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Iterative Analysis of the Steady-State Weight
Fluctuations in LMS-Type Adaptive Filters

H. J. Butterweck

Abstract—An iterative method is proposed for the analysis of the steady-
state weight fluctuations in an LMS-type adaptive FIR filter. Without
the widely used independence assumption, a power series of the weight-
error correlation matrix is derived in terms of the stepsize. Some new
effects are observed, e.g., a decrease of the weight fluctuations along the
tapped-delay line.

Index Terms—Independence assumption, LMS adaptive filters, steady-
state analysis, weight-order correlation matrix.

I. INTRODUCTION

In a stationary environment and with all adaptive transients died
out, an LMS-type adaptive filter performs random fluctuations of
its weighting coefficients around the optimal “Wiener solution,” viz.
the set of coefficients of some (actual or imaginary) filter that the
adaptive filter attempts to imitate. In current literature, the weight
error correlation matrix (WECM) is throughout determined with the
aid of an “independence assumption” stating statistical independence
of successive input vectors. Such an assumption can convincingly
only be justified for a true vector signal like that emerging from a
sensor array but not for atapped-delay line(TDL) with a strong
deterministic coherence between the input vectors. In that situation,
the use of the assumption can be justified by a fair agreement between
theoretical and experimental results.

It appears that Florian and Feuer [9] were the first to deliberately
abandon the assumption for a TDL filter of length 2 and analyzing it
for a white input signal and a white noise. Subsequently, Douglaset
al. [4], [10] extended this work for longer filters and a colored input
signal. Their exact computer-aided analysis applies for all values of
the stepsize so that also the convergence issue can be addressed.
However, the analysis becomes computationally burdensome for
“long” filters (in fact, only a few taps can be handled).

In this correspondence, we describe an iterative approach without
the independence assumption which leads to a power series for the
WECM in terms of the stepsize, cf. also [5] and [1, App. I]. Since only
the first few terms of the series are simple enough, we have to confine
ourselves tosmall stepsizes, sufficiently below the stability bound.
While independence theory presupposes white Gaussian output noise,
our analysis does not require such a limitation. It is only for
convenience, that we here adopt thewhitenessassumption for the
output noise, too.

II. I TERATIVE SOLUTION OF THE UPDATING EQUATION

An adaptive TDL filter with the time-varyingM�1 weight vector
wwwk tries to imitate a fixed TDL filter with theM�1 weight vectorhhh:
The input signalxk and the additive noisenk at the filter output are
sample functions of statistically independent, real-valued, stationary,
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zero-mean random processes. Understeady-state conditions, i.e., after
completion of the adaptive process, theM � 1 “weight error vector”
vvvk = wwwk � hhh becomes stationary as well, with zero mean. Let the
adaptive mechanism be governed by the LMS algorithm, with the
updating rule

vvvk+1 =(I � 2�xxxkxxx
t
k)vvvk + 2�fffk

fffk =nkxxxk (1)

where xxxk denotes the M � 1 “input vector” (xk; xk�1;

� � � ; xk�M+1)
t, and � denotes the “stepsize.” Our aim is to

determine theM � M WECM V = Efvvvkvvv
t
kg, whose diagonal

elementsVmm denote the powers of the weight fluctuations, whereas
the off-diagonal elementVmn stands for their mutual correlations.

What occurs for sufficiently small� values? Then,vvvk varies
so slowly that it can be approximated by some���k satisfying the
difference equation

���k+1 =(I � 2�R)���k + 2�fffk

R =Efxxxkxxx
t
kg: (2)

Thus, in the limiting case�! 0, the time-varying coefficientxxxkxxxtk
in (1) can be replaced with its average: the “correlation matrix”R:

This statement generally phrased as “direct averaging” [2], [6] is
based on the insight that (1) and (2) describe the same large-scale
behavior, which is found through averaging the difference equations
over a sufficient number of consecutive time instants and replacing
time averaging with ensemble averaging. For larger� values, the
zero-order solution���k can be corrected by an iteration. Writing
vvvk = ���k + ���k + k + � � �, insertion into (1) yields

���k+1 + ���k+1 + k+1 + � � �

= (I � 2�R)(���k + ���k + k + � � �)

� 2�Pk(���k + ���k + � � �) + 2�fffk

Pk = xxxkxxx
t
k �R = P

t
k; EfPkg = 0: (3)

The iterative solution of (3) proceeds as follows:

���k+1 =(I � 2�R)���k + 2�fffk

���k+1 =(I � 2�R)���k � 2�Pk���k

k+1 =(I � 2�R)k � 2�Pk���k (4)

etc. The zero-order solution���k is determined byfffk, whereupon
the “first-order correction” ���k follows from ���k, the “second-order
correction” k follows from ���k, etc. Thus, we proceed according
to fffk ! ���k ! ���k ! k ! � � �, where for sufficiently small
�, the terms in the chain decrease to any wanted degree. Observe
that the same operatorL applies in all steps of the above scheme:
���k = Lf2�fffkg; ���k = Lf�2�Pk���kg; k = Lf�2�Pk���kg, etc. It
represents a simple linear time-invariant filtering of the low-pass type

that is explicitly governed by the convolutional relation

���k =Lf2�fffkg =

1

j=�1

Hj(2�fffk�J )

Hj =uj�1(I � 2�R)j�1 = H
t
j

uj =0 for j < 0

uj =1 for j � 0: (5)

The above iteration is attractive in that it transforms the time-
varying system parameterxxxkxxxtk in (1) into a set of excitation func-
tions (�Pk���k); (�Pk���k); � � � in (4) serving as source terms in sim-
ple constant-coefficient updating equations. Thus, the problem is
reduced to a study of the passage of stationary stochastic signals
through a low-pass system, whose cut-off frequency is extremely low
for � ! 0:

III. SERIESEXPANSION OF THEWEIGHT-ERRORCORRELATION MATRIX

With the expansionvvvk = ���k + ���k + k + � � � the WECM can
be written as

V =Efvvvkvvv
t
kg = Ef(���k + ���k + k + � � �)

� (���tk + ���
t
k + 

t
k + � � �)g

=Ef���k���
t
kg+ [Ef���k���

t
kg+Ef���k���

t
kg

+ Efk���
t
kg+ Ef���k

t
kg+Ef���k���

t
kg] + � � � (6)

where the first term isO(�1) [cf. (8)], whereas the term between
squared brackets isO(�2), cf. (10), and the omitted terms are
of third (and higher) order. (Observe the relatively low value of
Ef���k���

t
kg due to a small degree of correlation between���k and

���k [8]). Obviously, (6) represents a Taylor series expansion of the
form

V = V1�+ V2�
2 + � � � (7)

with Ef���k���
t
kg contributing toV1�; V2�2; V3�3 etc., the bracketed

expression in (6) contributing toV2�2; V3�3 etc., and the remainder
of (6) contributing toV3�3 etc. The termsV1� and V2�2 will be
determined below, followed by a brief discussion of the termV3�3;
which was evaluated elsewhere [8].

Under the assumption ofwhite additive noiseEfnknk�ig = N�i,
the evaluation of the first term in (6) becomes simple. With (5) and
(1), we obtain

Ef���k���
t
kg =4�2E

i j

Hifffk�ifff
t
k�jHj

=4�2N
i

HiRHi = 4�2NR

i

H
2

i

=�N [I � �R]�1 = �NI + �
2
NR+O(�3): (8)

The first right-hand term�NI, which is equal toV1�, represents
a set of uncorrelated weight fluctuations with equal power�N

independent of the amplitude and spectral distribution of the input
signal. In passing, we note that in case of colored output noise
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[2], [7], whereV1 satisfies the Lyapounov equationRV1 + V1R =
2 �l Effffkfff

t
k�lg, this independence is lost.

Next, we consider the bracketed expression in (6) contributing to
V2�

2; V3�
3, etc. Only the leading terms of the five correlations (four

of which occur in transpose pairs) need to be evaluated, which allows
appropriate approximations:

Ef���k���
t
kg

= �2�E
i

HiPk�i���k�i���
t
k

= �8�3E
i j `

HiPk�iHjfffk�i�jfff
t
k�`H`

= �8�3NE
i j

HiPk�iHjxxxk�i�jxxx
t
k�i�jHi+j

= �8�3NE
i j

HiPk�iHjPk�i�jHi+j

= �8�3N
i j

HiEfPkHjPk�jgHi+j

= Ef���k���
t
kg

t

Efk���
t
kg

= �2�E
i

HiPk�i���k�i���
t
k

= 4�2E
i j

HiPk�iHjPk�i�j���k�i�j���
t
k

� 4�2

i j

HiEfPk�iHjPk�i�jgEf���k�i�j���
t
kg

� 4�3N
i j

HiEfPkHjPk�jgHi+j

= Ef���k
t
kg

t

Ef���k���
t
kg

= 4�2E
i j

HiPk�i���k�i���
t
k�jPk�jHj

� 4�2E
i j

HiPk�iEf���k���
t
k�(j�i)gPk�jHj

= 4�2E
i j

HiPk�iEf���k���
t
k�jgPk�i�jHi+j

� 4�3N
i j

Hi

� EfPk(Hj +H
�j + �j)Pk�jgHi+j

where use has been made of the identity

Ef���k���
t
k�`g =4�2E

i j

Hifffk�ifff
t
k�`�jHj

=4�2N
i

HiRHi�`

=�N(I � 2�R)j`j(I � �R)�1

��N(I � 2�R)j`j

��N(H` +H�` + �`):

Evaluating the first two terms of (6) finally yields (all terms in the
double sums�i �j with i 6= j cancel out)

V1� + V2�
2 = �NI + �N �R+ 4�2

i

HiEfP 2
kgHi : (9)

For a Gaussian input signal with

EfP 2
kg =Ef(xxxkxxx

t
k �R)2g

=Efxxxkxxx
t
kxxxkxxx

t
kg �R2 = R2 +R tr R

we find the closed-form solution

V �V1� + V2�
2 = �NfI(1 + �MX) + 2�Rg

X =Efx2kg = tr R=M: (10)

Thus, in the quadratic approximation, the weight-error correlation
matrix V has a Toeplitz structure, providednk is white andxk is
Gaussian. Outside the diagonal, it is proportional toR: Thus, the
correlation between the (slow) weight fluctuationsvk;i and vk;j at
points i and j (i 6= j) depends on the distanceji � jj only and
is proportional to the correlation between the (fast) “tap signals”
xk�i+1; xk�j+1 with a common proportionality factor2�2N: The
“degree of correlation” between different weight errors defined as
the ratio of the crosscorrelation and the autocorrelation approxi-
mately equalsRij = 2�Efxk�i+1xk�j+1g = 2�Efxkxk�(i�j)g

and, as such, is small. Together with the slowness of the weight
fluctuations, this leads to considerable difficulties to determine the
crosscorrelations experimentally [8].

The analysis of the weight-error correlation can be extended to
higher order terms of the Taylor expansion (7), but already the next
term V3�

3 is rather complicated, mainly due to the greater number
(15 in total) of relevant partial correlations. For the special case of
a white Gaussian input signal, this term has been determined in [8],
yielding the approximate WECM

V �V1� + V2�
2 + V3�

3

=�Nf[1 + �X(M + 2) + �2X2(M + 2)2]I � 4�2X2T

� 8�2X2Sg

T =

0 0 1 0 1 � � �
0 0 0 1 0 � � �
1 0 0 0 1 � � �
0 1 0 0 0
1 0 1 0 0
� � � � � �
� � � � � � �

S =

0 0 0 0 � � � 0
0 1 0 0 � � � 0
0 0 2 0 � � � 0
0 0 0 3 � � � 0

. . .
0 0 0 0 � � � (M � 1)

: (11)

Thus,V is a linear combination of the matricesI; T; S: The first
contribution represents a set of uncorrelated, equal-power weight
error fluctuations, the second contribution proportional toT describes
a set of identical crosscorrelations among the family of even weights
and a complementary set among the odd weights, whereas the term
proportional toS is readily interpreted as a linear power decrease
of the error fluctuations from the front of the delay line toward
its end.

It is interesting to compare our result (valid for small stepsizes�)
with that of Douglaset al. [4], [10] (suitable for small filter lengths
M ). The small region, where� andM are small, can be handled
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by either theory. Without going into detail, we have found a perfect
match in that region with respect to the amplitude of the weight
fluctuations, particularly its decrease along the tapped-delay line in
the third-order approximation.

IV. CONCLUSIONS

This correspondence deals with the correlation matrixV of the
weight errors in an LMS-type adaptive TDL filter. Restricting our-
selves to a white output noise and avoiding any independence
assumption, we have determined the coefficients of a power series
V = V1�+V2�

2
+V3�

3
+� � � in terms of the stepsize�: The first term

V1� is a scalar matrix, representing a set of equal-power, uncorrelated
weight fluctuations, in agreement with what is found with the aid
of the independence assumption [1]. The quadratic approximation
V1�+V2�

2 represents a set of weakly correlated equal-power weight
fluctuations with a slightly increased common power level. In the
third-order approximation, we observe a power decrease along the
delay line. This effect can run up to several percent and is more
easily observed than the second-order effects [8].

We expect that the proposed iterative method will also lend itself to
the treatment of adjacent questions such as adaptation transients and
filter tracking. In addition, it might be applicable to other adaptive
algorithms like the normalized LMS type. We were able to show that
an independence assumption is not required so that teaching adaptive
filtering is released from an inconsistent tool [11].
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Sufficient Stability Bounds for Slowly Varying
Direct-Form Recursive Linear Filters and
Their Applications in Adaptive IIR Filters

Alberto Carini, V. John Mathews, and Giovanni L. Sicuranza

Abstract—This correspondence derives a sufficient time-varying bound
on the maximum variation of the coefficients of an exponentially stable
time-varying direct-form homogeneous linear recursive filter. The stabil-
ity bound is less conservative than all previously derived bounds for time-
varying IIR systems. The bound is then applied to control the step size
of output-error adaptive IIR filters to achieve bounded-input bounded-
output (BIBO) stability of the adaptive filter. Experimental results that
demonstrate the good stability characteristics of the resulting algorithms
are included. This correspondence also contains comparisons with other
competing output-error adaptive IIR filters. The results indicate that
the stabilized method possesses better convergence behavior than other
competing techniques.

Index Terms—Adaptive IIR filter, time-varying recursive linear filter.

I. INTRODUCTION

Adaptive IIR filters have been the subject of active research over
the last three decades [5], [9], [11], [12], [15]. Despite a large amount
of work that has been done, some open issues still remain. One of
these issues is that of ensuring the stability of the time-varying IIR
filter that results from the identification process.

Researchers have attempted to derive adaptive IIR filters that
operate in a stable manner in several different ways. One class of
algorithms is obtained by means of the equation-error technique. In
the equation-error technique, the IIR filter is identified by the use of a
two-channel adaptive FIR filter that operates on samples of the input
and the desired response signals. Since the system model employed in
equation-error methods is not recursive, the adaptive filter can operate
in a stable manner when the step size is properly selected. However,
this fact does not ensure the stability of the resulting IIR filter.
Moreover, it is well-known that equation-error adaptive algorithms
give biased solutions when the desired response signal is corrupted
by noise.

Output error algorithms have become popular in adaptive IIR
filtering research in recent years. In output error techniques, the
adaptive filter operates in a recursive manner on the input signal
to provide an estimate of the desired response signal. A class of
such methods requires a certain system transfer function to be strictly
positive real (SPR) in order to avoid problems with instability and to
ensure the convergence of the algorithm. This class of algorithms
includes the pseudo-linear regression algorithm (PRA) [3], which
is also known as Feintuch’s algorithm, Landau’s algorithm [7], the
hyperstable adaptive recursive filter (HARF) [4], and the simplified
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