

Workflow patterns

Citation for published version (APA):
Aalst, van der, W. M. P., Hofstede, ter, A. H. M., Kiepuszewski, B., & Barros, A. P. (2000). Workflow patterns.
(BETA publicatie : working papers; Vol. 47). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/d14a02b7-108e-4244-961d-02a7d23ac5ab

Workflow patterns

W.M.P. van der Aalst, A.H.M.
ter Hofstede, B. Kiepuszewski

and A.P. Barros
WP47

BETA publicatie

ISBN
ISSN
NUGI

Eindhoven
Keywords

BETA-Research Programme

Te publiceren in:

WP 47 (working
paper)
90-386-0783-0
1386-9213
684
Augustus 2000
Workflow patterns ;
Workflow
management
systems
Network
Management

Workflow Patterns

W.M.P. van der Aalst1; A.H.M. ter Hofstede2t , B. Kiepuszewski3t and A.P. Barros4+

1 Department of Technology Management, Eindhoven University of Technology
GPO Box 513, NL-5600 MB Eindhoven, The Netherlands, e-mail: w.m.p.v.d.aaist@tm.tue.nl;

2 Cooperative Information Systems Research Centre, Queensland University of Technology

GPO Box 2434, Brisbane Qld 4001, Australia, e-mail: arthur@icis.qut.edu.au;
3 Mincom Pty Ltd, GPO Box 1397, Brisbane Qld 4001, Australia, e-mail: bartek@mincom.com;

4 Distributed Systems Technology Centre, The University of Queensland
Brisbane Qld 4072, Australia, e-mail: abarros@dstc.edu.au.

Abstract

Differences in features supported by the various contemporary commercial workflow
management systems point to different insights of suitability and different levels of expres
sive power. The challenge, which we undertake in this paper, is to systematically address
workflow requirements, from basic to complex. Many of the more complex requirements
identified, recur quite frequently in the analysis phases of workflow projects, and present
grave uncertainties when looking at current products. Requirements for workflow languages
are indicated through workflow patterns. In this context, patterns address business require
ments in an imperative workflow style expression, but are removed from specific workflow
languages. The paper describes a number of workflow patterns addressing what we believe
identify comprehensive workflow functionality. These patterns provide the basis for an in
depth comparison of a number of commercially available workflow management systems. As
such, this paper can be seen as the academic response to evaluations made by prestigious
consulting companies. Typically, these evaluations hardly consider the workflow modeling
language and routing capabilities and focus more on the purely technical and commercial
aspects.

*Part of this work was done at CTRG (University of Colorado, USA) during a sabbatical leave.
tThis research was partially supported by an ARC SPIRT grant "Component System Architecture for an

Open Distributed Enterprise Management System with Configurable Workflow Support" between QUT and
Mincom.

+Part of this work was supported by CITEC, an agency within the Queensland State Government.

1

1 Introduction

Background

Workflow technology continues to be subjected to on-going development in its traditional
application areas of business process modeling and business process coordination, and now in
emergent areas of component frameworks and inter-workflow, business-to-business interaction.
Addressing this broad and rather ambitious reach, a large number of workflow products, mainly
workflow management systems (WFMS), are commercially available, which see a large variety
oflanguages and concepts based on different paradigms (see e.g. [AaI98a, AHOO, EN93, GHS95,
JB96, Kou95, LR99, Law97, Sch96, WFM96, DKTS98]).

As current provisions are compared and as newer concepts and languages are embarked upon,
it is striking how little, other than standards glossaries, is available for central reference. One
of the reasons attributed to the lack of consensus of what constitutes a workflow specification
is the organizational level of definition imparted by workflows. The absence of a universal
organizational "theory", it is contended, explains and ultimately justifies the major differences
- opening up a "horses for courses" diversity for different business domains. What is more, the
comparison of different workflow products winds up being more of a dissemination of products
and less of a critique of workflow language capabilities - "bigger picture" differences of workflow
specifications are highlighted, as are technology, typically platform dependent, issues.

Workflow specifications can be understood, in a broad sense, from a number of different per
spectives (see [JB96]). The control-flow perspective (or process) perspective describes activities
and their execution ordering through different constructors, which permit flow of execution con
trol, e.g. sequence, splits, parallelism and join synchronization. Activities in elementary form
are atomic units of work, and in compound form modularize an execution order of a set of
activities. The data perspective layers business and processing data on the control perspec
tive. Business documents and other objects which flow between activities, and local variables
of the workflow, qualify in effect pre- and post-conditions of activity execution. The resource
perspective provides an organizational structure anchor to the workflow in the form of human
and device roles responsible for executing activities. The opemtional perspective describes the
elementary actions executed by activities, where the actions map into underlying applications.
Typically, (references to) business and workflow data are passed into and out of applications
through activity-to-application interfaces, allowing manipulation of the data within applica
tions.

Clearly, the control flow perspective provides an essential insight into a workflow specification's
effectiveness. The data flow perspective rests on it, while the organizational and operational
perspectives are ancillary. If workflow specifications are to be extended to meet newer pro
cessing requirements, control flow constructors require a fundamental insight and analysis.
Currently, most workflow languages support the basic constructs of sequence, iteration, splits
(AND and OR) and joins (AND and OR) - see [Law97]. However, the interpretation of even

2

these basic constructs is not uniform and it is often unclear how more complex requirements
could be supported. Indeed, vendors are afforded the opportunity to recommend implementa
tion level "hacks" such as database triggers and application event handling. The result is that
neither current capabilities nor an insight into newer requirements is advanced.

Problem

Even without formal qualification, the distinctive features of different workflow languages al
lude to fundamentally different semantics. Some languages allow multiple instances of the
same activity type at the same time in the same workflow context while others do not. Some
languages structure loops with one entry point and one exit point, while in others loops are
allowed to have arbitrary entry and exit points. Some languages require explicit termination
activities for workflows and their compound activities while in others termination is implicit.
Such differences point to different insights of suitability and different levels of expressive power.

The challenge, which we undertake in this paper, is to systematically address workflow re
quirements, from basic to complex, in order to 1) identify useful routing constructs and 2) to
establish to what extent these requirements are addressed in the current state of the art. Many
of the basic requirements identify slight, but subtle differences across workflow languages, while
many of the more complex requirements identified in this paper, in our experiences, recur quite
frequently in the analysis phases of workflow projects, and present grave uncertainties when
looking at current products. Given the fundamental differences indicated above, it is tempting
to build extensions to one language, and therefore one semantic context. Such a strategy is
rigorous and its results would provide a detailed and unambiguous view into what the exten
sions entail. Our strategy is more practical. We wish to draw a more broader insight into the
implementation consequences for the big and potentially big players. With the increasing ma
turity of workflow technology, workflow language extensions, we feel, should be levered across
the board, rather than slip into ''yet another technique" proposals.

Approach

We indicate requirements for workflow languages through workflow patterns. As described in
[RZ96], a pattern "is the abstraction from concrete form which keeps recurring in specific non
arbitrary contexts". Gamma et al. [GHJV95] first catalogued systematically some 23 design
patterns which describe the smallest recurring interactions in object-oriented systems. The
design patterns, as such, provided independence from the implementation technology and at
the same time independence from the essential requirements of the domain that they were
attempting to address (see also e.g. [Fow97]).

For our purpose, patterns address business requirements in an imperative workflow style ex
pression, but are removed from specific workflow languages. Thus they do not claim to be the
only way of addressing the business requirements. Nor are they "alienated" from the workflow

3

approach, thus allowing a potential mapping to be positioned closely to different languages
and implementation solutions. Along the lines of [GHJV95], patterns are described through:
conditions that should hold for the pattern to be applicable; examples of business situations;
problems, typically semantic problems, of realization in current languages; and implementation
solutions.

Our claim is that the workflow patterns identified in this paper are comprehensive with respect
to currently available workflow languages. Some of the patterns can be mapped into constructs
of existing languages fairly straightforwardly, others can be realized through the implementa
tion level, while there also exist patterns that are supported only by a small minority of the
workflow management systems. No contemporary workflow management system supports all
patterns.

The organization of this paper is as follows. First, we describe the workflow patterns, then
we present the comparison of contemporary workflow management systems using the patterns
(except the most elementary ones, as they are supported by all workflow management systems).
Finally, we conclude the paper and identify issues for further research.

2 Workflow Patterns

The design patterns range from fairly simple constructs present in any workflow language
to complex routing primitives not supported by today's generation of workflow management
systems. We will start with the more simple patterns. Since these patterns are available in
the current workflow products we will just give a (a) description, (b) synonyms, and (c) some
examples. In fact, for these rather basic constructs, the term "workflow pattern" is not very
appropriate. However, for the more advanced routing constructs we also identify (d) the problem
and (e) potential solutions. The problem component of a pattern describes why the construct
is hard to realize in many of the workflow management systems available today. The solution
component describes how, assuming a set of basic routing primitives, the required behavior can
be realized. For these more complex routing constructs the term "pattern" is more justified
since non-trivial solutions are given for practical problems encountered when using today's
workflow technology.

Before we present the patterns, we first introduce some of the terms that will be used through
out this paper. The primary task of a workflow management system is to enact case-driven
business processes by allowing workflow models to be specified, executed, and monitored.
Workflow process definitions (workflow schemas) are defined to specify which activities need
to be executed and in what order (Le. the routing or control flow). An elementary activity is
an atomic piece of work. Workflow process definitions are instantiated for specific cases (Le.
workflow instances). Examples of cases are: a request for a mortgage loan, an insurance claim,
a tax declaration, an order, or a request for information. Since a case is an instantiation of
a process definition, it corresponds to the execution of concrete work according to the spec
ified routing. Activities are connected through transitions and we use the notion of a thread

4

of execution control for concurrent executions in a workflow context. Activities are under
taken by roles which define organizational entities, such as humans and devices. Control data
are data introduced solely for workflow management purposes, e.g. variables introduced for
routing purposes. Production data are information objects (e.g. documents, fOrIDS, and tables)
whose existence does not depend on workflow management. Elementary actions are performed
by roles while executing an activity for a specific case, and are executed using applications
(ranging from a text editor to custom built applications to perform complex calculations).

2.1 Basic Control Flow Patterns

In this section patterns capturing elementary aspects of process control are discussed. The first
pattern we consider is the sequence.

Pattern 1 (Sequence)
Description An activity in a workflow process is enabled after the completion of another
activity in the same process.
Synonyms Sequential routing, serial routing.
Ezamples

- Activity send_bill is executed after the execution of activity send_goods.

- An insurance claim is evaluated after the client's file is retrieved.

- Activity add_air _miles is executed after the execution of activity book_flight.

Problem Does not cause any specific problems.
Solutions

- The sequence pattern is used to model consecutive steps in a workflow process and is
directly supported by each of the workflow management systems available.

o

The next two patterns can be used to accommodate for parallel routing.

Pattern 2 (Parallel Split)
Description A point in the workflow process where a single thread of control splits into
multiple treads of control which can be executed in parallel, thus allowing activities to be
executed simultaneously or in any order.
Synonyms AND-split, parallel routing, fork.
Ezamples

- The execution of the activity payment enables the execution of the activities ship_goods
and inform_customer.

5

- After registering an insurance claim two parallel subprocesses are triggered: one for
checking the policy of the customer and one for assessing the actual damage.

Problem Does not cause any specific problems.
Solutions

- All workflow engines available support constructs for the implementation of parallel exe
cution patterns. One can identify two basic approaches: explicit AND-splits and implicit
AND-splits. Workflow engines supporting the explicit AND-split construct (e.g. Visual
WorkFlo) define a routing node with more than one outgoing transition which will be
enabled as soon as the routing node gets enabled. Workflow engines supporting implicit
AND-splits (e.g. MQSeries/Workflow) do not provide special routing constructs - each
activity can have more than one outgoing transition and each transition has associated
conditions. To achieve parallel execution the workflow designer has to make sure that
multiple conditions associated with outgoing transitions of the node evaluate to True
(this is typically achieved by leaving the conditions blank).

o

Pattern 3 (Synchronization)
Description A point in the workflow process where multiple parallel subprocesses/activities
converge into one single thread of control, thus synchronizing multiple threads.
Synonyms AND-join, rendezvous, synchronizer.
Ea:amples

- Activity archive is enabled after the completion of both activity send.tickets and activity
receive.payment.

- Insurance claims are evaluated after the policy has been checked and the actual damage
has been assessed.

Problem Does not cause any specific problems.
Solutions

- All workflow engines available support constructs for the implementation of this pattern.
Typically there is a special synchronizing construct available. In some rare cases, syn
chronization has to be implemented by providing a special start condition for an activity
that has more than one incoming transition.

- When an explicit synchronization construct is available (synchronizer), it will typically
have more than one incoming transition and exactly one outgoing transition. We have
experienced that even though the notion of synchronization of two concurrently running
threads is intuitively simple, the actual semantics of the synchronizer differs from product
to product. Leading workflow products such as Stafi"ware, Verve and HP ChangeEngine
for example, support a synchronizer notion whereby multiple triggering by the same
activity is ignored. If for example an activity C is preceded by a synchronizer having

6

transitions from activities A and B as input, this synchronizer will ignore termination
of instances of activity A if it has already seen one such instance and is waiting for the
termination of an instance of activity B. Another approach would be to simply keep
track of the number of "extra" instances of activity A that terminated while waiting for
activity B and try to match them later with corresponding instances of activity B.

o

The next two patterns are used to specify conditional routing. In contrast to parallel routing
only one selected thread of control is activated.

Pattern 4 (Exclusive Choice)
De8cription A point in the workflow process where, based on a decision or workflow control
data, one of several branches is chosen.
Synonym8 XOR-split, conditional routing, switch, decision.
EaJamples

- Activity evaluate_claim is followed by either pay_damage or contacLcustomer.

- Based on the workload, a processed tax dec1arati(l)n is either checked using a simple
administrative procedure or a thorough evaluation by a senior employee.

Problem Does not cause any specific problems.
Solutions

- Similarly to Pattern 2 there are two basic strategiesl - some workflow engines provide an
explicit construct for the implementation of the exclusive choice pattern (e.g. Staffware,
Visual WorkFlo), while in others (MQSeries/Workflqw, Verve) the workflow designer has
to emulate the exclusiveness of choice by a selectionl of transition conditions. 0

Pattern 5 (Simple Merge) I
De8cription A point in the workflow process where two or more alternative branches come
together without synchronization. In other words the merge will be triggered once any of the
incoming transitions are triggered.
Synonyms XOR-join, asynchronous join, merge.
EaJamples

- Activity archive_claim is enabled after either pay_damage or contact_customer is exe
cuted.

- After the payment is received or the credit is granted the car is delivered to the customer.

Problem This pattern causes no particular problems in case at most one of the incoming
branches can be active at any point in time, which can be statically enforced (if this is not the

7

case we refer to Pattern 8).
Solutions

- Given that we are assuming that only one of the incoming transitions can be triggered at
one time, this is a straightforward situation and all workflow engines support a construct
that can be used to implement the simple merge. It is interesting to note here that some
of the languages impose a certain level of structuredness to automatically guarantee that
not more than one incoming transition can be triggered. Visual WorkFlo for example,
requires the merge construct to always be preceded by an exclusive choice construct.
In other languages the workflow designers are responsible themselves for the design not
having multiple incoming transitions that can be triggered.

D

2.2 Advanced Branching and Synchronization Patterns

In this section the focus will be on more advanced patterns for branching and synchronization.
As opposed to the patterns in the previous section, these patterns do not have straightforward
support in most workflow engines. Nevertheless, they are quite common in real-life business
scenarios.

Pattern 4 assumes that exactly one of the alternatives is selected and executed, i.e. it cor
responds to an exclusive OR. Sometimes it is useful to deploy a construct which can choose
multiple alternatives from a given set of alternatives. Therefore, we introduce the (inclusive)
multi-choice.

Pattern 6 (Multi-choice)
Description A point in the workflow process where, based on a decision or workflow control
data, one or more branches are chosen.
Synonyms Conditional routing, selection, OR-split.
Ea:amples

- After executing the activity evaluate_damage the activity contacLfire_department or the
activity contacUnsurance_company is executed. At least one of these activities is exe
cuted. However, it is also possible that both need to be executed.

Problem In many workflow management systems one can specify conditions on the transitions.
In these systems, the OR-split can be captured directly. However, there are several workflow
management systems which do not offer the possibility to specify conditions on transitions and
only offer pure AND-split and XOR-split building blocks (e.g. Staffware).
Solutions

- As stated, for workflow languages that assign transition conditions to each transition
(e.g. Verve, MQSeries/Workfiow, Forte Conductor) the implementation of the multi
choice is straightforward. The workflow designer simply specifies desired conditions for

8

each transition. It may be noted that the multi-choice pattern generalizes the parallel
split (Pattern 2) and the exclusive choice (Pattern 4).

- For languages that supply only constructs to implement the parallel split and the exclu
sive choice, the implementation of the multi-choice has to be achieved through using a
combination of the two. Each possible branch is preceded by an XOR-split which decides,
based on control data, either to activate the branch or to bypass it. All XOR-splits are
activated by one AND-split. This AND-split can also be used to set the control data that
is used in the XOR-splits.

- A solution similar to the previous one is obtained by reversing the order of patterns 2
and 4. For each set of branches which can be activated in parallel, one AND-split is
added. All AND-splits are preceded by one XOR-split which activates the appropriate
AND-split. Note that, typically, not all combinations of branches are possible. Therefore,
this solution may lead to a more compact workflow specification. Both solutions are
depicted in Figure 1.

o

Figure 1: Design patterns for the multi-choice

The OR-split can be handled quite easily by today's workflow products. Unfortunately, the im
plementation of the corresponding merge construct (OR-join) is much more difficult to realize.
The OR-join has the capability to synchronize parallel flows and to merge alternative flows.
The difficulty is to decide when to synchronize and when to merge. Synchronizing alterna
tive flows leads to potential deadlocks and merging parallel flows may lead to the undesirable
multiple execution of activities.

Pattern 7 (Synchronizing merge)
Description A point in the workflow process where multiple paths converge into one single
thread. If more than one path is taken, synchronization of the active threads needs to take place.

9

If only one path is taken, the alternative branches should reconverge without synchronization.
Synonyms Synchronizing join
Ewamples

- Extending the example of Pattern 6, after either or both of the activities contact_fire_de
partment and contact_insurance_company have been completed (depending on whether
they were executed at all), the activity submit report needs to be performed (exactly
once).

Problem The main difficulty with this pattern is to decide when to synchronize and when to
merge. Synchronizing alternative flows leads to potential deadlocks and merging parallel flows
may lead to unwanted, multiple execution of the activity that follows the standard OR-join
construct.
Solutions

- The two workflow engines known to the authors that provide a straightforward construct
for the realization of this pattern are MQSeries/Workflow and InConcert. As noted ear
lier, if a synchronizing merge follows an OR-split and more than one outgoing transition
of that OR-split can be triggered, it is not until runtime that we can tell whether or
not synchronization should take place. MQSeries/Workflow works around that problem
by passing a False token for each transition that evaluates to False and a True token
for each transition that evaluates to True. The merge will wait until it receives tokens
from each incoming transition. InConcert does not use a False token concept. Instead it
passes a token through every transition in a graph. This token mayor may not enable
the execution of an activity depending on the entry condition. This way every activity
having more than one incoming transition can expect that it will receive a token from
each one of them, thus deadlock cannot occur. The careful reader may note that these
evaluation strategies require that the workflow process does not contain cycles.

- In all other workflow engines the implementation of the synchronizing merge is not
straightforward. The common design pattern is to avoid the explicit use of the OR-split
that may trigger more than one outgoing transition and implement it as a combina
tion of AND-splits and XOR-splits (see Pattern 6). This way we can easily synchronize
corresponding branches by using AND-join and XOR-join constructs.

o

The next two patterns aim to address the problem mentioned in Pattern 5, that is the situation
when more than one incoming transition of a merge is being activated.

Pattern 8 (Multi-merge)
Description Multi-merge is a point in a workflow process where two or more branches recon
verge without synchronization. If more than one branch gets activated, possibly concurrently,
the activity following the merge is started once for every incoming branch that gets activated.
Ewamples

10

- Sometimes two or more parallel branches share the same ending. Instead of replicating
this (potentially complicated) process for every branch, a multi-merge can be used. A
simple example of this would be two activities audit_application and process_application
running in parallel which should both be followed by an activity close_case.

Problem Most workflow engines (e.g. Staffware, HP Changengine, I-Flow) will not generate
the second instance of an activity if the first instance is still running. Notable exceptions are
Verve Worfiow and Forte Conductor.
Solutions

- If the multi-merge is not part of a loop, the common design pattern for languages that
are not able to create more than one active instance of an activity is to replicate this
activity in the workflow model (see Figure 2 for a simple example). If the multi-merge
is part of the loop, then typically the number of instances of an activity following the
multi-merge is not known during design time. For a typical solution to this problem, see
patterns 14 and 15.

o

Figure 2: Typical implementation of multi-merge pattern

The next pattern can be seen as the converse of the multi-merge.

Pattern 9 (Discriminator)
Description The discriminator is a point in a workflow process that waits for a number of
incoming branches to complete before activating the subsequent activity. From that moment
on it waits for all remaining branches to complete and "ignores" them. Once all incoming
branches have been triggered, it resets itself so that it can be triggered again.
Examples

- A paper needs to be sent to external reviewers. The paper is accepted if both reviews are
positive. But if the first review that arrives is negative, the author(s) should be notified
without having to wait for the second review.

11

- To improve query response time, a complex search is sent to two different databases
over the Internet. The first one that comes up with the result should proceed the flow.
The second result is ignored.

Problem As mentioned in Pattern 8, some workflow engines (e.g. Staffware, HP ChangeEngine,
I-Flow) will not generate the second instance of an activity if the first instance is still active.
However, this does not provide a solution for the discriminator since once the first instance of
the activity finishes, the second instance will be created.
Solutions

- There is a special construct that implements the discriminator semantics in Verve.

- The discriminator semantics can be implemented in products supporting Custom Trig
gers (see Pattern 10 for details).

- In all other workflow engines the discriminator semantics is hard or impossible to imple
ment. The common design pattern is to use Cancel Activity (see Pattern 21). Once the
first instance of the activity following the discriminator is created, the activities of the
incoming branches that still have not completed can be canceled. This way the second
instance of the activity following the discriminator will not be created. This pattern is
shown in the example of Figure 3. The problem with this solution is that if activities
B and C are performed concurrently, activity D may still end up being executed twice.
Moreover, the original semantics of the discriminator is to allow both Band C to finish.
In this solution either B or C will get canceled.

- The Petri-net semantics of the discriminator as presented in [HK99] shows that the
discriminator inherently is a non-free choice construct (see e.g. [DE95J) and hence cannot
be captured exactly by workflow products supporting free choice behavior exclusively.

o

The following pattern can be seen as a generalization of the basic discriminator.

Pattern 10 (N-out-of-M Join)
Description N-out-of-M Join is a point in a workflow process where M parallel paths
converge into one. The subsequent activity should be activated once N paths have completed.
Completion of all remaining paths should be ignored. Similarly to the discriminator, once all
incoming branches have "fired", the join resets itself so that it can fire again
Synonyms Partial join (cf. [CCPP95]), discriminator, custom join.
Ezamples

- A paper needs to be sent to three external reviewers. Upon receiving two reviews the
paper can be processed. The third review can be ignored [CCPP95].

Problem Most of the workflow products do not provide constructs that would allow for
straightforward implementation of the N-out-of-M Join.
Solutions

12

Task E:
If B not completed, cancel B
If C not completed, cancel C

Figure 3: Design pattern for discriminator

- Some workflow engines (e.g. Forte Conductor) provide support for Custom Triggers. A
custom trigger can be defined for an activity that has more than one incoming transition.
It defines the condition, typically using some internal script language, that would activate
the activity when evaluated to True. Such a script can be easily used to define the
semantics equivalent to that of an N-out-of-M Join. The downside of this approach is
that the semantics of the join using custom triggers is impossible to determine without
carefully examining underlying trigger scripts which result in less suitable and hard to
understand models.

- By combining patterns 9 and 3 one can achieve the desired semantics although the
workflow definition becomes large and complex. An example of a 2-out-of-3 join is shown
in Figure 4.

o

2.3 Structural Patterns

Different workflow management systems impose different restrictions on their workflow models.
These restrictions (e.g. arbitrary loops are not allowed, only one final node should be present
etc) are not always natural from a modeling point of view and tend to restrict the specification
freedom of the business analyst. As a result, business analysts either have to conform to the
restrictions of the workflow language from the start, or they model their problems freely and
transform the resulting specifications afterwards. A real issue here is that of suitability. In
many cases the resulting workflows may be unnecessarily complex which impacts end-users
who may wish to monitor the progress of their workflows. In this section two patterns are
presented which illustrate typical restrictions imposed on workflow specifications and their
consequences.

13

Figure 4: Implementation of 2-out-of-3-join using simple discriminator

Virtually every workflow engine has constructs that support the modeling of loops. Some of the
workflow engines provide support only for what we will refer to as structured cycles. Structured
cycles can have only one entry point to the loop and one exit point from the loop and they
cannot be interleaved. They can be compared to WHILE loops in programming languages
while arbitrary cycles are more like GOTO statements. This analogy should not deceive the
reader though into thinking that arbitrary cycles are not desirable as there are two important
differences here with "classical" programming languages: 1) the presence of parallelism which
in some cases makes it impossible to remove certain forms of arbitrariness and 2) the fact that
the removal of arbitrary cycles may lead to workflows that are much harder to interpret (and
as opposed to programs, workflow specifications also have to be understood at runtime by their
users).

Pattern 11 (Arbitrary Cycles)
Description A point in a workflow process when one or more activities can be done repeat
edly.
Synonyms Loop, iteration, cycle.
Ezamples

- Most of the initial workflow models at the analysis stage contain arbitrary cycles (if they
contain cycles at all).

Problem Some of the workflow engines do not allow arbitrary cycles - they have support
for structured cycles only, either through the decomposition construct (MQSeries/Workflow,
InConcert) or through a special loop construct (Visual WorkFlo, SAP R/3).
Solutions

- Arbitrary cycles can typically be converted into structured cycles unless they contain

14

one of the more advanced patterns such as multiple instances (see Pattern 14). The con
version is done either through auxiliary variables or through node repetition. A detailed
analysis of such transformations and the extent to which they are possible, can be found
in [KHBOO]. Figure 5 provides an example of an arbitrary workflow converted to a struc
tured workflow. Note that auxiliary variables q> and e are required as we may not know
which activities in the original workflow set the values of fJ and x.

o

Structured cycle (only one
entry and one exit point)

Figure 5: Implementation of arbitrary cycles

Another example of the requirement imposed by some of the workflow engines on a modeler is
that the workflow model is to contain only one ending node, or in case of many ending nodes,
the workflow model will terminate when the first one is reached. Again, most business models
do not follow this pattern - it is more natural to think of a business process as terminated once
there is nothing else to be done.

Pattern 12 (Implicit Termination)
Description A given subprocess should be terminated when there is nothing else to be done.
In other words, there are no active activities in the workflow and no other activity can be made
active (and at the same time the workflow is not in deadlock).
Ea:amples

- This semantics is typically assumed for every workflow model at the analysis stage.

15

Problem Most workflow engines terminate the process when an explicit Final node is reached.
Any current activities that happen to be running by that time will be aborted. Some workflow
engines (Staffware, MQSeries/Workflow, InConcert) would terminate the (sub)process when
there is nothing else to be done.
Solutions

- The typical solution to this problem is to transform the model to an equivalent model
that has only one terminating node. The complexity of that task depends very much
on the actual model. Sometimes it is easy and fairly straightforward, typically by using
a combination of different join constructs and activity repetition. However, there are
situations where it difficult or even impossible to do so. A model that involves multiple
instances (see section 2.4) and implicit termination is typically very hard to convert into
a model with explicit termination.

o

2.4 Patterns involving Multiple Instances

The patterns in this subsection involve a phenomenon that we will refer to as multiple instances.
From a theoretical point of view the concept is relatively simple and corresponds to more than
one token in a given place in a Petri-net representation of the workflow graph. From a practical
point of view it means that one activity on a workflow graph can have more than one running,
active instance at the same time. As we will see, it is a very valid and frequent requirement. The
fundamental problem with the implementation of this pattern is that due to design constraints
and lack of anticipation for this requirement most of the workflow engines do not allow for
more than one instance of the same activity to be active at the same time.

Pattern 13 (Multiple Instances With a Priori Design Time Knowledge)
Description For one case an activity is enabled multiple times. The number of instances of
a given activity for a given case is known at design time.
Ezamples

- The requisition of hazardous material requires three different authorizations.

Problem This pattern typically presents no specific problems.
Solutions

- If the number of instances is known a priori during design time, then a very simple
design pattern is to replicate the activity in the workflow model combined with the
parallel execution pattern.

o

Pattern 14 (Multiple Instances With a Priori Runtime Knowledge)
Description For one case an activity is enabled multiple times. The number of instances of

16

a given activity for a given case is variable and may depend on characteristics of the case or
availability of resources [CCPP98, JB96], but is known at some stage during runtime, before
the instances of that activity have to be created.
Ea;amples

- In the reviewing process of a scientific paper submitted to a journal, the activity re
view_paper is instantiated several times depending on the content of the paper, the avail
ability of referees, and the credentials of the authors.

- For the processing of an order for multiple books, the activity check_availability is exe
cuted for each individual book.

- When booking a trip, the activity book_flight is executed multiple times if the trip in
volves multiple flights.

- When authorizing requisition with multiple items, each item has to be authorized indi-
vidually by different workflow users.

Problem Only a few workflow management systems offer a construct for the multiple activa
tion of one activity for a given case. Most systems have to resort to a fixed number of parallel
instances of the same activity or an iteration construct where the instances are processed se
quentially.
Solutions

- This pattern is a specific instance of Pattern 15 thus any implementation of Pattern 15
will be applicable.

- If there is a maximum number of possible instances, then Patterns 2 and 4 can be used
to obtain the desired routing. A XOR-split is used to select the number of instances and
triggers one of several AND-splits. For each number of possible instances, there is one
AND-split with the corresponding cardinality. The drawback of this solution is that the
resulting workflow model can become large and complex and is bound by the maximum
number of possible instances.

- Some workflow engines offer a special construct that can be used to instantiate a given
number of instances of one activity. An example of such a construct is the Bundle concept
that is available in MQSeries/Workflow. Once the desired number of instances is obtained
(typically by one of the activities in the workflow) it is passed over via the available data
flow mechanism to a bundle construct that is responsible for instantiating a given number
of instances.

- As in many cases, the desired routing behavior can be supported quite easily by making it
more sequential. Simply use iteration (cf. Pattern 11) to activate instances of the activity
sequentially. Suppose that activity A is followed by n instantiations of B followed by C.
First execute A, then execute the first instantiation of B. Each instantiation of B is

17

followed by a XOR-split to determine whether another instantiation of B is needed or
that C is the next step to be executed. This solution fairly straightforward. However,
the n instantiations of B are not executed in parallel but in a fixed order. In many
situations this is not acceptable. Think of the example of reviewing papers. Clearly, it
is not acceptable that the second reviewer has to wait until the first reviewer completes
the review, etc.

o

Pattern 15 (Multiple Instances With No a Priori Runtime Knowledge)
Description For one case an activity is enabled multiple times. The number of instances of
a given activity for a given case is not known during design time, nor it is known at any stage
during runtime, before the instances of that activity have to be created.
Ezamples

- The requisition of 100 computers involves an unknown number of deliveries. The number
of computers per delivery is unknown and therefore the total number of deliveries is not
known in advance. Once each delivery is obtained, it can be determined whether a next
delivery is to come by comparing the total number of delivered goods so far with the
number of the goods requested.

Problem Most workflow engines do not allow more than one instance of the same activity to
be active at the same time.
Solutions

- The most straightforward implementation of this pattern is through the use of the loop
and the parallel split construct as long as the workflow engine supports multiple instances
directly. This is possible in languages such as Forte and Verve.

- Some workflow languages support an extra construct that enables the designer to create a
subprocess or a subflow that will "spawn-off" from the main process and will be executed
concurrently. For example, Visual WorkFlo supports the Release construct while I-Flow
supports the Chained Process Node.

- If the language does not support a special construct to spawn off the subprocess, then
it is typically possible through the API to invoke the subprocess as part of one activity
in a process.

- Similarly to Pattern 14, the desired routing behavior can be supported quite easily by
making it sequential.

o

The patterns described thus far did not consider the synchronization of multiple instances. For
example, spawning off a variable number of subprocess from the main process, as supported

18

by Visual WorkFlo and I-Flow, does only launch multiple instances without considering syn
chronization issues.

Pattern 16 (Multiple Instances Requiring Synchronization)
Description For one case an activity is enabled multiple times. The number of instances may
not be known at design time. After completing all instances of that activity another activity
has to be started.
Ezamples

- When booking a trip, the activity book_flight is executed multiple times if the trip in
volves multiple flights. Once all bookings are made, the invoice is to be sent to the client.

- The requisition of 100 computers results in a certain number of deliveries. Once all
deliveries are processed, the requisition has to be closed.

Problem Most workflow engines do not allow multiple instances. Languages that do allow
multiple instances (e.g. Forte, Verve) do not provide any construct that would allow for syn
chronization of these instances. Languages that support the Release construct (Visual WorkFlo,
I-Flow) do not provide any construct that would allow for synchronization of spawned off sub
processes.
Solutions

- If the number of instances (or maximum number of instances) is known at design time,
then it is easy to synchronize the multiple instances implemented through activity repe
tition by using basic synchronization.

- If the language supports mUltiple instances and decomposition that does not terminate
unless all activities are finished, then multiple instances can be synchronized by placing
the workflow sub-flow containing the loop generating the multiple instances inside the
decomposition block. The activity to be done once all instances are completed can then
follow that block.

- MQSeries/Workflow's Bundle construct can be used when the number of instances is
known at some point during runtime to synchronize all created instances.

- In most workflow languages none of these solutions can be easily implemented. The
typical way to tackle this problem is to use external triggers. Once each instance of an
activity is completed, the event should be sent. There should be another activity in the
main process waiting for events. This activity will only complete after all events from
each instance are received.

o

Figure 6 presents some design patterns for multiple instances. Workflow (a) can be imple
mented in languages supporting multiple concurrent instances of an activity as well as implicit

19

termination (see Pattern 12). An activity B will be invoked here many times, activity C is
used to determine if more instances of B are needed. Once all instances of B are completed,
the subprocess will complete and activity E can be processed. Implicit termination of the
subprocess is used as the synchronizing mechanism for the multiple instances of activity B.

Workflow (b) can be implemented in languages that do not support multiple concurrent in
stances. Activity B is invoked asynchronously, typically through an API. There is no easy way
to synchronize all instances of activities B.

Finally workflow (c) demonstrates a simple implementation when it is known during design
time that there will be no more than three instances of B.

1---------------------------------' I

Sub

I
I

I
I

I
I

I
I

\
\
\
\

E \

I

Task C: Determine
if more instances of B
are needed

\ No more instances needed
\
\
\ Workflow (a)

" ~---------------------------------

Task C: Determine
if more instances of B
are needed

---EJ

'-------{ XOR
More instances needed

~ more instances needed

Workflow (b) LJ

Task A: Determine
the number of required
instances of B

Workflow (e)

Solution for Numlnsl<=3

Figure 6: Design patterns for multiple instances

20

2.5 Temporal Relations

This section describes a pattern, or rather a family of patterns, which refers to the complex
temporal relationship between two activities. When describing the most basic workflow pat
tern, the sequence pattern (Pattern 1) we have made the assumption that the subsequent
activity is enabled after completion of the preceding one. However, more advanced notions
are possible. Let 81 be the moment the first activity starts and let e1 be the moment the
activity is completed. Let 82 and e2 be the start respectively completion times of the second
activity. For the standard sequential routing as described in the sequence pattern, 82 is later
than e1 (82 ~ e1). Other ordering relations similar to the standard sequential routing are
(1) before-start (82 ~ 8I), (2) after-end (e2 ~ el), (3) before-end (e2 ~ 8d, and (4) meets
(82 = ell.

Pattern 17 (Interleaved sequence)
Description Two activities that have an interdependent time relationship other than simple
sequencing. It may be that one activity has to start before the second activity finishes or that
one activity has to end at exactly the same time as the second activity (but may start at any
time).
Synonyms Activity scheduling
E:x:amples

- These patterns are frequently used in the manufacturing domain. With two assembly
lines we may want to start both of them at the same time, but the second one should
finish the job one hour after the first one finishes its job.

- These patterns are also frequently seen for long-lived activities that can span days or
months. Let activity 1 represent an approval process and activity 2 the preparation for
the actual construction. We may want to specify that the preparation for the construction
can start any time and be executed in parallel with the approval process but it cannot
end before the approval process is finished as only then all things are fixed.

Problem Most of the major workflow systems have not been designed to handle these types
of applications.
Solutions

- Most workflow systems treat activities as atomic entities. The typical processing of an
activity when it is ready to be executed is to route the activity to the appropriate user
or actor. The workflow user would then indicate that (s)he has started to work on the
activity (which typically involves some locking mechanism on the server) and then (s)he
would indicate when the activity is finished. The workflow system is a passive component
in this scenario as it is the workflow user that starts and finishes the activity. Common
design patterns for providing the required semantics is to split the activity into two
parts: begin-activity activity and end-activity activity. Then, depending on the actual
workflow product's time management capabilities one can use timers and/or delay nodes

21

to implement the required semantics. Note that in some cases it may prove to be either
very cumbersome or even impossible.

o

2.6 State-based Patterns

In real workflows, most workflow instances are in a state awaiting processing rather than
being processed. Most computer scientists, however, seem to have a frame of mind, typically
derived from programming, where the notion of state is interpreted in a narrower fashion and
is essentially reduced to the concept of data. As this section will illustrate, there are real
differences between work processes and computing and there are business scenarios where an
explicit notion of state is required. As the notation we have deployed so far is not suitable for
capturing states explicitly, we adopt the variant of Petri-nets as described in [Aal98b] when
illustrating the patterns in this section. Petri-nets provide a possible solution to modeling
states explicitly (examples of commercial workflow management systems based on Petri-nets
are COSA and Income).

Moments of choice, such as supported by constructs as XOR-splitsjOR-splits, in workflow
management systems are typically of an explicit nature, Le. they are based on data or they are
captured through decision activities. This means that the choice is made a-priori, Le. before the
actual execution of the selected branch starts an internal choice is made. Sometimes this notion
is not appropriate. Consider Figure 7 adopted from [Aa198b]. In this figure two workflows are
depicted. In both workflows, the execution of activity A is followed by the execution of B or
C. In workflow (a) the moment of choice is as late as possible. After the execution of activity
A there is a "race" between activities Band C. If the external message required for activity C
(this explains the envelope notation) arrives before someone starts executing activity B (the
arrow above activity B indicates it requires human intervention), then C is executed, otherwise
B. In workflow (b) the choice for either B or C is fixed after the execution of activity A. If
activity B is selected, then the arrival of an external message has no impact. If activity C is
selected, then activity B cannot be used to bypass activity C. Hence, it is important to realize
that in workflow (a), both activities B and C were, at some stage, simultaneously scheduled.
Once an actual choice for one of them was made, the other was disabled. In workflow (b),
activities Band C were at no stage scheduled together.

Many workflow management systems abstract from states between subsequent activities, and
hence have difficulties modeling implicit choices.

Pattern 18 (Deferred XOR-split)
Description A point in the workflow process where one of several branches is chosen. In
contrast to the XOR-split, the choice is not made explicitly (e.g. based on data or a decision)
but several alternatives are offered to the environment. However, in contrast to the AND-split,
only one of the alternatives is executed. This means that once the environment activates one

22

(a)

elCplidt OR spUt

c3 (b)

Figure 7: Illustrating the difference between implicit (a) and explicit (b) XOR-splits

of the branches the other alternative branches are withdrawn. It is important to note that the
choice is delayed until the processing in one of the alternative branches is actually started, i.e.
the moment of choice is as late as possible.
Synonyms External choice, implicit choice.
Ezamples

- After receiving the products there are two ways to transport the products to the depart
ment. The selection is based on the availability of the corresponding resources. Therefore,
the choice is deferred until a resource is available.

- Consider activity A in Figure 7 to represent the activity send_questionnaire, and activ
ities B and C, the activities time_out and process_questionnaire. The activity time_out
requires a time trigger, while the activity process_questionnaire is only to be executed if
the complainant returns the form that was sent (hence an external trigger is required for
its execution). Clearly, the moment of choice between process_questionnaire and time_out
should be as late as possible. If this choice was modeled as an explicit XOR-split (Pat
tern 4), it is possible that forms which are returned in time are rejected, or cases are
blocked if some of the forms are not returned at all.

Problem Many workflow management systems support the XOR-split described in Pattern 4
but do not support the implicit XOR-split. Since both types of choices are desirable (see
example), the absence of the implicit OR-split is a real problem.
Solutions

- Assume that the workflow language being used supports Pattern 2 (AND-split) and
Pattern 21 (Cancel activity). The implicit XOR-split can be realized by enabling all

23

alternatives via an AND-split. Once the processing of one of the alternatives is started,
all other alternatives are canceled. Consider the implicit choice between B and C in
Figure 7(a). After A, both Band C are enabled. Once B is selected/executed, activity C
is canceled. Once C is selected/executed, activity B is canceled. Note that the solution
does not always work because B and C can be selected/executed concurrently.

- Another solution to the problem is to replace the implicit XOR-split by an explicit XOR
split, i.e. an additional activity is added. All triggers activating the alternative branches
are redirected to the added activity. Assuming that the activity can distinguish between
triggers, it can activate the proper branch. Consider the example shown in Figure 7. By
introducing a new activity E after A and redirecting triggers from Band C to E, the
implicit XOR-split can be replaced by an explicit XOR-split based on the origin of the
first trigger. Note that the solution moves part of the routing to the application or task
level.

o

Patterns 2 and 3 are typically used to specify parallel routing. Most workflow management
systems support true concurrency, i.e. it is possible that two activities are executed for the same
case at the same time. If these activities share data or other resources, true concurrency may
be impossible or lead to anomalies such as lost updates or deadlocks. Therefore, we introduce
the following pattern.

Pattern 19 (Interleaved parallel routing)
Description A set of activities is executed in an arbitrary order: Each activity in the set
is executed, the order is decided at run-time, and no two activities are executed at the same
moment (i.e. no two activities are active for the same workflow instance at the same time).
Synonyms Unordered sequence.
Eroamples

- The Navy requires every job applicant has to take two tests: physicaUest and men
taU est. These tests can be conducted in any order but not at the same time.

- At the end of each year, a bank executes two activities for each account: add_interest and
charge_crediLcard_costs. These activities can be executed in any order. However, since
they both update the account, they cannot be executed at the same time.

Problem Since most workflow management systems support true concurrency when using
constructs such as the AND-split and AND-join, it is not possible to specify interleaved parallel
routing.
Solutions

- A very simple, but unsatisfactory solution, is to fix the order of execution, i.e. instead of
using parallel routing, sequential routing is used. Since the activities can be executed in

24

an arbitrary order, a solution using a predefined :fix order may be acceptable. However,
by :fixing the order, flexibility is reduced and the resources cannot be utilized to their full
potential.

- Another solution is to use a mixture of Patterns 4 and 1, i.e. several alternative sequences
are defined and before execution one sequence is selected using a XOR-split. A drawback
is that the order is fixed before the execution starts. Moreover, the workflow model may
become quite complex and large by enumerating all possible sequences.

- By using Pattern 18 (instead of Pattern 4) the order does not need to be fixed before
the execution starts, i.e. the implicit OR-split allows for on-the-fly selection of the order.
Unfortunately, the resulting model typically has a "spaghetti-like" structure.

- For workflow models based on Petri nets, the interleaving of activities can be enforced
by adding a place which is both an input and output place of all potentially concurrent
activities. The AND-split adds a token to this place and the AND-join removes the token.
It is easy to see that such a place realizes the required "mutual exclusion". See Figure 8
for an example where this construct is applied. Note that, unlike the other solutions, the
structure of the model is not compromised.

c5

mutual
exclusion

place

o

c7

Figure 8: The execution of B, C, D, and E is interleaved by adding a mutual-exclusion place.

The expressive power of many workflow management systems is restricted by the fact that
they abstract from states, i.e. the state of a workflow instance is not modeled explicitly. The
solution shown in Figure 8 is only possible because mutual exclusion can be enforced by place
mutex (i.e. state information shared among the activities). Pattern 18 (implicit XOR-split) is
another example of a construct which is hard to handle if one abstracts from the states in
between activities. The next pattern, Pattern 20, allows for testing whether a case has reached

25

a certain phase. By explicitly modeling the states in-between activities this pattern is easy
to support. However, if one abstracts from states, then it is hard, if not impossible, to test
whether a case is in a specific phase.

Example 2.1 Consider the workflow process for handling complaints (see Figure 9). First
the complaint is registered (activity register), then in parallel a questionnaire is sent to
the complainant (activity send_questionnaire) and the complaint is evaluated (activity
evaluate). If the complainant returns the questionnaire within two weeks, the activity
process_questionnaire is executed. If the questionnaire is not returned within two weeks,
the result of the questionnaire is discarded (activity time_out). Based on the result of
the evaluation, the complaint is processed or not. The actual processing of the complaint
(activity process_complaint) is delayed until the questionnaire is processed or a time-out
has occurred. The processing of the complaint is checked via activity check_processing.
Finally, activity archive is executed. 0

The construct involving activities process_complaint which is only enabled if place c4 contains
a token is called a milestone.

time out

Figure 9: The state in-between the processing/time-out of the questionnaire and archiving the
complaint (Le. place c4) is an example of a milestone.

Pattern 20 (Milestone)
Description The enabling of an activity depends on the case being in a specified state,
i.e. the activity is only enabled if a certain milestone has been reached which did not expire
yet. Consider three activities A, B, and C. Activity A is only enabled if activity B has been
executed and C has not been executed yet, i.e. A is not enabled before the execution B and
A is not enabled after the execution C.
Synonyms Test arc, deadline (cf. [JB96]), state condition.
Ea:amples

26

- In a travel agency, flights, rental cars, and hotels may be booked as long as the invoice
is not printed.

- A customer can withdraw purchase orders until two days before the planned delivery.

- A customer can claim air miles until six months after the flight.

- The construct involving activity process_complaint and c4 shown in Figure 9.

Problem The problem is similar to the problem mentioned in Pattern 18: There is a race
between a number of activities and the execution of some activities may disable others. Note
that in Figure 9 activity process_complaint may be executed an arbitrary number of times, i.e.
it is possible to bypass process_complaint, but it is also possible to execute process_complaint
several times.
Solutions

- Consider three activities A, B, and C. Activity A can be executed an arbitrary number
of times before the execution of C and after the execution of B. Such a milestone can
be realized using Pattern 18. After executing B there is an implicit XOR-split with
two possible subsequent activities: B and C. If B is executed, then the same implicit
XOR-split is activated again. If C is executed, B is disabled by the implicit XOR-split
construct. Note that this solution only works if the execution of B is not restricted
by other parallel threads. For example, the construct cannot be used to deal with the
situation modeled in Figure 9 because process_complaint can only be executed directly
after a positive evaluation or a negative check, i.e. the execution of process_complaint is
restricted by both parallel threads.

- Another solution is to use the data perspective, e.g. introduce a Boolean workflow vari
able m. Again consider three activities A, B, and C such that activity A is allowed to be
executed in-between B and C. Initially, m is set to false. After execution of B m is set
to true, and activity C sets m to false. Activity A is preceded by a loop which periodi
cally checks whether m is true: If m is true, then A is activated and if m is false, then
check again after a specified period, etc. Note that this way a "busy wait}) is introduced.
More sophisticated variants of this solution are possible by using database triggers, etc.
However, a drawback of this solution approach is that an essential part of the process per
spective is hidden inside activities and applications. Moreover, the mixture of parallelism
and choice may lead to all kinds of concurrency problems.

o

Having introduced the milestone pattern another solution to Pattern 16 can be given (see
Figure 10). This solution uses a mixture of a loop construct to enable multiple instances of
B in parallel, and a milestone and XOR-split to detect the completion of all instances. Note
that the enabling is done sequentially, the actual execution, however, is done in parallel. The

27

AND-split X enables one instance of B and activates Y. The XOR-split Y checks whether all
instances have been enabled. The AND-join/OR-split Z uses a milestone-like construct and is
activated for every instantiation of B. Z determines whether all instances have been processed,
i.e. it waits for the next completion of an instance of B or enables C.

XOR-split

c4 c5

Figure 10: Multiple activation of activity B using the milestone pattern

It is interesting to think about the reason why many workflow products have problems dealing
with patterns 18, 19, and 20. The systems that abstract from states are typically based on
messaging, Le. if an activity completes, it notifies or triggers other activities. This means
that activities are enabled by the receipt of one or more messages. Patterns 18, 19, and 20
have in common that an activity can become disabled (temporarily). However, since states are
implicit and there are no means to disable activities (Le. negative messages), these systems have
problems dealing with the constructs mentioned. Note that the synchronous nature of patterns
18, 19, and 20 further complicates the use of asynchronous communication mechanisms such
as message passing using "negative messages" (e.g. messages to cancel activities).

2.7 Cancellation Patterns

In this section focus is on patterns dealing with cancellation of activities and cases.

The first solution described in the Deferred XOR-split (Pattern 18) uses a construct where
one activity cancels another, Le. after the execution of activity B, activity C is withdrawn and
after the execution of activity C activity B is withdrawn. The following pattern describes this
construct.

Pattern 21 (Cancel activity)
Description An enabled activity is disabled, i.e. a thread waiting for the execution of an
activity is removed.
Synonyms Withdraw activity.
Examples

- Normally, a design is checked by a two groups of engineers. However, to meet deadlines
it is possible that one of these checks is withdrawn to be able to meet a deadline.

28

- If a customer cancels a request of information, the corresponding activity is disabled.

Problem Only a few workflow management systems support the withdrawal of an activity
directly in the workflow modeling language, i.e. in a (semi-) graphical manner.
Solutions

- If the workflow language supports Pattern 18 (implicit OR-split), then it is possible
to cancel a activity by adding a so-called "shadow activity". Both the real activity and
the shadow activity are preceded by an implicit OR-split. Moreover, the shadow activ
ity requires no human interaction and is triggered by the signal to cancel the activity.
Consider for example a workflow language based on Petri nets. An activity is canceled
by removing tokens from its input place. The tokens are removed by executing another
activity having the same set of input places. Note that the drawback of this solution is
the introduction of activities which do not correspond to actual steps of the process.

- Many workflow management systems support the withdrawal of activities using an API
which simply removes the corresponding entry from the database, Le. it is not possible to
model the cancellation of activities in a direct and graphical manner, but inside activities
one can initiate a function which disables another activity.

A similar construct is the cancellation of an entire case.

Pattern 22 (Cancel case)
Description A case, i.e. workflow instance, is removed completely.
Synonyms Withdraw case.
Ea;amples

- In the process for hiring new employees, an applicant withdraws his/her application.

- A customer withdraws an insurance claim before the final decision is made.

o

Problem Workflow management systems typically do not support the withdrawal of an entire
case using the (graphical) workflow language.
Solutions

- Pattern 21 can be repeated for every activity in the workflow process definition. There
is one activity triggering the withdrawal of each activity in the workflow. Note that this
solution is not very elegant since the "normal control-flow" is intertwined with all kinds
of connections solely introduced for removing the workflow instance.

- Similar to Pattern 21, many workflow management systems support the withdrawal of
cases using an API which simply removes the corresponding entry from the database.

o

29

2.8 Inter-Workflow Synchronization

The previous patterns mainly related to triggering dependencies within a single workflow. In
this section, we turn our attention to triggering dependencies across workflows, specifically the
synchronization of activities in different workflows. The requirement typically emerges from
business-to-business (B2B) interaction where a number of agencies collaborate for the provision
of a business service. Each agency has a separate workflow and may not want its details to be
exposed (e.g. for competitive purposes). However, some activities in a workflow will warrant
information produced from another workflow.

Different configurations can be used for workflow interoperability. One is having separate work
flows run by separate and possibly heterogeneous workflow systems which can communicate
with each other. Another is to have separate workflows run on a single workflow system, which
removes the problem of requiring heterogeneous workflow systems having to communicate.
Given some open issues with heterogeneous workflow systems interoperability, our focus will
be on a single workflow system configuration and the essential issues of inter-workflow syn
chronization therein.

For the purposes of what we describe as inter-workflow messaging, we define two fundamental
messaging activities, a message sender and a message receiver. The execution of a message
sender involves the transmission of a message within a specified scope. Given the control-flow
perspective of this paper, we ignore the specification of the message itself, except to say that a
typing mechanism would be employed to define permissible instances of messages for senders
and receivers, including passing no/null data - analogous to transmitting a signal. The explicit
specification of the message scope at the workflow level serves to identify the destination of
the message send without having to prescribe the message receiver. Figure 11 illustrates a
specification for sender A in one workflow X, receiver B in another workflow Y, and their
communication through message scope m. Communication can take place since both sender
and receiver share the same message scope.

x y

Figure 11: Messaging at the workflow level

Pattern 23 (Messaging communication)
Description The transmission of a message from a message sender in one workflow {or

30

compound activity) to a message receiver in another workflow. The message scope of the
sender and receiver must be the same.

At run-time, communication can only occur between one sender and one receiver instance. If
one sender and multiple receivers exist in the same scope, then only one potential communi
cation can take place, and the non-matching receiver instances will be deadlocked. If several
senders but one receiver exist, one communication will take place but no deadlocks will be
incurred. This is because receivers only involve a wait dependency. The message receive can
be seen as an AND-join (of the local triggers and an external messaging trigger).

A further variant on message sending is synchronicity, i.e. where a sender will not complete
until it "knows" that its message has been received. Alternatively, a receiver could follow
a sender to emulate synchronous sending. We favor a dedicated treatment for synchronous
sending to reduce the imperative burden on designers. The issue of synchronous sending will
not be discussed further.
Synonyms Event produce-consume.
Ea;amples

- During the processing of particular types of insurance claims, insurance companies col
laborate with damage assessment agents. When an insurance processing workflow in
stance is started, a workflow for a selected damage assessment agent is also triggered to
perform some preparation and to then wait for a damage_assessmenLnotification from
the insurance company workflow. The damage assessment agents do not want insurance
companies to "see" what activities they undertake (e.g. which searching and verification
agents they themselves canvass). To prevent this, a damage_assessmenLnotification is
the message scope within which a sender activity in the insurance company workflow
communicates with a receiver activity in the damage assessment agent workflow.

Problem Most workflow management systems provide the ingredients for messaging at the
implementation level, namely through application handlers which can be written to send and
receive messages using the workflow management system's messaging middleware service. The
problem is that the receiver task should be enabled (by the workflow engine) during the time
that the message is in internal transport. This will not always be the case for all types of
messaging middleware technologies (as message queues are finite in size and as new messages
come into the queue, older ones will go out). Thus, decoupling messaging from the workflow
definition level and reliance solely on the implementation messaging services will not guarantee
that the communication pattern will work.
Solutions

- The solution is to provide messaging at the workflow definition such that the work
flow management system ensures that communication can occur. Specifically, workflow
managers should ensure that the messages persist, at least during the time that their po
tential communications can take place. There should no loss of workflow engine's activity
scheduling in the presence of message sending, waiting and receipt.

31

Such a solution with different approaches can be seen in different products. As an example
the SAP R/3 Workflow's so-called event-process chains are based on event types at the
start and end of workflow activities, where events have an explicit definition. Thus,
events of the same type can be used to define the message scope. The event type would
be triggered by a message sender, while the same event type would trigger a message
receiver. Events persist as objects in the database of SAP R/3 installation.

Another example is FileNet Visual Workflo which persists events associated with the
creation of (work object) activities, allowing these to pre-condition the execution of other
(work object) activities. This event type is called WaitCreate. Thus, the communication
pattern would be achieved through a WaitCreate event on a waited activity, i.e. a message
receiver, and a waited-on activity, i.e. a message sender. Encapsulation is not broken as
the actual message sender name does not have to be revealed in the WaitCreate event
- merely a symbolic name associated with the message sender. This, of course, would
capture the message scope.

It is worth noting, too, that proposals are underway for the standardization of workflow
level event handling, allowing the communication pattern, as seen through IBM, Sun and
DSTC's joint submission for the Object Management Group's (OMG) enterprise process
modeling standardl

o

Pattern 24 (Messaging coordination)
Description A sender issues a request and at the "sending" end a response is anticipated
for that request by a subsequent receiver associated with the sender. Figure 12 illustrates how
coordinated messaging applies.

x y I
I
I
I

~
I
I
I
I

Figure 12: Messaging coordination

IThis submission is part of the Enterprise Distributed Object Computing (EDOC) profile for the
Unified Modeling language (UML) standardization http://www.omg.org/techprocess/meetings/schedule/
UML.Profile.for.EDOC..RFP.html which is currently in progress.

32

At the "sending" end X, a sender A issues a request through a message scope m. In the sender's
execution path, a receiver D, associated with the sender, is activated to receive a returning
response from an outside activity which relates to the sender's request - e.g. the response
required is an update of the same notification sent in the request. At the "receiving" end Y,
a receiver I communicates with sender A in message scope m, and in a subsequent activity, a
sender J associated with I, sends back. a response to receiver D, associated with the originator
of the request, A.

From a "sending" point of view X, messaging coordination is characterized by a sender, the
sender's message scope and an associated receiver. Coordination can similarly be described
from a "receiving" point of view Y.
Ezamples

- Continuing the insurance example from the message communication pattern (above),
consider an extension to the interaction where the insurance company sends out a request
for a damage_assessmenLnotice while continuing processing. As part of further process
ing, the insurance company awaits possible further claim_details or cancellations from the
claimer as well as the damage_assessmenLnotice. For claim_details and cancellations, un
coordinated receiver activities can be used. However, for the damage_assessment_notice a
coordination relationship is required between the sender of the request (notice) and the
receiver of the response (the update of the same notice).

Problem Two-way communication (using pattern 23 from the "sending" to the "receiving"
end, and from the "receiving" end to the "sending" end) could be used to achieve the co
ordination pattern. Thus, workflow systems achieving the communication pattern could also
achieve the coordination pattern. However, there is the additional requirement of associating
the sender and its anticipating receiver in the same workflow. A difficulty, in this regard, arises
from the existence of multiple instances of the same sender and receiver types concurrently
(through e.g. cyclic iteration), meaning sender and receiver instances need to be associated at
runtime. Otherwise, for example, a receiver instance might obtain an update of a notification
originally requested through a sender instance which did not trigger it.
Solutions

- The particular problem of dynamic association described above can be achieved by
making the instance identifier of the sender available to the anticipating receiver. This
same instance identifier would also be passed through communication from the "sending"
to the "receiving" end, and then back to the "sending" end, where it would have to match
up with the instance identifier passed to the anticipating receiver. This instance identifier
must be available prior to the arrival of the response.

As an example, in SAP R/3 Workflow and FileNet Visual Workflo, the dynamic associa
tion of sender and receiver can be achieved through an event trigger between the sender
and receiver; the enabling of the receiver depends on the sender's prior creation and the
instance identifier of the sender is passed onto the receiver through the event trigger on
the receiver. Note in SAP R/3 Workflow, multiple instances of the same type cannot

33

exist concurrently, so there is no strict need for dynamic association. Nevertheless, the
event trigger solution is general enough for static and dynamic associations.

o

Pattern 25 (Bulk message sending)
Description Multiple instances of message senders of the same type execute concurrently.
This allows the capture of business situations where notifications of the same type are sent to
several, external stakeholders. The number may be known a priori at design time or runtime,
or may only be determined during runtime.
Synonyms Multi-cast messaging.
Ewamples

- An online share broker enables trading transactions depending on a customer's buying
and selling needs. A trade is made if offers are accepted for a customer's buying and
selling shares. Offers are raised and negotiated (through several cycles) using message
senders. For different cycles, the number might be known a priori at runtime or may vary
during runtime, e.g. depending on the availability of buying shares. The share market,
being highly dynamic and distributed, requires as much parallelism as possible for the
messaging associated with making and accepting offers.

Problem Multiple instances of the same message sender type are required concurrently. Be
cause multiple, concurrent instances are not widely supported in current workflow management
systems, more imperative solutions like the cyclic iteration of a message sender are adopted.
This, however, involves sequential not concurrent message sending, which may be unsuitable
for certain requirements where, for instance, there may be a legal requirement to send notifi
cations at the sarne time.
Solutions

- A message sender activity is applied through the one of the multiple instances patterns,
depending on whether the number is known a priori at design time (Pattern 13), known a
priori at runtime (Pattern 14) or with no a priori runtime knowledge (Pattern 15). FileNet
Visual Workflo supports the communication pattern, and therefore message sending, as
well as the multiple instances patterns. It therefore achieves bulk sending.

o

Pattern 26 (Bulk message receiving)
Description Multiple instances of message receivers of the same type execute concurrently.
This allows the capture of business situations where the notifications are received from several,
external stakeholders. The number may be known a priori at design time or runtime, or may
only be determined during runtime.
Ewamples

34

- Continuing with the example of the online share broker (described in Pattern 25), for
offers made through a bulk message sender, responses should be received. The maximum
number of possible incoming responses is known at runtime, namely the same the number
of associated message senders. (Note, the implicit requirement of coordination required
for senders and receivers).

Problem As with bulk message sending, the lack of support for multiple, concurrent instances
can lead to a "sequentialization" of message receiving. Doing this for message receiving is a
graver problem since it is clearly suboptimal reception - only one message is received at a time.
Solutions

- A message receiver activity is applied through the multiple instances patterns, where
the number is known a priori at design time (Pattern 13), known a priori at runtime
(Pattern 14) or with no a priori runtime knowledge (Pattern 15). As with bulk messag
ing, only FileNet Visual Workflow supports the communication pattern, and therefore
message receiving as well as the multiple instances patterns. It therefore achieves bulk
receiving.

D

3 Comparing Workflow Management Systems

3.1 Introduction

The. workflow patterns described in this paper correspond to routing constructs encountered
when modeling and analyzing workflows. Many of the patterns are supported by workflow
management systems. However, several patterns are difficult, if not impossible, to realize using
many of the workflow management systems available today. As indicated in the introduction,
the routing functionality is hardly taken into account when comparing/evaluating workflow
management systems. The system is checked for the presence of sequential, parallel, condi
tional, and iterative routing without considering the ability to handle the more subtle work
flow patterns described in this paper. The evaluation reports provided by prestigious consulting
companies such as the "Big Six" (Andersen Worldwide, Ernst & Young, Deloitte & Touche,
Coopers & Lybrand, KPMG, and Price Waterhouse) typically focus on purely technical issues
(Which database management systems are supported?), the profile of the software supplier
(Will the vendor be taken over in the near future?), and the marketing strategy (Does the
product specifically target the telecommunications industry?). As a result, many enterprises
select a workflow management system that does not fit their needs.

In this section, we provide a comparison of the functionality of 12 workflow management
systems (COSA, Visual Workflow, Forte Conductor, Meteor, Mobile, MQSeries/Workflow,
Staffware, Verve Workflow, I-Flow, InConcert, Changengine, and SAP R/3 Workflow) based
on the (advanced) workflow patterns presented in this paper (the elementary patterns are

35

omitted in the comparison as they can be realized by all WFMSs). We would like to stress
that the product-specific information at our disposal was current at the end of 1999 and we
cannot guarantee that all the results are still valid.

3.2 Products

Before we compare the products based on the workflow patterns presented in this paper, we
briefly introduce each product and supply some background information.

CaSA [SL96] is a Petri-net-based workflow management system developed by Ley GmbH
(formerly operating under the names Software Ley and COSA Solutions). Ley GmbH is a
German company based in Pullheim (Germany) and is part of the Baan Consortium (Le. a
member of the Vanenburg Group). COSA is one of the leading workflow management systems
in Europe and can be used as a stand-alone workflow system or as the workflow module of the
Baan IV ERP system. COSA will also be used as the workflow engine of the new BaanSeries
platform. For our evaluation we used version 2.0. The modeling language of COSA consists
of two types of building blocks: activities (Le., Petri net transitions) and conditions (Le. Petri
net places). COSA extends the classical Petri net model with control data to allow for explicit
choices based on information and decisions. Unfortunately, only safe Petri nets are allowed,
i.e., it is not allowed to have multiple tokens in one place. Therefore, COSA is unable to
support multiple instances directly. The only way to deal with multiple instances is to use
workflow triggers. Every subprocess in COSA has a unique start activity and a unique end
activity. As a result, only highly structured subprocesses are possible and termination is always
explicit. The main feature of the workflow language of COSA is that it allows for the explicit
representation of states. As a result, state-based patterns such as the Deferred XOR-split,
and Interleaved parallel routing are supported in a direct and graphical manner. Tasks can
be removed from places, providing support for Cancel Activity, however COSA does not have
an explicit provision for Cancel Case other than through its API. Messaging Communication
and Coordination are supported in COSA through essentially external triggers which can be
input to, or output from, activities. Since Multiple Instances are not supported, COSA does
not support the bulk messaging patterns.

Visual WorkFlo is one of the market leaders in the workflow industry. It is part of the
FileNet's Panagon suite that includes also document management and imaging servers. Visual
WorkFlo is one of the oldest and best established products on the market. Since its introduc
tion in 1994 it managed to gain a respectable share of all worldwide workflow applications.
FileNet as a corporation ranks amongst the top 60 software companies in the world (Software
magazine) - with offices in 13 countries and over .650 Value Added Resellers building solu
tions on top of Panagon's suite. The workflow modeling language of Visual WorkFlo is highly
structural and is a collection of activities and routing elements such as Branch (XOR-split),
While (structured loop), Static Split (AND-split), Rendevous (AND-join), and Release. Visual
WorkFlo does not directly support any of the advanced synchronization patterns. It requires

36

the model to have structured loops only and one, explicit, termination node thus limiting
the suitability of the resulting specifications. Direct support for Multiple Instances is possible
through the Release construct as long as there is no further synchronization required. There
is no direct way to implement any of the state-based patterns. There is no explicit support for
the cancellation patterns. However, Visual Workflo supports all the messaging patterns: Mes
saging Communication and Coordination are possible through event (WaitCreate) dependency
of one activity by another, with the support of Multiple Instances also making bulk messaging
possible.

Forte Conductor is a workflow engine that is an add-on to Forte's powerful development
environment, Forte 4GL (formerly Forte Application Environment). Forte Software has re
cently (in October 1999) been acquired by Sun Microsystems. Conductor's engine is based
on experimental work performed at Digital Research and its modeling language is powerful
and flexible. The workflow model in Conductor comprises a set of activities connected with
transitions (called Routers). Each transition has associated transition conditions. Each activity
has a trigger that determines the semantics of that activity if it has more than one incoming
transition. The triggers are flexible enough for easy specification of OR-join, AND-join and any
type of N-out-of-M join (see Pattern 10) although the semantics of such a specification is im~
plicit and not visible to the end-user. Arbitrary cycles are supported, but explicit termination
points are required. Forte supports creation of multiple instances directly (through the use of
a multi-merge join) but does not support any direct means of their further synchronization.
State-based patterns cannot be realized. Forte does not have a construct for Cancel Activity
but Cancel Case is available through its termination semantics - when an activity is executed
which has no other triggers, it will terminate that workflow decomposition. Forte does not
support the messaging patterns.

Meteor (Managing End-To-End OpeRations) [SKM] is a CORBA-based workflow manage
ment system developed by members of the LSDIS laboratory of the University of Georgia
(USA). Interesting features of Meteor are the support for transactional workflows and the
full exploitation of Web, CORBA, and Java based distributed computing infrastructures. The
Meteor project is funded through the NIST ATP initiative in Information Infrastructure for
Healthcare and involves 17 IT and healthcare institutions. Meteor has been tested by several
industry partners and is in the process of being commercialized by Infocosm Inc. A workflow
in Meteor is defined as a collection of activities and dependencies. An activity can be any com
bination of AND/XOR-joins and AND/XOR-splits and there are two types of dependencies:
control dependencies and data dependencies. The focus of Meteor is on transactional features
and distribution aspects. The workflow modeling language supports few of the more advanced
constructs. For example, it is not possible to handle any of the state-based patterns, multiple
instances are not supported explicitly, termination is always explicit, and the Synchronization
merge, Discriminator and cancellation are not supported. Of the messaging patterns, Commu
nication and Coordination are supported. The Multi-merge and Arbitrary cycles patterns are
supported. The N-out-of-M pattern is only possible by listing all possible combinations.

37

Mobile [JB96] is a workflow management system developed by members of the Database
Systems group at the University of Erlangen/Niirnberg (Germany). It is a research prototype
with several interesting features, e.g. the system is based on the observation that a workflow
comprises many perspectives (cf. [JB96]) and one can reuse each perspective separately. The
control-flow perspective of Mobile offers various routing constructs to link so-called "workflow
types". A workflow type is either an elementary activity or the composition of other workflow
types. A powerful feature of the Mobile language is that the set of control-flow constructs is not
fixed, i.e. the language is extensible. It is possible to add any of the design patterns identified in
this paper as a construct. To add a construct, one can use the Mobile editor MoMo to add the
graphical representation of the construct. The semantics is expressed in terms of Java. Since
the Java code has direct access to the state of the workflow instance, all routing constructs can
be supported. The fact that the language is extensible makes the workflow language of Mobile
hard to compare with the other languages. To make a fair comparison we only considered the
routing constructs currently available in Mobile. The standard constructs of Mobile include,
in addition to the basic patterns, the N-out-of-M join and interleaved parallel routing.

MQSeries/Workflow is the successor of IBM's major workflow offering, FlowMark. Flow
Mark was one of the first workflow products that was independent from document management
and imaging services. It has been renamed to MQSeries/Workflow after a major move from the
proprietary middleware to middleware based on the MQSeries product. The workflow model
consists of activities linked by transitions. Other than a decomposition block, few other spe
cial modeling constructs available. The workflow engine of MQSeries/Workflow has a unique
execution semantics in that it propagates a False Token for every transition with a condition
evaluating to False. This allows for every activity that has more than one incoming transition
to act as a synchronizing merge (see Pattern 7). Other than the synchronizing merge, which is
a natural construct for MQSeries/Workflow, there is no way to directly implement any of the
other advanced synchronization patterns. Support for multiple instances is provided through
the Bundle construct although it is not suitable if the number of instances is not known at
any point prior to generating the instances involved. Arbitrary loops are not supported. An
explicit termination point is not required and the workflow process will terminate when "there
is nothing else to be executed". There is no direct way to model the state-based, cancellation,
and messaging patterns.

Staffware [Sta97] is one of the leading workflow management systems. Staffware is authored
and distributed by Staffware PLC. Staffware PLC has its headquarteris in Maidenhead (UK),
operates through offices in 15 countries and has a network of 360 partners, resellers and OEMs.
We used both the most recent version of Staffware (Le. Staffware 2000), which was released
in the last quarter of 1999, and Staffware 97 [Sta97] for our evaluation. This latter version of
Staffware is used by more than 550,000 users worldwide and runs on more than 4500 servers.
In 1998, it was estimated by the Gartner Group that Staffware has 25 percent of the global
market [Cas98]. The routing elements used by Staffware are the Start, Step, Wait, Condition,
and Stop. The Step corresponds to an activity which has an OR-join/ AND-split semantics. The
Wait step is used to synchronize flows (Le. an AND-join) and conditions are used for conditional

38

routing (ie. XOR-split). Arbitrary loops are supported. There is no direct provision for multiple
instances nor for the advanced synchronization constructs. There is no need to define explicit
termination points, i.e. termination is implicit. Staffware does not offer a state concept. The so
called "withdraw" transition allows the Cancel Activity pattern to be supported. No support
is available for Cancel Case, nor are the messaging patterns supported.

Verve is a relative newcomer to the workflow market. What makes it an interesting workflow
product is that it has been designed from the ground up as an embeddable workflow engine.
The workflow engine of Verve is very powerful and amongst other features allows for multiple
instances and dynamic modification of running instances. The Verve workflow model consists
of activities connected by transitions. Each transition has an associated transition condition.
Extra routing constructs such as synchronizer and discriminator are supported. Arbitrary
loops are supported. An explicit termination point is required. Multiple instances are directly
supported (through the use of the multi-merge) as long as they do not require subsequent
synchronization. There is no direct way to implement state-based patterns. Of the cancellation
patterns, Cancel Case is supported through the forced termination by the ''first of the last"
activities which terminates. None of the messaging patterns are supported directly, although
with Verve the provision of source code and its open, embeddable design make it possible for
sites to implement additional constructs including message/event handling from the "ground
up" as opposed to implementing workarounds.

I-Flow is a workflow offering from Fujitsu that can be seen as a successor of the well
established workflow engine from the same company, TeamWare. I-Flow is web-centric and lias
a Java/CORBA based engine built specifically for Independent Software Vendors and System
Integrators. The workflow model in I-Flow consists of activities and a set of routing constructs
connected by transitions (called Arrows). Routing constructs include Conditional Node (XOR
split), OR-NODE (Merge), and AND-NODE (synchronizer). The AND-split can be modeled
implicitly by providing an activity with more than one outgoing transition. Multiple instances
can be implemented using the Chained Process Node which allows for asynchronous subprocess
invocation. Arbitrary loops are allowed but the process requires an explicit termination point.
There is no direct way to implement state-based patterns. Cancel Case but not Cancel Activity
is supported. None of the messaging patterns are supported.

InConcert has been established in 1996 as a Xerox fully-owned subsidiary. In 1999 it has been
bought by TIBCO Software. InConcert 2000 is the newest version of their flagship workflow
offering. An InConcert workflow definition is called a ''job''. A job can contain none, one
or many activities. An activity is either simple or compound. An activity can be connected
to an arbitrary number of other activities but circular dependencies are not allowed. Each
activity has a perform condition attached to it. The default setting of the perform condition
is "true" such that activities can be executed in general. If the perform condition evaluates to
"false" , the activity is skipped. If an activity is skipped, then the subsequent activities are not
skipped automatically. Conditional branching or case branching can be achieved by parallel
activities with different perform conditions. Arbitrary cycles are not supported. An explicit
termination point is not required. There is no direct provision for multiple instances nor for

39

direct implementation of the state-based patterns. The cancellation and messaging patterns
are not supported.

SAP R/3 Workflow2 SAP is the main player in the market of ERP systems. Its R/3 software
suite includes an integrated workflow component that we have evaluated independently of the
rest of R/3. SAP workflow models are designed using so-called Event-driven Process Chains
(EPC), which consist of a set of functions (activities), events and connectors (AND, XOR,
OR). However, in SAP R/3 Workflow not the full expressive power of EPCs can be used,
as there are a number of syntactic restrictions similar in vein to the restrictions imposed by
Filenet Visual Workflo (e.g. every workflow needs to have a unique starting and a unique
ending point, and-splits are always followed by and-joins, or-splits by or-joins etc). As such,
there is no direct provision for the advanced synchronization constructs (with one exception:
it is possible to specify for the join operator how many parallel branches it has to wait for,
hence its semantics corresponds to the N-out-of-M join), multiple instances, arbitrary loops,
state-based or cancellation patterns. The event constructs which can trigger or be triggered by
activities, which are directly supported at the workflow level, allow support for the Messaging
Communication and Coordination patterns. However, the lack of support for Multiple Instances
means that bulk messaging cannot be supported.

Changengine is a workflow offering from HP, the second largest computer supplier in the
world. Version 3.0 of the product has been introduced in 1998 and it is focused on high
performance and support for dynamic modifications. Workflow models in Changengine consist
of a set of work nodes and routers linked by arcs. A work node can have only one incoming and
one outgoing arc. If more transitions are required, they have to be created explicitly through
the router node. Router node semantics is determined by the set of route rules. Arbitrary
loops are allowed. Changengine does not provide any support for multiple instances. The
termination policy is rather unusual: the process will terminate once all process nodes without
outgoing activities (End Points) are reached. There is no direct way to implement the state
based patterns. A routing rule associated with an activity can be set to cause termination of
a decomposition, thus supporting Cancel Case. The Cancel Activity pattern is not supported,
nor are the messaging patterns.

3.3 Results

Tables 1 and 2 summarize the results of the comparison of the workflow management systems
in terms of the selected patterns. For each product-pattern combination, we checked whether
it is possible to realize the workflow pattern with the tool. As each pattern is different, it is
hard to come up with a characterization that would fit all of them. For that reason we are
summarizing the evaluation criteria for each pattern:

• Synchronization Merge, Multi-Merge, Discriminator, N-out-of-M join. If the
workflow management system supports the construct that can be used for implementing

2The documentation of release 3.1, May 1997, was used as source.

40

these patterns, it is rated +, otherwise it is rated -. Changengine and Forte receive an
intermediate rating as they can realize these patterns only through requiring analysts
to explicitly specify corresponding rules. In Meteor the N-out-of-M join is possible by
listing all possible combinations. Therefore, an intermediate rating is given.

• Arbitrary Loops. If the workflow management system allows for the specification of
arbitrary loops, it is ranked + otherwise it is ranked-.

• Implicit termination. If the workflow management system requires the specification
of an explicit termination point, it is rated -, otherwise it is rated +.

• Multiple Instances. If a workflow management system supports the specification that
will result in multiple instances without resorting to the use APIs, it is rated +, otherwise
it is rated -. MQSeries/Workfiow receives an intermediate rating as through its Bundle
concept it supports multiple instances where the number of instances is known a priori.

• State-based patterns. If the workflow management system supports the direct imple
mentation of the state-based patterns, it is rated +, otherwise it is rated -.

• Cancellation. If a workflow management system provides the specification of cancel
lation of activities/cases without resorting to APIs, it is rated +, otherwise it is rated
-.

• Messaging. If a workflow management system supports the specification of message/event
handling without resorting to APIs, it is rated +, otherwise it is rated -. Message/event
handling outside a workflow management system is not evaluated as there are open is
sues associated with the interoperability of workflow management systems. Note, the bulk
messaging patterns rated a + if the workflow management system supported Multiple
Instances. Verve receives an intermediate rating as it provides an open embeddable con
figuration which allows "ground-up" implementations which are not API workarounds.

From the comparison it is clear that no tools support all the selected patterns. In fact, many of
these tools only support a fraction of these patterns and the best of them only support about
50%. Specifically the limited support for the discriminator, and its generalization, the N-out
of-M-join, the state-based patterns (only COSA), the synchronization of multiple instances
(no tool fully supports this), cancellation (esp. of activities), and messaging, is worth noting.
Also, observe that Staffware and Mobile are the only workflow management systems adopting
a non-synchronizing strategy that support implicit termination.

3Note that the modeling language of Mobile is extensible. The results only indicate the standard functionality.
All design patterns described in this paper can be added to Mobile.

41

pattern product
Vis. WF Forte MQSeries Staff ware Verve Meteor

Synch Merge - +/- + - - -
Multi-Merge - + - - + +

Discriminator - +/- - - + +/-
N-out-of-M - +/- - - - +/-
Arb cycles - + - + + +

Impl termination - - + + - -
MI with runtime + + + - + -

MI w / out runtime + + - - + -
MI with synch - - +/- - - -

State-based - - - - - -
Cancel Activity - - - + - -

Cancel Case - + - - + -
M'Commurucation + - - - +/- +

M'Coordination + - - - +/- +
BulkM + - - - +/- -

Table 1: The main results for Visual WorkFlo, Forte, MQSeries/WorkHow, Staffware, Verve,
and Meteor.

pattern product
COSA InConcert Changeng. I-Flow SAP/R3 Mobile3

Synch Merge - + +/- - - -
Multi-Merge - - - - - -

Discriminator - - +/- - + +
N-out-of-M - - +/- - + +
Arb cycles + - + + - -

Impl termination - + - - - +
MI with runtime - - - + - -

MI w / out runtime - - - + - -
MI with synch - - - - - -

State-based + - - - - +/-
Cancel Activity + - - - - -

Cancel Case - - + + - -
M'Communication + - - - + -

M'Coordination + - - - + -
BulkM - - ! - - - -

Table 2: The main results for COSA, InConcert, Changengine, I-Flow, SAP R/3, and Mobile.

42

4 Epilogue

This paper presented an overview of workflow patterns, emphasizing the control perspective,
and discussed to what extent current commercially available workflow management systems
could realize such patterns. Typically, when confronted with questions as to how certain com
plex patterns need to be implemented in their product, workflow vendors respond that the
analyst may need to resort to the application level, the use of external events or database
triggers. This however defeats the purpose of using workflow engines in the first place.

Through the discussion in this paper we hope that we not only have provided an insight into
the shortcomings, comparative features and limitations of current workflow technology, but
also that the patterns presented can provide a direction for future developments.

Disclaimer. We, the authors and the associated institutions, assume no legal liability or
responsibility for the accuracy and completeness of any product-specific information contained
in this paper. However, we made all possible efforts to make sure that the results presented
are, to the best of our knowledge, up-to-date and correct.

References

[Aal98a] W.M.P. van der Aalst. Chapter 10: Three Good reasons for Using a Petri-net-based Workflow
Management System. In T. Wakayama et al., editor, Information and Process Integration
in Enterprises: Rethinking documents, The Kluwer International Series in Engineering and
Computer Science, pages 161-182. Kluwer Academic Publishers, Norwell, 1998.

[Aal98b] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21-66, 1998.

[AHOO] W.M.P. van der Aalst and A.H.M. ter Hofstede. Verification of Workflow Task Structures:
A Petri-net-based Approach. Information Systems, 25(1}:43-69, 2000.

[Cas98] R. Casonato. Gartner group research note 00057684, production-class workflow: A view of
the market. http://www.gartner.com. 1998.

[CCPP95] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual Modeling of Workflows. In M.P.
Papazoglou, editor, Proceedings of the OOER'95, 14th International Object-Oriented and
Entity-Relationship Modelling Conference, volume 1021 of Lecture Notes in Computer Sci
ence, pages 341-354. Springer-Verlag, December 1995.

[CCPP98] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. Data & Knowledge
Engineering, 24(3):211-238, January 1998.

[DE95] J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theo
retical Computer Science. Cambridge University Press, Cambridge, United Kingdom, 1995.

[DKTS98] A. Dog~, L. Kalinichenko, M. Tamer Ozsu, and A. Sheth, editors. Workflow Management
Systems and Interoperability, volume 164 of NATO ASI Series F: Computer and Systems
Sciences. Springer, Berlin, Germany, 1998.

43

[EN93] C.A: Ellis and G.J. Nutt. Modelling and Enactment of Workflow Systems. In M. Ajmone
Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of Lecture Notes in
Computer Science, pages 1-16. Springer-Verlag, Berlin, 1993.

[Fow97] M. Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading, Mas
sachusetts, 1997.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Desi9n Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Massachusetts, 1995.

[GHS95] D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel
Databases, 3:119-153, 1995.

[HK99] A.H.M. ter Hofstede and B. Kiepuszewski. Formal Analysis of Deadlock Behaviour in Work
flows. Technical report, Queensland University of Technology /Mincom, Brisbane, Australia,
April 1999. (submitted for publication).

[JB96] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, 1996.

[KHBOO] B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On Structured Workflow Modelling.
In B. Wangler and L. Bergman, editors, Proceedings of the Twelfth International Conference
on Advanced Information Systems Engineering (CAiSE'2000), volume 1789 of Lecture Notes
in Computer Science, pages 431-445, Stockholm, Sweden, June 2000. Springer-Verlag.

[Kou95] T.M. Koulopoulos. The Workflow Imperative. Van Nostrand Reinhold, New York, 1995.

[Law97] P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition. John
Wiley and Sons, New York, 1997.

[LR99] F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-Hall
PTR, Upper Saddle River, New Jersey, USA, 1999.

[RZ96] D. Riehle and H. Ziillighoven. Understanding and Using Patterns in Software Development.
Theory and Practice of Object Systems, 2(1):3-13, 1996.

[Sch96] T. Schiil. Workflow Management for Process Organisations, volume 1096 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1996.

[SKM] A. Sheth, K. Kochut, and J. Miller. Large Scale Distributed Information Systems (LSDIS)
laboratory, METEOR project page. http://lsdis.cs.uga.edu/proj/meteor/meteor.html.

[SL96] Software-Ley. COSA User Manual. Software-Ley GmbH, Pullheim, Germany, 1996.

[Sta97] Staffware. Staff ware 97 / GWD User Manual. Staffware pIc, Berkshire, United Kingdom,
1997.

[WFM96] WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-TC-1011).
Technical report, Workflow Management Coalition, Brussels, 1996.

44

Contents'

1 Introduction 2

2 Workflow Patterns 4

U Basic Control Flow Patterns. 5

2.2 Advanced Branching and Synchronization Patterns 8

2.3 Structural Patterns 13

2.4 Patterns involving Mnltiple Instances. 16

2.5 Temporal Relations. 21

2.6 State-based Patterns 22

2.7 Cancellation Patterns 28

2.8 Inter-Workflow Synchronization . 30

3 Comparing Workflow Management Systems 35

3.1 Introduction . 35

3.2 Products. 36

3.3 Results. 40

4 Epilogue 43

45

