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Abstract 

Evaluation routines are essential for any application that uses triangular B-splines. This 
paper describes an algorithm to efficiently evaluate triangular B-splines. The novelty of the 
algorithm is its generality: there is no restriction on the degree of the B-spline or on the 
dimension of the domain. Constructing an evaluation graph allows us to reuse partial results 
and hence, to decrease computation time. Computation time gets reduced even more by 
making choices in unfolding the recurrence relation of simplex splines such that the evaluation 
graph becomes smaller. The complexity of the algorithm is measured by the number of leaves 
of the graph. 

1 Introduction 

Evaluation routines for splines are important for any application that uses splines. These appli
cations vary from scattered data approximation to variational surface modeling or 3D-morphing 
applications. In the end, the resulting spline is always sampled to compute the results or for 
visualization. 

Efficient evaluation schemes have been developed and implemented for many classes of splines, 
e.g. for Bezier-surfaces [Bez72] and B-patches [Sei91]. However, for triangular B-splines, which 
are widely used for their many desirable properties, efficient evaluation routines are restricted to 
the quadratic bivariate case [FS93, PS94]. 

In this paper we present an algorithm for efficient evaluation of triangular B-splines as introduced 
by Dahmen, Michelli and Seidel [DMS92]. The novelty of this algorithm is that it works for 
triangular B-splines of arbitrary degree and with an arbitrary number of dimensions of the domain. 
For simplicity, however, the main part of this paper concentrates on the bivariate case. The 
generalization towards arbitrary domains is discussed in section 7. 

Efficiency is obtained by re-using partial results. When Grandine [Gra87] attempted this approach, 
he found that tabulating those partial results for reuse is more costly than simply re-computing 
the required value. He attributes this to the need of the entire knot-set to identify a simplex spline. 
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Pfeifle and Seidel [PS94] use a triple of integers to identify the simplex splines encountered during 
evaluation of a triangular B-spline of degree 2. Unfortunately, their numbering does not scale up 
to higher order triangular B-splines. In this paper it is shown that the identification problem can 
be avoided by constructing a directed graph (an evaluation graph) representing the simplex- and 
B-splines. In section 3 we describe how this graph is built and how it is used to avoid multiple 
evaluation of simplex splines. 

To further reduce computation cost) we cut down on the number of partial results that are required. 
This is done by using our degrees of freedom when unfolding the recurrence relation for simplex 
splines. 

The selection scheme for simplex splines is described in section 4 and the selection scheme for 
triangular B-splines is described in section 5. The complexity of the algorithm is computed in 
section 6 and the results are discussed in section 8. 

2 Definitions 

The notations used for simplex- and triangular B-splines differ in some papers. Therefore, we 
briefly review the definition of the splines we consider in this paper. This section assumes that 
the reader is already familiar with triangular B-splines. 

2.1 General definitions 

Definition 2.1 [Determinant of points] Let V = (va, VI, V2) be a triple of points in JR2 Then the 
determinant of V, denoted as det(V) is defined as 

det(V) = det ( v!x 
Vay 

1 
(1) 

Definition 2.2 [Barycentric determinant] Let V be a triple of points in JR' and let x be a point 
in JR2 Then the i-th barycentric determinant of x (0 <:: i <:: 2) is defined as 

d,(x I V) = det(V[x/ViJ), (2) 

where V[x/v;] denotes the set V in which Vi is replaced by x. 

Definition 2.3 [Barycentric coordinates] Let V be a triple of points in JR' and let x be a point 
in JR2 Then the i-th barycentric coordinate of x (0 <:: i <:: 2) is defined a.s 

_ d,(x I V) 
Ai(X I V) - det(V) . 

Barycentric coordinates have the following important properties: 

, 2 

. L Ai(x I V) = 1 and L A,(X I V)Vi = x. 
i:::Q i:::Q 

• If x lies within the convex hull of V, then 0 <:: A;( x I V) for 0 <:: i <:: 2. 

(3) 

Definition 2.4 [Half-open convex hull] Let V be a set of points in JR' and let ei denote the unit 
vector for dimension i for i = 0,1. Then the half-open convex hull of V is defined as 

(4) 
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where [V] denotes the convex hull of V. 

The half-open convex hull is a generalization of the half-open domain in IR. Its purpose is to 
ensure that for any subdivision of a domain in IR 2 , the points on the edges of the subdivision 
belong to exactly one sub-area. 

2.2 Definition of simplex splines 

Definition 2.5 [Simplex splines] A simplex spline is a piecewise polynomial function defined by 
a finite set V of points in JR'. The points in V are called knots and the set V itself is called the 
knot-set of the simplex spline. A simplex spline defined over a set of n + 3 knots is said to have 
degree n. The definition of a simplex spline is given by the following recursive equation: 

0 x rt [V) 

1 1 V 1 = 3 and x E [V) 
M(x 1 V) = I det(V) I 

(5) 

2 

~\(x 1 W)M(x 1 V\ {w;}) 1 VI> 3 
i=O 

The elements in W = (WO,Wl,W2) can be chosen arbitrarily from V, hence We V. W is called 
the split set for V. The only restriction is that det(W) may not be zero. 

lf all knots are in general position, i.e. the knot-set does not contain a collinear triple of knots, 
a simplex spline of degree n defined over these knots is C n - 1 continuous. For more information 
about simplex splines, we refer to Traa.s [Tra90]. 

2.3 Definition of triangular B-splines 

Definition 2.6 [Triangular B-splines] A triangular B-splines is a piecewise polynomial function 
defined over an arbitrary polygonal domain in rn? For clarity, we present the construction of a 
triangular B-spline in a number of steps: 

1. One starts by constructing a triangulation I of the polygonal domain. This triangulation 
has to be proper, i.e. triangles may not overlap and they can only share a single edge or a 
single vertex. 

2. Assign to every vertex Vi occurring in the triangulation n+ 1 knots, denoted by Vi,O, ... ! Vi,n) 

where n is the degree of the triangular B-spline, such that Vi = Vi,O. There are two important 
restrictions on the placement of these knots: 

(a) For every edge (Vi,Vj) at the boundary of the polygonal domain, the entire area 
[{ Vi,O, ... Vi,n, Vj,O, ... Vj,n}) must lie outside the polygonal domain. 

(b) For every triangle I = (io, i1 , i 2 ) in I, the determinants det(iD,., i1,/, i',m) with k + I + 
m ::s: n must "have the same sign. Often these requirements are not mentioned, even 
though they are essential to guarantee the desired B-spline properties. More information 
on these restrictions can be found in [Fra95]. 

3. Let I = (io,i 1 ,i,) be a triangle in I. Let /3 be a triple of indices (/30,/31,/3,) such that 
1/3 1= /30 + /31 + /32 = nand /3j :::: O. Then the set Vi, containing n + 2 knots, is defined as 

(6) 

Each of these Vi will serve as the knot-set of a simplex spline needed to define a triangular 
B-spline. 
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4. To use the simplex splines defined over the VJ-s as a basis for a triangular B-spline, we have 

to 'normalize' them. That is, we have to multiply every simplex spline M(x I Vil with the 

factor d~ = det(vio,/30' Vi 1 ,/31' Vi 2jf3,J. As a result, for every point x in the polygonal domain, 
we get 

(2...: 2...: d§M(x I VI)) = l. 
lEIIf3I=n 

(7) 

Hence, the normalized simplex splines form a partition of unity, making control points easy 
to use. 

5. For every triangle I and every triple of indices fJ, we define a control point c~ in IR3. The 
triangular B-spline surface is then defined as 

F(x) = 2...: 2...: 4 M(x I VI)c~ (8) 
lEI I f31=n 

Since the normalization factors and the control points do not depend on the evaluation point 
x, they need not to be considered in the evaluation algorithm. The normalization factors 
are pre-computed once and the control coefficients are typically set (indirectly) by the user 
of the application. 

3 Reusing partial results 

If we naively evaluate a simplex spline of degree n recursively, the amount of constant simplex 
splines we encounter will be 3n . For every unfolding of equation 5 for a simplex spline of degree i 
we have to evaluate 3 simplex splines of degree i - 1. Since a constant simplex spline is obtained 
after n unfoldings, we obtain 3n simplex splines of degree zero. 

Not all of the simplex splines of degree i with 0 :s i < n that we evaluate during the recursion are 
different. The knot-set V of a simplex spline of degree n contains n + 3 knots. Any simplex spline 
of degree -; we encounter by recursively unfolding equation 5, has a knot-set V' of i + 3 knots that 
is a subset of V. Therefore there exist no more than (7::) different simplex splines of degree i. 

Evaluation will be accelerated if every simplex spline of degree i is computed only once. The 
problem when re-using partial results is the identification of simplex splines, because this requires 
comparing the entire knot-sets. In this section we will present a data structure that makes iden
tifying simplex splines during evaluation superfluous. 

We construct a directed graph, in which every node represents a simplex spline. This graph is 
built only once (during preprocessing) and then used for all future evaluations. Every simplex 
spline with degree i greater than 0 has three outgoing edges that connect it with three (different) 
simplex splines of degree i-I. These three simplex splines are determined by choosing a split set 
Wand unfolding the recurrence relation 5 for simplex splines. Note that we do not need to choose 
a split set for every point x in which we evaluate the simplex spline: once the graph is built, it 
can be used to evaluate the simplex spline in arbitrary points. 

Ensuring that every node in the graph represents a unique simplex spline can be done by a simple 
look-up table. Simplex splines are represented by a sorted list of the indices of their knots. In our 
look-up table we store for every degree i with 0 :s; i :s; n a sorted list of simplex splines that already 
exist. (Sorting can be done on alpha-lexicographical ordering of the knot-indices.) Whenever we 
need (a reference to) a simplex spline, we first check if the simplex spline already exists in our 
table. If not, we create a representation for the apparently new simplex spline and insert it in the 
table. If it already exists, we use the stored simplex spline. 

Evaluating the simplex spline at a point x can now be done efficiently as follows: 
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1. We assign a number to each point x we want to evaluate. 

2. Then we traverse the graph (which corresponds to unfolding the recurrence relation), starting 
at the node representing the simplex spline of degree n. We label every node V we visit with 
a pair (xv, rv), where xv is the number corresponding to x, and rv is the value M(x ) V) we 
obtain by evaluation. 

3. If we visit a node whose value xv is equal to the number assigned to X, we know that we 
have visited this node for x before and hence, the label's TV is the value we need. Since every 
node represents a unique simplex spline, we know that every simplex spline is evaluated at 
most once. If we use a single evaluation graph for several simplex splines defined over one 
large set of knots, not all nodes will be visited during the evaluation of a single point. 

4 Choosing split sets for simplex splines 

We can use the number of nodes in the graph as a measure for the efficiency, since the data
structure from the previous section avoids multiple evaluation of simplex splines in this graph. 
To increase the efficiency, we have to decrease the number of nodes in our graph. Which simplex 
splines occur in the graph depends on our choice of split sets when unfolding equation 5. In this 
section, we present a selection scheme for split sets that strongly decreases the number of nodes 
in the graph of a single simplex spline. 

Throughout this section we will use V = {vo, ... , Vn +2} to denote the knot-set of the simplex 
spline of degree n that we want to evaluate. Furthermore, i will always denote a degree between 
a and n - 1 of some simplex spline in the graph. For simplicity, we assume that every clioice for 
the split set is legal, i.e. V does not contain a triple of linearly dependent knots. In section 7, we 
discuss how this restriction is eliminated. 

To minimize the number of simplex splines in the graph, we want to use as few different simplex 
splines of degree i as possible. Therefore, we want to keep the intersections of different knot-sets 
as large as possible. By choosing the correct split sets we will then create less different simplex 
splines, since more simplex splines of lower degree become shared. 

To establish this similarity between splines, we split, for every degree i, the knot-set V of the 
original simplex spline of degree n in two disjoint sets Zi and Zi. The idea is that Z: denotes 
the knots that occur in every simplex spline of degree i in our graph. Besides the element of Zi, 
the simplex splines of degree i will also have some knots from Zi. vVe then keep Zi as large as 
possible. When we choose a knot w for split set W, we prefer to choose from Zi. If we choose 
wE Zi, we know that w f/:. ZLl' since w then causes us to create a simplex spline of degree i-I 
that does not contain wand hence, w does not occur in every simplex spline of degree i - l. 

We now derive our selection scheme using the following heuristic: initially we only have the simplex 
spline of degree n, hence Zi = 0 and Z; = V. The first choice for ltV is arbitrary and results in 
Zn-l = W and Z~_l = V \ W. Note that every simplex spline of degree n - 1 has exactly 2 
elements of Zn-l. Since a split set must contain 3 elements, we must choose one element for the 
split set from Z~_l for each of these simplex splines. In order to obtain the largest Z~_2' we 
choose the same element from Z~_l for every simplex spline of degree n - 1 in the graph. This 
selection scheme generalizes: we get a graph in which a simplex spline of degree i < n contains 
two knots from Zi. These are always chosen for the split set together with one element from Z: 
that is the same for all simplex splines of degree i. 

As an example: for every simplex spline choose the first three knots from its knot-set. That is, 
initially we choose W = {VO,Vl,V2}. The element chosen from Z; at any level i is Vn -i+2. We 
then have for 0 :s: i < n that Zi = {vo, ... ,vn-i+d and Z: = {Vn-i+2, ... , Vn+2}. 

Every simplex spline of degree i contains i + 3 knots. Since the i + 1 knots of Z; occur in every 
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simplex spline of degree i in the graph, its knot-set must contain exactly (i + 3) - (i + 1) = 2 
knots from Zi. Therefore, the number of simplex splines of degree i in the graph is limited by the 
number of pairs of knots that can be chosen from the n - i + 2 knots of Zi" which is (n-~+2). 

5 Choosing split sets for triangular B-Splines 

The computation of a triangular B-spline requires the evaluation of an entire set of simplex splines 
instead of just one. Since many knots occur in several of these simplex splines, there is hope that 
evaluating this set of simplex splines can be done more efficiently than simply evaluating all the 
simplex splines separately. In this section we will exploit similarities between the knotsets of the 
simplex splines to get an efficient evaluation scheme. 

Since the triangulation of the domain of the B-spline, is arbitrary, we will restrict our attention 
to the computation of the contribution of a single triangle. For the remainder of this section we 
will denote this triangle as I == (io! iI, i2 ). The same evaluation scheme can then be used for all 
triangles in the domain. By using a single look-up table of simplex splines for the entire domain 
of the B-spline, the evaluation time is reduced even further! but we will not discuss this effect in 
this paper. 

We start by introducing the concept of fingerprints. Fingerprints are special subsets of the knot
sets of the simplex splines in the graph of the triangular B-spline. They will be used to distinguish 
two groups of simplex splines in the graph of this B-spline: those that contain a fingerprint and 
those that do not. 

Definition 5.1 [Fingerprints] For every triangle I = (io, i" i2) E I and index (3 with 1 (31= n we 
define a fingerprint FJ as 

(9) 

Hence, the fingerprint FJ contains from every knot cloud the knot with the highest second index 

occurring in VI, provided that this index is at least 1. For example: F(2,O,1) = {Vio,2,Vi2,I} (and 

not {Vi"" Vi,,2, Vi",}). In the graph of a triangular B-spline of degree n, only the FJ with 1 (3 1= n 
are called fingerprints. 

The name 'fingerprint' is not chosen arbitrarily. A fingerprint FJ is the smallest set uniquely 
identifying the degree n simplex spline M(. 1 VJ). Hence, if a fingerprint F is a subset of the 
knot-set V of some simplex spline, then F uniquely defines a degree n simplex spline, which is the 
only one whose evaluation requires the evaluation of V. 

Lemma 5.2 Let x E VJ such that x E FJ. Then there exists a -y with l-y 1=1 (3 1 -1 such that 

V.{ = VJ \ {xl· 

PROOF: We have x E FJ, hence x = Vij,Pj for certain j, where 1 :::; {3j. Let 'Y be {3 - e j then 

V.{ = Vl_,j = VI \ {Vij,f,} = VI \ {xl· 0 

Lemma 5.3 Let V be the knot-set of a simplex spline in the graph of a triangular B-spline of 
degree n - 1. Let (3 be an index with 1 (3 1= n. Then FJ <l V. 

PROOF: Since V is in the graph of a triangular B-spline of degree n - 1, all paths leading to V 
start with a simplex spline of degree n - 1. All of these simplex splines have a knot-set V-{ for 
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Figure 1: A B-spline of degree 4 with 6 patches. 

certain, with I, 1= n - 1. Clearly, since I f3 1= n we have FJ 'l V; and since V <;; V; we have 

FJ'l V. 0 

Using the concept of fingerprints and the corresponding lemmas, we will define our selection scheme 
for the evaluation of triangular B-splines. The evaluation scheme will be based on lemma 5.2 and 
the evaluation scheme for a single simplex spline. 

To compute the value of a B-spline of degree n, we have to compute M(x I VI) for all f3 with 
I f3 1= n. For this computation we will construct a single evaluation graph Gn . Our idea is to 
use a graph Gn- 1 that efficiently computes all M(x I V;) with I, 1= n - 1 and add as few new 
simplex splines to it as possible to obtain Gn . Initially, we use the evaluation graph for a B-spline 
of degree 0, which consists of a single simplex spline of degree 0. Clearly, this graph is optimal. 

Using Gn- 1 as a subgraph of Gn is accomplished by the following heuristic: If a simplex spline 
contains a fingerprint then this fingerprint must be a subset of the split set. From this decision 
and lemma 5.2 it follows that evaluating all required B-splines of degree n (i.e. all B-splines with 
a knot-set VI with I f3 1= n) requires the evaluation of all B-splines with a knot-set V; with 
I, 1= n - 1. This is done efficiently by a graph Gn - 1 of a B-spline of degree n - 1 defined over 
the same knot-set, which we already have. However, not every fingerprint contains 3 knots, so we 
still have to select a few elements for the split sets. 

The remaining knots of the split sets are chosen in the same way 3." split sets for single simplex 
splines are chosen: we use the first 3- I FJ I knots from V \ FJ. To define 'first' we may use an 
arbitrary ordening on the knots, e.g. alpha-lexicographical ordening on the two indexes. Figure 1 
shows a triangular B-spline of degree 4 with 6 patches. 
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Graph Gn " 
Graph Gn_1 

V'\{ v J 

V'\{v,xJ 

Figure 2: Sketch of the proof of lemma 6.1 

6 Complexity 

The simple selection scheme of split sets presented above yields a surprisingly efficient evaluation 
graph. In order to compute the number of nodes in the graph, we prove the following lemma and 
theorem: 

Lemma 6.1 Let V be a simplex spline in the graph Gn of a B-spline of degree n, such that 
F£ ~ V. Let v be an element in the split set of V. Then 

• if v 1c F£ then F£ ~ V \ {v}. 

• if v E F£ then V \ {v} exists in the graph Gn- I of the B-spline of degree n - 1 defined over 
the same knot-set. 

PROOF: The first case is trivial. The second case is proved by induction on i, where n - i is the 
degree of the simplex spline V. 

case i = 0: Given by lemma 5.2 

case i > 0: We need to prove that V \ {v} exists in the Gn - I . Let V' be an ancestor of V, say 
Vi = V U {x} (see figure 2). Then Vi contains F£ and hence, by the induction hypothesis 

V' \ {v} exists in Gn_ l . V' \ {v} will contain some fingerprint F~ of a B-spline of degree 
j with j < n. Clearly 1 F~ I~I F£ 1 and since x is one of the first 3- 1 F£ 1 elements of 
V', it will be one of the first 3- 1 FI I 1 elements of V' \ {v} or it will be an element of F~. 
Therefore, x is an element of the split set of V' \ {v}. Now, since V' \ {v} exists in Gn- I 

V' \ {v, x} = V \ {v} will also exist in Gn_1 as was to be proved. 

Theorem 6.2 Using the split set selection scheme above, we will now prove that every simplex 
spline V in the graph of a degree n B-spline 

• is either a simplex spline in the graph G n- 1 of a B-spline of degree n - 1. 

• or contains a fingerprint F£ for certain fJ with 1 fJ 1= n. 
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o Constant Simplex Spline 

o Linear Simplex Spline 

6, Quadratic Simplex Spline 

Figure 3: The graph G, of a B-spline of degree 2. The dashed lines indicate edges from graph G , . 

PROOF: By induction on i, where n - i is the degree of the simplex spline V: 

case i = 0: n - i = n and hence V contains a fingerprint by definition. 

case i > 0: Let V' be an ancestor of V; i.e. V = V' \ {x}. If V'is in Gn- I then V certainly is. 
If V'is not Gn - I we get from the induction hypothesis that V' contains a fingerprint Ft for 

certain (3. If x E Ft then by lemma 6.1 V' \ {x} = V exists in Gn- I . If x rt Ft, then clearly 

V contains Fi. 

As an example, see figure 3: The graph G1 is a subgraph of G 2 . 

The complexity discussed in this section refers to the complexity of the evaluation and does not 
include the time required to construct the graph. Constructing the graph is done once during 
preprocessing using a lookup table. Consulting this lookup table cost time, but once the graph 
is constructed, the B-spline can be evaluated in an arbitrary number of points without ever using 
the lookup table again. 

The complexity of the evaluation algorithm is expressed as the number An of constant simplex 
splines in the evaluation graph Gn . Let En denote the number of constant simplex splines in Gn 
that do not exist in Gn-I. Then we find the equation 

or written differently 
n 

An=Ao+LB;. 
i=l 

(10) 

(11) 

In a B-spline of degree 0 the only simplex spline is already a constant simplex spline) hence Ao :::: 1. 
It remains to compute En. 

From theorem 6.2 it follows that every simplex spline in Gn \ Gn-I contains a fingerprint. Since a 
simplex spline with fingerprint Fi can only be used to compute V /, the graph Gn \ Gn - I contains 
one connected component for each {3. All simplex splines in such a subgraph contain the same 
fingerprint. We will now count for each index {3 the number B{3 of constant simplex splines in the 
sub graph of splines containing FJ. To compute En I we then lIse 

(12) 
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Bft is computed similar to the number of constant simplex splines in the graph of a single simplex 
spline: write the elements of Vi as the elements of FJ, followed by the elements of Vi \ FJ in 
the order used by the selection algorithm. Effectively, the algorithm chooses the first 3 elements 
from Vi and does the same for all descendents in the graph that contain FJ. Like in section 4, 

we use Zi and Z; to split Vi in two parts. As a result, Zi contains the first n - i + 2 elements 

of Vi, written in the order above, and Z: contains the remaining elements. Again, all simplex 
splines of degree i will contain 2 elements of Zi. Since we arc only interested in simplex splines 
from Gn \ Gn~l) these elements include FJ, hence we can only choose 2- I FJ I elements from 

n-i+2-IFJI 
the last n - i + 2- 1 FJ 1 elements of Zi. Hence, in Gn \ Gn - 1 there are ( I) simplex 

2-IFpl 
n+2_IF1

1 

splines of degree i that contain FJ; i.e. Bf3 = ( F/3 ). To compute Bn we now sum over all j3, 
2-1 pi 

distinguishing between 1 FJ I: 

case 1 FJ 1= 3: Bp = (n_-/) = 0 

case 1 FJ 1= 2: Bp = (~) = 1. One out of three indices is 0; the other two vary between 1 and 
n - 1, summing up to n. Hence, there are 3(n - 1) of these cases. 

case 1 FJ 1= 1: Bp = (ntl) = n + 1. There are 3 of these cases: (n, 0, 0); (0, n, 0); and (0,0, n). 

Hence, Bn = 3(n - 1) + 3(n + 1) = 6n. 

We can now finally compute the number An of constant simplex splines in the evaluation graph 
Gn of a B~spline of degree n: 

n 

An = 1 + L 6i = 1 + 3n + 3n'- (13) 
i::: 1 

Hence, to compute the contribution of one triangle lET to the value of the B~spline of degree n 
in a point x, we only have to evaluate 1 + 3n + 3n2 constant simplex splines. 

7 Generalizations 

Although our algorithm can deal with B-splines of arbitrary degree, there are still some restrictions 
on its use. In this section we discuss how these restrictions are eliminated. 

7.1 Arbitrary knot-sets 

One annoying restriction is that all knot-sets V must be in general position, i.e. every triple of 
knots in V is linearly independent. Sometimes one deliberately introduces a few linearly dependent 
knot-sets to model splines with continuity less than en-I. 

We can allow arbitrary knot-sets if we consider a special case in our selection scheme for split sets: 
if a selected split set W is linearly dependent (det(W) = 0), we arbitrarily choose a different split 
set. If no suitable split set can be found then obviously V is linearly dependent. But then [V) = 0 
and hence M(x 1 V) = 0 by definition of equation (5). 
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7.2 Domains in IRs 

Another important restriction is that the algorithm is still limited to domains in rn? Lifting this 
restriction to higher dimensional spaces is straightforward, although it requires more work than 
the previous generalization. 

The generalizations of determinants, barycentric determinants, barycentric coordinates and the 
half-open convex hull are straightforward. Therefore, we only explicitly give those generalizations 
that affect our algorithm. 

Definition 7.1 [s-variate simplex splines] For domains in rn,s, simplex splines are defined over 
sets of at least s + 1 points in IRs. The recursive equation then becomes: 

o x ~ [V) 

M(x 1 V) = 
1 

1 V 1 = s + 1 and x E [V) 
(14) I detIV) I 

LA;(x 1 W)M(x 1 V\ {w;}) 1 VI> s+ 1 
i==O 

But now W is a tuple of s + 1 knots and hence, the selection algorithm must be extended. 

When evaluating a single simplex spline it is sufficient to choose the first s + 1 elements of each 
knot-set, like we selected the first 3 knots in the case where s = 2 (see section 4). The number of 
constant simplex splines in the graph then becomes (n~.,). 

Definition 7.2 [s-variate simplicial B-splines] To define simplicial B-splines we need a subspace 
I oflR' that is properly divided into simploids (subspaces bounded by s+ 1 vertices). "Properly" 
means that the simploids do not intersect and that if they share an edge, a hyperplane, etc, they 
share the entire edge, hyperplane, etc. 

To form a basis for the B-spline we assign n+1 knots Vi,O, ... , Vi,n to every vertex Vi in the domain, 
such that v; = v;,o, Furthermore, let I E I be a simploid in the domain and let (3 = ((30, ... ,(3,) 
be a tuple with 1 (31= 2:::=0 (3; = n, then V! is defined as 

V! = {v;o,o, .. . , V;"p" ... , Vi"O,' .. , Vi"p.} = {V;j.k 10 <: j <: s J\ 0 <: k <: (3j}. (15) 

After generalizing the normalization factors and defining the control coefficients, the formula for 
a B-spline remains exactly the same: 

F(x) = L L diM(x 1 V!)ci 
lEI 1 (3 I=n 

Hence we have to compute the simplex splines V! for all (3 with 1 (3 1= n and I E I. 

(15) 

Definition 7.3 [s-variate fingerprints) To compute s-variate B-splines we generalize the definition 
of fingerprints to 

(17) 

Computing the number of constant simplex splines in the graph is done in the same way as for 
s = 2. The number of constant simplex splines in the graph of an s-variate B-spline of degree n is 

(18) 
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which is a generalization of equation 13. 

Note that the algorithm described in the previous sections is exactly the special case of the general 
algorithm for s = 2. 

Pfeifle and Seidel [PS95] also introduced a class of spherical triangular B-splines. Since this class 
of splines uses the same recursive pattern, it is also straightforward to use our algorithm for these 
splines. 

8 Discussion 

In this paper we introduced selection schemes for the efficient evaluation of simplex- and triangular 
B-splines. In contrast with previous approaches these evaluation schemes are able to deal with 
splines of arbitrary degree, any number of dimensions in the domain, arbitrary (non-general) 
knot-placements, and different variants of the B-splines scheme. We derived that the complexity 
of algorithm for the bivariate case is O( n 2 ) where n is the degree of the spline. 

To a large extent the efficiency of the algorithm is the result of our look-up table. Grandine's 
conclusion, that searching for previously computed results is more expensive than simply re
computing the required value, does not hold, since the graph we construct does not depend on the 
point in which we evaluate the spline. Hence, we only have to look-up simplex splines during the 
construction of the evaluation graph and can then evaluate the spline in any point without ever 
searching the table again. 

The selection schemes to obtain efficient evaluation graphs are surprisingly simple. For simplex 
splines we only need to fix the order of the knots and repeatedly select the first three knots in the 
knot-set. For triangular B-splines we preferably select elements from the fingerprint and complete 
the split set with the first knots remaining from the knot-set using a fixed order. 

The properties proved in lemma 6.1 and theorem 6.2 are not straightforward. If the ordening 
of the knots would not be fixed, but for instance, would depend on the simplex spline under 
consideration, the algorithm would not work as it turned out during our experiments. Also, if 
we use a slightly different definition for fingerprints, e.g. FJ = {Vi;,p; 10 :S j :S 2}, the required 
properties do no longer hold. 

Since simplex splines are uniquely defined by their knot-sets, enumerating simplex splines is a 
non-trivial matter. In contrast to [PS94], we avoid explicitly enumerating every simplex spline. 
The enumeration scheme used by Pfeifle and Seidel could never have been sufficient, since the 
number of possible names in their enumeration is less than the number of simplex splines that 
occur during the evaluation of splines of higher degree. Because of this our algorithm scales up to 
arbitrary degrees and arbitrary domains, and their algorithm does not. 

For B-splines of degree 2 our algorithm yields the same efficient graph as Pfeifle and Seidel (see 
figure 3). In [PS94] 78 pairs of barycentric coordinates are computed for each triangle. This 
corresponds to 156 barycentric determinants, provided that the 3rd coordinate is computed as 1 
minus the other two coordinates. However, by using our look-up table for barycentric determinants 
we avoid multiple evaluation. Therefore the number of determinants actually computed by our 
algorithm is the number of pairs of knots that can be chosen from the 3n + 3 knots of a B-spline, 
i.e. (3tl2+3). For n = 2 this yields only 36 determinants. 
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