

A design flow for performance planning : new paradigms for
iteration free synthesis
Citation for published version (APA):
Otten, R. H. J. M. (2000). A design flow for performance planning : new paradigms for iteration free synthesis. In
E. Börger (Ed.), Architecture design and validation methods (pp. 89-139). Springer.

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/c53bd28e-1ae8-4c2e-a42f-eac5b7d47fb2

A Design Flow for Performance Planning:
New Paradigms for Iteration Free Synthesis

Ralph H.J.M. Otten

Eindhoven University of Technology, Faculty of Electrical Engineering, P.O. Box
513, 5600 MB Eindhoven, The Netherlands*

Abstract. In conventional design, higher levels of synthesis produce a netlist, from
which layout synthesis builds a mask specification for manufacturing. Timing anal
ysis is built into a feedback loop to detect timing violations which are then used
to update specifications to synthesis. Such iteration is undesirable, and for very
high performance designs, infeasible. The problem is likely to become much worse
with future generations of technology. To achieve a non-iterative design flow, early
synthesis stages should use wire planning to distribute delays over the functional
elements and interconnect, and layout synthesis should use its degrees of freedom
to realize those delays.

1 Introduction

Layout synthesis has always relied on wire length and area minimization un
der the constraints of a technology file (design rule set) to generate masks
for chips that showed acceptable functionality, yield and performance. Inter
connect served merely as the realization of the net list and its influence on
performance was negligible.

This enabled a technique that was iteration free in the sense that there was
a flow that started with functional synthesis, transforming the initial speci
fication into a net list of modules and interconnections, that was handed to
the back-end part in which a mask specification was to be constructed. Fig
ure 1 shows schematically such a straight-line design flow. Mostly a library
is available which either contains complete layouts of modules or procedures
that can generate these layouts. The technology file consists of design rules, a
compact, sufficient representation of what is possible in the target technology.
The footprint captures the properties of the carrier, for example the image
of the array on which the modules have to be mapped (such as with gate
array and sea-of-gates realizations), the positions of bonding pads and possi
bly supply rails, maybe even preplaced modules (memory arrays or sensitive
circuitry).

One particular approach from the eighties was summarized in [16], using
principles from programming [15], and naming it stepwise layout refinement
after a fundamental paper about program development earlier in that decade

* Part of this work was done at Delft University of Technology, Delft, The Nether

lands, and part at the University of California at Berkeley, CA, USA.

90 Ralph H.J.M. Otten A Design Flow for Performance Planning 91

Fig. 1. The straight line design flow

[26]. The techniques were based on “postponing implementation decisions
to avoid premature commitments that cause unnecessary constraints in the
later stages of the design”. It assumed that functional decompositions that
were inherited from higher (behavioral) levels, contained useful information
for layout synthesis, and also postulated that these decompositions were to
remain recoverable as recognizable blocks for the designer. Layout synthesis
was mainly the refinement and ordering of that “functional” decomposition.

Benefits were expected from such an approach because of a presumably
high correlation between functional interdependence and connectivity. The
latter, stored in net lists, was the main driver in layout synthesis, as many
“fiat” approaches minimized total wire length, while stepwise refinement tried
to contain wires as much as possible within the lower levels of the refined
hierarchy (that is within slices). Also this principle had a counterpart in
“structured programming” [27].

As technology moves deeper into sub-micron feature sizes, and more com
ponents are integrated on a single chip, interconnect effects become more
problematic, and those principles have to be reconsidered, and maybe more
aspects of stepwise refinement. Especially, the blind acceptance of the func
tional hierarchy with gate and net lists in order to come to a layout by con
sulting technology files and libraries, often hampers achieving the required
performance for today’s designs, mainly because delay, both of gates and
interconnect, are the more or less arbitrary outcome of total wire length
minimization and subsequent sizings.

When revising the methodology its salient feature, a strictly top-down
flow in layout synthesis, should not be given up however. The answer of the
early nineties, still dominating the back end tools of today, is not complying
with that precept (Figure 2). The effect of wiring on delay was determined by
timing analysis tools that detect timing violations and produce either input

for timing optimization procedures (such as transistor sizing, buffer insertion
and fanout trees) or an updated specification file for higher level synthesis,
expecting an improved gate and net list for layout synthesis. Essentially the
back-end of the design process has become a slow iterative scheme with no
guarantee of convergence. Even if the process converges, it is uncertain how
the final solution compares with the optimum.

In this chapter we want to lay the foundation of approaches that effec
tively avoid global iteration ioops. Obviously, the early design stages have
to be integrated with layout synthesis, or at least able to incorporate suffi
cient layout considerations without unnecessary constraints for the back end.
This will require a completely new approach, especially for complex designs
with very tight performance constraints. The required performance must be
guaranteed by construction (and not be left as the arbitrary outcome of indi
rect optimizations). This affects not only the way layout synthesis should be
organized, but also higher levels of synthesis, and logic synthesis in particular.

We first study components of conventional flows to identify the biases
that require revision. This leads to a new look at the concept of a global
wire. After observing that the delay of ‘long” wires can be made linear in
their length (and thus total interconnect delay on a path independent of the
position of restoring circuits), and discovering that delay between buffers in
an optimally buffered interconnection is a constant of the target technology,
we can extend the notion of wireplanning as the task to lay out the inter
connection structure before deciding on the functional content of the nodes.
Assuming that functional synthesis can provide the delay distribution over
interconnect and gates, we declare the need for algorithms to produce net
works not violating the timing constraints under the linear wire delay model,
and gate-based synthesis with fixed delays.

Fig. 2. Iterative flows: timing optimization, or even resynthesis whenever a timing
violation is detected

92 Ralph H.J.M. Otten A Design Flow for Performance Planning 93

2 Flow Components

2.1 Introduction

Stepwise refinement is a technique that has been shown to be effective in
the development of computer programs. It was explicitly formulated in a fa
mous paper by Niklaus Wirth [26]. In that paper the design of a structured
program was viewed as a sequence of refinement steps. Starting with a clear
problem statement, that specifies the relation between the input and the out
put data, the task is progressively refined, by decomposing it into subtasks,
each having an equally clear specification. The sequence of refinement steps
terminates when all tasks are specified in a chosen programming language.
The constructs of that language should be a direct translation of tasks re
sulting from the final refinement steps. To be effective, they have to form a
small but powerful enough repertoire. This method thus entails a hierarchical
structure. (A hierarchy is, either a set of hierarchies, or an atom. In this case
each hierarchy represents a task, and each task translatable in a construct is
an atom.)

Stepwise refinement can also be viewed as postponing implementation
decisions, to avoid committing the program prematurely to a specific imple
mentation. Each decision should leave enough freedom to following stages
to satisfy the constraints it created, and at the same time rearrange the
available data such that Further meaningful decisions are possible in the next
step. So, concurrent with the gradual stiffening of the design, the information
is progressively organized so that more and more detailed decisions can be
derived.

The principles of stepwise refinement obviously apply to any complex
design task based on a top-down strategy rather than to a process of combin
ing independently developed subdesigns. Completely specified subdesigns, in
general, are difficult to handle, because the flexibility and the information
for adapting them to their environment is often not available when they are
designed.

On the other hand, the application of stepwise refinement in layout design
raises a number of questions. Firstly, what information is available in the
initial stage of layout design? A difficulty in answering this question is how
to separate layout synthesis from the other design tasks, and yet make sure
that these tasks are performed “with layout in mind” and provide enough
information to preserve these decisions. Another question that immediately
arises is what relevant information can be derived at the intermediate stages
before fixing the geometrical details in the final stage? Finally, translation of
the results of the last refinement steps has to be considered. Section 3 will
be devoted to these questions. In this section the “environment” of layout
synthesis (including “data preparation”) is discussed.

2.2 Mask Specification

The ultimate task of a design system is to produce a layout, a set of data that
uniquely and completely specifies the geometry of the circuit. Usually this
data is an encoding of patterns, two-block partitions of the plane. The term
mask will be used for each plane with a pattern, even if that plane is not ex
actly one of the real masks used in the fabrication. A layout is then translated
into a sequence of processes that selectively change the characteristics of the
silicon according to those patterns, thus realizing the functional specification
available as input to the layout design procedures. Whereas the layout de
sign system has considerable freedom in deriving geometry from functional
specifications, the result of that translation procedure is fixed. Up to forty
different patterns are sometimes used in the sequence of selective exposures
of the wafer surface. However, many of these are implied by other patterns
in the sequence. For present day technologies the geometrical specification of
eight to fifteen planes suffices to specify the layout.

From device theory general restrictions on the shapes of the regions can
seldom be derived. Lithography techniques, however, do sometimes have their
limitations. Quite often only orthogonal artwork is acceptable. This leads
to regions that are unions of iso-oriented rectangles. There are examples of
circuits that indicate that other layout primitives are more efficient, such as
hexagons in some systolic arrays. Rarely is a restriction to rectangles and
combinations thereof detrimental, whereas the cell design algorithms and
layout data bases profit from such a restraint. The rectangle is therefore
accepted as the basic construct.

The rectangle constraint is also accepted for the compounds of layout
primitives that form the atoms, and often even the hierarchies in the hi
erarchy entailed by the method of stepwise refinement. Consequently, each
hierarchy will then be a rectangle dissection in the final layout, i.e. a rectan
gle subdivided into nonoverlapping rectangles. The restriction to rectangles
might seem rather arbitrary. However, in a truly top-down design it is very
difficult to be particular about these shapes, because the shapes of its con
stituent parts still have to be determined. A good estimate for the shape of
the enclosing region is of great value in determining the shape and positions
of the constituent parts, and hardly a constraint if these parts have a high
degree of flexibility. The earlier estimates become in some sense even self-
fulfilling, because the parts mostly can be fit nicely in the environment by
using their flexibility. Besides, choosing rectangles as the only constructs in
the repertoire simplifies the formulation of design decisions, and lowers the
complexity of deriving these decisions, as will be seen later.

2.3 Technology File, Library and Footprint

To improve chances for successful integration of the circuit, and increase yield
when the circuit goes into production, patterns are required to satisfy certain

94 Ralph H.J.M. Otten A Design Flow for Performance Planning 95

rules, the so-called design rules, stored in a technology file. A first classification
distinguishes roughly two classes of rules: numeric rules quantifying exten
sions of, and spacings between patterns in a plane and in combinations of
planes, and structural rules, enforcing and prohibiting certain combinations.

There usually are a large number of numeric rules. Very few, however, are
critical in a layout. For example, the spacing between two separate pieces of
metal in the same layer is bounded below by different numbers depending
on whether or not there are contacts to other layers in one or both of these
metal pieces. In a wiring algorithm there rarely is a good reason for trying
to use all these different minima. Instead, the maximum of all the rules that
might apply is taken as the pitch for the metal in that layer. The reason
for specifying the different rules for all special cases is mostly for the (man
ual) optimization of small pieces of layout that are used repetitively, such as
memory cells. The numeric rules are almost exclusively specifications of lower
bounds. This does not imply that the concerned extensions and spacings can
be arbitrarily large. Making them arbitrarily large might impair the function
ing of the devices in the circuit and increase delays, and decreases the yield.
The rules are formulated as minimum rules only, because it is assumed that
the layout design techniques will try to keep the total chip small.

In practice, quite often a footprint is prescribed, giving the geometry of
the estate on which the complete circuit is to be placed. It is a rectangle
with iso-oriented rectangles contained in it. These rectangles represent pre
placed objects that are part of the circuit description, but cannot be freely
placed and/or oriented. The remaining freedom varies. In so-called master
image approaches all active components are placed and the circuit compo
nents (transistors) have to be “assigned” to these slots, and interconnections
have to be realized in the metallization layers on top of them. But preplaced
objects may also be complete layouts of circuit parts, complete with their
wiring, leaving only part of the wiring space available for other interconnec
tions. Such objects may occur in fully custom fabrication styles (that is all
masks have to be produced for the circuit, whereas in master images the
lower masks are a priori fixed, thus prescribing the component slots) as well
as in other styles such as master image. Important to note is that, in con
trast with the free area suggestion above (with only implicit insentives to
keep the total size small), giving a footprint may make the design problem
unsolvable. Of course, insufficient area for the components certainly excludes
the existence of the circuit on that footprint, but other aspects for obtaining
full functionality may be precluded by the properties of that constraint.

The other resource from which the data preparation program in Figure 1
and 2 draws to enable layout synthesis to produce the mask specification for
the net lists that higher level syntheses have delivered is a library of cells or
of procedures to generate these cells. Cells can be of various types. The type
determines the cell’s flexibility and how to obtain the layout of a cell. The
most rigid cell type is the inset cell. Its configuration and pin positions are

fixed and stored, or completely implied by the algorithm generating the cell.
The layout design system can only assign a location and an orientation to
such a cell, within the restrictions of the footprint’. Cells can have a higher
degree of flexibility. The algorithms that determine their layouts, are such
that estimates about the environment can be taken into account. This cer
tainly is true for general purpose cells such as macros. These cells have a
decomposition of their own into circuits of a particular family. Another, less
flexible, example of a general purpose cell is a programmable logic array. Its
potential for adapting to its environment is sometimes further diminished by
optimizations such as row and column folding that impose stricter constraints
on the sequences in which nets enter the cell region. There are also cells, such
as cells generated by algorithms that, depending on a few parameters, con
struct special purpose subcircuits such as arithmetic logic units, rotators and
adders. These cells have limited flexibility, such as permitting stretching in
one direction. Stretchability is often important in avoiding pitch adjustments
in data buses.

Good cell generators working with the design rules produce valid layouts
in a wide range of values for these lower bounds. Of course, the algorithms
do not produce optimal layouts for all combinations of values in these rules,
but they should produce acceptable solutions for all practical value sets. The
latter requirement is much more difficult to maintain under changes in struc
tural rules, because these changes often require completely different decisions.
The rules usually increase the dependance between different masks. This is
particularly problematic if the metal layers are involved. Rules that forbid or
enforce certain overlaps between patterns in the metal layer masks and other
masks affect the wiring routines which often are generic algorithms solving
some cleverly isolated interconnection problem. Introducing structural con
straints often invalidate the assumptions made during the isolation.

2.4 Conceptual Design and Synthesis

Conventional design flows are based on the dichotomy between the front end
and the back end of a design system. The back end is dominated by layout
synthesis, the topic of section 3. Its task is to accept a net list, possibly
hierarchically organised, but complete in the sense that all components and
all their interconnections are fully specified, and to produce a layout (see
section 2.2). Part of this data, both in the input and in the output, is in
pointers to library elements.

The front end has to produce these net lists for layout synthesis, together
with the pointers into the library. Isolating tasks of an integrated approach
is dangerous, because of their mutual dependence. Taking this dependance
into account by iterations over several design tasks is highly undesirable, be
cause of the time complexities involved and convergence properties. Clearly,

1 Preplaced objects are typically inset cells.

96 Ralph H.J.M. Otten
A Design Flow for Performance Planning 97

since the final result has to be a complete specification of the masks, the
later steps are mainly based on layout considerations. And, since the com
plete functional specification has to be available from behavioral synthesis
on, the early decisions or refinement steps have to be predominantly based
on function and testing arguments. In between, many steps, such as logic
decomposition and data path definitipn, have a significant influence on the
final layout, and many functionally almost equivalent decisions may have
completely different consequences for the layout and its design process. The
boundary between layout design and the other synthesis tasks was always
therefore quite fuzzy. Nowadays the performance of integrated circuits de
pends heavily on the geometrical aspects of the final chip. A total dichotomy
as described is no longer feasible. How to handle this will be main theme of
the later sections of this chapter, and one conclusion already pursued by some
start-up companies working toward new back-end tools, might be to remove
all hierarchy constraints in layout synthesis. Early stages, however, will still
be decomposing the overall function in order to make the task manageable.
The earliest stages are called conceptual design.

Typically, conceptual design for complex integrated circuits is done in
small teams of experts. These experts work for a large part on the basis of
experience. Experience has learned them how size (or power) can be traded
against speed. On that basis they divide for example time budgets over iden
tified parts of the design. These identified parts are a first level of hierarchy.
Beside dividing time budgets, also relative positions and estimated sizes are
tried, often on a white board or scratch paper. Several iterations may follow,
and further elaboration on parts, creating deeper levels of hierarchy, may fol
low before specifications, suitable for behavioral synthesis, are written, mostly
in description languages, such as vhdl or verilog. The intermediate stages, the
sketches on the white board and on paper, are in fact wire plans, and when
more sharply defined can be the structure on which quick analyses can be
carried out.

We will come back to these possibilities in section 6. For the present dis
cussion we note that conceptual design will inevitably lead to a functional hi
erarchy, probably reflecting the functional interdependence of the hierarchies
(modules). Functional interdependence and connectivity are often highly cor
related, and the latter can be an important basis for decisions in layout de
sign. The considerations that lead to a functional hierarchy mostly ignore
other important aspects of layout synthesis. For example, in the design of
digital systems the isolation and implementation of execution units is often
established quite early. The remainder, control and interrupt, is left logically
completely specified, but mainly unstructured. A layout with a decomposed,
or even partly duplicated control unit, might be more efficient than a layout
in which this part has been kept together. Several sections of the control can
be placed closer to specific execution units they are heavily connected with. If
the connectivity with the rest of the control is relatively low, this might save

wiring area. It is also possible that the decomposition goes further than what
is useful for layout decisions. The layout design part may, therefore, choose to
ignore parts of the decomposition, initially or throughout. Nevertheless it is
assumed that, possibly after some clustering around seeds and some pruning,
the design data are completely hierarchically structured. That structure is
considered part of the initial data for layout synthesis. The hierarchies and
atoms are called modules in this context. The formal definition of a module
implies such a hierarchy.

p7

A module M is defined to be a collection of modules {mi, m2, ,

where m =1 M j, and an incidence structure IS (Mu {M},P,.Af). The
modules m~ are the submodules of M , and comodules of each other. M
is their unique supermodule. There is exactly one module without a super-
module. This module represents the entire system to be integrated. Cells are
modules with an empty set of submodules. The others are called compounds.
The hierarchy can be represented as a rooted tree. The modules are rep
resented by the nodes. The root represents the whole system or chip. The
leaves represent the cells. The internal nodes represent the compounds. Each
node representing a submodule is the end of an arc that started in the node
representing its supermodule.

Fig. 3. A pictorial representation of an incidence structure

98 Ralph H.J.M. Otten A Design Flow for Performance Planning 99

With regard to the incidence structure IS the module and its submodules
are considered to be subsets of the set of pins P {pi, P2, , p~} Also
the signal nets, forming Al {ni, n2, , n,~} are considered to be subsets
of P. Pins are for the moment merely a mechanism for relating modules and
their supermodule with signal nets. The incidence structure can be repre
sented by a bipartite graph ({M} U .A4 U Al, P) the potential graph. Figure 3
illustrates the terminology.

2.5 Timing Analysis

The single most important consideration in designing complex systems is
conceptual integrity. An important aspect of this integrity is how to store the
data of a design between the various stages. As pointed out in the previous
subsection, the design has a hierarchical structure while being treated by
higher level synthesis and being prepared for layout synthesis. The modules
in that hierarchy may have specific meaning for certain parts of the system.
For example, they may have a functional model associated with them. Such a
model makes simulation of that module in its environment possible. Extensive
circuit simulation will have been performed on the system before the layout
is considered. Yet, certain important performance aspects heavily depend on
parasitic elements and final device parameters, and these are not known until
the layout is determined. Simulation is therefore also important during and
after establishing the layout. This requires that the simulation part must be
able to find the modules for which a model is known, and assign values to
parameters that represent the influence of device realizations and parasitics.
It is therefore expedient that the results of the layout design process are stored
in a way compatible with the data representation delivered by previous design
procedures. In the preceding subsection it was established that that data is
hierarchically structured. A hierarchy is mostly represented by an unordered
tree. It would be convenient if the layout design procedure could preserve
that structure, possibly refined and ordered. Refinement here means that
leaves can be replaced by hierarchies of which the root takes the place of the
replaced leaf, and subtrees consisting of a module with all its submodules
can be replaced by any tree with the same root and the same leaves, but a
number of additional internal nodes. Section 3 will describe such refinement
steps.

Recently, simulations after layout synthesis have become necessary to
check whether the system as a whole satisfies the performance requirements.
A timing analyser is presently integrated in most design flows (Figure 2).
From the result of layout synthesis a network, together with its parasitics
and wire properties has to be extracted. Consequently, a network far more
complex than the original net list produced by higher level synthesis has to be
analysed. Besides, accurate timing models are very complex, and with such
models timing analysis will be become a very time consuming procedure.

Considerable simplifications are therefore introduced, hoping that all timing
violations can still be reliably detected.

Worse than the inaccuracy of the result is the fact that it is not clear
whether something can be done to remove the violation. Identifying critical
paths, and speeding them up by transistor sizing, fanout buffering, and path
isolation, may help, but failure to do so, does not mean that a timing correct
solution does not exist. Anything produced is constrained by the result of
layout synthesis, that in conventional design systems optimizes metrics like
size, wire length, and the like, but not speed directly. Relying on higher
synthesis stages to propose repairs or even complete redesign is not always
converging either (even when an acceptable solution exists), slows the design
process even further down, and is also likely to get trapped locally.

If performance is the requirement, then all optimization should be under
that constraint, and no longer rely on minimization of wire length and area
to get acceptable performance. Rather higher level synthesis should fix the
allowed delays on interconnect and in the gates, and layout synthesis should
have as its main task the realization of these delays. This requires radical
changes on both sides. These issues will be addressed at the end of this
chapter.

3 Layout Synthesis

3.1 Shape Constraints

For every cell in the hierarchy there is an algorithm that tries to adapt the
cell to its estimated environment, while generating its detailed layout. This
preliminary environment has to be created on the basis of estimates concern
ing the area needed by each cell, feasible (rectangular) shapes for it, and the
external interconnection structure. The size and the shape of a cell are con
strained by the amount and type of circuit ry that has to be accommodated in
that cell. It is reasonable to expect one dimension of the enclosing rectangle
not to increase if the other dimension is allowed to increase. Constraints sat
isfying that requirement are called shape constraints. The precise definition
follows.

Definition 1. A bounding function is a right-continuous, non-increasing,
positive function of one variable defined for all real values not smaller than
a given positive constant.

Definition 2. The bounded area of a bounding function is f is the set of
pairs of real numbers (z, y) such that f(~r) is defined and y > f(x).

Definition 3. The inversef’ of a bounding function is a bounding function
defining the bounded area with exactly those (y, z) for which (x, y) is in the
bounded area of f.

100 Ralph H.J.M. Otten
A Design Flow for Performance Planning 101

Fig. 4. The definition of a bounding function

+1. support fcR0

connected, and
cc E support if

The shape constraint of a module (or cell) is a bounding function speci
fying all rectangles that can contain a layout of that module. The bounded
area is the set of all dimension pairs of these rectangles.

Inset cells have piecewise linear shape constraints. Such constraints can be
conveniently represented by a sequential list of their breakpoints. This is not
the case for flexible cells, and possibly other cell types occurring in practice.
Of course, any shape constraint can be approximated by a piecewise linear
bounding function with arbitrary accuracy. From the discussion of flexible
cells in section 2.4 it is clear that a piecewise linear approximation with three
breakpoints suffices considering the limited accuracy of any area estimation
for the given examples.

The shape constraints of the modules in the functional hierarchy can be
derived in a straight forward manner from the shape constraints of cells as
we will see in section 4.2.

Fig. 6. Piecewise linear approximation of the shape constraint of a flexible cell

4 Placement Versus Floorplan Design

Through the shape constraints, the estimation of the rectangle in which the
module is going to be realized, is controlled. Some guidelines for the position
of such a rectangle among all the other rectangles are contained in the func
tional hierarchy, if available. That structure already gives some indication
about which modules belong together functionally. Otherwise, or further, we
have at least the incidence structures associated with the modules. In the
context of layout these incidence structures are often called net lists.

Utilizing the data (shape constraints, net lists, and functional hierarchy)
the cells have to be arranged in a rectangle. This enclosing rectangle is often
desired to be as small as possible, sometimes it is constrained in aspect ratio or
completely specified. If the cells were fixed objects this would be the classical
placement problem. However, in this context the cells are allowed to take any
shape not excluded by its shape constraint. This generalization of placement
is called floorplan design, and a floorplan is a data structure fixing the relative
positions of the objects. It does not contain geometrical aspects, although
estimates can be generated by performing a suitable fioorplan optimization
routine (see section 4.2).

Both fioorplan design and placement are guided by a number of objectives,
not easy to formulate in a single object function. This can be illustrated by the
following typical combination of objectives. The first is primarily concerned
with the realization of the interconnections. A common figure of merit for it is
total wire length, often estimated by summing the perimeters of the rectangles

y

area is/ ~ / / ~ bounded area

/ /

I / bounding

function f
x

2. right continuous

3. monotonously not
increasing

(4. Piecewise Linear)

h

w

Fig. 5. Some examples of shape constraints

102 Ralph H.J.M. Otten A Design Flow for Performance Planning 103

that enclose all module centers connected to the same net. At the same time it
is desirable to give the cells rectangular regions in which they can be efficiently
allocated. The first objective is of a rather topological nature, working with
concepts such as ‘close’, ‘neighbor’ and ‘connectivity’. The latter is more a
geometrical objective. Major concepts for it are ‘deformation’, ‘dead area’,
‘aspect ratio’, and ‘wiring space’. To relate the two objectives an additional
refinement step, using an intermediafe structure capturing much of the data
affecting one of the objectives, might be helpful.

4.1 Floorplan Topologies [17]

It has already been observed that in the final floorplan the modules will be
rectangle dissections in which each submodule is either a rectangle dissection
itself, or, in the case of cells, a rectangle. Creating a preliminary environment
for the cells is essentially generating certain aspects of the rectangle dissec
tion, in which each cell is an undivided rectangle. Since the shape of the cells
is not yet known in that stage, the geometrical details of the rectangle dissec
tion cannot be determined. Less restrictive aspects of a rectangle dissection
are its neighbor relations, i.e. which cells share a particular line segment in
the rectangle dissection. The set of neighbor relations is called the topology
of the rectangle dissection. This topology is useful information that can be
generated at an intermediate stage of the refinement process. Usually, enough
freedom is left for the cell assembling procedures after fixing the topology,
and such a topology provides useful information about the environment of
the cells. Therefore, the first task in designing a floorplan is to determine its
topology. A reasonable decomposition of that task, certainly in the light of
the discussion of section 2, is to take one module at a time, starting with
the root of the functional hierarchy, arid progressing downward such that no
module is treated before its supermodule is. This translates the functional
hierarchies into nested rectangle dissections.

In spite of the constraints accepted so far, the floorplan design problem
is still complex. For example, given its topology and the shape constraints of
its cells, finding the smallest floorplan is an .jVP-hard problem. There also
is no pseudo-polynomial algorithm for it, since the corresponding decision
problem is strongly .AfP-complete [22]. At this point one may ask whether
the class of topologies for which the previous problem, and hopefully several
other problems, can be solved in polynomial time, is still large enough to
include an efficient floorplan topology for all practical cases. To answer that
question that class has to be identified.

A concise way of representing the topology of a rectangle dissection is
by its polar graph. This is a plane, directed graph without cycles. There are
three bijective relations between elements of this graph and its associated
dissection: edges correspond one-to-one with undivided rectangles, vertices
with the elements of one set of iso-oriented line segments, and inner faces with

the line segments in the other set (Figure 7)2. Many floorplans, designed in
practice or with any of the successful, more special layout styles, have polar
graphs that are two-terminal series-parallel graphs.

A first observation is that, as any two-terminal series-parallel graph, such
a topology can be represented by a much easier to handle data structure,
namely an ordered tree. By restricting floorplans to such a topologies, it
becomes quite natural to maintain data structures in the sense of section 2:
by ordering and refining the given functional hierarchy according to one of
the rules there described, and the layout structure can be stored consistently.

The tree replacing a two-terminal series-parallel graph is called the de
composition tree of that graph. Its leaves correspond with the arcs, and its
internal nodes correspond with the two-terminal series-parallel subgraphs of
the original graph. Consequently, each leaf represents an undivided rectangle
and each internal node represents a rectangle dissection, also with a two-
terminal series-parallel graph. The rectangle dissections represented by the
endpoints of tree-arcs starting from the same tree-vertex, are placed next to
each other in the same order, either from the left to the right, or from the
top to the bottom, depending on whether the corresponding two-terminal
series-parallel graphs are connected in parallel or in series. A rectangle dis
section with a two-terminal series-parallel graph as polar graph is a rectangle
dissected by a number of parallel lines into smaller rectangles that might be
dissected in the perpendicular direction. Such structures are called slicing
structures (Figure 8) and the associated tree a slicing tree. Each vertex rep
resents a slice. Each slice either contains only one cell, or is a juxtaposition
of its child slices. In the latter case that slice is said to be the parent slice of
its child slices, and these child slices are the sibling slices of each other. The

2 Although polar graphs are fully general in representing topologies of rectangle

dissections, they cannot handle so-called empty spaces in a flexible way. Recently,
sequence pairs have been introduced. These can handle empty spaces.

Fig. 7. One of the polar graphs of the given rectangle dissection

104 Ralph H.J.M. Otten A Design Flow for Performance Planning 105

distances. The preferred distance metric is often Minkowski-1, because of the
orthogonal artwork required by many lithography techniques.

4.2 Floorplan Optimization

Properties of the final rectangle dissection have to be derived then from such
an intermediate structure as a point configuration and the shape constraints.
This is called floorplan optimization. The topological considerations should
be taken into account by preserving relative positions in the point configura
tion and keeping modules close together if they are represented by points with
short distances between each other. The geometrical aspects should be taken
care of by keeping track of, for example, deformation implied by the dissec
tions. Another, often applicable, guideline is the area distribution in balanced
designs such as those built out of columns of cells with one dimension fixed.

First we develop the mechanisms for manipulating shape constraints. To
use this for floorplan optimization with a given slicing tree is then straight
forward, but we will also show that we can obtained the “best” slicing struc
ture compatible with a given two dimensional point configuration. Of course,
we have to say what we mean by “best”. A quite general and often adequate
objective is to minimize a contour score

Definition 4. A contour score c is a function of two variables, defined for a
convex subset P of the pairs of positive real numbers, which is quasi-concave
and monotonously non-decreasing in its two arguments, i.e.

V~,x1,y0.y,EF [x~ ≥ x0 A yi ≥ Yo c(xi, yi) ≥ c(z0, yo)j

sibling slices are ordered according to their position in the parent slice (for
example, left to right and top to bottom).

There are several ways of obtaining slicing structures. A well-known method
is the mm-cut algorithm [13]. If applied in its pure form it leads to binary
slicing trees, but one clearly can extend it to produce general slicing trees.
It does not use an intermediate structure that captures globally a large part
of the topological aspects of the input, as suggested in section 4.1. Each dis
section divides the problem into smaller problems, and it is difficult to take
into account decisions in one part when handling the other parts.

Methods using an intermediate structure are also known. One such struc
ture is a point configuration in which the topological properties of the input
are somehow translated into a closely related geometrical concept, namely
distances, and since the configuration will be embedded in a plane, more
particular distances in the two dimensional euclidean space. High connectiv
ity is reflected in relatively short distances. The size of the modules and the
number of pins (requiring a certain perimeter) also may influence the relative

V~,x2erVo<~<i [c(xi) < c(x2) _~ c(xi) ~ c((1 — A)xi +)~x2)]

Area and perimeter are examples of contour scores. Therefore, if we can
minimize contour scores under compatibility and shape constraints, we can
construct the smallest compatible rectangle dissection. Also , the smallest
rectangle with a given aspect ratio, or with a lower and upper bound on the
aspect ratio can then be produced. If we can do that in polynomial time for
slicing structures we have identified the class we were looking for, since even
for special contour scores and shape constraints the problem has been shown
to be Af~P-hard for more general dissections.

The shape constraint of a compound slice can be derived from the shape
constraints of its child slices as is illustrated in Figure 9.. In the final configu
ration these child slices have to have the same longitudinal dimension, which
is the latitudinal dimension of their parent. The inverse of the compound’s
shape constraint is only defined on the intersection of the intervals on which
the shape constraints of its children are defined. lts smallest possible longitu
dinal dimension for a given feasible latitudinal dimension x is the sum of the

Fig. 8. Slicing

and

106 Ralph HJ.M. Otten
A Design Flow for Performance Planning 107

Fig. 9. Shape constraint addition and inversion

child slice 1
xl

X~ child slice 2

X2

~ildslice3
y3 *—+X3

values of the shape constraints of the children at x. So, the shape constraint
of a compound is obtained by the addition of the shape constraints of its chil
dren in the interval where they are all defined, and determining the inverse
of the resulting bounding function. These operations are easy for piecewise
linear shape constraints, represented by a list of their breakpoints ordered
according to the respective longitudinal dimensions. For each breakpoint of
any child of which the first coordinate x is in the mentioned intersection, the
shape constraints of all the children have to be evaluated and added. If the
result is y, then (y, x) is a breakpoint of the parent’s shape constraint. Or
dering all these new breakpoints according to the y-value yields a consistent
representation for the shape constraint of the corresponding compound slice.

The ability to obtain the shape constraints of a slice by adding the shape
constraints of the child slices and inverting the result, enables us to obtain
the shape constraint of the enveloping rectangle. The bounded area of that
shape constraint is the set of all possible outer dimensions of the total config
uration. A contour score always assumes its minimum value over the bounded
area at the boundary determined by associated shape constraint. This is a
consequence of the monotonicity of shape constraints and contour scores. For
piecewise linear shape constraints that minimum will be assumed at at least
one of its breakpoints, because of the quasi-concavity of the contour score.
So, to find an optimum pair of dimensions for the common ancestor slice
the contour score only has to be evaluated at the breakpoints of its shape
constraint in the convex set of permissible pairs.

Theorem 1. Given a slicing tree and shape constraints for all its leaves
(cells) the shape constraints of all modules can be determined by traversing
the tree bottom-up (e.g. in a depth-first manner).

Corollary 1. Given a slicing tree and shape constraints for all its leaves
(cells) the shape constraints of the chip can be determined by traversing the
tree bottom-up (e.g. in a depth-first manner).

Theorem 2. Given a slicing tree and piece-wise linear shape constraints for
all its leaves (cells), the optimum shape of the chip under a given contour
score is represented by at least one of the breakpoints in its shape constraint.

Given the longitudinal dimension of a slice and its shape constraint, its
latitudinal dimension can be found by evaluating its shape constraint for
the given longitudinal dimension. After deriving the shape constraint for the
common ancestor and determining a dimension pair for which the contour
score assumes a minimum, the longitudinal dimensions of its children are
known. So, for each of them the latitudinal dimension, which in turn is the
longitudinal dimension of its children, can be calculated. Continuing in this
way will finally yield the dimensions of all slices in the configuration. If the
shape constraint has a zero right derivative at the point where it has to be
evaluated, some slack area might have to be included, i.e. the slice can be
realized in a smaller rectangle without affecting its environment. In order to
have the wiring channels connecting to other wiring channels at both ends
this slack should be taken up by slices containing only one cell.

Theorem 3. Given a slicing tree and shape constraints for all its leaves
(cells) and feasible dimensions for the chip (that is, contained in the bounded
area of the chip’s shape constraint), feasible dimensions for all modules and
cells can be found in a top-down traversal of the tree.

Corollary 2. Given a contour score, a slicing tree and shape constraints
for all its leaves (cells), feasible dimensions of all modules and cells in an
optimal chip with respect to the given contour score, can be obtained in two
tree traversals, one bottom-up followed by one top-down..

The algorithm consists of three parts:

1. Visit the nodes of the slicing tree in depth-first order, and just before
returning to the parent determine the shape constraint by adding the
shape constraints of its children and inverting the result.

2. Evaluate the contour score for each of the breakpoints of the shape con
straint of the common ancestor, and select a dimension pair for which
the smallest value of the contour score has been found.

3. Visit the nodes of the slicing tree in depth-first order, and before going
to any of its children determine the latitudinal dimension by evaluating
its shape constraint for the inherited longitudinal dimension.

child slice I

child slice’2

L. child slice 3
Y

x
compound slice

inversion
Y

108 Ralph H.J.M. Otten A Design Flow for Performance Planning 109

Clearly, when in the first step the same procedure has been applied to
all children of a certain slice the shape constraints of these child slices are
known and combining them in the way described yields the shape constraint
of their parent. The process will end with determining the shape constraint
of the common ancestor slice, and then the shape constraints of all slices are
known. As explained earlier the contour score will be evaluated at each of its
breakpoints. The dimensions associated with the minimum value will become
the dimensions of the enveloping rectangle. This means that after completing
the second step the longitudinal dimension of the primogenitive (and all the
other children) of the common ancestor is known. Together with the shape
constraints this is enough information to begin the process of the third step.
At the beginning of a visit to a node in the structure tree, representing a
certain slice, the latitudinal dimension of that slice can be determined by
evaluating its shape constraint at the value of the dimension that it inherits
from its parent slice.

So, completing all three steps yields the dimensions of all slices in an
optimum configuration for the given floorplan and cell shape constraints. To
determine the position coordinates of the slices from these dimensions and
the floorplan is straight forward. Also easy is to determine what orientation
the inset cells can have in this optimum configuration.

The traversals themselves are linear in the size of the trees, but the sorting
of breakpoints is superlinear. The number of breakpoints is linear in the
number cells if the shape constraint of the cells have a limited number of
breakpoints. The exact worst case depends also on the tree (balancing helps),
but in any case we have:

Theorem 4. The floorplan optimization problem is efficiently solvable un
der any given contour score for slicing structures with a given tree and with
piecewise linear shape constraints for the cells.

So far we assumed that the slicing tree was obtained by refinement and
ordering operations on an initial hierarchy. This is not a completely satis
factory answer, because it is not obvious how these operations have to be
carried out for modules with a large number of submodules, or when hierar
chy is not accpeted as a constraint in layout synthesis. As mentioned, there
are several techniques that produce intermediate structures, and point con
figurations play a dominant role among them. So, we also want to answer the
question whether we can obtain optimal slicing structures compatible with a
given point configuration as coordinates in a cartesian system.

Here, compatible means that we can draw line segments parallel to the
axes that form a slicing structure with exactly one point in each elemen
tary rectangle. These rectangles do not have to be feasible with respect to
the shape constraint associated with the contained point. Of course many
slicing structures can be drawn in such a way. Each such structure has an
optimal dissection with respect to a given contour score, while allowing only

feasible dimensions for each elementary rectangle. We want among all those
compatible slicing structures one that has the lowest score.

First we note that all slices in a compatible slicing structure correspond
to rectangular sets in the point configuration. These are subsets of points that
are enclosed by four lines parallel with the axes (see Figure 10). Of course,
many different compatible slicing substructures are possible with such a rect
angular set, but we are only interested in the ones that can be part of the
optimal one, or even only in the the space they may take in the final optimal
structure. In other words we want the shape constraint of such a rectangu
lar set. If we would have the shape constraint of every possible compatible
slicing structure of that set, the desired shape constraint of that set is the
“minimum” of all these shape constraints. Certain shape constraints are to
tally dominated by others and have no effect on set’s shape constraint. Some
shape constraints determine part of the set’s shape constraint. It requires a
new operation on shape constraints: taking the minimum of two shape con
straints.

Fig. 10. Rectangular sets

0

The idea of dynamic programming suggests itself: in a systematic way
we calculate the shape constraints of all rectangular sets in order of their
cardinality and end up with the shape constraint of the total point config
uration and identify an optimal solution under a given contour score in the
same way as before. The number of rectangular sets in a point configuration
is polynomial in the number of points, namely 0(m4). Candidates for having

0
e

0 • •
0~

0

0

00

0

a 0
0

0

110 Ralph H.J.M. Otten A Design Flow for Performance Planning 111

their shape constraints determined consist only of two neighboring sets that
have already shape constraints. To quickly retrieve existing shape constraints
hashing of the sets is necessary to keep computational efforts low. The power
set of points has namely exponentially many elements (2m) of which only
0(m4) have to be addressed in worst case!

Again, the algorithm consists of two phases. During the first phase, the
shape constraint for each candidate slice is computed, and stored in a global
data structure for retrieval and the second phase. From the shape constraint
of the entire point configuration, the optimal shape is chosen. The second
phase then traces back the computations of the first phase that led to this
shape. While it does that, it slices the point placement, and assigns dimen
sions to the slices.

For reasons of complexity, general piecewise constant functions cannot be
used. If piecewise constant functions were used, the number of line sections
could grow exponentially with the number of elementary rectangles in a slice.
Only (small) integer values are permitted therefore as rectangle dimensions
which means that the shape constraints are integer stair-case functions. Be
cause all the discontinuities are then at integer coordinates, the discontinuities
in different functions will often coincide at the same coordinate. Therefore,
the number of discontinuities will not grow exponentially. Using integer stair
case functions, the number of sections is limited by the maximum dimensions
of the slice. The shape constraints can be implemented as arrays of integers,
with indexing by the argument of the shape constraint. For integer stair case
functions, this is the most efficient implementation. Addition, minimization
and inverting a shape constraint can all be implemented as simple “for” loops.

The complexity of the algorithm is polynomial, although a rather high
polynomial. Shape functions have to be determined for all rectangular sets.
There can be up to m2(m + 1)2/4 different rectangular sets, a tight bound.
Considering further that each constraint calculation takes 0(m) additions
and minimizations, which themselves may take up as many operations as
there are breakpoints, we arrive at a time complexity of 0(m6) if the maxi
mum dimensions are bound by a (small) constant.

The second stage of the algorithm has a much lower complexity then the
first stage. It only recomputes the shape constraints of the slices that are
actually used in the slicing structure. The complexity of the algorithm is
determined by the complexity of the first stage.

Theorem 5. Given a point configuration with coordinates in a cartesian sys
tem, the optimum compatible slicing structure under a given contour score can
be found in polynomial time.

Actually, only the sequences along the two axes are used! But that does
not help to lower the worst case complexity which is high. Fortunately, in
practice, the computation time evolves at a much lower rate, as can be seen
in Figure 11.

J~[JJillJ
40 100

number of rectangles (log)

Fig. 11. The time complexity of the optimizations

4.3 Net Assignment

The more complex the circuit to be integrated, the more dominant the wiring
is in the final layout, as can easily be learnt by examining existing integrated
circuits. Today much of the wiring can be realized on top of active devices,
particularly when there are many metal layers, Still considerable portion of
the chip is used exclusively for the realization of the incidence structures of the
modules. That part of the chip area is called the wiring space. If the cells are
realized in rectangular regions, the wiring space can be seen as the union of
nonoverlapping rectangles. The selection of the rectangles that together form
the wiring space affects the efficiency of the wiring procedures. It determines
the sequence in which the wiring can be generated, the algorithms to be used
for this generation, and the number of different algorithms to perform that
task.

Slicing structures have, again, considerable advantages over general rect
angle dissections. Firstly, because they imply a decomposition of the wiring
space into the minimum number of rectangles. These rectangles are in a one-
to-one correspondence with the slicing lines. To distinguish these undivided
rectangles from the ones that correspond with the cells in the functional hi
erarchy (in the slicing tree both kinds are represented by leaves), they are
called junction cells. Secondly, feasible sequences for generating the wiring
can be easily derived from the slicing tree. A possible rule here is to do the
junction cells in a sequence based on the length of the path from the leaf

Q
cD

C
C
F

O(1m16))
4

0

0)
0

G)
E
I
D

C)
4

0 10 20

112 Ralph H.J.M. Otten A Design Flow for Performance Planning 113

representing the junction cell to the root of the slicing tree, such that the
longer this path, the earlier the wiring in that cell has to be generated. And
thirdly, all these rectangles can be wired by using the same kind of algorithm,
usually called a channel router, though not necessarily in the strictest sense
[5,9]

Since the wiring can consume quite a high percentage of the total area, it
would be useful to have early estimates for this space, so that the sequence
of floorplan calls can take these estimates into account when designing the
nested floorplans. Several objectives may be important in realizing the inter
connections, and many of these are directly related to the size of these nets.
This immediately raises two problems. The first one is a consequence of the
interpretation of a floorplan as a topology rather than a geometrical config
uration. Yet, in order to measure the size of a net, some metric is necessary.
The second problem is the need for an ambience in which the wide diversity
of objectives can be formulated and optimized.

An often used structure for approaching these problems is the plane graph
determined by the rectangle boundaries in the rectangle dissection. Each rect
angle corner is a vertex, and the line segments between them are the edges.
This graph depends on the geometry of the rectangle dissection, and this
geometry is not known in the floorplan design stage. A closely related graph
can be defined for slicing structures. Then the vertices are the intersections
between junction cells. Further, there is an edge between each pair of inter
sections that involves the same junction cell. This structure does not depend
on the geometry. Reasonable estimates for the distances between the intersec
tions can be obtained by deriving a preliminary geometry from the topology
and data known about the environment. This can be done very fast for slicing
structures as we saw in section 4.2.

If minimization of the total wire length is the important objective, a
steiner tree on the above structure is wanted. Though slicing yields a con
siderable saving in computation time, this problem still requires exponential
worst-case time (if P ~ J~/P). Therefore, a heuristic is required. This heuris
tic program has to assign each net to a number of segments of junction cells.
After finishing this for all nets the densities in the junction cells can be de
termined, and on that basis a fairly accurate estimation of the wiring space
is possible. In addition to obtaining accurate estimates for the shapes of the
rectangles, the net assignment also yields information about the location of
external nets for the floorplans and cells to be designed later.

4.4 Assembling Cells

The refinement steps described in the previous section determine a topology
for every compound of the functional hierarchy. If these topologies are re
stricted to slicing structures, fioorplan design replaces each subtree of which
the vertices represent a certain module and all its submodules by another

tree of which the root represents the selected module, and the leaves repre
sent its submodules. This is in accordance with one of the rules suggested at
the end of section 2. The other type of refinement considered there was the
replacement of a leaf in the functional hierarchy (a function cell) by a tree
decomposition. The reasons for not having this decomposition in the initial
tree can be quite diverse. For example, the decomposition suitable for the
functional design may be far from optimal for layout design. In that case,
such a hierarchy is pruned. Clearly, a data base problem has to be resolved
when this happens. It might also happen that the decomposition is suitable
for using in the layout program, but more specialized programs are needed
than the general fioorplanning scheme described. Most often, however, there
is no need for further decomposition from the functional design point of view,
but flexibility is increased if the layout design procedures use some inherent
decomposition.

Algorithms for designing cells, possibly using such a decomposition, are
called cell assemblers. The task of a cell assembler is to determine the internal
layout of its cell (with respect to a reference point in that cell’s region) on
the basis of a suitable specification and data about its environment. There
may be quite a diversity of cell assemblers in a silicon compiler system. The
application range of the silicon compiler is highly dependent on the set of
implemented cell assemblers. Whereas most of the decisions during floorplan
design are to a high degree technology independent, cell design is dominated
by the possibilities and limitations of the target technology. The numeric
design rules are stored as numbers of which the value is assigned to certain
variables in the cell assembler. The structural rules are to be incorporated in
the algorithms, if possible in the form of case statements, so that a variety
of rules can be satisfied.

The layout of a slice is obtained by first obtaining the layout of all its child
slices except junction cells, and then calling the appropriate assemblers for
the junction cells. Visiting the slicing tree in depth first order, and performing
the above operations when returning to the parent slice enables the program
to determine the chip’s coordinates (coordinates with respect to a unique
point on the chip) of all layout elements in the parent slice before leaving the
corresponding vertex.

The translation of that result into the rectangles of the various masks
is also performed at this point. This translation is straight forward. In the
remaining part of this section some types of cell assemblers are described.

Function cells The task of a cell assembler is extremely simple for inset
cells of which the internal layout is stored in a library. From the topology
determined in the floorplan design process, and the shape constraints of all
cells, including the junction cells, an estimate for the rectangle that is going to
accommodate that module, can be derived. Reasonably accurate data about
the position of the nets to be connected to that cell is generated by the net

114 Ralph H.J.M. Otten A Design Flow for Performance Planning 115

assignment process. On the basis of that data the assembler has to decide
which orientation has to be given to the inset cell, and how it has to be
aligned with its sibling slices.

For function cells of which the internal layout is not stored in a library, it
may still be implied by the specification. For example, if a cell is going to be
realized as a programmed logic array, the specification is either a personality
matrix, or a set of boolean expressions. In the former case the assembler does
nothing else than performing a straight forward translation and handling the
result in the same way as the stored inset cells. If the array is specified by a
set of boolean expressions, the assembler must have a so-called pla-generator.
The shape of the resulting array is still difficult to control, but the pin posi
tions can be adapted to the results of the net assignment, performed during
the floorplan design stage. Some sophisticated pla-generators use techniques
such as row and column folding to make the area of the array smaller. This
constrains the choice in pin positions considerably, and might lead to a higher
area consumption, because of the complex wiring around that array. A pla
generator in a cell assembler should at least be able to take the results of the
net assignment into account.

Regular arrays such as programmed logic arrays and memories, have an
obvious decomposition into array cells with no or only slight variations in
their dimensions. Their positions in the array are heavily constrained, and
this decomposition can therefore not be used to manipulate the shape of the
array. There also are cells that have a natural or given decomposition that can
be used for that purpose. These cells are called macros. They are decomposed
into circuits that either are selected from a pre-specified catalogue, or can be
designed with a simple algorithm from a function specification. The reason
for keeping such a macro from the floorplan design stage is that the circuits
have certain properties that make special layouts very efficient. For example,
the catalogue, or the simple algorithm, may have a constraint that gives all
cells in the macro the same width and the same positions for general supply
pins, such as power supply and clock pins. In that case a pluricell layout style
is suitable for the macro. It forces the cells to be distributed over columns,
but the number of columns can be chosen freely. Therefore, the aspect ratio of
the macro can be influenced. Also the pin distribution around the periphery
can be prescribed on the basis of data about the environment.

Decompositions like in macros occur very often, but for special cells that
are frequently used, it sometimes is worthwhile to implement a special algo
rithm producing a highly optimized layout. In word-organized digital systems
these special cells often process a number of bit vectors. The layout as a whole
may benefit from aligning these cells so that the buses carrying these bit vec
tors do not have to be matched to the pitch of each individual cell. Also
buses that pass over such a cell without making any contact have to be ac
commodated. These requirements imply a certain kind of flexibility, such as
stretchability and variable bus pitches. If possible, such an algorithm must

be able to produce these highly optimized cells for several bus dimensions
and a range of performance requirements.

Junction cells Junction cell assemblers are closely related to channel routers
[5,9], because of the way they are isolated and the moments on which they
are called. The junction cell is a rectangular area of which the latitudinal
sides are parts of the longitudinal sides of junction cells that are represented
in the slicing tree by vertices closer to the root. When the assembler is called
for a certain junction cell, the longitudinal coordinates of the entry points of
the nets are known. There are several ways a net may enter the junction cell:
from the longitudinal sides of that cell, from a higher metal layer, from the
latitudinal sides, and perhaps in still other ways. The task of the assembler
is to realize all the required interconnections in a rectangle with an as small
as possible latitudinal dimension. The longitudinal dimension has to be com
mensurate with the latitudinal dimension of the parent slice. Increasing the
longitudinal dimension of the channel should therefore be avoided if possible.

5 Global Wires

5.1 Hierarchical Design

With some hierarchy maintained throughout layout stages the definition of
what is a global wire seemed easy: any wire that connected different blocks
in the actual hierarchy level was considered global. They were treated special
in that global routing routines first assign them to restricted regions, and
the result was used to further update the estimates concerning area usage,
their consequences for shapes in the floorplan and congestion analysis. After
detailed placement, the final outcome of global routing can also be used in
the preparation for detailed routing.

With the number of wiring layers restricted to two to four a large part
of the effective resources for interconnections was where there were no active
devices. The assignment was often to “channels”: areas between the blocks
identifiable even in a floorplan. Although a constraint, it provided a con
venient decomposition of the total wire problem into a sequence of channel
routing problems (the best understood problem in layout synthesis) and, if
not slicing, switch box problems. Nowadays, channels have lost most of their
effectiveness due to the progress in technology dedicated wiring spaces are
no longer necessary (which does not imply that the algorithmic techniques of
channel routing cannot be used anymore!).

The longest wires in a hierarchical design are expected to be found among
the so-called global wires at the higher levels of the hierarchy. If interconnect
delay becomes the dominant bottleneck in achieving higher performance, we
either have to avoid global wires altogether (that is to abandon the hierar
chical design style as a constraint), or find ways to reduce that delay. There
are several methods for reducing the delay:

116 Ralph H.J.M. Otten A Design Flow for Performance Planning 117

5.3 Critical Lengths and Critical Delay

We use a first order model for a generic restoring buffer (called a repeater
although in current technologies it will be inverting) driving a capacitive load
through a homogeneous line of length 1 given in Figure 12. No resistance after
branching, no slope dependency, no transition differentiation, no holding and
internal charging effects are assumed. Just a point-to-point connection and
we are interested in questions such as optimum segmentation and buffering.

The repeater is represented as a voltage source controlled by the voltage
V3t at the input capacitance. This voltage source switches instantaneously
when the fraction denoted by x, 0 ~ z ~ 1, of the total swing has been
reached. The switching at the voltage source is a perfect voltage step (Fig-
ure 13).

The parasitic capacitance C~ is, in the case of static cmos circuits, mainly
composed of the drain capacitance of the transistors. It complicates the

>>

derivation a bit without affecting the conclusions. The numerical results,
however, are considerably different when these parasitics are neglected.

The line is assumed uniform. To justify this assumption in practice spe
cial constraints have to be accepted in layout. We will address this point in
section 5.4. Of course, more than one gate may require the same signal. The
validity of the model is restricted to cases where the resistance after branch
ing is negligible. That is, either the line has a unique receiver, or all receivers
are so close to each other that representing them by a single lumped capacitor

CL in Figure 12) is justified.
Starting from this simple model, a general formula for the delay between

the switching of the buffer and completing the x fraction of the swing at the
end of the line can be derived [21]:

repeaters: since the wire delay grows quadratically with wire length, re
peaters splitting the wire do help as long as the gain by summing squares
of shorter lengths is not absorbed by the additional delay for restoring
by the repeater.

swing reduction: regenerative reaction to smaller voltage changes at the
end of a line will speed up communication, but noise is limiting the max
imum gain that can be obtained.

shape optimization: tapering wires improves wire delay (in theory even
limitless), but creates unsolved layout problems when applied freely.

All these methods have their fundamental limitations, often reached well be
fore maximum performance has been achieved. In those cases layout synthesis
under the classical separation from functional synthesis, is powerless.

Rtr r. I

~c.I

Fig. 12. Generic restoring buffer model

CL

~r.I I

___ ___ dV

‘Wv IF~ Rtr1T~
Tc.l

v+

5.2 Interconnect Modelling

In recent years many sophisticated models for interconnect delay have been
developed [19]. The complexity of these models and/or the size of the look-
up tables used inhibits their use during synthesis, when the geometry of the
interconnect is unknown, and when only estimates of length and topology
are available. In these early stages only simple models such as Elmore’s first
moment matching can be used effectively. This model is the basis for analyz
ing almost all methods for reducing delay in point-to-point interconnection
with unidirectional signal flow. The most common reduction method is to
split the wire into segments buffered by inverters, and that will also be the
choice in this section. What is the the optimum segmentation, and what is
the optimum buffer? The answers have interesting implications, and most
importantly, they will point us towards a decomposition independent global
wire concept.

L.D

~u~oxW(V+ —Vt)

r0
S

SCg

cp =s.cp

Vtrt

>

> V~t

Fig. 13. Repeater model assuming inversion. s is a sizing factor

r = b(X)Rtr(CL + C~) + b(x)(cRtr + rCL)l + a(x)rcl2. (1)

118 Ralph H.J.M. Otten A Design Flow for Performance Planning 119

Fig. 14. Model constants depending on swing

Rtr is the equivalent transistor resistance. The constants a and b depend on
the switching model of the repeater, that is on x. In [21] several values for
a and b are reported, and the table in Figure 14 gives some values (see also
[3]).

If x 0.9 (90%-swing) then a = 1.0, b = 2.3. The elmore delay with
x = 1 — 1/c 0.63 has the well-known result with a = 0.5 and b = 1.0.
Mostly, in situations where circuits are chained and total delay of the chain
is to be calculated, (x = 0.5) is used, yielding a = 0.4, b 0.7. This is also
our case, but rather simulation should be used to obtain values for a and b
so that, when we divide the line in n equal parts by inverters, the delays of
the sections can be added.

Dividing the line by inserting inverters may decrease the total delay, be
cause the last term in equation 1 indicates a quadratic growth with length.
A reduction in delay is possible if the gain is not offset by the delay of the
inserted inverter. Obviously, there is an optimum segmentation of such a
line by identical inverters. To formulate the optimization problem we give
the size of the inverters in multiples (s) of the minimum size inverter. This
makes Rtr = r0/s, CL s.c0 and C~ sc~. The initial driver of the line
is assumed to have the same size, possibly after cascading up from smaller
initial drivers for optimum speed (see Figure 15). The total delay for n such
sections of length 1/n is

Fig. 15. The segmented line model

Now we can ask for the values of s and n which give the minimum delay.
For too small n the quadratic contribution of the line delay will dominate,
while increasing the number of buffers will cause a large restoring delay.
Obviously, T as a function of n has a minimum for positive n:

12
— br0(c0 + c~) — arc—r 0

n

1crct = ~/bro (c0 + c~) Parc — 7~.nopt

Accepting that r0 c0 and r0 c~ are process constants makes the optimum
distance between inverters only dependent on the rc product per unit length
of the wire.

Theorem 6. The length of a section in an optimally segmented ~ line is
inversely proportional to ~

P depends on the process and the delay model (x) only. Since r and c differ
from layer to layer, these distances also differ from layer to layer.

Substituting n0~~ in (2) yields

bc,’0T(n0~t) = (2~abrcro (c0 + Cp) + + brcas) i

which shows

Theorem 7. The delay of a line that is optimally segmented is linear in its
length.

The optimum repeater size is obtained as

— b(rc0 — rQ~)l = 0 ~ s0~~ =

T=n.r=n[bro(co+cp)+b(c~+rcos)~+arc4]

0 0.4 RC 0.7RC 1.0 RC 2.3 RC
0.5RC —*t

0 —~ 63%
tE

0 —* 90%
t90%

distributed line:

single RC-section:

12
= br0(c0 + c~)n + b(c— + rc0s)l + arc—

5 n

1,0 RC

2.3 RC

0 —+ 50%

t50%

0.5RC

l.ORC

0.4R0

0.7RC

a RC

b RC

(2)

or the optimum length of each section is

(3)

We call it an optimally segmented line rather than an optimally buffered line
because this length is independent of the buffer size S.

120 Ralph H.J.M. Otten

which is independent of n, the number of inverters used. By substituting the
optimum repeater size and the optimum number of sections into (2) we find
the delay of the line to be

T(l) = 2l~rcr0c0 (b + ~Jab (i +

which of course is also linear in 1. More surprisingly, substituting the critical
length shows that the delay of a section of critical length does not depend on
the line resistance and capacitance:

T~jt = 2br0c0 (1 + ~J-~ (~ +

and therefore only depends on the process (and the model), but not on the
wiring layer.

Theorem 8. The delay of a section in an optimally buffered line is the same
for all layers.

Note that all derivations were made on a chain of inverters driving an
uniform wire. Using this in more general networks, with different fanouts
and branch-off geometries is therefore at best an approximation, which can
only be made more accurate if isolation techniques are used to offset fanout
effects.

5.4 Model Justification

Since we use the results only for point-to-point connections (that is with
out branching) between restoring circuits, first moment matching is accurate
enough. However, some remarks concerning the model parameters are in or-
der.

The via resistance shows up as a resistor in series with the Rtr in Figure 12.
It is reasonable that this scales with the size of the inverter4, and hence can
be absorbed in r0 and the formulas do not change. Although r0 c0 is no longer
a process constant and a layer dependence is introduced in the critical delay,
experiments show that the via resistance, even to the top layer, is negligible
and has hardly any effect on the wave forms.

The line was assumed to have constant capacitance per unit length. For
advanced technologies, this is dominated by capacitance to parts of other in
terconnections, especially neighboring sections in the same layer. Since these
may undergo voltage changes, the value is not even constant. The latter ef
fect may cause variations in the effective capacitance by up to a factor of 3.

~ The contact resistance (the largest part) will scale if the contact area grows with

buffer size, and also the cross section of the via is likely to scale then.

A Design Flow for Performance Planning 121

To make use of the derivations in the previous section, before the geometry
of the wiring is known, requires the enforcement of a routing style which
produces a time-invariant homogeneous line. (One (possibly drastic) way of
achieving this is to shield each signal line with neighboring lines tied to fixed
voltages. In addition to reliable characterization, this style eliminates most
cross-coupling noise problems.) In addition, its resistance and capacitance
should be known a priori.

The remaining problem with the model is the determination of the ef
fective transistor resistance. It is reasonable that such a resistance exists if
we only consider one waveform and a fixed x. The most practical way to
obtain useful parameters is to simulate a ring of an odd number of buffer
sections with large transistors (100 times minimum size) after extracting c
very accurately. Then we optimize speed by varying the value of 1 for each
section to obtain ~ This will give P of equation 3 since r is known quite
accurately. With the length of each section fixed at tcmt the ring is optimized
next for speed once more, now by varying s. This will yield ~ and by equa
tion 4 therefore r0 c0. Since we can accurately calculate c0 from the transistor
geometry5, we get

r0 = ~ (~P2 + ~ -)2

To quantify what this all means we performed some calculations using a
fictitious, but well reviewed technology file based on [20], and an extrac
tion program [1] for solving exact 3-dimensional field problems. The critical
lengths and the critical delay are given in Table 16. Each layer has iIs own
critical length, the higher layers having longer critical lengths than the lower
ones. The values are pairwise close. Such a pair is called a tier. With a bit
of process tuning the critical lengths within a tier can be made almost the
same where the difference is mainly in the “between layers” capacitance.

Note that the critical length, measured in the feature size, changes much
less than proportional with the feature size! This may come as a surprise,
but is mainly due to velocity saturation effects, and therefore represents a
trend that will affect smaller feature sizes even more. Other recent studies
also indicate that even with scaling down in the logic blocks, the gate delay
will continue to dominate the performance [6].

Theoretically, we don’t have to do this since we obtained s~ in the second
optimization and c0 = r, c/ (rs~~~). However, since rcrit is likely to be insensitive
to s at the optimum, the value of s0~t is probably not very accurate, even though
~ is accurate.

~ Table 1 is by Amit Mehrotra of UC Berkeley with independent corroboration by

studies by Lixin Su, Sunil Khatri, and Dennis Sylvester.

/
= 2br0c0 (~1 + (4)

5.5 Numerical Data

122 Ralph H.J.M. Otten A Design Flow for Performance Planning 123

critical feature size
parameter 0.25 j~0.10 ~

T(l~~~) ~ 80ps~

Table 1. Critical wire lengths measured in feature size units

Today’s synthesis is capable of handling blocks with up to 10000 gates.
A square with side lengths of 1~rjt (ml — m2) can contain on the order of a
hundred of these blocks in a 0. 1~i technology. So, even with careful extrapola
tion, this means that fairly complex blocks can still be designed while mainly
controlling gate delay.

6 Wire Planning

The term wire planning was coined more than ten years ago “to describe an
approach that first focuses on determining an optimal plan for global wiring”
[4]. In its original context its task was mainly to identify groups of nets each
connecting to (almost) the same set of modules. The most common example
are buses: when identified routing complexity can be reduced considerably by
handling bus wires as groups inside data path generators.

Another, new task for wire planning is indicated by the computations and
derivations of Section 5. Although complex modules can still be designed us
ing present day logic synthesis methodologies, controlling mainly the gate
delays to achieve performance, at the chip level, future technologies will in
volve many (hundreds to thousands) of such complex modules, and at this
level wire delay begins to dominate. Wire planning should produce a loca
tion for these modules with the main concern that timing constraints on
input/output paths are met. This requires knowledge of the global intercon
nection structure and the performance implications of the functionality of the
modules. In the early “conceptual” stages of a design there is not much more
than an awareness of size-speed trade-offs. This accuracy depends completely
on the design experience in the team. In general, all that can be said is that
these interpolated delay-area relations appear convex. Delay in synchronous
systems is often measured in terms of the number of clock cycles to com
plete the computation of the module. Obviously, a module that takes more
cycles to do its computation never requires more area than one that takes

fewer cycles. Although defining speed of modules in general is not possible,
the reasoning will always be similar, whether speed in a given technology is
obtained by sizing, parallelism, or other means.

Knowing module functionality and interconnection structures implies a
decomposition. Initially, such decompositions emerge solely on the basis of
functional considerations, with little regard for their impact on both the
performance of the product as well as the efficiency of synthesis steps later on.
Therefore, while the design evolves into a hierarchical description acceptable
for behavioral synthesis, wire planning tools should aid in quick analyses and
proposals for function duplication, absorption and decomposition as well as
module (re)locations and (partial) pad planning.

Examples of wire planning tasks are establishing the existence of a mod
ule placement in which no path from input to output has to make detours,
assigning time budgets to modules such that area is minimized, establishing
the existence of a valid retiming and producing a valid minimal-area retiming,
assigning wire sections to layers so that feasible time budgets are preserved,
and encouraging floorplans that lead to efficient optimizations in later stages
of the design.

The final result of conceptual design aided by wire planning is a composi
tion of a network of blocks and interconnections along with well established
time budgets and delays. Considering the data concerning critical lengths,
blocks will be small compared to these critical “units”. They can be treated
without internal distributed delays, and their wiring is mostly realized in the
lower levels of metal. The tools can aid in creating subsets of regular grids
with blocks at grid points and predefined wire segments on the grid lines.
The latter enables good characterization of these segments, and routing con
sists of “using the available segment” rather than “placing segments”. By the
time that synthesis begins to create the gate and net lists, the delay on the
“global” wires is quite well established and therefore also the timing budget
that remains for the blocks.

6.1 Monotonic Wire Plans

Consider a high level description of a design described as a functional network
modeled by as a directed acyclic graphs with primary inputs as sources,
primary outputs as sinks and “functions” on the other nodes. There is an
arc from one node to another if the “result” of the former is used as an
argument in the latter. If a primary output depends on a primary input, there
must be a path connecting them, possibly passing through other blocks, and
possibly sharing some with other paths. Total delay is the sum of the delay
in the blocks and the delay in the wires. If wires are composed entirely out
of sections with critical delay, the total wire delay on a path is a multiple of
the critical delay, and is invariant with respect to how the functional units
are distributed over the restoring sites (end points of critical sections). If a
functional block is placed at each “grid point” along a path then no repeaters

10440
10600
36000
38400
63200
62000

l~,~~t(m1)
lcrit (m2)
l~jj (m3)
lcr~t (m4)
lent (m5)
lent (m6)
lent (m7)
~ (m8)

6757
7162

43446
45135
64932
56892
97581
93378

124 Ralph H.J.M. Otten A Design Flow for Performance Planning 125

are necessary. A wire plan in this context is a position for all the nodes in the
functional network and a pin assignment for all primary inputs and outputs.
Such a wire plan is called monotonic if all interconnections can be made so
that the Li-length (“Manhattan length”) of each input/output path is equal
to the L1-distance (“Manhattan distance”) between the two associated i/o
pins. Under the model this is the fa~test possible wire plan for a functional
network with that pin assignment7 having its wires in a given tier.

For a given pin assignment a monotonic wire plan may not exist. This
existence question has been answered in [7] as follows. The support of a node
is the set of primary inputs connected to that node by a directed path. The
range of a node is the set of primary outputs connected to it by a directed
path The inbox of a node is the smallest iso-rectangle containing its support,
and the outbox is the smallest iso-rectangle containing its range. A bridge of a
node is a minimum L2-length line connecting its inbox with its outbox. Using
these ideas and and working out a few special cases leads to Theorem 9:

Theorem 9. Every node in a monotonic wire plan must be placed within the
smallest iso-rectangle containing its bridge.

A simple proof by induction then yields:

Theorem 10. A functional network has a monotonic wire plan with respect
to a given pin assignment if and only if every node has a unique bridge.

This makes it very easy to find out whether such a wire plan exists: we only
have to check on a node by node basis whether each node in the network has
a unique bridge. Such a check is extremely simple since

Theorem 11. A node has a unique bridge if

1. the support or the range contains a single pin, or
2. the range is contained in an iso-line while the support is on a single line

perpendicular to that, or
3. the output box is in the “projection” of the input box, that is the two boxes

have disjoint support in both axes, except for at most one point.

Note that a placement conformant to Theorem 9 is not necessarily a mono-
tonic wire plan. A valid placement, but possibly having nodes at the same
position, is assigning each node the point which the output box has in com
mon with the bridge8.

Of course, certain deviations from strict monotonicity may be necessary
or desirable, because of availability of space or for sharing functionality with

~ Under a model where interconnections have capacitance but negligible resistance,

a monotonic wireplan has the minimum total wire capacitance. This can be useful
when power is a major concern and may be relevant for logic synthesis when a
pin assignment is given [7].

~ Also the points that input boxes have in common with the bridge is a feasible

set.

other paths. However, deviation from monotonicity can only be allowed if the
timing requirements are not violated. Note that monotonicity can always be
obtained by duplicating functionality, synthesizing faster blocks, and absorb
ing functions in their fanout. In the extreme, a monotonic wire plan always
exists if each output is produced by a single node.

Once the wireplan for a functional network has been determined, which
means that the delay on the arcs of this network is known, the remaining time
budgets have to be distributed over the function nodes. If the same graph is
a suitable model for this task, and the sources and sinks have arrival times
and required times assigned to them, a simple (quasi-)convex optimization
problem can be used to answer questions such as “what is the smallest net
work that does not violate any timing constraints?” Size is in this case the
sum of the areas assigned to each node according to its area-delay trade-off.

6.2 Valid retiming

Wires with a delay and synchronisation at the end of the line are functionally
equivalent with a series of latches in number equal to the ceiling of the delay
divided by the clock period. It would be advantageous if a wire plan is such
that a synchronous equivalent design exists with that many (or more) latches
at the interconnections. The wire plan is said to have a valid retiming in that
case. Since a wire plan is only a point placement, the delay over a connection
is unknown until it has a layer assigned to it, and its geometry is determined.
A lower bound for the delay follows from assuming that the fastest layer
(usually the highest tier) is used and a detour free geometry is realised. Let
the ceiling of the quotient between that lower bound and the clock period
be denoted ~ for the interconnection from module i and module j. A more
formal characterization reads then:

A retiming r is valid when

V(~,~)EE [w~ ≥ k~]

where £ is the set of connections in the wire plan, and w~j represents the
number of latches at that connections after retiming r.

A given plan may or may not possess a valid retiming, but if it does it
probably has many different valid retimings. Among those, the ones with
smaller area may be preferred. The more cycles are “retimed” into a func
tional node the smaller the area required by the module represented by that
node. The problem can be formulated by modifying the network in the fol
lowing way: duplicate each node while assigning all of its inputs to one node
and all of its outputs to the other node; add an arc from the node with the
inputs to the node with the outputs. For the new arcs the value of k is un
bounded (k oo), but it has a function a : •. R~ associated with it. It
is the area-delay trade-off curve that maps each number of cycles on the area
of the node. The optimization problem is

126 Ralph H.J.M. Otten A Design Flow for Performance Planning 127

minimize

ZaCA a(w~)

subject to

V(~,~)EE [w~ ≥ k~]

where A is the set of new arcs, one for each functional node.
An efficient solution to an approximation of this problem is in [25]. The

area-delay trade-off curve a is there not only defined for all non-negative inte
gers, but for all non-negative real numbers. It is a piece-wise linear functions
where the slope of the pieces may not increase with the delay: that is the
trade-off curve must be convex. They observed that the problem is very sim
ilar to the classical minimum area retiming problem, only the optimization
criterion now is really area, and not simply the number of registers, and the
cost-contributions are from convex area-delay trade-offs, and not constants.
Combinatorial delay is neglected.

What is missing in the formulations is how the assignment of wires to
layers plays a role. In the above formulation, only the top level wire type
is considered. The fact that a wire can be placed on a lower level of wire
and still meet its timing obligation is not considered. A possible answer is to
modify the total area cost function, to penalize wires that are put on higher
layers.

6.3 Layer assignment

The purpose of layer assignment is to assign every wire or wire segment in
a wire plan to a given layer, or rather to perform a quick analysis whether a
layer assignment for the given wire plan is likely to exist. Each layer is only
distinguished by its critical length. Several layers may have critical lengths
that do not differ significantly. The assignment of wires is only to m “classes”
of layers, where layers in the same class have the same critical length. These
are sorted in ascending order and denoted as,

l1<12<”<lm

The classes are dictated by technology. The layout style must be such that
any pair of points of the chip can be connected by wire segments from the
same class.

A wire segment between (xi, yj) and (z3, y3) that is assigned to class k
adds a Ck ((z~, y~), (x3, yj)) to the cost of the assignment. The contribution
of a segment depends on the class k as well as on the position of the segment
on the chip. It is likely to be more costly if its class is on a higher layer (a
scarcer resource) or if its rectangle is nearer the center of the chip (an area
more apt to congestion). The total cost of the assignment is to be kept as
low as possible:

minimize

Zwires Ck ((xi, y~), (z~, y~))

Now given a register transfer level description of the design with timing
information for the interconnections and a wire plan. The assignment is de
termined in two stages. First each connection i —~ j gets a delay number ~
in such a way that all delays from chip input or latch output to chip output
or latch input can be made in the assigned number of clock periods for that
connection. If a path is allowed a delay longer than a single clock period
then it is divided into an appropriate number of pseudo-nodes. Thus, every
combinational path must be within a single clock period. Let ir be such a
path. A fraction q of the clock period is assigned to this path, reserving the
other part for the gates on the path. So

ZijE7r ~ q < 1

where Sjj will be the delay assigned to connection i —~ j. The zero-slack
distribution algorithm [14] is used to assign the delay numbers such that all
paths satisfy the above equations. Now let the Manhattan length of wire
i —~ j in the wire plan be denoted by d~3, then connection i —~ j is assigned
to the kt~~ class fif

S~iL ~ <
tk — — tk+1

Thus wire i —÷ j will be assigned to a class where the delay on the wire,
~ ~ Therefore for any path ir we have

ZijElr ~ ≤ q

If a solution exists, then all wire segments can be assigned a fixed wire
delay, S~. Note that for the number of available wires of class k are only
indirected accounted for by assigning a wire to the least level which gives
the required delay. This assumes that wires at the lower levels are the more
plentiful. The cost of a wiring rectangle is weighted by its relative overlap
with the center of the chip, but the number of wires in the wiring rectangle
is not accounted for in this formulation.

A solution may not exist if there is no placement where all the delays can
be met. In that case, we may have to return to higher levels wire planning
and even possibly alter the chip latency.

7 Gate Sizing

To complement an approach based on wire planning, layout synthesis should
realize the functional blocks in such a way that the delays in the blocks do not
exceed their timing budgets, or rather keep them right on target. Since logic

128 Ralph H.J.M. Otten A Design Flow for Performance Planning 129

Fig. 16. Constant delay flow

synthesis knows the budgets after wire planning and the range of available
gates, it should deliver a gate list with an assigned specified delay for every
gate. Layout synthesis should produce a network in which each gate causes
exactly that delay. This is called constant delay synthesis [8]. Given a fixed
delay for a gate, its size becomes a function of the output capacitance.

This of course is not without consequences for the back-end tools. Sizes
now have to be assigned according to the results of logic synthesis, and scale
only with the imposed capacitances on the outside. Timing optimization is
out of the question: buffer insertion can only serve as an area reduction trick.
New cell libraries have to be developed to adequately reflect the demands of
delay-based requirements. And finally, the layout generation must be capable
of handling a variety of cell sizes, and absorb changes in sizes efficiently.

7.1 Sutherland Delay

Again starting from the model of Figure 12, but not including the wire, leads
to the configuration of Figure 17 and a delay formula which is the sum of
two terms, the effort delay and the parasitic delay [23,24]:

r bRtr CL + bRtr C~ = br0 c0 + br0 c~ = + p.

The right-hand expression is called sutherland delay. The parasitic de
lay p = br0 c~ is independent of size. The effort delay g/f is a product of
computing effort g = br0 c0, and restoring effort

R r0

=~ %V~f_~j CL

Fig. 17. Gate model for obtaining a size independent delay expression

The computing effort is also size independent, but in general depends on the
function, topology and relative transistor dimensioning of the gate type. The
important observation is that r can be kept constant by fixing f = C~~/ CL.

This leads to a new paradigm in synthesis [8,18]: any delay imposed by syn
thesis can be realized, provided that the sizes of the gates can be continuously
adjusted, and the imposed delay exceeds the parasitic delay. Note however
that the derivation replaced the gate by a single linear “effective” resistance
and a linear input and drain capacitance.

For more general charge or discharge networks of mos-transistors a single
sizing factor can be derived [8]:

Theorem 12. If

1. each transistor can be modelled by an effective resistance inversely pro
portional to the device-width,

2. each node i in the (dis)charge network can be modeled by a linear capac
itance C~ composed of a constant part and device dependent parts, and

8. the gate delay can be approximated by a summation over all nodes of
R~ C~ where R~ represents the total resistance between node i and the
output node /28],

then the delay of the gate remains constant if all device widths scale linearly
with with the load capacitance CL

The third condition reflects the elmore intuition of approximating delay by
adding the time constants of single rc-sections, each consisting of a node
capacitance and the total resistance through which it is charged or discharged.
Of course, the delay is an approximation for an already idealized network
(linear “effective” components, lumped capacitances, etc), but experiments9
support the stated fact extremely well [8]:

(5)

The same experiments also supported the validity of the sutherland model by
showing the invariance of the socalled self loading: ~~~CL•1 —

f — Cj,~

130 Ralph H.J.M. Otten A Design Flow for Performance Planning 131

Theorem 13. The delay of a logic gate can be kept constant by scaling the
devices linearly with the (external) load.

Fig. 18. Fixed relation of each input c with output c

The derivation of theorem 12 also implies that under constant delay all
input capacitances of a gate scale linearly with the load. This leads to an
analog “restoring effort” as in the sutherland delay for a buffer, that is, a
single factor f. So, with reference to Figure 18, for every input x we have
c~ ~ fC where the proportionality constant can be different for different
inputs of the gate (but these constants do not change with the restoring
effort, and therefore not with f!). It is reasonable to assume that the size of a
gate is proportional to the sum of its transistors, and therefore proportional
to the sum of the input capacitances:

gatesize cx Z~ne{a,b...n} c~

Since each c~ is proportional with fC, the size of a gate is proportional to
fC as well, and this proportionality constant is called the area sensitivity of
that gate type: afC. The area sensitivity of the gate equals the gate area if
the restoring effort is 1 and at the output there is a unit capacitive load’0.

Corollary 3. The size of a gate is proportional to the capacitance at the
input which under the constant delay paradigm equals the capacitance at the
output multiplied by f as imposed by synthesis.

In the context of a network the implications of corollary 3 can be worked
out by writing the expression for the total capacitance at a single node (see

10 That there is a single factor f for each gate means that by relative dimensioning

of the pull-up and pull-down networks, the transfer behavior can be manipulated
and constant delay synthesis will not change that. However, if each input of a gate
requires a separate relation to the output capacitance, it would not complicate
the formulation

Figure 19) and then collect them in vector form as follows. The capacitance
at node i is the imposed capacitance qj at that node (this can be the exter
nal capacitance to be driven by the network or the wiring capacitance, but
lumped and without wire resistance) and the (scaled) input capacitances in
its fanout:

= qi + ~jefanou~(i) n~~fjc3.

In Figure 19 the summation for node i contains two terms: c~ = qj + n~~fj c3 +
nikfk ck. If we make n~ = 0 whenever gate j is not in the fanout of gate i,
and equal to the proportionality constant that comes with the gate type of
gate j (accounting for function, topology, and relative sizing) we can write in
general

c, = qj + z;~=1 ni~f~cj

Collecting the imposed capacitances in a vector q, the capacitances at the
output in a vector c and the reciprocals of restoring effort in a diagonal
matrix fD, yields the following relation:

C = q + N fDc

C

ci

Ck

Fig. 19. Effort relations in a network

or

(I — NfD) c = q (6)

132 Ralph H.J.M. Otten A Design Flow for Performance Planning 133

The matrix N has the zero/non-zero pattern of the incidence matrix of the
(directed) network, and contain the relative sizing of the transistors in the
values of the non-zeros. Both, the pattern of N and f are imposed by logic
synthesis, and the entries come from the library. They should be such that
equation 6 has a positive real solution.

Corollary 4. The node capacitance~ are related to the imposed capacitances
by a linear transformation.

Once all node-capacitances are known, that is the vector c, the area of
the network can be written as

(a.f)Tc=(a.f)T(I_NfD) ‘q

where the dot indicates componentwise multiplication. Based on this relation
one can determine whether inserting buffers can save area.11 Note however
that although logic synthesis is to produce a network of gates with restoring
effort assigned to each gate, the area of the gates and the total network is
not known, because the capacitances at the nodes are not known.

Solving the size equation Synthesis has to come up with the vector f. This
is of course impossible if the parasitic delay on a path exceeds already the
timing requirement. Moreover, it is not unlikely that gates are only available
in discrete sizes, while the theory assumes continuous sizability. The selection
of available sizes [2], algorithms that use these limited libraries [12], and the
discretization problem in synthesis [10] deserve careful analysis, but the prob
lems seem to be certainly surmountable. That is, if a solution exists under
the assumption of continuous sizability, these studies and experience up to
now show that effective solutions exist for reasonably rich discrete libraries, or
adequate sets of cell generators. For establishing existence conditions for con
tinuous solutions, we look at three different cases: acyclic networks, strongly
connected networks and general networks.

In case of acyclic networks, that is no memory elements and no cycles, etc.,
the network can be represented by an acyclic directed graph. Consequently,
there exists a topological ordering of the nodes. Using that to order the
equations in the set 6 yields a lower triangular matrix that can be solved by
backsubstitution.

If the network is strongly connected, tile matrix N is irreducible12, and
therefore N fD as well. The question whether the equation system 6 has
positive solutions (c > 0) for any q> 0 has been studied extensively. It is
known as an open leontief system. The main result from this setting is
~ Buffers can only be inserted if they do not cause violations in the timing con

straints; buffers are allowed to introduce additional delay locally only if some
slack time is available there.

12 The usual definitions of irreducibility using powers of matrices or matrix decom

position are equivalent, but in the present context indirect and not so useful.

Theorem 14. The equations

(I — NfD) c = q

with N an nonnegative irreducible matrix and f a strictly positive vector, has
a solution c, c ~ 0, c ~ 0 for any q> 0, q ~ 0 flf A, the perron-frobenius
root (that is the dominant eigenvalue) of N f’~, is smaller than 1.
In that case, there is only one solution c, which is strictly positive and given
by

c= (I_Nf’~)~q.

A number of useful corollaries easily follow from that result. We mention

Corollary 5. If it exists, (I_NfD)’ > OflfA <1.

Corollary 6. If none of the row sums of NfD exceeds unity, and at least
one is less than unity, then A < 1.

A condition equivalent to A < 1 and avoiding the solving of eigenproblems
is from the following theorem’3

Theorem 15. A < 1 flf all leading principal minors of (I — Nf°)’ are
positive, where the i-th leading principal minor is calculated from the first i

D -~rows and columns of (I — Nf)
Under the stronger (than A < 1) condition of corollary 6 one can derive

that when increasing the imposed capacitance at one node, the gate driving
that node gets the greatest absolute increase in input capacitance. This does
not imply the greatest increase in area, because that also depends on the
area sensitivities. About relative changes something can be said under the
minimal conditions of theorem 14:

Theorem 16. If the components of the vector q, q ~ 0 and q ~ 0 change
by amounts of Z.~q such that q + z~q ≥ 0 and q + zlq ~ 0, while A < 1, then
for each i

max{o,maxmin{(O,min{jjzlqj<o} ~1~} ≤ ~ {j~qj>O} ~J.

This implies that if only tile imposed capacitance at a particular node
changes while all other imposed capacitances remain the same, the gate driv
ing that node changes by the greatest percentage (both, its input capacitance
and its size, regardless of its area sensitivity).

Finally, if the network is not strongly connected, and consequently Nf’~ is
reducible, we have to resort to weaker results of the perron-frobenius theory.

13 The condition of this theorem is known as the hawkins-simon condition

134 Ralph H.J.M. Otten A Design Flow for Performance Planning 135

~> 1 ~ (I — NfD)’ ≥

but theorem 15 is still valid, also for networks that are not strongly con
nected. Non-negative solutions for tIt~e components of vector c are therefore
still ensured, but some may be equal to 0.

Numerical solution of the size equations An iteration equation for
solving the equation set 6 presents itself in a natural way:

c(k + 1) = N fDc(k)+q.

In fact, it is the well-known jacobi method and NfD is the socalled jacobi
matrix of the system. However, it is just one out of many ways of splitting
the coefficient matrix for iteratively solving the equations. Another familiar
splitting leads to the gauss-seidel iteration:

c(k + 1) = (I — L)1U c(k)+(I — L)’q.

where L is the strictly lower triangular part of NfD and U the strictly
lower triangular part’4. The inverse obviously exists (and is actually equal to
~ LZ with n the number of gates in the network). Let us denote the dom
inant (non-negative) eigenvalue of the gauss-seidel matrix (I — L)’U with

as (the gauss-seidel matrix is reducible). The well-known stein-rosenberg
theorem then implies

Theorem 17. If)~ <1 then 0<)‘GS <)~

Corollary 7. Both the jacobi and the gauss-seidel method do converge when
.X < 1, and the latter converges asymptotically more quickly.

Other iteration schemes are possible, and may be faster. Successive over-
relaxation is such a candidate. But to achieve this computational advantage
in convergence, more knowledge about the eigensolutions, and the dominant
eigenvalues is needed. To do the analysis, or calculating useful bounds might
not pay of, and therefore the preferred approach is gauss-seidel iteration.

Area recovery Inserting buffers might decrease the total area of a module.
However, time critical paths should not get buffers inserted, because they
cause additional delay. Only when there is a certain amount of slack, buffers
can be inserted if they provide a decrease in area. We will show that all
potential insertion points can be determined at synthesis time, that is before
the node capacitances, and thus the gate sizes are known.
‘~ N has only zeros on the diagonal because the input and output of driving gates

are never directly connected (except for generating the inversion voltage as for
fast sensing, but that is outside the present application).

The delay of a buffer is given by equation 5, that is r~ gi/f8 + Pb with
g~ and Pb as library constants. Area decreases by the insertion only when

a~f~ C~> a~f~ cb + abf8 C~ or aif, C~> a~f~ ~ + abf8.

Note however that -~ is precisely equal to f8, so that

af~ > (a~f~ + ab)fs

The condition for area recovery is therefore

1>~~ah

Substituting this in the delay equation of the buffer shows that the added
delay by inserting a buffer is at least

Pb + ~b (i + ~ j

and this has to be compared with the available slack at that point. Clearly, all
variables are either chosen by synthesis or library constants, and consequently,
the comparison can be performed before sizing.

Theorem 18. A network with restoring efforts assigned in order to meet the
timing requirements, can be reduced in size by buffer insertion fif there is a
gate in the network with area sensitivity a~ and restoring effort f~ such that

Pb + gb (i +

where gb, Pb, and ab are the computing effort, the parasitic delay and the area
sensitivity of the buffer to be inserted.

This means that the locations for potential area recovery can be deter
mined at synthesis time. For it is synthesis that creates the network (that is

The strict positivity in corollary 5 has to be replaced by non-negativity, that
is

~;ci

Fig. 20. Inserting a buffer

(7)

136 Ralph H.J.M. Otten A Design Flow for Performance Planning 137

the matrix N), selects the gates and assigns restoring effort to them. However,
inserting a buffer at a certain node changes the slacks on all paths containing
that node. Each insertion can invalidate many other potential area recovery
points. And since sizing still has to take place, it is not known at synthesis
time how much is gained by inserting a buffer. A generic procedure should
therefore have synthesis insert buffers at all the candidate points, and mini
mize

(a. f)T (I — NfD) ~ q

without violating the timing requirements by assigning values to the f-comp
onents that belong to the inserted buffers, where the value 0 indicates no
buffer in the object function, and —gb/pb should be used in the delay equa
tions.

Networks Another question is how synthesis can distribute the delay over
the gates, which then is to be translated in a value for f. Sutherland’s hypoth
esis of uniform restoring effort [23] might be helpful here. It states that given
a network with an equal number of gates on every path from primary input
to primary output, a capacitive load at each primary output, and a driving
capability at each primary input, the network is fastest when every stage on
all input-output paths has the same effort. This is obviously true for a cas
cade of inverters, and it can be easily extended to networks with equal fanout
in a stage. But counter-examples can be easily constructed. Nevertheless, the
principle may be useful.

A more serious criticism is that not both, the capacitances and the de
lays, can be chosen freely. In a wire planning situation where interconnect
between modules are optimally buffered, the input and output capacitances
are fixed. This limits the possibilities for speed. More generally, timing closure
for networks with non-negligable resistance on interconnection is unsolved!

On the more positive side, a benefit is that technology mapping becomes
efficient under this constant delay paradigm. Technology mapping is known to
be efficient for trees and so-called convergent networks’5. It has been shown
recently [11] that technology mapping for load independent delay can be
solved efficiently for all acyclic networks. Thus the standard first step of
technology mapping in logic synthesis of partitioning into trees need not be
done and hence the optimum solution can be found.

The possibilities for logic synthesis with fixed delay are certainly not ex
hausted, and will require further research, but for here it is important that
layout synthesis is capable of realizing gates with a priori imposed delays.

These are essentially trees of which the primary inputs may feed several gates,
in design automation texts often called leaf-dags.

7.2 Cell Generation and Shape Assignment

Wire plans perform their analyses on point placements or sequences, most
likely under the presence of larger blocks that may be pre-placed. This posi
tion information along with a possibly partial pin assignment must be pre
served during the layout synthesis when the results of size assignment and
area optimization become available. This requires efficient and robust floor-
plan optimization. These qualities heavily depend on the floorplan to be
optimized. This can only be achieved by maintaining sliceability throughout
the design, from the early wire planning stage down to the determination
of the final dissection. This presumed “restriction” is amply offset by the
guaranteed optimum in its class.

Cell generation is most likely the big challenge in a constant delay ap
proach. The set of functions can be quite small, but extensive research is
necessary to determine which sizes should be made available. Ultimately, a
library of cell layout generators seems to be the way to go. In addition, yield
is also an issue here.

8 Conclusions

In synthesizing high performance chips using present day design practices, the
meeting of timing constraints necessitates an iteration which is not guaran
teed to converge. In future technologies, unless these global delays are planned
up front, convergence will be even more of a problem and even if convergence
is achieved, the answer is likely to be far from optimum. This suggests a shift
in design methodology where a global wire plan is put in place beginning at
the conceptual stage of the design. We propose an approach in which a wire
plan is created before the functionality of the blocks in that plan has been
fixed. This allows for better control over the performance of the total design.
Inherent to such an approach is that wire delay is accurately known wherever
it has impact. This means that “global wires” should be well characterized a
priori, which requires a strict layout styles. We have chosen to use a minimum
width optimally buffered interconnections with a fairly stable electrically en
vironment. Adherence to this style provides delays linear with distance, and
thus invariance over equal length paths. Sharing functional blocks is likely to
cause detours in one or more paths, causing additional delay. Creating a wire
plan may distribute units all over the chip, thus abandoning the principle of
easily recognizable and recoverable blocks, in exchange for exact knowledge of
delay on connections and control over delay in the blocks. Enforcing delays in
the blocks means that sizes become uncertain, and with uncertainties in size
also distances become uncertain. If a block cannot be synthesized with the
required delay in the available space, then the wire plan cannot be realized.
Thus, reliable predictors in the early stages must be developed to obtain a

138 Ralph H.J.M. Otten A Design Flow for Performance Planning 139

non-iterative design flow. Of course, existence of solutions can never be guar
anteed under too strict timing requirements, but we postulate that this new
methodology can find solutions for a broader range of specifications than the
current methods.

Acknowledgment:
Part of this chapter has been presented by the present author and Robert
Brayton at the Design Automation Conference 1998 for an audience of over
800 people. Robert Brayton supplied valid retiming and layer assignment
as additional possibilities for doing quick background analyses during wire
planning. His group at University of California at Berkeley, and Philip Chong,
Wilsin Gosti, Hiroshi Murata,and Mukul Prasad more in particular was quite
involved in developing the wire planning concepts. Monotonic placements was
developed by Wilsin Gosti, who made additions and modifications to sis to
have “legal operators” that preserve monotonicity, or rather the existence of
monotonic placement for all the gates. Further the Nexsis group at Berkeley,
in~particular Amit Mehrotra, Sunil Khatri, Subarna Sinha, and Philip Chong,
made some of the studies that quantified the critical lengths.

Lukas van Ginneken has always been a source of inspiration. Many of the
layout synthesis ideas were developed with him when we were both at Thomas
J. Watson Laboratories, IBM Research in Yorktown Heights. Through him
I also learned about the methods involving fixed delays that he developed
together with researchers at Thomas J. Watson Laboratories and Synopsys
Inc.

References

1. F. Beeftink, A. J. van Genderen, N. P. van der Meijs, Accurate and efficient
layout-to-circuit extraction for high speed mos and bipolar/bicmos Integrated
circuits ICCD, Oct. 1995

2. F. Beeftink, P. Kudva, D. S. Kung, L. Stok, Gate size selection for standard
cell libraries, International Conference on Computer Aided Design, San Jose,
1998

3. H. B. Bakoglu, Circuits, interconnections, and packaging for vlsi, Addison-
Wesley Pub Co, 1990

4. R. K. Brayton, C.-L. Chen, J. A. C. Jess, R. H. J. M. Otten, L. P. P. P. van
Ginneken, Wire planning for stackable designs, Proceedings 1987 International
Symposium on VLSI Technology, Systems and Applications, Taipeh, Taiwan,
pp. 269 273, May 1987

5. M. Burstein, Channel routing, In: Layout Design and Verification, T. Ohtsuki
(ed.), chapter 4, pp. 133—168

6. P. D. Fisher, Clock cycle estimation for future microprocessor generations, 1998;
L. P. P. P. van Ginneken, The predictor-adaptor paradigm, PhD thesis, Eind
hoevn University of Technology, 1989

7. W. Gosti, Wire planning in logic synthesis, 1998

8. J. Grodstein, E. Lehman, H. Harkness, B. Grundmann, Y. Watanabe, A delay
model for logic synthesis of continuously-sized networks, ICCAD, Nov. 1995

9. P. R. Groeneveld; Context-driven channel routing, PhD thesis, Delft University
of Technology, 1991

10. P. Kudva, Continuous optimizations in synthesis: the discretization problem,
Logic Synthesis Workshop, proceedings, pp. 408 418, 1998

11. Y. Kukimoto, R. K. Brayton, P. Sawkar, Delay-optimal technology mapping by
dag covering, DAC, June 1998

12. D. S. Kung, A fast fanout optimization algorithm for near-continuous buffer li
braries, Proceedings of the 35th Design Automation Conference, San Francisco,
1998

13. U. Lauther, A mm-cut placement algorithm for general cell assemblies based on
a graph representation, Journal of Digital Systems, Vol. 4. 1980, pp. 21—34.

14. R. Nair, C.L. Berman, P.S. Hauge, E. Yoffa, Generation of performance con
straints for layout IEEE Transactions on Computer-Aided Design, vol 8, nr 8,
pp. 860—874, august 1989.

15. R. H. J. M. Otten, Complexity and diversity in ic layout design, Proceedings
IEEE International Conference on Circuits and Computers, Port Chester, New
York, U.S.A., pp. 764—767, October 1980

16. R. H. J. M. Otten, Layout compilation, in Design systems for vlsi circuits, edited
by G. DeMicheli, A. Sangiovanni-Vincentelli and P. Antognetti, pp. 439—472,
Martinus Nijhoff Publishers, 1987

17. ft. H. J. M. Otten, Graphs in fioorplan design, International Journal of Circuit
Theory and Applications, vol 16, pp. 391 410, 1988

18. R. H. J. M. Otten, L. P. P. P. van Ginneken, N. V. Shenoy, Speed: new paradigms
in design for performance, ICCAD, Nov. 1996

19. L. Pileggi, Delay metrics, ISPD98
20. Semiconductor Industry Association, The national technology roadmap for

semiconductors: technology needs, California, U. S. A., 1997
21. T. Sakurai, Approximation of wiring delay in mosfet lsi, IEEE Journal of Solid-

State Circuits, vol SC-18, pp. 418—426, Aug. 1983
22. L. J. Stockmeyer, Optimal Orientations of cells in slicing fioorplan design, In

formation and Control, vol 57, pp. 91—101, 1983
23. I. Sutherland, R. Sproull, The theory of logical effort: designing for speed on

the back of an envelope, in Advanced Research in VLSI, UC Santa Cruz, 1991
24. I. Sutherland, R. Sproull, D. Harris, Logical effort: designing fast cmos circuits,

Morgan Kaufman Publishers, 1999
25. A. Tabbara, R.K. Brayton, A.R. Newton, Retiming for DSM with Area-Delay

Trade-Offs and Delay Constraints”, Proceedings of the Design Automation
Conference, 1999, pp. 725—730

26. N. Wirth, Program development by stepwise refinement, Communications of the
ACM, vol 14, pp. 221—227, 1971

27. W. Wulf, M. Shaw, Global variables considered harmful, Sigplan Notices, Febru
ary 1973, pp. 28—33

28. J. L. Wyatt Jr, Signal propagation delay in rc models for interconnect, chapter
11 (pp. 254—291) in Circuit analysis, simulation and design, 2, Elsevier Science
Publishers B. V., 1987

