are obvious
and the case n � � follows from ���� But then the case n � k � � with k � N is also
elementary� �






At this point we have proved that if G is a noncompact group which is the local
direct product of a compact group K and a nilpotent group N then the Riesz transforms

A�H�j�j�� are bounded for all �� Alternatively stated if for each n � N the space L���n is
equipped with the norm

	 �� N �
n�	� � max

j�j�n
kA�	k�

and if for each � � � the space D�H� is equipped with the norm

	 �� k	kD�H�� � kH	k�

then D�Hn���  L���n and the embedding is continuous� This latter conclusion can be
extended to intermediate spaces by interpolation theory but one needs to exercise care
since the normed spaces �L���n� N

�
n� and �D�H�� k � kD�H��� are not complete� This gives

some di�culty with the application of standard complex interpolation theory�

Proposition ��� If G is the local direct product of a connected compact group and a

connected nilpotent group� n � N and � � h�� �i then there exists a c � � such that

sup
h�Gnfeg

max
j�j�n

�jhj����k�I � L�h��A�	k� � c kH�n	����	k�

for all 	 � D�H�n	������

Proof Let � � J�d�� with j�j � n� SinceH is self�adjoint it has a bounded H��functional
calculus and hence

M� � sup
������

kA��H � 
I��n��k��� � sup
������

kA�H�n��k���kH
n���H � 
I��n��k��� �� �

Similarly�
M� � sup

������
max

i�f������d�g
kAiA

��H � 
I���n	����k��� �� �

Next for all 
 � h�� �� and � � � equip the spaces D��H � 
I�� with the norm 	 ��
k	kD��H	�I��� � k�H � 
I�	k�� Note that these spaces are complete�

Let 
 � � and h � G� Then the operator �I � L�h��A� is a bounded operator from
D��H � 
I�n��� into L�� with norm less than or equal to M�� Moreover� the operator

�I � L�h��A� is a bounded operator from D��H � 
I��n	����� into L� with norm less than
or equal to M� jhj�� Then complex interpolation gives

k�I � L�h��A�	k� � �M��
����M� jhj

���k	kD��H	�I�n����D��H	�I��n��������

uniformly for all 	 � �D��H � 
I�n����D��H � 
I��n	�������� Since the operators H � 
I

have bounded imaginary powers� uniformly for 
 � �� it follows from the proof of Step � of
Theorem ������ in �Tri�
� that there exists a c � �� independent of 
 � h�� �� and h� such
that

k	kD��H	�I�n����D��H	�I��n�������� � c k�H � 
I��n	����	k�

uniformly for all 	 � D��H � 
I��n	������ Combining the two estimates it follows that

k�I � L�h��A�	k� � c� �jhj
���k�H � 
I��n	����	k�

	



uniformly for all 	 � D��H � 
I��n	������ where c� � �M�����M�
� c is independent of 


and h�
The estimates of the proposition now follow by taking the limit 
� �� �

In the language of Section  we have demonstrated that if n � N and Conditions �n
and �n	� are satis�ed then Condition �t is satis�ed for all t � hn� n��i� But on any group
with polynomial growth� Condition �n is valid for n � �� Therefore the last argument

establishes the following statement�

Corollary ��� If G is a group with polynomial growth then Condition �t is satis�ed for

all t � h�� ���

In summary one has the following set of conclusions� Let s � �� First Condition �s
implies Conditions t� �t for all t � h�� s� by Proposition ���� But Condition �t for t close
to� but larger than� one implies that G is the local direct product of a compact group and
a nilpotent group by Theorem ���� Then this implies that Condition �n is satis�ed for all

n � N by Proposition ���� Finally the foregoing argument in the proof of Proposition ���
establishes that Condition �t is valid for all t � �� Hence we have the following conclusion�

Theorem ��� Conditions �s� �s are equivalent for all s � � and are valid if� and only if�

G is the local direct product of a connected compact group and a connected nilpotent group�

This theorem incorporates Theorem ��� and the related statements made in the intro�
duction concerning the H�older bounds�

� Concluding remarks

The foregoing discussion focussed on the Riesz transforms associated with the sublaplacian
H acting on L��G � dg�� But one can also deduce boundedness properties etc� on the Lp�
spaces with p � h���i� If G is the local direct product of a connected compact group

and a connected nilpotent group� then one has boundedness of the Riesz transforms on the
Lp�spaces and� in addition� optimal kernel bounds of any order�

Proposition ��� If G is the local direct product of a connected compact group and a

connected nilpotent group� p � h���i and n � N then there exists a cn � � such that

c��
n kHn��	kp � sup

j�j�n
kA�	kp � cn kH

n��	kp

for all 	 � D�Hn����

Proof It follows as in the proof of Proposition ��� in �ERS� that the operator A�H�j�j��

is of weak type ��� ��� �There is a small gap in the proof of Proposition ��� in �ERS�� it has
to be mentioned that the kernel k��� given by ��� in �ERS� is right di�erentiable on Gnfeg
and j�dR�ai�k�����g�j � a �jgj����V �jgj���� uniformly for all g � Gnfeg and � � ��� Hence

by interpolation the Riesz transforms are bounded on Lp for all p � h�� �� But the dual
operators of the Riesz transforms are bounded on L� and one has similar kernel estimates

��



for these operators� So the same argument applies and the Riesz transforms are bounded
on Lp for all p � ���i� This proves the upper bounds of the proposition�

The lower bounds are again easy� except for the case n � �� Let 	 � D�H� � Lp and
� � D�H����� � Lq� where q is the dual exponent� Then

���H���	� � ���H����H	� � �H������H	� � �
d�X
i��

�H������A�
i	� �

d�X
i��

�AiH
������Ai	�

since the range of H���� is contained in the domain of the operator Ai in Lq� But the Riesz
transforms are bounded on Lq and therefore there exists a c � � such that

j���H���	�j � c
d�X
i��

k�kq kAi	kp

uniformly for all 	 � D�H� and � � D�H������ Since D�H����� is dense in Lq it follows
that kH���	kp � c

Pd�

i�� kAi	kp for all 	 � D�H� and then� by density� for all 	 � L�p��� �

Finally� since the operator H on Lp has a bounded H��functional calculus �see� for
example� �DuR�� Theorem ���� the proof of Proposition ��� can be carried over line by line
and one deduces boundedness of the fractional Riesz transforms on the Lp�spaces�

Proposition ��� If G is the local direct product of a connected compact group and a

connected nilpotent group� n � N�� � � h�� �i and p � h���i then there exists a c � � such

that

sup
h�Gnfeg

max
j�j�n

�jhj����k�I � L�h��A�	kp � c kH�n	����	kp

for all 	 � D�H�n	������

Propositions ��� and �� state that if G is the local direct product of a connected
compact group and a connected nilpotent group then Condition �s�p is valid for all s � �
and p � h���i� Conversely if Condition �s�p is valid for one s � � and one p � h���i then
it follows from Remark ��� that Condition s is valid� Hence G is a local direct product
by Theorem ����
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