

Performance analysis of a real-time database with optimistic
concurrency control
Citation for published version (APA):
Sassen, S. A. E., & Wal, van der, J. (1997). Performance analysis of a real-time database with optimistic
concurrency control. (Memorandum COSOR; Vol. 9721). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/37740478-c62c-46fd-a683-ba43bd19f7b5

t[8
Eindhoven University
of Technology

Department of Mathematics
and Computing Sciences

Memorandum COSOR 97-21

Performance analysis of a real-time
database with optimistic
concurrency control

S.A.E. Sassen and J. van der Wal

Eindhoven, December 1997
The Netherlands

Performance Analysis of a Real-Time Database
with Optimistic Concurrency Control

Summary

For a real-time shared-memory database with Optimistic Concurrency Control (OCC), an approximation for the

transaction response-time distribution and thus for the deadline miss probability is obtained. Transactions arrive

at the database according to a Poisson process. There is a limited number of CPUs that can handle transactions

in parallel. TransactIons have soft deadlines, and the probability of data conflicts is equal for all transactions.

The response time of a transaction consists of possible waiting time (if at arrival all CPUs are occupied) plus a

number of execution runs (due to the occurrence of conflicts).

In this study, we analyze the case where the execution time of all transactions is constant. Although in prac

tice execution times are never really constant, it is important to analyze this simplifying constant case first, before

trying to analyze more general execution-time distributions.

We model the real-time database (RTDB) with OCC by a multi-server queueing system with a very special

kind of feedback. The probability that a transaction is fed back for a rerun depends on the number of transac

tions that has committed during its execution. Numerical experiments, which compare the approximative anal

ysis with simulation, show that the analysis provides a good and very fast approximation for the response-time

distribution and thus for the percentage of transactions that meets its deadline. We also discuss how the model

and the analysis can be extended such that more realistic assumptions, e.g. non-uniform data access, several

transaction types, and general execution-time distributions, can be handled.

1 Introduction

Real-time databases combine the requirements of both databases and real-time systems. In a database, trans

actions (database requests) should preserve database consistency. Subject to this consistency requirement, the

transaction throughput of the database should be maximized. In a real-time system, the main requirement is

timeliness, i.e., transactions must be executed before their deadlines. Soft real-time systems are allowed to miss

some deadlines when the system is overloaded, but at least a certain fraction of the transactions should meet

some prescribed deadline. In a real-time database (RTDB), both consistency and timeliness are important. In

this paper, we investigate soft real-time databases and are interested in an analytical method for computing the

probability that a transaction meets its deadline. By analyzing the response-time distribution (the response time

is the total time between a transaction's arrival and its commit), we can easily compute the deadline miss prob

ability for any value of a transaction's deadline. (For a simulation study of this probability, see Chapter 16 in

KUMAR [1996].)

To benefit from the increase in CPU power that parallel computer architectures offer, transactions on da

tabases should be executed concurrently. However, concurrent execution can destroy database consistency if

conflicting transactions are incorrectly scheduled. Two transactions can conflict if they access the same data

item, at least one of them with the intention to write. To execute conflicting transactions, a concurrency control

scheme is needed. Concurrency control schemes govern the simultaneous execution of transactions such that

overall correctness of the database is maintained (see e.g. PAPADIMITRIOU [1986]). The two main concurrency

1

control schemes are locking and optimistic concurrency control.

Under the locking scheme, an executing transaction holds locks on all data-items it needs for execution, thus

introducing lock waits for transactions that conflict with it. Consistency is guaranteed, however chains of lock

waits can lead to high transaction response times.

When the conflict probability is low, or if resources are plentiful, it can be advantageous to use the optimistic

concurrency control (aeC) scheme proposed by KUNG and ROBINSON [1981] . Under ace, all epus can be

used for transaction processing at the same time, even for processing conflicting transactions. Each transaction

is processed in three phases: an execution phase, a validation phase and a commit phase. In the execution phase

a transaction T accesses any data-item it needs for execution, regardless of the number of transactions already

using that data-item. During the execution phase, all actions T performs on data-items are only done on local

copies of the data-items. In the validation phase, all items used by T are checked for conflicts. If a conflict has

occurred with a transaction that committed after T started (that is, if at least one of the data-items read by T

was in the meantime changed globally by another transaction), T must be rerun. The local changes T made to

data-items then don't become global but are erased. If no conflicts occurred, T completes the validation phase

successfully and enters the commit phase, where the data-items used by T are updated globally.

Despite the existence of extensive studies of the performance of ace compared to locking, with clear recom

mendations as to in what situations ace performs better than locking and vice versa, ace is still not accepted in

practice. In conventional databases and in RTDBs with soft deadlines, ace is preferable to locking if resources

(epUs) are not the limiting factor (AGRAWAL et al. [1987]). For RTDBs with firm deadlines, where transac

tions that miss their deadline are discarded immediately, HARITSA et al. [1990] concluded that ace generally

performs much better than locking, even if resources are not plentiful.

Hence there seems to be no good reason why ace is not accepted in practice. This is a motivation for us to

come up with an analysis of ace for RTDBs, as opposed to all existing and time-consuming simulation studies.

We start by analyzing soft deadlines. In later work we will analyze ace systems with firm deadlines.

So we aim for an analytical method to evaluate the performance of a RTDB with ace and soft deadlines. The

method should provide an accurate estimate of the percentage of transactions that meet their deadlines. Exist

ing analytical performance studies for ace (such as MENASCE and NAKANISHI [1982], MORRIS and WONG

[1985], KLEINROCK and MEHOVIC [1992], and Yu et al. [1993]) only consider average system performance,

such as throughput, average response time, and the average number of restarts needed for a transaction. Knowl

edge about average response times is not enough to estimate the probability that a transaction meets its deadline:

for this, an approximation of the response-time distribution is required. As far as we know, no analytical per

formance studies of real-time databases with ace exist that address the distribution of the response time.

In SASSEN and VAN DER WAL [1997b] we analyze a real-time database in which the execution times of

transactions are exponentially distributed. The present paper is a follow-up on that study by considering trans

actions with constant execution times. The ultimate goal is to analyze an RTDB with ace where the execution

time of a transaction can have any general probability distribution. In current work (SASSEN and VAN DER WAL

[1997c]) we use the constant and exponential cases as building blocks in the analysis of the general case. Thus,

although the assumption of constant execution times may not be very realistic, the analysis of the constant case

is of vital importance for the analysis of the general case.

The rest of this paper is organized as follows. The model is explained in Section 2. In Section 3, we de-

2

rive an approximative analysis for the response-time distribution. Numerical results, which compare analysis

with simulation, are presented in Section 4. Moreover, Section 4 contains recommendations on how to choose

the number of CPUs needed to achieve some prespecified performance level. Finally, Section 5 contains some

concluding remarks and a discussion of possible extensions of the analysis in order to handle more realistic as

sumptions.

2 The Model

In the introduction, we described the acc scheme in detail. In this section, we model acc in a shared-memory

environment with N parallel CPUs as a multi-server queueing system with feedback, see Figure I for an illus

tration.
:------------------N-:
, ,, ,, ,
, ', ,, ,, ,, ,, ,

A ' 9 g:

r

,,,
---- --- - - - - - ---------

Figure 1: Queueing model ofthe system

In the dashed area, which represents the N CPUs, at most N transactions can be present. Each transaction is

handled by one CPU and either leaves the system (after a successful execution), or is rerun (in case of a con

flict). We assume the time needed for one execution plus validation of a transaction is constant and equal to D.

Further, it is assumed that the commit phase takes negligible time compared to execution plus validation, and

that validation can be efficiently done in parallel. The assumption that commit takes negligible time compared

to execution plus validation is reasonable, since we consider a system where all data-items are in main memory

so where no disks are attached.

Transactions arrive at the database according to a Poisson process with rate A. An arriving transaction that

finds all CPUs busy joins the queue. As soon as a CPU is freed by a departing transaction, the transaction first

in queue is taken into execution. We also refer to execution plus validation as one transaction run.

With regard to transaction behavior, we assume that two transactions conflict with probability b. The conflict

probability b is an input parameter for characterizing the amount of data contention in the system. The value of

b is larger when the (number of data-items in the) database is smaller or when transactions access more data

items. How the analysis can be extended to handle non-uniform data access is discussed in Section 5.

The queueing model of Figure 1 is no standard feedback model and has not been analyzed before. The prob

ability that a transaction T must be rerun is not fixed, but depends on the number of transactions that departed

(committed) during the execution of T.

For an exact analysis of the queueing model, it is convenient to label the transactions in service by colors,

say green and red. A transaction T is green at the start of every run. During its run, T is colored red as soon as

3

4

r

9

n

9

- - ----- ---- - - - ----- - --, N:,,,
,,,

A------O--f\\H;_n-,-j :p(n)
,
,,,,,,
,,,
L ~ _~R(~)_:

We call the queueing model of Figure 2(a) an M / D / N queue with starting-state dependent feedback. The

M / D / N queue with starting-state dependent feedback is not known in literature. An exact analysis seems im

possible. In Section 3.2 we briefly describe our approximative analysis (details can be found in SASSEN and

VAN DER WAL [1997d]). The response-time distribution derived in Section 3.2 serves as approximation for the

3 Approximative Analysis

Figure 2: (a) M/D/N queue with starting-state dependent feedback; (b) Closed acc system

As an approximation of the feedback mechanism, suppose we know the probability that a transaction is still

green at the end of its run, given that it found n - 1 other transactions (of which the colors are not known) in

execution when it started its run (n = 1, ... , N). Let us denote this success probability by p(n). Then, in order

to determine whether a transaction T must be rerun, we wo~.ld only have to know how many transactions were

present at the start of T's run; if this number is n, the probability that T does not have to be rerun is p(n). The

only difficulty is, that we can't determine the exact value of p(n). The reason is, that success of a transaction

does not only depend on the total number of transactions in execution at the start of the run, but also on the

colors ofthese transactions. Nevertheless, we can approximate p(n). In Section 3.1, an approximation for p(n)

is derived by looking at a so-called 'closed' system where the number of transactions in service is constant at n

(forn = 1, .. . ,N).

Using the probabilities p(n) as success probabilities, we approximate the queueing model with colored trans

actions of Figure 1 by the queueing model with probabilistic feedback of Figure 2(a) below.

a transaction commits that conflicts with T. A red transaction discovers at its validation that it has to be rerun

(it then returns to the CPU as a green transaction); a transaction that is still green at validation time is allowed

to commit. In this way, the color of a transaction at validation time determines whether the transaction must be

rerun. The colors red and green are depicted in Figure 1 as T and g, respectively.

Using this colorful representation of transactions, the state of the queueing model at time t is exactly de

scribed by the number w(t) of waiting transactions at time t, and the color Ci(t) (red, green) and the remaining

execution time Ti(t) ofthe transaction at CPU i at time t, i = 1, ... , N. So by the vector (w(t), Cl(t), Tl(t), ...
. . . ,CN(t), TN(t)). With this state-description, a simulation program of the system is easily made. However, an

exact analysis seems intractable, so we are very pessimistic about the chances of finding one. Therefore, in the

next section we propose an approximative analysis of the system.

actual real-time database we are interested in.

5

10

0.920

0.583

9

0.928

0.606

8

0.633

0.936

7

0.663

0.945

6

0.953

0.697

5

0.962

0.736

4

0.783

0.971

3

0.980

0.839

2

0.909

0.990

Table 1: Approximate success probabilities p(n) for various b

1

1.000

1.000

0.1

0.01

b \ n

In SASSEN and VAN DER WAL [1997d] we derived two quite accurate approximations for the response-time

distribution. Because of space limitations, here we only briefly discuss one of these approximations.

Just as in the exact analysis of the ordinary M / D / C queue by CROMMELIN [1932], we observe the state of

the system every D time units. Since the service times are constant and equal to D, any transaction in service

on the interval (0, 1].
Comparison ofthe exact and approximate value of Pe(n) shows (see SASSEN and VAN DER WAL [1997d]),

that the approximation is very accurate. In the special case of n = 2, the approximation is exact. For n = 1 to

10, we get the following approximate values for p(n). The largest relative error made by the approximation is

0.26%, for the case of n = 10 and b = 0.1.

Pe(n) = L 7r(g, C2,· .. , cn-d,
C2"",Cn _l

3.2 Approximation for the response-time distribution

3.1 Approximation for the success probability p(n)

The success probability p(n) in the open system of Figure 2(a) is approximated by the success probability Pe(n)

in a closed system with a constant number of n transactions in service, see Figure 2(b) for an illustration.

In order to compute Pe(n), the closed system can be described exactly by the (n - 1)-dimensional Markov

chain {(CI, ... , Cn-l)j,j = 1,2, ...}, where Ci denotes the color (r forred and 9 for green) of the transaction

that is the i-th one to finish its run. The most fresh transaction (the transaction that is the n-th to finish) is always

green, so Cn need not be included in the state-description. A transition occurs every time a transaction run is

finished. From the steady-state vector 7r of this Markov chain, the success probability Pe(n) is computed as

which is the sum over all states where the transaction completed next is green.

The number of states of the Markov chain is 2n - 1 so increases exponentially fast in n. For n not too large,

computing the steady-state distribution can be done on a fast computer, but a less elaborate way to calculate

Pe(n) is strongly desired.

A very simple and also very accurate approximation for Pe(n) is based on the assumption that the colors of

successive transactions are independent, which is only approximately true. So suppose all transactions in the

closed system independently have a success probability of Pe(n). Now consider a transaction T. Then every

transaction that validates during T's execution colors T red (makes T unsuccessful) with probability bpe(n).

Since exactly n - 1 transactions validate during T's execution, T's success probability Pe(n) is the unique fixed

point of the equation

6

a[.e] as the probability thatR transactions arrive in (t, t +D], so a[.e] = e->.D(>,D)€ / .e!,

(1)
N +k rnin{j,N}

qk = L qj L Bla[k - j + i],
j=O i=max{O,j-k}

Bl as the probability that i transactions depart (are successful) during a time-interval (0, D], given that j trans

actions are present at the start of the interval. How to find Bl is discussed below.

It remains to specify the probability Bl. It is not possible to compute the exact value of Bl, because the system

state is observed only after every D time units and not at every service start epoch. Therefore, we approximate

Bl by (~)p(N)i(l- p(N))N-i if j ~ N and by ({)p(j)i(1- p(j))j-i if j < N.

Define 5 as the response time of an arbitrary transaction. Let the random variable L denote the steady-state

number of transactions in the system. Our approximation for the distribution of L is {qk, k ~ o}. According to

Little's theorem (LITTLE [1961]), E[L] = AE[S]. Hence, we compute our approximation for the expected re

sponse time as E [S] = t Ek kqk. To approximate the distribution of S we need more. We have to approximate

the distribution of the waiting time and the total service time of a transaction.

Let us first discuss the service-time distribution. Every transaction run takes D time. The probability that

another run is needed depends on the number of transactions in execution at the moment the present run was

started. For the first run of a transaction this number is obtained from the steady-state probabilities. For the later

runs, we approximate the number in execution at the start of a run by the number in execution at the start of the

first run. As a result we approximate the service time by a geometrical distribution.

Next, we discuss the waiting-time distribution. If a transaction T finds i ~ N transactions in the system

upon arrival, it has to wait until i - N + 1 service completions have been successful. To determine the time

needed for these successful services, we use the following approximation. As long as all CPUs are busy, we

treat the system as a single server that works N times as fast as each of the N CPUs in the original system.

Support for this method is given in SASSEN and VAN DER WAL [1997d]. Then the time between two service

completions equals ~, and the time between the arrival ofT and the next service completion is approximately

uniform(0, ~)-distributed. As an approximation, we say that with probability p(N) this first service completion

is successful. Then T still has to wait for i - N successful service completions. With probability 1 - p(N), the

first service completion is unsuccessful. Then T still has to wait for i - N +1 successful service completions. As

long as all CPUs are busy, the number of service completions needed for j successful services is approximately

negative-binomially distributed with parameters j and p(N).
Denote by Gi a geometrically distributed random variable with success probability p(i), denote by NBj

a negative-binomially distributed variable with parameters j and p(N), and let U(O, a) be a uniform (0, a)-

at some time t will have completed its run - either successfully or unsuccessfully - at time t +D. The trans

actions present at time t + D are exactly those transactions that completed an unsuccessful execution during

(t, t +D], plus the transactions that were either waiting in queue at time t or that arrived in (t, t +D]. Hence,

we can relate the number of transactions in the system at time t +D to the number in the system at time t.

Define

Let qk denote the steady-state probability that k transactions are in the system. By conditioning on the state at

time t, an approximation for qk is found from the linear equations

7

From Table 2 we can draw a number of conclusions.

4.1 Response-time distribution

N-I 00

L qiP(D Gi+l ::; t) +p(N) L qiP(U(O, ~) + ~NBi-N +D GN ::; t)
i=O i=N

00

+(1 - p(N)) L qiP(U(O, ~) + ~NBi-N+l + D GN ::; t).
i=N

P(S::; t)

3. For utilizations close to 1 as the result of many reruns the relative errors become larger, but are still suffi

ciently accurate for the designer. Note however that this is just the case in which pure acc becomes less

attractive.

1. In all cases the approximative results are sufficiently accurate to enable the RTDB designer to judge the

performance of the system.

2. The approximative analysis gives excellent results in the region where the mean number of reruns per

transaction is less than or equal to 0.5, say. This corresponds with the region N b < 0.8, say.

Since Pc(n) is decreasing in n (see Table 1), pu is an upper bound on the server utilization. The arrival inten

sity per CPU, AI, was varied such, that for every choice of b systems with pu from 0.70 to about 0.95 were

investigated. Table 2 contains a representative selection of the simulation and analysis results. For various

choices of the input parameters N, b, E[GN], At. and Pu, the table shows E[S], sdev(S) (the standard devi

ation),P(S > 2),andP(S > 5).

Finally we point out, that the approximations for the system behavior are not only good, but also very fast. The

runtime of the simulations exceeded the runtime of the analyses by a factor up to 1000 (so where simulation

took a day, the analysis took only about 1 minute).

4 Numerical Results

We tested the approximation by comparing it with a simulation of the system. Without loss of generality, the

execution time D of the transactions was taken equal to 1. In the simulation program, the system state was

registered exactly in the record (w(t), CI(t), rl(t), ... , CN(t), rN(t)) as described at the end of Section 2.

We looked at systems with N = 2, 8, 16, and 32. Besides N, the input parameters were the conflict proba

bility b and the arrival intensity per CPU Al (so Al = AIN). The parameter b was chosen::; 0.10 and such that

the average service time E[GN] in the closed system was equal to 1.05, 1.1, 1.3, 1.5, and 1.7 (according to the

analysis). To explain how Al was varied, we define

distributed random variable. Summarizing the above discussion, our approximation for the response-time dis

tribution is

E[S] sdev(S) P(S> 2) P(S> 5)
N b E[GN])'1 PU App Sim App Sim App Sim App Sim

2 0.050 1.05 0.76 0.80 2.02 2.02 1.29 1.28 0.37 0.36 0.037 0.036

0.100 1.1 0.73 0.80 2.14 2.12 1.43 1.39 0.40 0.39 0.050 0.047

0.100 1.1 0.82 0.90 3.63 3.59 2.93 2.88 0.64 0.63 0.23 0.23

0.100 1.1 0.86 0.95 6.63 6.54 5.93 5.82 0.80 0.80 0.48 0.48

8 0.007 1.05 0.86 0.90 1.53 1.53 0.69 0.68 0.19 0.19 0.002 0.002

0.007 1.05 0.90 0.95 2.21 2.20 1.37 1.36 0.43 0.43 0.048 0.047

0.048 1.3 0.69 0.90 1.94 1.89 1.13 1.06 0.35 0.33 0.023 0.018

0.084 1.5 0.53 0.80 1.64 1.61 0.95 0.89 0.22 0.20 0.010 0.008

16 0.023 1.3 0.69 0.90 1.54 1.52 0.75 0.73 0.20 0.19 0.003 0.003

0.023 1.3 0.73 0.95 2.04 1.98 1.15 1.09 0.39 0.38 0.026 0.021

0.040 1.5 0.60 0.90 1.78 1.73 1.00 0.95 0.28 0.26 0.013 0.011

0.059 1.7 0.56 0.95 2.75 2.59 1.81 1.64 0.55 0.53 0.11 0.086

32 0.007 1.2 0.79 0.95 1.48 1.47 0.64 0.62 0.17 0.17 0.001 0.001

0.020 1.5 0.63 0.95 1.87 1.81 1.03 0.99 0.33 0.31 0.016 0.013

0.029 1.7 0.53 0.90 1.76 1.73 1.07 1.05 0.25 0.24 0.016 0.015

0.029 1.7 0.56 0.95 2.13 2.04 1.28 1.21 0.40 0.38 0.036 0.029

Table 2: Distribution ofthe response time S: analysis versus simulation

4.2 Real-time performance

In a RTDB, the performance is measured as the percentage of transactions that meets its deadline. Let us intro

duce the following notion.

Definition

- A RTDB is (t, a)-efficient if at least a% of the transactions meets its deadline t. Formally: P(S :::; t) 2:
(a/100) with 0 :::; a :::; 100. We call a the efficiency level.

- >';,cx(N, b) is the maximum value of the arrival intensity for which a RTDB with N CPUs and conflict

probability b is still (t, a)-efficient.

For example, from Table 2 it can be seen that aRTDB with N = 8, b = 0.007 and>' = 6.9 is (5, 99)-efficient,

but not (2, 90)-efficient.

Using our approximative analysis, we did bisection to compute >';,cx(N, b) for various N, b, t, and a. The

bisectional search requires that the performance of the system has to be recomputed for many different values of

>.. With our fast analytic approach, this is no problem. With simulations it would take weeks to get an answer,

whereas with the analysis it is only a matter of minutes.

Figure 3(a) shows the dramatic decrease in the maximum allowable arrival intensity ifthe conflict probability

b increases from 0.01 to 0.05. Figure 3(b) shows the drop of >.* if the performance requirement tightens from

(5,95)- to (3, 95)-efficiency.

It is important to note that each of the graphs converges to a finite value as N gets large. Theoretical support

for this can be found in SASSEN and VAN DER WAL [1997a]. For the system with b = 0.01 in Figure 3(a), the

convergence of >.* is not clearly visible yet.

8

9

.'

8 12 16 20 24 28 32
N

(b) A3,95(N, 0.05) and As,95(N, 0.05)

14---,----------:-----------;-7]
(3,95) b = 0.05 -

A* 12 (5,95) b = 0.05 ... -.... '
.'

10

8

6

4

2

O+-----.------,----,-----,-.,-----r-.-----T
1 44. 8 12 16 20 24 28 32

N

(a) A3,90(N, b) for b = 0.01 and 0.05

25
(3,90) b = 0.01 -

A* 20 (3,90) b = 0.05 ... -

15

.. ' ... -
10 .' . .' .

.' .
5

Figure 3: Maximum arrival rate A;,a(N, b) as a function ofN

5 Concluding Remarks

The interpretation of the flat curves at large N is that, from a certain value of N on, the real-time performance

of the system cannot be improved: adding more CPUs becomes practically useless. Thus, an increase in the

transaction arrival rate cannot always be resolved by adding CPUs. It is important to keep this observation in

mind when designing a RTDB with ace.

In order to come to an analysis of a real-time database (RTDB) with acc and generally distributed execution

times (SASSEN and VAN DER WAL [l997c]), it is necessary to first understand the behavior of a RTDB with

acc for constant execution times. In this paper, we have presented an approximation for the response-time

distribution in a RTDB with acc, N CPUs, and constant execution times of length D. Numerical experiments

for various system loads and conflict probabilities indicate, that the approximation produces sufficiently accurate

estimates for the transaction response-time distribution.

This study is an essential step in deriving an analysis of a RTDB with acc and generally distributed execu

tion times. The response time in a system with general execution times can be approximated by an interpolation

between systems with constant and with exponentially distributed execution times (the latter was analyzed in

SASSEN and VAN DER WAL [1997b]). In SASSEN and VAN DER WAL [1997c], we study such an interpolation.

We are extending the analysis to non-uniform data-access patterns. That is, there can be several transaction

types where every type uses a different number of data-items from (possibly) a different part of the database.

Then the probability that a type-i transaction conflicts with a type-j transaction can be modeled as bij, and the

success probability of a transaction will depend on its type: Pi(n) for a transaction of type i.

The combination of reasonable accuracy and very short computing times (compared to simulation) makes

our approximative analyses very well suited for the purpose of real-time database design. With little effort, it is

possible to compute the number of CPUs needed to achieve some prespecified real-time performance. We have

proposed to measure the performance of a RTDB in terms of (t, a)-efficiency. Using the analysis, we can for

instance check whether the RTDB remains (t, a)-efficient when an increase in the transaction arrival rate occurs,

and if the database doesn't remain (t, a)-efficient, we can compute how many extra CPUs are needed to restore

(t, a)-efficiency. In this way we can account for future grow of traffic already in the design phase.

References

AGRAWAL, R., M.J. CAREY, AND M. LIVNY [1987]. Concurrency control performance modeling: alternatives

and implications. ACM Transactions on Database Systems, 12, 609-654.

CROMMELIN, C.D. [1932]. Delay probability formulae when the holding times are constant. Post Office Elec

trical Engineers Journal, 25, 41-50.

HARITSA, J.R., M.J. CAREY, AND M. LIVNY [1990]. On being optimistic about real-time constraints. In Pro

ceedings of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles ofDatabase Systems, April

2-4,1990, Nashville, Tennessee, pages 331-343. ACM Press.

KLEINROCK, L., AND F. MEHOVIC [1992]. Poisson winner queues. Performance Evaluation, 14, 79-101.

KUMAR, V. [1996]. Performance ofconcurrency controlmechanisms in centralizeddatabase systems. Prentice

Hall, Englewood Cliffs, New Jersey.

KUNG, H., AND J. ROBINSON [1981]. On optimistic methods for concurrency control. ACM Transactions on

Database Systems, 6, 213-226.

LITTLE, J.D.C. [1961]. A proof of the queueing formula L = ,\W. Operations Research, 9,383-387.

MENASCE, D.A., AND T. NAKANISHI [1982]. Optimistic versus pessimistic concurrency control mechanisms

in database management systems. Information Systems, 7, 13-27.

MORRIS, R.J.T., AND W.S. WONG [1985]. Performance analysis oflocking and OCC algorithms. Performance

Evaluation,S, 105-118.

PAPADIMITRIOU, C.H. [1986]. The Theory of Database Concurrency Control. Computer Science Press,

Rockville, Maryland.

SASSEN, S.A.E., AND J. VAN DER WAL [1997a]. The M/G/oo queue with ace. Technical Report CaSaR

97-18, Dept. of Mathematics and Computer Science, Eindhoven University of Technology.

SASSEN, S.A.E, AND J. VAN DER WAL [1997b]. The response-time distribution in a real-time database with

optimistic concurrency control and exponential execution times. In V. Ramaswami and P.E. Wirth (editors),

Proceedings ofthe 15th International Teletraffic Congress - ITC 15, Washington, DC, USA, 22-27June, 1997,

pages 145-156. North-Holland.

SASSEN, S.A.E., AND J. VAN DER WAL [1997c]. The response-time distribution in a real-time database with

optimistic concurrency control and general execution times. Technical Report CaSaR 97-21, Dept. of Math

ematics and Computing Science, Eindhoven University of Technology.

SASSEN, S.A.E., AND 1. VAN DER WAL [1997d]. The response-time distribution in a real-time database with

optimistic concurrency control and constant execution times. Technical Report CaSaR 97-07, Dept. ofMath

ematics and Computing Science, Eindhoven University of Technology.

Yu, P.S., D.M. DIAS, AND S.S. LAVENBERG [1993]. On the analytical modeling of database concurrency

control. Journal ofthe ACM, 40,831-872.

10

