EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

A class of distribution-free control charts

Citation for published version (APA):

Chakraborti, S., Laan, van der, P., & Wiel, van de, M. A. (2000). A class of distribution-free control charts.
(SPOR-Report : reports in statistics, probability and operations research; Vol. 200011). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/2000

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://research.tue.nl/en/publications/e48cdbd9-80f3-4945-927a-09567f94b808

ARC technische universiteit eindhoven

PO




A Class of Distribution-free Control Charts’

S. Chakraborti
Applied Statistics Program
Department of Management Science and Statistics
University of Alabama
Tuscaloosa, AL 35487, U.S.A.

P. van der Laan
Department of Mathematics and Computing Science
Eindhoven University of Technology
Eindhoven, The Netherlands

M. A. van de Wiel
Department of Mathematics and Computing Science

Eindhoven University of Technology
Eindhoven, The Netherlands

Abstract

Distribution-free Shewhart-type control charts are proposed for future sample percentiles based
on a reference sample. These charts have a key advantage that their in-control run length distribution
do not depend on the underlying continuous process distribution. Tables are given to help implement
the charts for given sample sizes and false alarm rates. Expressions for the exact run length
distribution and the average run length (ARL) are obtained using expectation by conditioning.
Properties of the charts are studied, via evaluations of the run length distribution and the ARL. These
computations show that in certain cases the proposed charts have attractive ARL properties over
standard parametric charts such as the CUSUM and the EWMA. Calculations are illustrated-with
several short examples. Also included is a numerical example, using data from Montgomery (1997),
where an application of the precedence chart produced slightly different results.

Key Words and Phrases: Statistical Process Control; Nonparametric; Order Statistics; Quantiles;
Precedence Statistics; False Alarm Rate; Average Run Length; Lehmann Alternatives; Proportional
Hazards Alternatives.
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1 Introduction

It is well known that nonparametric (hereafter NP) or distribution-free control charts can be
useful in a variety of statistical process control (SPC) problems. Although these charts have not been
the typical choice in traditional SPC applications, recently there is renewed interest in such methods
and several authors have discussed where and why such procedures can be appealing; see for
example, the recent papers by Woodall (2000) and Woodall and Montgomery (1999). Intuitively, it is
expected that control charts designed with a particular parametric distribution (such as the normal) in
mind will be “less efficient” when the true distribution is different and the loss of efficiency will
depend on how far the departure actually is. For example, according to Hawkins and Olwell (1998; p.
76), “CUSUM (charts) designed for normal processes can have a much higher false alarm rate for
skewed or heavy-tailed data”. With such a motivation, Chakraborti, Van der Laan and Bakir (2000)
(hereafter CVB) recently surveyed the literature on univariate variables charts that are nonparametric
(NP) or distribution-free in the sense that the in-control run length distrution of the charts do not
depend on the underlying process distribution. Besides being quite easy to implement, one key
advantage of the distribution-free charts is that one does not need to assume any particular distribution
(such as the normal) for the underlying process and the in-control probability calculations and
associated conlusions remain valid for any continuous distribution. Also, since nonparametric tests
can be more efficient than their parametric counterparts when sampling from skewed or heavy-tailed
distributions, one would expect the NP charts to be “better” than the parametric charts in certain
situations.

One of the NP charts reviewed by CVB is a two-sided Shewhart-type chart proposed by Janacek
and Meikle (1997) (hereafter JM), which tracks the medians of independent test samples, with limits
based on an in-control (or, a) reference sample. These authors noted some practical advantages of

using median-based control charts. Broadly speaking, these charts are useful since medians are far



less sensitive to measurement errors and medians can be determined (from ranks, for example) in
situations where measures of quality involve,‘ say, a “subjective assessment of ordinal data”. In this
paper the JM charts are examined in more detail, various properties are studied and generalizations are
proposed. First, it is shown that their procedure is based on the “control median statistic” of Mathisen.
(1943). With this connection, in general, a class of distribution-free two-sample test statistics known
as “precedence” statistics is employed to construct a chart for a test (future) sample quantile, including
the median. Thus, for example, one can constructa chart for the 75t percentile (0.75-quantile) of a
future test sample. The event when a chart signals (sounds an alarm) an out-of-control situation is
called a signaling event and the special signaling event when the process is actually in-control is
called a false alarm. Clearly, one would like the probability of a false alarm, or the false alarm rate, to
be very small. The in-control distribution of the precedence statistic is given, which is the same for
all underlying continuous distributions (distribution-free), so that the false alarm probability is the
same for all continuous distributions. For the proposed charts, the exact probability of a false alarm is
explicitly derived in terms of the distribution of the precedence statistic. For a desired false alarm
rate, the chart constants are obtained so that the chart can be implemented; a table is provided to aid in
this process.

The performance of a control chart is usually judged in terms of the “run length” distribution.
The run length random variable N is discrete, taking values 1,2,..., which represents the number of
subgroups (test samples) that are to be observed before a chart gives the first signal. The mean of the
run length distribution, the so-called average run length (ARL), is a popular summary measure of a
chart’s performance. Tt should be noted that even though we are dealing with a Shewhart-type chart,
the run length distribution is not geometric since the signaling events are mutually dependent. As a
result, the ARL is not equal to the reciprocal of the probability of a signal. An expression for the exact

run length distribution for the proposed chart is derived using a conditioning argument (see for



example, Chakraborti, 2000) which yields the exact in-control run length distribution. Exact
expressions for the ARL and the exact in-control ARL are found from this. A computer program has
been developed to calculate the exact ARL and some results are presented in Section 4. Robustness of
the charts is examined, both for the in-control and the out-of-control situations, with respect to the
ARL relative to some parametric control charts. We also study the performance of the proposed chart
by calculating the probability of detecting an out-of-control situation within k samples for several
values of k. For the special case k = 1, these probabilities correspond to the operating characteristic
(OC) function (see for example, Montgomery, 1997; pp. 206-208) for which we derive exact
expressions. We tabulated these probabilities for some well known parametric (such as the normal
shift) and semi-parametric family of alternatives, namely the “Lehmann alternatives” and the
“proportional hazards” alternatives. The latter two classes of distributions, used more frequently in
the reliability literature, seem to offer a convenient compromise (and therefore some flexibility to the
quality practitioner), between a completely parametric and a fully nonparametric formulation and
solution. Some discussions on this can be found in Section 4. The effect of the size of the reference
sample on the run length distribution and the false alarm rate is studied in Section 5. In Section 6
some results for the OC function are given. Finally, an example is given in Section 7 using data from
Montgomery (2000) where an application of the precedence chart produced slightly different results.

The proofs of some theorems are presented in the Appendix.

2 Background and preliminaries
First consider two-sided control charts, one-sided charts will be discussed later. Suppose that a
is

random sample (hereafter referred to as the reference sample) of m observations, X,,X,,...., X

m?
available from an in-control process with an unknown continuous cumulative distribution function

(cdf) F. These observations are arranged in an ascending order and two order statistics, X ,,, and



X pmy (for given 1<a<b<m), are found. The two-sided control chart for a desired future sample

quantile (i.e. an order statistic in the future sample) is given by the lower control limit LCL = X

(a:m)

and the upper control limit UCL = X, .. Now suppose in Phase II, test samples are drawn

independently of one another and also of the reference sample and one is interested in checking

whether or not the process is in-control. Let Y,,Y,,,....Y;, , A = 1,2,..., denote the K™ test sample of

size ny, and let ¥, be the (some desired) /™ order statistic in the 2™ test sample. “A process is in-

(jimyoh)
control” means that the reference distribution is the same as that of the test distribution. More
precisely, if G, denotes the cdf of the distribution of the W™ test sample, a process in-control at stage h
means that there is no significant evidence against F = Gy. For now, assume that the test samples are

of the same size n so that the subscript k& can be suppressed. After a test sample is collected, Y, is

found and is compared with the control limits. If Y .., lies between the control limits the process is

jn)

declared to be in-control. On the other hand if Y,

(jmy lies outside the control limits, the process is

declared to be out-of-control and a search for assignable causes might be started.

3 Charts based on precedence statistics

Let W; denote the number of X-observations that “precede” (i.e. are not greater than) ¥,,,. In

the literature, the statistic W; has been called a precedence statistic and a test based on W; has been
called a “precedence test.” Although equivalent forms of this test have been considered by other
authors, the name “precedence test” seems to have been coined by Nelson (1963, 1993), who
proposed it as a quick and simple nonparametric test for life-test data. Chakraborti and Van der Laan
(hereafter CV) (1996, 1997) gave overviews of a rather substantial literature on precedence and

precedence-type tests and confidence intervals for various problems including situations where the



data contain right-censored observations. In this paper we consider NP or distribution-free control
charts based on the precedence statistic. First we define a (NP, or) distribution-free control chart.
Definition: A control chart is distribution-free if its in-control run length distribution is the
same for all continuous process distributions.
When the process is in-control (indicated by the subscript C), the exact probability distribution
of the precedence statistic can be obtained (see for example, CV, 1996) either by mathematical-

statistical techniques or simply by combinatorial arguments. This is given by

w m-w

8

The following figures illustrate the distribution of W; for some selected values of m, n and j. Note that

'+w—1][m+n—j—w

’ )
P, (Wj =w)= L , w=0l,....m. (D

when 7 is odd and the chosen test sample quantile is the median, the distribution of W, is symmetric.

1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 &6 7 8 9 10 1t

wel wel wel

Figure 1:(aym=7,n=9, bym=10,n=9, (cym=10,n=9,
j=5 j=5 j=3

Note: These figures were done in Excel; it is necessary to show the horizontal scale from 1 to (m+1)

The important point is that the in-control distribution of W; depends only on m, n and j and not
on the underlying process distributions F or G. Thus, any decision rule based on W, will be

distribution-free as long as the underlying distributions are continuous and identical. It therefore
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follows (and later explicitly shown) that the in-control run length distribution of these charts is
distribution-free and thus, control charts based on precedence statistics are distribution-free. Note that
if the h™ test sample is of size ny, the distribution of Wjcan be easily found from (1) by replacing n by
n,. Thus a charting procedure based on a precedence statistic is flexible enough to accommodate
variable test sample sizes.

The probability that the proposed chart “does not signal” can be expressed in terms of the
precedence statistic W;. This is true since the events that Y., lies between two X-order

statistics X, and X, ., (where 1<a<b<m) and that the precedence statistic W; lies between a

and b - 1, with both endpoints included, are the same. Thus,

P=P(X ) £ Yy S Xpp)) =Pla £ W, < b-1)= p(mnj;F,G,), )
say. Note that the coverage probability p in (2) is in fact the OC function of the proposed chart and
that 1 — the coverage probability = the probability of an alarm. A general expression for p is given in
Section 4.

Let po be the in-control value of p, so that 1 - pg is the probability of a false alarm or the false

alarm rate. Thus, po = P.(a <W; <b-1) = p(m,n,j;F,F). Using (1) and (2), the chart constants a and
b (1 £a < b £m) can be found such that

{j+w—1}(m+n—-j—w}
bh-1 w m-w
Y, >

w=a [m + n] = Po- (3)

m

Note that the inequality in (3) is used to accommodate the discreteness of W;. The control limits are

typically found by setting py (or 1 - po) to some desirable high (or low) value, say Py (or 1 - Py),

finding a and b, and then locating LCL = X, and UCL = X

(bm) *

Remark 1: In practice, the false alarm rate of a control chart is often specified to be equal to some
given value (such as 0.0027). However, since the precedence statistic is a discrete random variable,
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there is a possibility that the specified false alarm probability will not be exactly achieved. In such
situations, a conservative strategy (as given in (3)) is recommended, where the constants are
determined such that py is not smaller than the specified value (that is po 2 Py), or in other words, the
false alarm rate is not larger than 1 - Py. Also, due to the discreteness of the statistic, note that not all
desired P, values might be available for all combinations of m, n and j, especially when m and/or n are
small.

Remark 2: Sometimes it is desirable to design a chart with a specified in-control ARL (say ARLy). In
our case, since the control limits are estimated, the signaling events are dependent (even though the
test samples are independent) and so the run length distribution is not geometric. As a result, the
relationship between ARL; and the false alarm rate is not a simple one. Using a conditioning
argument, an exact expression for the in-control ARL is derived in Section 4. In principle, this
expression can be evaluated and solved for chart constants a and b, for given values of ARLy, m, n and
J. This, in principle, is not so hard. One can adopt a Newton-type algorithm that stops when the
achieved ARL is within a specified distance from the specified value. One needs to note that the ARL
is increasing in b and decreasing in a. For the median, one can find a and take b = m — a + 1, which
leads to a unique solution. For other quantiles more than one solutions are possible. Because of the
complexity, however, we suggest finding a and b for a given false alarm rate. A computer program
has been written for this purpose.

A second option might be to use a reference sample large enough (large m) such that the effects of
estimating the limits (variation in the X-order statistics) can be virtually ignored. In that case ARLy =
(1- po)'l , so that for a specified ARLy, one can take (ARLy - 1)/ARLy = po in (3) and solve for a and b.
The question of how large m has to be for this to be appropriate will be addressed later.

3.1 The median chart

For purposes of illustration, we concentrate on the median chart. As noted in the introduction,
the case of the median is important for at least two practical reasons. First, the median is a robust
estimator of the location and is preferred in situations where “large” measurement errors are expected.
Secondly, the median is a more flexible estimator of location applicable in more diverse situations
unlike the mean. For example, the median can be determined only from the ranks of the
measurements. Our basic approach, however, is general and can be used for other sample quantiles or
percentiles.

For simplicity, let n be odd, say 2s + 1, so that the median of the Y-sample, Y, is uniquely

defined with j = s + 1. In this case, the precedence statistic Wy, is in fact the median statistic of

Mathisen (1943). The in-control distribution of W, given by (1), is symmetric, and a reasonable
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choice for b is m —a + 1. Thus, using (3), the constant a (>1) can be determined as the largest integer

[s+w][m+s—w]
e w m—w >p. @
w=a m+2s+1

")

where 1 - Py is the specified value of the false alarm rate. After a is found, b is takentobe m —a + 1.

such that

Note that using symmetry, (4) can be written as P.(0< W; <a-1)<(1-£,)/2 and this is more

convenient to work with in practice. A computer program was written to solve equation (4). In Table
1, (a, b =m—a + 1) values are provided for m =50, 100, 500,1000, n = 5, 11, 25 and Py = 0.99, 0.995,

0.9973. In each case, the values of P.(0< W]. <a-1) and P.(m—a+1< Wj <m) are also given

(together with the actual value of the in-control average run length; to be discussed later). To
calculate the actual exact false alarm rate, one simply adds these to probabilities. Outside the range of
the table one can use a direct enumeration or a computer program available from the authors. Note
also that the process of finding a (hence the control chart) is similar (but not the same) to that of
finding a confidence interval for the median of a continuous population based on the sign statistic (see
for example, Gibbons and Chakraborti, 1992).

Example: Suppose m = 50 and n = 5. Then j = 3, corresponding to the test sample median. Let Py to
be 0.99 so that the nominal false alarm rate is 0.01. From Table 1, we get a = 3 and b = 48 with
Po(X@s0) S Yasy S Xagso) = 1 —2%0.0036 = 0.9928. Thus, the distribution-free control chart is given

by the 3 and the 48™ reference sample order statistics, i.e., LCL = X35 and UCL = Xgs. The
exact false alarm rate achieved for this chart is equal to 2 * 0.0036 = 0.0072.

Remark 3: It may be noted that the achieved false alarm rate of 0.0072 in the example is smaller than
the nominal value of 0.01. This is consistent with remark 1, given the discrete in-control distribution
of W;, the given values of m, n, j, and the desired nominal false alarm rate 1 — Po. Also, as was
indicated earlier, this is a common occurrence when dealing with many nonparametric procedures
whether used for usual hypothesis testing or for setting up confidence intervals. For larger values of
m, however, this is less likely to be the situation. For example, if m = 500 instead, the same tables
yield a = 40 so that LCL = X 4500 and UCL = X 500, With the actual false alarm rate equal to

2*0.00477 = 0.00954, much closer to the nominal value.
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Remark 4: An important practical question for the NP chart user is: what false alarm rates are
available for choosing, given the values of m, n and j. In practice, m will probably be larger than n
since it is often easier to obtain historical or reference data. For m = 50,100,500,1000, n = 5,11,25
andj = (n + 1)/2, the achievable false alarm probabilities can be seen in Table 1.

Table 1. Precedence charts for test sample median and in-control ARL values

Py n  JMm 50 100 500 1000
5 3 (348) (7,94) (40,461) (82,919)
(0.0036,0.0036)  (0.00432,0.00432)  (0.00477,0.00477)  (0.00499,0.00499)

635.7 214.9 114.5 104.6

11 6 (7,44) (15,86) (83,418) (167,834)
0.9900 (0.00465,0.00465)  (0.00428,0.00428)  (0.00494,0.00494)  (0.00487,0.00487)
642.2 245.0 113.3 108.4

25 13 (10,41) (23,78) (127,374) (258,743)
(0.00305,0.00305)  (0.00402,0.00402)  (0.00473,0.00473)1  (0.00497,0.00497)

10990.0 510.8 128.3 109.8

5 3 (2,49) (5,96) (31,470) (64,937)
(0.0015,0.0015)  (0.00176,0.00176)  (0.00233,0.00233)  (0.00246,0.00246)

5671.0 678.4 242.3 215.1

11 6 (5,46) (13,88) (72,429) (146,855)
0.9950 (0.00125,0.00125)  (0.00225,0.00225)  (0.0024,0.0024) (0.00244,0.00244)
9503.0 574.5 240.9 219.8

25 13 (9,42) (21,80) (118,383) (239,762)
(0.00155,0.00155) (0.002,0.002) (0.00243,0.00243)  (0.00245,0.00245)

44750.0 1488.0 261.0 2275

5 3 (1,50) (4,97) (25,476) (51,950)
(0.0004,0.0004)  (0.00102,0.00102)  (0.00127,0.00127)  (0.00129,0.00129)

oo 1550.0 460.2 4195

11 6 (5,46) (11,90) (64,437) (130,871)
0.9973 (0.00125,0.00125)  (0.00106,0.00106)  (0.00131,0.00131)  (0.00131,0.00131)
9503.0 1630.0 456.1 409.8

25 13 (8,43) (19,82) (110,391) (224,777)
(0.00075,0.00075)  (0.00092,0.00092)  (0.00127,0.00127)  (0.00133,0.00133)

173700.0 5183.0 526.2 4302
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For completeness and later reference, the steps of the proposed control charting procedure are
enumerated below.
Step 1 Start with a reference sample of size m.

Step 2 Select a test sample size n. Select the test sample quantile (for example, the median) to be.
monitored. This determines j for a given n.

Step 3 Specify the false alarm rate 1 - Py. Find, using (4), the constant a. Use Table 1 (or evaluate
using (4) directly) for this purpose. Control limits for the median chart are: LCL = X,,,, and UCL =

X(m—a+1:m) .
Step 4 Begin collecting test samples, each of size n. Find the value of the 7™ order statistic for each

test sample. If any of the values falls outside the control limits, the process might not be in the
desired state of control.

3.2 Control charts for other sample quantiles

Situations might arise in practice where quantiles other than the median of the test samples are
of interest. For example, one might be interested in the 20" or the 75™ percentile of the distribution.
Here, in principle, one could proceed as outlined in steps 1-4, but since the distribution of W; is not
symmetric in this case, the choice of a and b is more involved. We propose the following “equal-
tailed” procedure, when the IOOqth (0 < g < 1) percentile is of interest.

Find the largest integer a (1 < a < [mq]) such that

1-P,
PC(OSWjSa—l)S( 20) ®)
and the smallest integer b (a < b < m) such that
1—
PC(bSWjSm)S( 2P°). ©)

Note that this procedure is similar to setting up the critical region for, say the sign test, for an arbitrary

population quantile.
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A computer program has been developed to solve these equations; results for some

combinations of m, n, j and Py are given in Table 2.

Table 2. Precedence charts for other test sample quantiles and in-control ARL values

P, n jn 50 100 500 1000
10 3 (1,35) (2,68) (17,327) (36,651)
(0.00351,0.00475) (0.00212,0.00439)  (0.00447,0.00493)  (0.00492,0.00498)

890.8 366.5 121.7 108.0

15 6 (4,38) (10,72) (56,348) (115,692)
0.9900 (0.00333,0.00346) (0.00452,0.00467)  (0.00461,0.00477)  (0.00491,0.00489)
2144.0 271.8 123.0 109.1

20 15 (19,49) (41,94) (217,461) (437,919)
(0.00333,0.00168) (0.00413,0.00499)  (0.0048,0.00461)  (0.00489,0.00473)

13800.0 378.6 127.5 113.4

10 3 No 2,71) (13,344) (28,684)
Solution (0.00211,0.00236)  (0.00219,0.0024)  (0.00247,0.00247)

648.1 260.8 221.1

15 6 (3,39) (8,75) (49,360) (100,717)
0.9950 (0.00128,0.0021) (0.00181,0.00215)  (0.00241,0.00249)  (0.00245,0.00248)
10300.0 870.4 244.0 220.8

20 15 (18,49) (39,96) (204,466) (412,930)
(0.00206,0.00168) (0.00249,0.00142)  (0.00238,0.00246)  (0.00248,0.00235)

31030.0 1282.0 260.6 231.0

10 3 No (1,74) (10,357) (22,710)
Solution (0.00056,0.00119)  (0.00109,0.0013)  (0.00127,0.00133)

2309.0 523.0 428.3

15 6 (3,40) .77 (43,371) (88,738)
0.9973 (0.00128,0.00122) (0.00105,0.00121)  (0.00126,0.00129)  (0.00128,0.00132)
22550.0 1964.0 487.8 426.6

20 15 (17,50) (36,97) (194,471) (391,938)
(0.00124,0.0003) (0.00110,0.00064)  (0.00133,0.00118)  (0.00134,0.0013)

485900.0 4599.0 5215 429.6
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Example: Suppose m = 100, n = 20 and that the 75™ percentile of the future sample is of interest.
From Table 2, for j = 15 and a nominal false alarm rate of 0.01 (P = 0.99), we find LCL = X4:100y and
UCL = X100y Which give a control chart with an exact false alarm rate of 0.00413 + 0.00499 =
0.00912. On the other hand, for a nominal false alarm rate of 0.0027 (Po = 0.9973), we get LCL =
X36:100) and UCL = X(97:100) , With an exact false alarm rate of 0.00174.

3.3 One-sided charts
The required modifications are simple for the one-sided charts. If detecting higher values

(whether the parameter of interest has shifted to the right) is of interest one can use UCL = X, ,
where the b is found from F.(Y,2X,,,,) < 1-F,. However, this condition is the same as
P.(b<W,<m) < 1-F,, which is basically (6), except that the right hand side is doubled. Thus, for

a nominal false alarm rate of 0.0027, b can be simply found by doubling the tail probability

requirement from 0.00135 to 0.0027 and using (the same program used for) Table 2. In general, one
can use the program for the two-sided chart setting P> =1-2(1—P"), and use the resulting upper

control limit as the one-sided UCL.

Example: Let m = 75, n = 15, j = 8 and let the nominal false alarm rate be 0.0027. Thus, 1 -
P =0.0027. Using the same computer program developed for Table 1, with P =1 — 2*0.0027 =

0.9946, we get Pc(Y(s:15) > X(s475)) = 0.00251 so that b = 64 and the one-sided chart is given by UCL
= X(64:75) With an exact false alarm rate of 0.00251.

Similarly, in detecting lower values (whether parameter is shifted to the left) one can use LCL

= X (.m) » Where a can be found from (5) by setting the right hand side equal to (1 ~ Py).

The performance of a control chart is often studied with respect to its run length distribution,
particularly in Phase II applications. The run length random variable is N, the number of test samples

to be collected before the chart gives the first signal of a change. This is discussed in the following.
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4 Run length distribution

For ease of presentation, first consider the upper one-sided chart given by UCL = X ,,,,. The

run length distribution can be obtained as follows. Given X.m), the run length random variable N has
a geometric distribution with probability, say, p, = P(Yjn < Xe:m). Thus, the unconditional
distribution of N is given by

P(N=k)=E,, (p,"~p,) fork=12,....
The quantity Ey, o (P *) can be calculated by noting that

P(an) - X(bm)) P(U SGF_I{U(b;m)})v

(jin)

where U, is the ™ order statistic of a sample of size [ from the Uniform(0,1) distribution. Thus,

(py)
E

(I n)

Uibimy [P(U(J") < GFnl{U(b:m)})]k

[P(U,,, < GF™(@N]" f(2) dt

GE (1) 1 oy ned g
[ {) mu (1 u) du] f(t)dt,

i
i

where f(7) is the density function of U ,,,,. Simplifying this expression further, we get

E, (=] f o — =2 (Ji’; { ] GF @y | m M (1™ e
=D (k),
(M
say. The run length pfobability distribution for the upper one-sided chart is given by
P(N=k)=D,(k—1)-D,(k), k=12,.., and D,(0)=1. ()

For the two-sided charts one can proceed along the same lines. Here, given the control limits, N

follows a geometric distribution with probability p given in (2). Thus fork =1,2,....
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P(N = k) = EX(u:m)’X(b:m) (pk_l - pk ).
The quantity E, amy X (bam) (p*) can be calculated by noting that

p=P(X, <Y <

(am) = *(jn) — X(b:m))
=P(GF U 4y} SU 1y SGF {U s 1,
so that
k
Ex(azm)'X(b:m) (p )
=Ey. vom [P{GF "' (U ) SU{juy S GF " (U iy N

< GF' (O f(s,1) dsdt

(jn) —

] P{GF (s)< U

11 GF'(n 1 i e i ‘
= ——u"(-uw)"'d ,t)ds dt,
ii [ GF‘J‘(.\-) B(j,n—j+1)u (1=w) ul’ fs.1)

where f(s,£) is the joint density function of U ,,,, and U, of a random sample of size m from the

Uniform(0,1) distribution. Substituting the formula for this joint density we get

1t
k —
Ex([,:,,,),x(,,:m)(P )—(I) (_[ [

1 < 1y (n—j
B(j,n—j+1) s j+h | h

]{(GF‘I ©)"*" —(GF (s))"*"} [

m
(a-DYb—a-1)(m-b)!

s =) 1=0)"" dsdt

=D'(k),
©
say. The run length probability distribution for the two-sided chart is given by
P(IN=k)=D"(k-1)-D"(k), k=12,..,and D'(0)=1. (10)

Now we look at some special situations. First consider the in-control case.

4.1 In-control run length distribution

For the one-sided chart, using (8), the in-control run length distribution is given by
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P.(N=k)=D,(k-)-D,(k), k=12,...,D,0)=1, (1)

and
‘ 1L D (=) e m Ly pymeb
D, (k)= [——— : gt " gelqopmb gy,
o BU.n=j+D) = j+h | h (b-1)!(m—b)!
For the two-sided chart, using (9), the in-control run length distribution is given by
P.(N =k)= D(k-1)-D(k), k=12,..,D0) =1, (12)
and

i 1 g (-1 (n—j jth _ jthyqk
D(k)_g({ [B(j,n—j+1) hgb jt+h [ h ](t 7] a3
m!

(a—(b-a—1)!(m—b)!

s -t a-p™? dsdt.

Expressions (11) and (12) can be evaluated to find the entire in-control run length distribution or any

specific in-control run length percentile of interest.

Remark S: By definition D(1) equals Pc (X 4y <Yy < X (pmy), When the process is in-control.

The expression for D(1) can be evaluated directly, yielding

noj =n” (n—j
X
m! h=0 Jth | h

]B(j+b+h,m—b+1)[B(a,b—a)—B(j+h+a,b—a)]
= {(a~-D(b—a-D(m~-b)! B(j,n—j+1)

DQ)

This gives an alternative expression for the probability py.

4.2 Average run length (ARL)

One popular characteristic of the run length distribution is the average or the mean of the run
length distribution, the so-called ARL. From a practical standpoint, it is desirable that the in-control
ARL of the chart be “high”, whereas the out-of-control ARL be “low”. The ARL of the chart can be

calculated from the run length distribution discussed above.
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Remark 6: An alternative view of the ARL: Given the X-order statistics (the lower and the upper
control limits), the run length distribution is geometric with probability p, where p is given in (2), so

that the conditional ARL equals ZP(N>k)=2 p* . The unconditional ARL can be found by
k=0 k=0

calculating the expectation of the conditional ARL with respect to the joint distribution of the two X-

order statistics.  Thus, for example, for the two-sided chart, the unconditional ARL =

oo

Y E

= E D*(k) and hence, for the in-control situation, ARL; = Z D(k). These
k=0 k=0

k=0
expressions clearly show that the in-control ARL of the charts does not depend on either F or G, in
other words, the proposed chart is distribution-free.

k
X(amyX(oemy P

It should be noted that for both the one-sided and the two-sided charts, certain conditions on the
constants a, b, j, m and n need to be satisfied in order for the in-control ARL to be finite. These are
important practical consideration in order to implement the charts. The necessary conditions are
given in the following theorem.

Theorem 1

(a) For the one-sided precedence control chart, ARL, <o iff (m-b)—(n—j)>0.
(b) For the two-sided precedence control chart, ARL, <o iff (a— j)(n—j+1)+ jim—b+1)>0.

Proof: The proof is given in the Appendix.
Remark 7: For the median chart take b = m - a + 1 everywhere above.
Using Remark 6, the in-control and out-of-control ARL of the proposed charts are obtained and

shown below.

4.2.1 In-control ARL
Assuming that it exists, the in-control ARL, for the one-sided chart is given by

oo 1
AR4?== 3 D, (k)= Hl—C*UhﬁnH—I
k=0

m!

(b —1)!(m - b)!

Pl pm b (14)

(=

where
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n—j (.1\h -7y .
ity jmy =y LD [T i,
B(]’n_]+l) h=0 ]+h h

Assuming that it exists, the in-control ARL for the two-sided chart is given by

ARL(2)= 2. D)
0 (=0
1¢ /
o1 m!
= [[[1-C(s,1,j,m)]
00 (a-D!(b-a-1)(m->b)! (15)
Tl et sy s
where
T T A .
Clsut. jm) = 1 "EJ( 1) (" j}tﬁ-h—s]-‘-h).
B(jn—j+ =0 j+h| h

The ARL, values are evaluated for some two-sided charts with a given probability of false alarm such
as 0.90 or 0.9973. These charts and the corresponding ARL values are shown in Tables 1 and 2, for
the median and other quantiles, respectively.

Now let us consider the out-of-control ARL.

4.2.2 QOut-of-control ARL

For the one-sided chart, the ARL is given by

| 1
ARID = M=F ¢ jnF.o  — ™ b-lg_pym=b g 16
(J)[ o syLE (16)
where
o I ) L CEF AR g Y
= GF .
im0 =g 2 an |k JOF O

For the two-sided chart, the ARL is given by

m!

1t
ARLD =[] (1= Fy(s,t, i F,G) 7 a~l_gb=a=lq_nm=basa 1)

00 (@a-Db-a)lm—b)
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where

F2(s,t, J,nF.G)=

1 nei )t (n-j
B(jn—j+1)h=0 j+h| h

][{GF“(r)}”” ~(F st

The out-of-control ARL values are evaluated and commented upon later.

4.3  Run length distribution and ARL under some specific alternatives

4.3.1 Run length distribution

As noted before, the run length distribution is of interest in studying the performance of a
control chart. For example, one might ask, if the process mean has shifted from the in-control value,
what is the probability that the chart will signal on the first test sample, or on the second test sample,
or, in gen¢ral, on the k™ test sample? As also noted earlier, the distribution of N is not geometric
when the limits are estimated so that standard formulas based on the geometric distribution are not
appropriate. General expressions for the run length distribution were given earlier ((8) and (10),
respectively). It is evident that the run length distribution depends, in general, on the distrbution
functions F and G, through the composite function w= GF'. Depending on the assumptions made on
F and G, one can calculate the function y and thus evaluate the run length distribution. For example,
when F = G, y(u) = u and the in-control run length distribution is obtained. Towards this end, the
following theorem is useful. It may be noted that y(u) = GF Yw), 0 < u < 1, is in fact, a cdf its with

support on the interval (0,1). The following results have direct applications to what follows next.
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Theorem 2
(a) For location alternatives, F(x)=H(x-6,) and G(x)=H(x—6,), where H is a
continuous cdf, xe Rand 8,,0, € R, W(u) = HO, -0, + H' (u)).

(b) For scale alternatives, F(x)=H(x/y;) and G(x)=H(x/y,), where H is a continuous

cdf xe Rand 7,7, € R, ylw) = H(ZLH_I(u)).
2

©) For location-scale alternatives, F(x)=H (x —9 ) and G(x)=H (x 9 ),
7 Y2
where H is a continuous cdf, xe R,0,,6, € R and 7,,7, € R*,
yw =A% 1oy
7> 72
(d) For “Lehmann alternatives,” G(x) = F’(x), where xe Randde R*, y(u) = ud.
(e) For “proportional-hazards” alternatives, G(x)=1-[1-F(x)]", where xe X and

ye R, wu)=1-(1-u).

Remark 8: It is clear that the run length distribution can be calculated when the change from in-
control to out-of-control, or, more generally, the relationship between F and G is specified through y.
If the underlying distributions are, for example, normal with variance 1, Theorem 2, part (a), gives
v (u)=D(® ' (u)—0), where 8 = 0, —06; so that the change is described in terms of the difference
between the means of the distributions. The real problem, of course, is that in many practical
situations the underlying distributions can not be completely specified. In the context of
nonparametric (rank) tests, Lehmann (1953) suggested using (the model) G = F° where 8> 0, is an
unknown parameter that describes how F and G differ. This relationship is known as the "Lehmann
alternatives (LE)." Another interpretation is that when J'is a positive integer, G is the cdf of the
maximum of § i.i.d. random variables with cdf F. The assumed relationship between F and G is a
“semi-parametric” formulation, with a practical advantage that under this model, power calculations
of various rank tests are greatly simplified. Clearly, when & = 1 the process is in-control. It appears
that these alternatives have an important role to play in the context of (nonparametric) control charts.
An example of a family of densities belonging to this class is shown in Figure 2.
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5 4 3 2 4 o 1 2 3 4 5 2

Figure 2. The densities corresponding to LE alternatives P°
for 6= 1,2 and 3, where @ is the standard normal cdf.
It may be noted that as ¢ changes from 1, the mean and the variance of the distribution G are
both altered. For illustration, we provide some numerical values from Van der Laan (1970), under the

assumption that F' corresponds to the standard normal distribution.

5 [ 2 &
Mean of G 0 1 3
—=0.56 =0.85
. W
Variance of G 1 1-L o068 1- 9-243 =0.56
T 4r

Remark 9: A variation of the LE alternatives, called the proportional hazards (PH) alternatives is also
of interest. The PH alternatives have been more popularly used in the context of reliability and/or
survival analysis. Here the cdf F and G satisfy the relationship G = 1 - (1 - F)’, where > 0, is a
parameter. Thus the PH alternatives are, in fact, LE alternatives defined between the two survival
functions, 1 - G and 1 - F. One example of PH alternatives is where the underlying distribution is
exponential: F(x) =1 - ¢* and G(x)= 1 - ¢™, so that the PH alternatives hold with » = 1n/u. It can be
shown that under the PH alternatives, the ratio of the hazard functions corresponding to G and F is a
constant, which is a reasonable assumption in some SPC applications.

To illustrate the run length distribution calculations, we computed P(N < k) for several values

of k for a given two-sided precedence chart. We considered three cases for which the in-control ARL
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is between 500 and 600 (see Table 1). These are: 1. m = 100, n = 25, j = 13, Py=0.99; 2. m = 100, n

=11,j =6, Pp=10.995; 3. m = 500, n = 25, j =13, Py=0.9973. In all three cases we used the normal

shift and the LE alternative. Since we have for the LE alternative y(u)=u’and for the PH

alternative W (u) =1-(1- u)° , we can use a substitution argument to show that (see Theorem 5 in the-

Appendix), in the case of the median, the run length probabilities under the PH alternative are equal to
the corresponding ones for the LE alternative. The results for the LE alternative are shown in Table 3.
This table also shows probabilities for the in-control case which are of course the probabilities of a
false alarm. Since the precedence chart is distribution-free, these probabilities do not depend on F and
G.

We observe that the control charts 1 and 3 are much better in detecting departures from the in-
control case than chart 2. For example, we observe that for case 2 P(N <10) = 0.376 if the alternative
is normal and the shift 8 =0.5, whereas for case 1 and 3 we have P(N <10) =0.736 and P(N <10) =
0.744, respectively. This is not surprising because of the larger values of m and/or n. The more or less
similar behavior of charts 1 and 3 is explained by the larger value of m for chart 3, which increases the
run length probabilities of chart 3, and the larger value of P, for chart 3, which decreases the run

length probabilities of chart 3.

43.2 ARL

Using equations (16) and (17) and Theorem 2, the ARL of the proposed charts can be evaluated

under various alternatives. For example, under the normal shift alternatives y(u) = OD ' (u)-0)
from Theorem 2, whereas under the LE and the PH alternatives, y(u) equals u5,5 >0 and
1-(1-w)?, y >0, respectively. These expressions, in turn, yield the respective out-of-control ARL

expressions.
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Table 3. Cumulative run length probabilities P(N < k)under alternatives'

Normal Lehmann, G=F°
k F=G | =25 | 6=5 | 6=1 | 6=15| &1.5 5=2 &=3
0.008 | 0.038 | 0.186 | 0.807 | 0.996 | 0.053 0.200 0.614

1 0.004 | 0.013 | 0.054 | 0.358 | 0.810 | 0.014 0.041 0.154
0.003 | 0.020 | 0.141 | 0.810 | 0.998 | 0.027 0.141 0.591
0.016 | 0.073 | 0.320 | 0.943 1 0.099 0.333 0.796
2 0.009 | 0.026 | 0.103 | 0.566 | 0.951 | 0.027 0.079 0.269
0.005 | 0.040 | 0.259 | 0.959 1 0.054 0.258 0.816
0.038 | 0.160 | 0.557 | 0.995 1 0.208 0.556 0.937
5 0.022 | 0.063 | 0.226 | 0.833 | 0.997 | 0.063 0.174 0.488
0013 | 0.096 | 0.514 | 0.999 1 0.126 0.507 0.975
0.073 | 0.269 | 0.736 | 0.999 1 0.330 0.719 0.979
10 0.043 | 0.117 | 0.376 | 0.947 1 0.117 0.293 0.669

0.025 | 0.179 | 0.744 1 1 0.231 0.729 0.998

0.160 | 0.463 | 0.898 1 1 0.527 0.872 0.996

25 0.101 | 0.246 | 0.620 | 0.994 1 0.240 0.503 0.855
0.060 | 0.375 | 0.947 1 1 0.456 0.934 1

0.269 | 0.621 | 0.959 1 1 0.672 0.938 0.999

50 0.183 | 0.392 | 0.787 | 0.999 1 0.376 0.668 0.934
0.117 | 0.581 | 0.993 1 1 0.667 0.987 1
0416 | 0.760 | 0.985 1 1 0.792 0.972 1

100 | 0.311 | 0.563 | 0.901 1 1 0.535 0.805 0.974
0.217 | 0.786 1 | | 0.847 0.999 1
0.785 | 0.947 | 0.999 1 1 0.947 0.996 1

500 | 0.720 | 0.866 | 0.991 1 1 0.847 0.964 0.998
0.661 | 0.990 1 1 1 0.994 1 1
0.890 | 0.977 1 1 1 0974 0.999 1

1000 | 0.860 | 0.952 | 0.998 1 1 0.922 0.985 0.999
0.855 | 0.999 1 1 1 0.999 1 1

Case 1. (top row of each cell) m =100, n =25, j =13, P;=0.99, ARL,=510.8;
Case 2. (middle row of each cell) m = 100, n =11, j = 6, Py=0.995, ARLy= 574.5;
Case 3. (bottom row of each cell) m = 500, n = 25, j =13, Py=0.9973, ARL;=526.2.
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Again, for example, under the normal shift alternatives, the out-of-control ARL of the

proposed two-sided precedence chart is given by

1: !
ARLve = 1-F(s,t, j,n,0 -1 m a-1, _ ~b—a-1, .m-b
s = [0 Flt ! e s e s
where
' i (o | .
Fesit,jum@)=— 57 ED (=T gy -0)) i+ (@@l (5-0)}/*h. a8
B(j,n—j+1) p=—q j+h | h

For the LE alternative we have the following theorem, which is similar to Theorem 1.

Theorem 3

In case of the Lehmann alternative y(s) = s° (w..0.g. take §<1), we have
(a) For the one-sided chart, ARL; <o iff m—b—(n—j)>0.

(b)  For the two-sided chart, ARL; < e iff (a/0)(n—j+ 1D+ jim—b+1)— j(n— j+1)>0.
Proof: The proof is given in the Appendix.

The combination of Theorem 1 and Theorem 4 implies that for the two-sided case it is possible
to design a chart with an infinite ARL, and a finite ARLs, whereas this is impossible for the one-sided
case.

We discuss the in-control and the out-of-control ARL values in the context of robustness of

control charts in the next section.

4.3.3 Robustness

One of the nice properties of NP control charts is that the in-control ARL does not depend on
the underlying process distribution. However, the normal theory based (in general parametric) charts
are often highly affected by a change in the underlying distribution. Since precedence charts are based

on test samples of size n, we compare these charts with parametric charts based on subgroup size n.
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Amin, Reynolds and Bakir (1995) show that the in-control ARL of the normal-based X chart, based on
subgroup size n = 10, depends very much on the underlying distribution. For heavy-tailed
distributions the false alarm rates may become unacceptably high. In their case, when the underlying
distribution is exponential (or Gamma(l,1)), the false alarm rate is 5 times higher than under:
normality. To examine the in-control ARL-sensitivity of other standard charts such as the CUSUM

and the EWMA, for subgroup sizes larger than 1, we examined several situations. We restrict
ourselves to subgroup size n = 5. Therefore, a shift of /o corresponds to a shift of J5 lo,.

We first choose the parameters of the parametric charts such that they are good charts to detect
either a small or a large shift when normality is fulfilled. Using programs ANYARL and ANYGETH

(Hawkins and Olwell, 1998; Chapter 10), we found that when the underlying distribution is normal,
the optimal values of the chart parameters, (4, k), are (4.61,\/5 *0.5/2) = (4.61,0.56) and (h, k) =

(0.86, V5272 ) = (0.86,2.24), respectively, when shifts of 6/2 and 20 units are to be detected with an
in-control ARL of 500 and a subgroup size n = 5. For the EWMA charts, chart parameters (L, A1) =

(3.054,0.4) and (L, A )=(2.814,0.1) are good values to detect shifts of approximately 20 (=4.40; ) and

o0/2 (=1.10;) units, respectively, under the same conditions as for the CUSUM charts (see for

example, Montgomery, 1997; p. 338).

In order to examine the in-control ARL-robustness of these charts, we computed the in-control
ARL’s for these charts based on the normal distribution with mean y and variance o7, for some non-
normal distributions, but with the same mean and the same variance as that of the normal distribution.
As for non-normal distributions, the ¢ and the Laplace distributions were used to investigate the effect
of heavy tails, the uniform distribution was used to study the effect of light tails and the gamma

distributions were used to examine the possible effect of skewness. In addition, to study the effect of
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a change in the process variance, we computed the ARL’s for these charts based on the normal(0,1)

distribution and for the normal(0,1.1) distribution. The résults are shown in Table 4.

The conclusions drawn from the above table are clear. The CUSUM in-control ARL is very
sensitive to the departures from normality ahd for a change of the variance, especially when it is’
designed to detect a large shift. The EWMA chart, on the other hand, is quite robust against such
departures from normality, especially when A is small. This conclusion is also drawn in Borror,
Montgomery and Runger (1999) for EWMA charts for individuals. The EWMA chart, however, does

not appear to be robust against a change of the variance.

Table 4. In-control ARL values for several distributions

PREC CUSUM EWMA
m=1,000 h=4.61 H=0.86 L=2.81 L=3.05
n=5, j=3 k=0.56 K=2.24 A=0.1 A=0.4

Distribution | Py=0.9978 n=>5 n=35 n=5 n=5
a=48, b=953
N(,1) 501.89 500.00 500.00 500.00 500.00
TLaplace(O,l) 501.89 390.64 196.18 418.77 289.82
u(,1) 501.89 549.16 1820.13 494.73 703.72
N(0,1.1) 501.89 206.38 196.69 214.49 199.79
Gamma(1,1) 501.89 310.74 121.53 404.27 207.62
Gamma(4,1) 501.89 462.43 245.68 472.33 370.20
t(4) 501.89 266.86 131.90 380.98 190.39
t(40) 501.89 456.76 413.44 470.87 380.63

To be able to compare the out-of-control ARL’s, next we computed the ARL’s for three

distributions: normal(0,1), t(4) and I'(1,1). The chart parameters were adjusted in such a way that the
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in-control ARL of each of the charts is (approximately) equal to 500. The results are shown in Tables

5, 6 and 7, respectively.

The conclusions are as follows. The CUSUM and EWMA charts are better for both normal and
I'(1,1). For normal, the differences between the precedence chart and parametric charts are not so-
large for shifts larger than 1.56. This is not surprising since the proposed charts are Shewhart type
charts. For t(4), small shifts are better detected by the CUSUM (with small k) and the EWMA (with

small A) charts, whereas large shifts are better detected by the precedence charts.

Table 5. ARL values for the normal(/.t,oz) distribution

PREC CUSUM EWMA
h=4.61 h=0.86 L=281 L=3.05
m = 1000 k=0.56 k=224 A=0.1 A=04
Shift/c n=3 n=35 n=5 n=5 n=5
0.00 501.89 500.00 500.00 500.00 500.00
0.25 240.93 33.35 162.72 25.75 56.05
0.50 71.70 8.78 36.09 8.86 11.00
0.75 24.22 4.86 10.60 5.33 4.76
1.00 9.79 3.40 421 3.87 2.97
1.50 2.70 2.22 1.56 2.57 1.77
2.00 1.37 1.77 1.09 2.04 1.25
2.50 1.07 1.34 1.01 1.81 1.04
3.00 1.01 1.06 1.00 1.40 1.00
4.00 1.00 1.00 1.00 1.01 1.00
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Table 6. ARL values for the t(4) distribution

PREC CUSUM , EWMA
h =538 h=1.81 L=3.04 L =3.65
m=1000 | k=0.56 k=224 A=0.1 A=04
Shift/o n=>5 n=35 n=35 n=>5 n=>5
0.00 501.89 495.23 499.47 507.91 504.44
0.25 300.09 41.88 340.58 28.28 128.87
0.50 32.70 10.24 136.21 7.86 22.45
0.75 11.16 5.54 35.50 3.98 7.11
1.00 2.26 3.86 9.84 247 3.77
1.50 1.16 2.49 2.31 1.38 1.20
2.00 1.02 1.98 1.34 1.06 1.03
2.50 1.00 1.63 1.06 1.01 1.00
3.00 1.00 1.20 1.01 1.00 1.00
4.00 1.00 1.01 1.00 1.00 1.00
Table 7. ARL values for the Gamma(1,1) distribution
PREC CUSUM EWMA
H=518 | h=1.75 L=2381 L=3.05
m=1000| K=0.56 | k=224 A=0.1 A=04
Shift/oc n=>5 n=>5 n=>5 n=5 n=>5
0.00 501.89 496.43 498.22 509.76 505.68
0.25 439.01 41.04 182.85 25.18 80.83
0.50 256.45 10.28 69.94 7.66 18.73
0.75 125.31 5.44 24.50 391 6.98
1.00 61.87 3.75 9.05 247 3.70
1.50 15.81 243 2.32 1.38 1.76
2.00 4.83 1.90 1.36 1.03 1.20
2.50 1.63 1.61 1.02 1.00 1.00
3.00 1.02 1.15 1.00 1.00 1.00
4.00 1.00 1.00 1.00 1.00 1.00
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5 Effect of the reference sample size
It may be noted that when the in-control process distribution F is known, one can set up a

control chart for the test sample quantile Y,

simply by taking LCL= fl,] and UCL =§I,2 , where
& , and §p2 are two specified quantiles of F, given 0< p, < p, < 1. The quantity j can be found given

n, p1, pz and a specified value of the probability, say, P(§ p S Y S 'S »,)» from the binomial tables.
However, when F is unknown, as in the present case, the population quantiles can be estimated by

taking a reference (X-) sample from F, and using X and X, , where a =[mp;] + 1 and b = [mp,]

(a:m)
+ 1, for the control limits. Using estimated control limits introduces extra variation and additional
complications, since the signaling events now become dependent. Since it is well known that for
c¢=[mp]+1 and O< p<l1, X, is a consistent estimator of £, (the p-quantile of F), as the
reference sample size m becomes large, the X-order statistics will become close to the corresponding
population quantiles. Thus, a natural question is how large should m be so that the extra sampling

variation due to the estimation of the limits can be ignored. In other words, given n, j and
0< p1 < py <1, for what value of m is PY = P(ép1 <Yijm th) sufficiently “close” to PP =

Pa(X oy <Yy € X ) ?

(em) = “(jm) =
Under the continuity of F, P’ can be easily calculated as the difference between two

(incomplete-) Beta-integrals
P2 n
[fQu jon—j+Ddu—]fu;j,n—j+1)du,
0 0

where f(u; j,n— j+1) is the density function of the Beta-distribution with parameters j and n— j+1.
The probability P®, of course, is simply given by the left-hand side of (3).

The expressions for PP and P® were evaluated with n=7, j=4,p,=01p, =09,

n=17,j=3,p,=0.1,p, =09 and n=25,j=13,p, =0.1, p, =0.7, for various values of m ranging
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from 100 to 100,000. These values were chosen so that P resembled what might be a Py value in a

typical application. The results are shown in Table 8.

Table 8. Effect of reference sample size on the precedence control chart

P(Z)
njpupa pw® m: 100 500 1,000 5,000 10,000 50,000 100,000

n=7j=4 0.994544 | 0.990782 | 0.993871 | 0.994212 | 0.994478 | 0.994511 | 0.994537 | 0.994541
p1=0.1, p,=0.9

n=7j=3 0.974132 | 0.969874 | 0.973265 | 0.973698 | 0.974045 | 0.974088 | 0.974123 | 0.974128
I)]=0.1, p2=0.9

n=25j =13 | 0.982530 | 0.965029 | 0.979349 | 0.980964 | 0.982221 | 0.982376 | 0.982499 | 0.982515
1=0.1, p,=0.7

An inspection of the entries in the table makes the effect of the size of the reference sample
quite clear. For m = 1,000 or more, the two probabilities are reasonably close, suggesting that the X-
order statistics are “very close” to their population counterparts, so that one could ignore the
dependence caused by estimation of the control limits. Put another way, for m around 1,000, one

could approximate the in-control run-length distribution of the proposed charts by the geometric with

the probability of a signal equal to 1-P(§, <Y, <&, ), where p,=a/m and p,=b/m. It

follows that for such values of m, the ARL, is equal to the reciprocal of the probability of a signal.
However, for small to moderate values of m, exact calculations, using the formulas given earlier, are

recommended.
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6 Operating characteristic (OC) function

Consider the case of two-sided charts (one-sided charts can be treated similarly). As noted
earlier, the properties of the chart depends on the coverage probability p = p(m,n,j;F,Gy) which is the
OC function. For example, the probability of a false alarm is simply 1 - p(m,n,j;F,F). In this section.
we examine the probability p in more detail. The following result is useful to study properties of the

chart when the process is not necessarily in-control.

Theorem 4 The probability p = P(Xu:my < Yjny < Xp:my), where 1 Sa < b <m , is given by

‘{iL
bh-1 r
p=pimnjFG)=3% I(r;mn,j,F,G),

r=a B(j,n—j+1)

where
1 , R
[(rymn, j,F,G)=] [FGC U] I-FG )™ s/ 1-95)"" ds. (19)
0

Proof: The result follows from the fact that p = P(a < W; <b - 1), together with a result from CV
(1996) about the distribution of the precedence statistic W;.

Remark 10: In the in-control case, the integral I in (19) can be evaluated exactly and this yields

b-1

m
Y, ( ]B(r+j,m+n—r—j+1)
. r=a | ¥

pmn,j,F.F) =

. This expression simplifies to the left hand of (3).
B(j,n—j+1)

Remark 11: The integral I(r; m, n, j) in (19) can be re-written as
[Fr [l - Fo)I" G (o)1 - G0 dG(x).
Thus, the properﬁes of the OC function of the proposed charts depend on the underlying process
distributions through the composite function y= FG"'. Applying results of Theorem 4 we now obtain

the OC function of the proposed chart to some specific alternatives. First consider the normal shift

case.
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6.1 OC function for normal shift alternatives (NS)
Assume that G(t) = ®©(t-6) and F(tf) = ®(t), where @ is the standard normal cdf. Thus 0
represents the shift in the mean. Writing H =®, 6, =0, 8, =0, and applying (a) in Theorem 2 and

simplifying, the OC function for the normal shift alternatives is found to be

m
b-1 o0 , .
PNs(m.n, j,®,6)= ¥ ! [ ®t+)[1-Dr+0)™ " I 1-0@)]" T dd@). (20

r=q B(j,n—j+1) _

6.2 OC function for Lehmann alternatives (LE)

1/6 and

Under Lehmann alternatives, considerable simplification is achieved since here yAs) = s
therefore the integral I(r,m,n,j) can be calculated exactly. After some simplifications, the OC function

1s obtained,

__Jfl__
PLmnid) =3 r '"z"(-1)W[m"r]B(j+’+W, n—j+1). 1)
w

= B(jn—j+1) wo o

6.3 OC function for proportional hazards alternatives (PH)
Under the PH alternatives, as noted in Theorem 2, part (e), we have here y(u) =1-(1- u)'° and

the integral I(r,m,n,j) can also be exactly evaluated. After some simplifications, the OC function is

obtained

. m
. b-1 r - ) +w—
Poa(mn, j,7) =3 J—]—" z<—1)W[r]B(J,n—J+1+%>. (22)

r=a B(_],n—]+1) w=0 w

Remark 12: All computations in this paper are done in Mathematica 3.0 (see Wolfram, 1996). We
wrote Mathematica notebooks to design precedence charts for given values of m, n, j and Py These
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notebooks are also suitable for computing in- and out-of-control ARL-values. The notebooks are
available from the third author.

7. Numerical Example

Montgomery (1997; Table 6.1) gives a set of data on the inside diameters of piston rings.
manufactured by a forging process. Twenty-five samples, each of size five, were collected when the
process was thought to be in-control. Traditional Shewhart X-bar and R charts provided no indication
of an out-of-control condition, so these “trial” limits were adopted for use in on-line (Phase II) process
control. Fifteen additional (test) samples were then collected (Montgomery, 1997; Table 6.2) from
the same process and compared against these control charts. For the same data we construct a
precedence control chart by treating the whole set of 125 (25 x 5) observations as the reference
sample. We have m = 125, n = 5 and suppose a false alarm rate of 0.0027. Using our program we

1™ ordered

find that the control limits for the future sample median are given by the 5™ and the 12
values of the reference sample and this chart guarantees an exact false alarm rate of 0.001866. The

control chart is drawn and the medians of the 15 test samples are plotted on this chart. The plot is

shown in Figure 2.

74.03

74.02 | UCL= 74019 /\
74.01¢ \

74t

Median

73.99¢
LCL = 73.984

5 10 15 20 25 30 35 40
Sample Number

Figure 2. Precedence Control Chart for Piston Ring Data
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It is seen that for the precedence chart the 37™ sample was a close call (the control statistic value
was equal to the UCL) and the chart signaled on the 39" sample. The original Shewhart X-bar chart
for these data showed all three of the 37™, 38™ and the 39" points above the corresponding UCL and
the 40™ point almost equal to the UCL. However, the X-bar chart had a false alarm rate (at best.
approximately) equal to 0.0027, whereas the precedence chart has an exact false alarm rate of 0.0019.
In addition, the calculations needed for the proposed chart are also quite simple. Further, it is not
necessary to check on the variance. Thus, it seems that in practice the precedence charts can provide

an attractive alternative to the usual parametric charts.
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APPENDIX

Theorem 1

(a)  For the one-sided control chart,
ARLy <o m—b—(n-j)>0.
(b)  For the two-sided control chart,

ARL, <o & a(n—j+ 1)+ jim—b+1)— j(n— j+1)>0.

Theorem 3 In case of the Lehmann alternative GF ™' (s) = s° (w.].0.g. take & <1), we have
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(b)  For the one-sided control chart,
ARL; <o & m—b—(n—j)>0.
(b)  For the two-sided control chart,
ARL; <o & (af8)(n— j+ 1)+ j(m—=b+1)— j(n—j+1)>0.
We first prove Theorem 1 part (b) and show that, using some results of this proof, the proof of part (a) is

straightforward. Some additional techniques are needed to prove Theorem 3.

Proof of Theorem 1 (part b)

m!
(a=-DX(b-a-D(m-b)!
for the two-sided chart :

Define the constants ¢ =

and 8 = B(j,n— j+1). Since ARL, =3 ,D(k), we have

Lot a1 _\b=a=lg _ m-b 1 ! a-l,_ . \b-a-1 m-b
ARL, =c[ [* Unk) M )| asdt=c| [ A=t=9) 7 0 o,
> o g(s,1=-1) > o g(s.1)

where
T gl =g,(s)+g,(0),

where

n—j o )
g1(s)= ﬁ“Z(—l)’l[" e }f”’mh)“ and
h=0

*2

g2 =1-B"" (—l)"[n_j}l—t)’+"(j+h)']~

h=0 h
Then

n—j _ i ) n—j o ) )
gl.(s)=‘3—|2(_1)h{n J},M—l ___ﬁ—lsj—lz(_s)h[n J]:ﬁ"s"'(l—s)"",
h=0 h h=0 h
where we use Newton’s binomial formula for the last equality. Similarly, we have

g2 () =B7"t" -

Now using integration by parts, iteratively, we get equivalent formulas for g;(s) and ga(t). These are

convenient to work with in the sequel.
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g1(9)= [ B a- 9y ds =B [y as’
=(B)7s =5y +(B) - [ 1= ds 4 €,
= =B sIA-)"T +(B) TP (s)+ B, | s"ds + C,

s (B a-s"T + P+ C,

*3

where P,(s)and P, (s) are polynomials with at least one root in $,¢, is a constant and C,C,,C, are (sums of)

integration constants. We know that g, (0) =0 which implies that C=0. Similarly, we have

4 g ="M (B j+ ) -0 + P 0)

where P;(t) is a polynomial with at least one root in t. Since g;'(s)>0andg,'(t)>0 for 0<r<1,0<s<1-t
g(s,t) is strictly increasing in s and ¢ within the region of integration. Therefore, the only root of g(s,t) is
(0,0) and hence the only possible singularity of the integrand of ARL, is at (0,0). We now investigate how the

integrand behaves in the neighborhood of (0,0). To this end, divide the integration region G into two parts:

G={s5010<r<1,0<s<1-1}=H U(G\ H),
where
H={5,010<50<1,0< 57 +1"/4 < (12)i0-i#0 |,

The factor (l/ 2)7®*Y is used to make sure that H is entirely contained in G. Then,

a=t e . Nb—a-l m-b a-le . Nb-a-1 m-b
ARLy =c ” s Aotms) 7 s c” " (=t=9)"" 177 et = cA+cB.
G\H g(s:0) f g(s.0)

Since (0,0) is the only possible singularity in the integrand and the integration region of A is finite we know
that A < oo . Therefore,

*5  ARL, <o & B<oo,
To examine the behavior of the integrand near (0,0) we transform the integral using the following coordinates:

"I and ¢t = (rsinx)’.

*6 5s=(rcosx)
Under this transformation, the integration region becomes:

H ={r, 010 x /2,0 < P70 < (1/2)I07#D (cos x) 1014 4 (sin ) 0=+ y1 |
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To simplify this integration region we again split it into two parts. The observation that for

. Py . sk 1
u= min ((cos )= 4 (sin x) /™ ’“)T
xe[0,7/2]

we have 0 <u < oo, leadsusto H =J U (H/J) with

*¥7 J={rx10<xsx/2,0<r<U} U=-;—u]/j("—j+l).

Since the only possible singularity in the original integration region is (s,£)=(0,0), a singularity in the
transformed region can only occur for r = 0. Therefore, integration over H / J is finite and when we define C

similar to B, but with integration region H replaced by J, we have

*8 B<oo o C<oo,
Recall from calculus that when we want to use transformed coordinates we have to multiply the integrand with

the Jacobian

d(rcos )" J(rcosx)™ M ‘

9(s,0)| _ or ox
a(r,x)|  |9(rsin x)’ d(rsin x)’
or ox
(n—j+Dr" cosx)" 7 —(n— j+1)r"* (cos x)" sin A
B Jjri ™ sin x)/ jri(sinx)?™ cos x

= jn—j+)r" ((cos )" 2 (sin x)7™ + (cos x)" 7 (sin x) /" )

= j(n- j+1r"(cos x)" (sin x)/™!

Then using *1,*3, *4, *6 and *7 we have

co JI Sa—l (1 - = S)b—a—l tm—b dsdi =
; g(s.t)
U n/2 o o L
= lim J ”j‘ (rcos x) "D (1 _(rsin x) = (rcos x)" Y4 (rsin x) /™ b) |a(s,t)|dxdr
slo 2o 7, g(rsin x,rcos x) [a¢r, x)|
U /2 (n-jb)a-D)+ jm-byen
=1 r hy(r,x)
- lslﬁ} Jn=j+1) dxdr,
r=9§ x=0 r hZ(r! x)
where
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by (r,x) = j(n = j+1)(cos )" 41— (rsin x)/ — (rcos x)" Yo7 (sin x) A mHHD-L
hy (r, x) = (cos x) 7B A = (reos x)" Y 4 Py ((reos x)* M)

+(sin x)7 "I (B(n - j+ 1) (1= (rsin x)7 ) + Py((reos x)7).
Let us take a closer look at A, (r, x) . For the original problem we know that the only possible singularity was

at (s,2) = (0,0). Therefore, we use *6 to observe that

*  r>0= h,(r,x)>0

Moreover, we have for all x € [0,7/2]:

*10  hy(0,%) = (cos )"V (B) ! + (sinx) P (B(n- j+DT > 0.

Let us now consider the roots of A, (r,x). Clearly, these roots are x =0 and x = 7r/ 2. In fact,

*11  x#0 andx#7/2 = hy(r,x)>0.

To exclude these points we split [0,7/2] =[A,7/2-A]JUE, with 0 < A < 71'/2 and E, =[0,7/2]/[A,n/2 - A).

Then,

U mf2-A r(n—j+l)(u—l)+j(m—b)+nh1 (r, %) (n—j+1)(a-1)+j(m—b)+"hl (r, %)

C=lim dxdr=D + E.

530 j(n=j+1)
r=8 x=A r hy (r,x)

U
dxdr + lim J j’
§lo

jn=j+1)
r=6 E, r h2 (rs x)

Since D <o = FE < o we have
#12 C<oo & D<oo,

Now because of *9, *10 and *11 there exist M, >0and M, < o such that

h(r,x
IS]—(—)SMZ forall 0sr<UandA<x<m/2-A.
h2 (r9 x)
Therefore,
u /A p (=1 jm=b)+n U /2-A (1= 1)@=t j(m—by+n
lim | J __ M, dxdr < C <lim __ M ydxdr
830 pinmith) §lo p i(n=jD)
r=6 x=A r=6 x=A
u (n=j+1a—1)+ jOm=by+n - (n=Jj+1) a1+ j(m=bY+n .
& lim ___ M, (Z-20)dr <C<lim J' ___ M, & -28)dr.
80 pin=j+) 2 510 L Jn=j+) 5
r=6 r:ﬁ
Since
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*13  lim Jr“dr<w@a>—1,
8o ’s

we use the bounds to see that

C<ooes(n—j+)a-1)+jim=b)+n— j(n—j+1)>-1

*14 . . L,
San—j+D+ jim=-b+1)—jin-j+1)>0.

Combination of *35, *8,*12 and *14 completes the proof. QE.D.
Proof of Theorem 1 (part a)

For the one-sided case we have

)b—l m—b

L P A Y P
ARL, =J dt:J‘
g.(1-1) 8,(1)

Therefore, the results *4 and *13 can be used to finish the proof.
Note that the transformation of the integration variables (*6) and corresponding integrating regions is not
only of theoretical importance. We found that the implementation of the numerical integrals converges faster

and is more stable when we use the transformed variables and region to deal with the area near the singularity.

Proof of Theorem 3 (part b)

Let A =1/8 and assume without loss of generality A >1.Then, we use *1 and *2 with s and ¢ replaced

by GF™(s) =s"* and GF ™ (t) =1, respectively, to obtain

Lot o * e g - -
. =J, Is = s)Pe (1 -t ‘[ '[sl( D(ph - ghybma-l g phym bl2(st)}'1dsdt
SRS CLAR B 2 0 gls.1-1) ’

PO R o sty - -t Ra-n
=-[ J- ' dsdt.

8(s,1)
0 0
Again we have to deal with a possible singularity in (s,¢) = (0,0). Let us now investigate the behavior of

ft,A)=Q1-1-n*)"" for t = 0. First note that f(1,|A ) < f(1,A)< f(,[A]). However, for each integer k >0,
we have f(t,k)=01-(1-0*)"" =ar™® + 0™ ?"), where a is a constant. Therefore, we can always find

constants c>0 and d>0 such that ct™™ < f(t,A1) < dt™™ for ¢ close to 0. This basically means that to prove the
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theorem we may replace (1—(1—1£)*)™" by t™™. The rest of the proof is completely analogous to the proof

of Theorem 1, part b. QE.D.

Theorem 3, part a, can be proved similarly.
Theorem 5: In the median case we have Ppy(N = k) = Pre(N = k).

Proof:

From equation (8) we observe that it suffices to show that D;H k) = DZE (k) fork=1,2,...

— m' a-1 _ b—a~1 __p\m-b
Let f(s’t)_(a—l)!(b—a—l)!(m—b)!s (t—19) d-n"".

Using equation (9) we have

11
D (k)=Ey 4. (P)=[[IPIGF ()< U,, < GF ' (ON* f(s.0) dsdt
00

[P(s® S U, <t°}1* f(s,0) dsdt

i

[P{A-w)’ < U, . < 1=} Fd-ul-v) dudy

(jn)

[P1-(1-v)° <1-U,, , <1-0-w)’}1* fFA~ul-v) dudv

(jn}

1¢
[]
00
11
i
[]
0v
j I [P{I-(1-v)’ S U, <1-(~u)’}1* f(u,v) dvdu
00

*

Dpy, (k),

where we use the fact that U because j is the median and we use the definition of f and the fact

~1=U s
that a — 1 = m - b for the median case to observe that f{v,u) = f(I-u,1-v).

(j:n)
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