

Performance modeling of real-time database schedulers

Citation for published version (APA):
Stok, van der, P. D. V., Sassen, S. A. E., Bodlaender, M. P., Wal, van der, J., & Aerts, A. T. M. (1996).
Performance modeling of real-time database schedulers. (Memorandum COSOR; Vol. 9632). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/5366c799-8687-4b53-8728-6b2e1152830a

Eindhoven University
of Technology

Department of Mathematics
and Computing Science

Memorandum COSOR 96-32

Performance modeling of
real-time database schedulers *

P.D.V. van del' Stok
S.A.E. Sassen

M.P. Bodlaender
J. van del' Wal
A.T.M. Aerts

* To appear in Aspects of RT Databases, ed. by Sang Son, Kluwer Academic Publishers,
Boston/London/Dordrecht.

Eindhoven, October 1996
The Netherlands

CONTENTS

1 PERFORMANCE MODELING OF
REAL-TIME DATABASE SCHEDULERS
P.D. V. van der StokJ S.A.E. SassenJ M.P. BodlaenderJ

J. van der Wal and A. T.M. Aerts 1
1 Introduction 1
2 Approach to performance calculations 2
3 Application domains 4
4 Transaction modeling 5

5 Database scheduling strategies 6
6 acc analysis 8

7 SQSL analysis 17
8 Conclusions 23

REFERENCES 24

v

1
PERFORMANCE MODELING

OF REAL-TIME
DATABASE SCHEDULERS

P.D.V. van der Stok, S.A.E. Sassen, M.P.
Bodlaender, J. van der Wal and A.T.M. Aerts

Dept. of Math. and Compo Sc., Eindhoven University of Technology,
P. O. Box 513, 5600 MB Eindhoven, Netherlands

1 INTRODUCTION

Real-Time (RT) applications have grown from applications running on small
microprocessors with a few Kilobytes of internal memory to applications run
ning on a large set of interconnected processors with several Megabytes of
internal memory and Gigabytes of secondary storage space (e.g. [4, 3]).

An increasing number of real-time applications acts on large sets of structured
data, that have a longer lifetime than the programs accessing them. For such
applications database techniques become interesting. An increasing amount of
research is devoted to the area of RT databases. This research is motivated from
two directions: (1) traditional database applications become subject to bounds
on their response times and (2) existing RT applications have an increasing
need for data modeling.

A database consists of a set of items. The database is consistent when a set
of predicates over database items evaluates to True. Database applications
are composed of transactions. The performance criterion for RT databases is
the number of transactions that meet their deadline. Three directions can be
discerned in RT database research.

1. Conditions are formulated under which the structure of the application
implies serializability (e.g. [7]).

2. Application domain dependent serializability criteria are formulated that
allow more concurrency. This increases the number of transactions that
meet their deadline (e.g. [12]).

1

2 CHAPTER 1

3. Database schedulers are constructed that handle transactions dependent
on their serializability and deadline (e.g. [9]).

Our effort combines directions (2) and (3) for distributed, main memory databases,
with mixed deadline types [8, 17]. Only main memory databases are considered
because in RT systems only a reasonably recent state of the database is needed
in case of failures and not the whole history of database states.

The Durability requirement for main memory database systems is therefore
weakened with respect to more traditional databases. Mixed deadline types are
important because larger RT applications are based on a mix of components
with hard, firm or soft deadlines (e.g. [4]).

Contacts have been established with various companies that are interested in
RT databases. Their requirements lead to the construction of database sched
ulers.

2 APPROACH TO PERFORMANCE
CALCULATIONS

The performance of new schedulers can be compared with existing schedulers
with the aid of simulations. Simulations are straightforward to construct, and
provide useful insights. However, there is a major drawback.

While the construction of a simulation is fast, using the simulation to gain
insight in the behavior of a scheduler is time consuming. For each unique com
bination of parameters (number of CPUs, system load [2], type of transaction
mix, size of database, etc.) several long test-runs are required to obtain ac
ceptable confidence levels. Often, only a limited number of cases is simulated,
which leads to incomplete and misleading results (as has been observed in [2]).

Some of the confusion (see e.g. the account given in [10]) is also caused by
conclusions about properties based on mean values. As can be seen from Fig.
1, histograms with the same mean value may have very different profiles. The
shape of such histograms becomes more important when we consider composite
systems, where the interplay of the various components in the system leads to
non-trivial performance results.

Performance Modeling

.S... _-,. ,
, ,, ,, ,, ,

-I.S -1 -.5 0 5

---I

,,,,

1.5

2
----~~-~, ,, ,, ,, ,, ,
: '

-1.5 -1 -.5 0 .S

3

Figure 1 Histograms from which the same mean value is calculated.

Our approach in this paper is to construct mathematical models of the system
environment and the scheduler in terms of queueing networks. Queueing mod
els have their origin in the study of design problems of automatic telephone
exchanges. They are widely used to evaluate the performance of (amongst
other) manufacturing systems, communication systems and computer systems.
In Lavenberg [1], many examples of queueing models for computer systems can
be found. We use stochastic analysis to approximate the mean, variance and
also higher moments of the transaction response time (response time is the
time from transaction request to transaction termination). This allows us to
estimate response time distributions. These distributions provide information
about the probability that deadlines are met.

The mathematical models are parameterized, such that a wide range of situ
ations is covered by one model. Extreme cases that are not covered by the
assumptions made in the analysis are simulated and their results are used to
verify the accuracy of the mathematical models.

We characterize the behavior of the system in terms of parameters, such as
the number and capacity of the processors. Adding a processor then only
means changing a parameter and doing a fast recomputation of the distribution
function. Vice versa, we can specify requirements on the system's response time
given a certain work load and then answer the question how many processors
are needed to realize these results.

Obtaining the distribution function of the response time is the hard part.
Known analytic performance calculations (e.g. [19, 11]) are limited to mean
response times. The response time distribution is needed when the number of
transactions that meet their deadline is of interest. So far, we have obtained
analytical results for relatively simple schedulers that were designed to be ana
lyzable. More complicated schedulers may require still more advanced analysis
techniques. Designing schedulers that are amenable to analysis requires strong
interplay between Computing Science and Operations Research. On the one
hand, this approach should yield guidelines about the characteristics of ana-

4 CHAPTER 1

lyzable schedulers and estimates about the performance increase provided by
improvements on the initial analyzable scheduler. On the other hand, new Op
erations Research techniques are developed to enlarge the class of analyzable
schedulers.

3 APPLICATION DOMAINS

Four application domains are being investigated. Most of them do not require
permanent storage updates. A separation of the applications in components
with different types of deadlines appears to be a promising approach.

a) Telecommunication A Private Automatic Branch eXchange (PABX)
contains a database in which a.o. the signatures of PABX users are stored.
The database can be distributed over several machines. A signature contains
information about the different networks accessible to the user and the corre
spondence between a (short) user defined number and the physical telephone
number within a network. RT read-only access to the database is required when
the user makes a call. Less frequent and less critical updates of the database
are provided.

b) High Energy Physics (HEP) The interaction of two particles in a mag
netic field generates a set of particles following tracks with a certain curvature.
The passage of the particles is measured by a number of detectors. The type of
the interaction can be determined after the spatial reconstruction of the parti
cle tracks from the detector data. The final reconstruction data are stored in
a database. Hard deadlines on the reconstruction transactions are determined
by the interaction rate and the amount of storage space available for inter
mediate results. Periodic transactions with soft deadlines display statistics on
the accuracy of the measurements over the last few hours or visualize spatial
reconstructions of particularly interesting interactions.

c) Container port Ships loaded with containers are scheduled for arrival
in time slots (days) during which the quay is at their disposal. Containers,
stored at predetermined locations in the ship's hold, are transported to speci
fied storage locations on the quay (hours). Automatic Guided Vehicles (AGV)
transport the containers over a predetermined route from crane to the speci
fied storage location or vice-versa (minutes, seconds). Transactions access the
database on three different time scales: (1) planning of the ships' arrivals, (2)

Performance Modeling 5

planning of the storage of containers once the ship arrived and (3) the almost
continuous routing and collision avoidance of the AGVs.

d) Automatic Teller Machines (ATM) ATMs are linked to a number
of central computers connected to a database with information on clients and
their accounts. Requests for information on the account are sent with a high
rate from the ATMs to the central site. Bounds on the response times of these
requests are firm. On the other hand updates to the account are handled with
soft deadlines. Actual developments indicate that there is a growing market
for accounts with a continuous RT access especially in connection with stock
transfer. However, many system states need to be recoverable.

4 TRANSACTION MODELING

The deadline class of the RT transactions is essential in determining the appro
priate technique for calculating the probability that transactions will meet their
deadlines. An essential question is whether all deadlines can be met. When
the rate of database access requests is unbounded, the number of requests
can become larger than the capacity of the supporting computer platform; the
deadlines of all transactions cannot be met. A classic example is the track fol
lowing of enemy fighters by a radar system. The radar system can only follow
a bounded number of tracks. An overload of enemy fighters should result in a
correct tracking of a maximum number of fighter planes. Deadlines of a certain
number of track finders will be missed.

On the other hand the request rate can be bounded but the cost of meeting
100% of all deadlines may be prohibitively high. A lower cost solution for which
a certain number of deadlines can be missed is advisable. A well informed de
cision about the acceptable success rate and the involved costs should be based
on an analysis of the performance of the database as a function of the platform
properties. In the four applications cited above the cost aspect is an important
one. We have decided to use stochastic techniques to produce estimates on
the performance of the proposed database as a function of different scheduler
techniques and transaction properties. In the applications a), c) and d), a siz
able number of the proposed transactions involves a low number of data-items
and implies a short duration. Transaction preemption involves a large amount
of time with respect to transaction duration. However, a high transaction re
quest rate necessitates a computer platform with high performance. Therefore,

6 CHAPTER 1

our first analyses are based on non-preemptable transactions with soft or firm
deadlines executing on a parallel platform.

The two database scheduling strategies mentioned below are used as starting
points for our performance analysis.

5 DATABASE SCHEDULING
STRATEGIES

The application domains Telecommunication, HEP and ATM indicate a grow
ing rate of short transactions. Parallel architectures seem the only solution to
cope with the expected rate as explicitly stated for HEP [6]. The architecture
in Fig. 2 is taken as an example. It consists of a number of processors with a
local memory which communicate with each other via shared memory.

110-+---1

110

SHARED
MEMORY

110

110

110

Figure 2 Parallel computer platform.

The database is stored in shared memory. One processor receives database
transaction requests and stores these in shared memory. A free processor
transfers a request from shared memory into its local memory. Two database
scheduling strategies are investigated in more detail: Optimistic Concurrency
Control (OCC) and Single Queue Static Locking (SQSL) .

Performance Modeling

5.1 aee

7

The acc scheduler assumes that the order in which transactions are committed
is the serialization order. When a transaction T; reads the value from an item
X written by 1j then Ti should commit after 1j and there should be no other
transaction Tk, committed between T; and 1j, which also writes to X. Every
transaction first reads all specified values and creates new values which are
written to the database after validation. When at validation time the read
and write order turns out to be invalid, the validating transaction is restarted.
acc schedulers look promising for RT databases [9] because the choice of the
restarting transaction(s) allows the consideration of deadline criteria.

5.2 SQSL

Basic SQSL maintains database consistency by demanding that concurrently
executing transactions use different data. To enforce this, the scheduler needs
to know the set Ii of data items used by transaction T;, before T; starts its
execution. When E is the set of data items in use by already executing trans
actions, a free processor can execute transaction T; if Ii and E are disjoint
(deadlock freedom). Transactions are executed in a First-Come, First-Served
(FCFS) fashion (life-lock freedom).

Several optimizations have been applied to improve the basic SQSL scheduler.
When the deadline and the execution time of each transaction are known, this
information can be used to optimize the number of transactions that meet their
deadlines. Transactions that cannot meet their deadline are removed from the
waiting-queue, and are discarded. A nice feature of the scheduler is that a
transaction that has started its execution is guaranteed to finish successfully
before its deadline.

Examples of queue-handling strategies that increase performance are: (i) weak
ening the FCFS principle while still guaranteeing life-lock freedom, (ii) execut
ing transaction requests according to their deadlines (Earliest Deadline First
(EDF) scheduling) and (iii) early detection of unsuccessful transactions, so they
are discarded at the earliest possible time.

8 CHAPTER 1

6 acc ANALYSIS

Transactions processed by a database go through three phases: an execution
phase, a validation phase and a commit phase. In the execution phase a trans
action T accesses all data-items it needs for the execution, regardless of the
number of transactions already using these data-items. In the validation phase,
all data-items used by T are checked on conflicts with recently committed trans
actions. If no conflicts occurred, T enters its commit phase. Otherwise, T has
to be rerun and re-enters its execution phase.

The validation can be implemented either in a serial way or in a parallel way.
For serial validation, no analysis of the average response time E[S] was avail
able. For neither serial nor parallel validation, an analysis of the response time
distribution was available. In [14], we derive an approximation for E[S] for
OCC with serial validation. For OCC with parallel validation, we derive an
approximation for the complete distribution of the response time in [13]. Both
analyses are described in the next sections.

6.1 acc with serial validation

We base our analyt.ic approach in [14] on the model shown in Fig. 3.

i----------------- N!

f----I+lIt'---1 '

, ,..._-----------_ .._--------_._-_.-----------------------_ .. -..--------------------_._-------_._-----_.

Figure 3 Queueing network for aee with serial validation.

Arrivals of transactions are modeled as a Poisson process. Upon arrival, trans
actions are stored one by one in shared memory by a dedicated CPU E. Trans
actions wait for execution if all N CPUs are occupied. This is represented by

Performance Modeling 9

the queue outside the dotted box. As soon as a CPU (say u) becomes available,
it retrieves the first transaction from the queue. Boxes Iu represent the initial
ization: copying the transaction from shared memory to the local memory of u.
The execution phase of the transactions is depicted by boxes Xu, the validation
phase by box V and the commit phase by boxes Cu. Initialization, execution,
and commit can be done by up to N transactions concurrently. Concurrent
validation is not permitted; only one transaction is allowed to validate at a
time. Thus a queue of at most N - 1 transactions can arise at box V. After
validation, the transaction is restarted or committed. A committed transaction
leaves the system and makes its CPU u available for a new transaction.

Although all service times in the queueing representation of Fig. 3 are taken
exponentially distributed, the queueing network model does not allow for an
exact analysis of the (mean) response time. An exact model would have to
address the set of items accessed by each transaction and their modification
history. However, this enormous state description is practically infeasible for
doing computations.

Hence, an approximation is wanted for the average response time E[S]. A
probabilistic model is used for the occurrence of data conflicts. We say that
two transactions conflict if their datasets overlap. Let p be the probability
that two transactions conflict. We color all transactions green on entering
the enveloping dotted box. During its execution or during the time spent in
the queue waiting for validation, a transaction is marked red with probability
p whenever another transaction starts its commit phase. A red transaction
always discovers at its validation that it cannot commit and must be rerun, a
transaction that is still green at the start of its validation has had no conflicts so
is allowed to commit. In addition to the assumption of probabilistic conflicts,
the fake-restart assumption (see [2]) is made. At every rerun the transaction
is replaced by a new, independent transaction whose execution and validation
times are independent of the times in the previous run.

Due to these assumptions, it suffices to take as state description the number of
red and green transactions present at every service station, and the sequence of
red and green transactions present at the single-server validation station. The
analysis approach is a decomposition-aggregation approach. First we approxi
mate the mean response time of a transaction in the dotted box, treating it as
a closed queueing network with a constant population of k customers (transac
tions). The population is kept constant by admitting a new transaction to the
box as soon as another transaction has committed. For all k S N the mean
response time in the box, given a population of k customers, is calculated in
subsection 3. In subsection 4 we consider the dotted box as a single service

10 CHAPTER 1

station with a service rate dependent on the number of transactions present in
front of and inside the box, such that we can approximate the mean response
time of a transaction on its complete path through the system. The state
dependent service rate of the box follows from the analysis of the closed system
with k transactions.

A nalysis of the closed system

The analysis is simplified by taking the time needed for initialization and the
time needed for commit together as one exponentially distributed variable.
This leaves a closed queueing network of 3 stations: station X, V and Ie. The
network is shown in Fig. 4.

~ _.._--.----.--.--- --_. __ _--- --- ..

k

. ... _----------.--,

Figure 4 Closed system.

In [14], two approaches for analyzing the closed system are studied. The first
(method I) is rather straightforward and uses a continuous-time Markov chain
in which only the number of red and green transactions at the various stations
are included into the state description. The actual sequence of red and green
transactions at V is not modeled, and the probability that a transaction that
leaves V is red is approximated by the fraction of transactions at V that is
red. A large system of balance equations must be solved in order to get the
steady-state probabilities of the Markov chain. Using these probabilities, the
mean response time and the throughput J.lBox(k) of the system with fixed pop
ulation k is computed. The second approach (method II) for analyzing the
closed system is much less elaborate (with respect to computing times) and
will be discussed in more detail below.

Performance Modeling

Method II is based on the following assumption.

Assumption:

Each transaction present at station X or in the queue of station V of
the closed system is invalidated (colored red) by other transactions
according to a Poisson process.

11

Denote the rate of the Poisson invalidation process by A(k) for a system with
population k. In the sequel, parameter k is used to indicate a fixed population k.

The service times at X, V, and Ie are exponentially distributed with service
rates Ilx, Ilv, and Ilc, respectively. Define PStlc(k) as the long-run average
probability that a validation is successful, i.e., that the validating transaction
is green. A transaction can be colored red while it is in its execution phase or
in the queue at V. Because of the exponential service times and the Poisson
invalidation assumption, the probability that a transaction is still green after
its execution phase is Ilx/(Ilx + A(k)). The probability that a transaction Tis
still green when it goes into service at station V given that it was green when
it entered the queue of V is equal to (Ilv/(Ilv + A(k)))i. when iv is the number
of transactions in front of T at station V upon arrival. Hence

It remains to find an expression for A(k) and P(T finds iv tr. at V). There
fore, we assume that given Pstlc(k), all transactions validating have this fixed
probability of success, independent of everything else in the queueing system.
Then given PStlc(k), the closed queueing network is of product form. Thus the
equilibrium distribution is known and the Arrival Theorem for closed queue
ing networks holds. Using the state description (ix, iv, ic) to denote that ix
transactions are present at station X, the steady-state distribution is

(1.1)

with C the normalizing constant. From the Arrival Theorem it follows that

k-l-i.

P(T finds iv tr. at V) = L 7l"k-l(ix, iv, k - 1 - ix - iv),
i:r:=O

/

12 CHAPTER 1

where 1l"k-l(-,',') is the steady-state distribution of a closed network with a
population of k - 1 customers. Thus,

Further, we approximate .\(k) by

.\(k) = neCk - l)p, (1.3)

where n e(k-l) is the mean number of commits per unit time in a closed system
with k - 1 customers. Given Psue(k - 1),

k-l k-l-i r

neCk - 1) = L L ie/-l e1l"k-l(ix, k - 1 - ix - ie, ie).
ix=O ic=O

Hence, we have a recursive procedure for computing .\(k) and Psue(k). Starting
with Psue(1) = 1, 1l"l(ix, iv, ie) follows from (Ll), .\(2) from (1.3), and Psue(2)
from (1.2). The recursion is repeated until the specified k-value is reached.

The mean response time of a transaction in the closed system with population
k is approximated by E[SBox(k)] = k/ne(k). The throughput of the closed sys
tem, /-lBox(k), that is used in the next subsection to approximate the expected
total response time E[S] of a transaction, is given by ne(k).

The advantage of this second approach for estimating /-lBox(k) is that the equi
librium probabilities used are given by the explicit formula (1.1). No system of
equations has to be solved in order to compute the equilibrium probabilities:
this method can handle any value of k, no matter how big k is. It only takes k
steps to find the approximating value for Psue(k).

A nalysis of the open system

We use the throughput results of the closed system as input for the complete
system. Transactions arrive at the system according to a Poisson process with
rate A. We now have two stations, E and Box, see Fig. 5.

Box is considered as a FCFS exponential service station with service rate
/-lBox(k) when the number of customers in front of plus inside the box is k < N,
and /-lBox(N) when the total number of customers at the box is bigger than or

Performance Modeling

J-le J-lBox(k)

Figure 5 Aggregated system.

13

equal to N. E is a single exponential server with rate J-le. Denoting the state
of the aggregate system by (je,ib) when ie and ib transactions are present at
station E and station Box respectively, the steady-state probabilities are given
by a product form. Let E[LBox] be the long-run average number of customers
present in front of plus inside Box. Then

E[LBox]= Lib7r(jb),
jb

where the marginal probability 1r(jb) , of having ib transactions at Box, is given
by

. jb 1
1r(jb) = C)..3b II --,.-----,--....,.

j=l J-lBox(min{i, N}) ,

with C a normalizing constant. Using Little's law, the total mean response
time is approximated by

Numerical results

The approximations for E[S] are compared with a simulation of the queueing
model. For every transaction the simulation program keeps a record of its color
and its time spent at the stations E, I, X, V, and C. Every time a transaction
is rerun, a fresh execution time is drawn from the exponential distribution.
Simulation programs were built both for the complete queueing network of
Fig. 3 and for the closed queueing network of Fig. 4. For a heavy-loaded
database system, the simulation results for the time spent in the dotted box in
both models coincide.

Numerical results show that method II is an excellent method for approxi
mating the average response time of a transaction in a system with a fixed

14 CHAPTER 1

number of transactions. For such a closed system, method II is better than the
time-consuming method I. For the open system, both methods perform well
compared with simulation. Method I is slightly more accurate than method
II for systems that are not overloaded. Nevertheless, method II is preferred
because of its simplicity and its negligible computation times. Moreover, for
heavy-loaded systems with a large number of CPUs, method II produces a
much better approximation for the average response time than method I.

Fig. 6 shows the analysis and simulation results for E[S] in a system with
A = 2.4, fle = 40, flx = 1, flu = 5, and flc = 15. The probability p that two
transactions conflict is taken 0.1, which corresponds to a database with 1000
data-items where every transaction uses exactly 10 items uniformly picked from
the total of 1000 items. Another example with p = 0.1 is a database of size
250 and transactions that all use 5 data-items. The number of CPUs N in
the system is varied from 5 to 20. For N :s 4, the system capacity is too
small to cope with the stream of arriving transactions. For N large, the system
shows a degradation in throughput because too many conflicts arise. This has
a dramatic effect on the response time. Depending on the system parameters,
there is a number N* of CPUs the system should have in order to minimize
the average response time. For the situation of Fig. 6, we have N* = 8.

13,00

12,00

11.00

10,00

9,00

8,00
Iii
Eli

7,00

6,00

5,00

4,00

3,00

2,00
2 10

N
12 14 16

I-+
II -+

Simulation~

18 20

Figure 6 Results for aee with serial validation.

An important conclusion from this study is that for applications of real-time
databases with short transactions and serial validation, the duration of the val-

Performance Modeling 15

idation phase (including waiting) is not negligible but contributes significantly
to the response time (the queue at the validation station can be quite long).
To our knowledge, all previous performance studies neglected the time needed
for validation.

6.2 ace with parallel validation

In [13], the response time distribution for ace with parallel validation is de
rived. The analysis is based on the throughput-analysis of [11]. The system is
represented by the queueing model of Fig. 7.

---------------------,N:,,,,,
I,,,,,
,
I,,,,,
I,,,,,,,,,

Figure 7 Queueing model for aee with parallel validation.

Transactions arrive at the system according to a Poisson process with rate A.
In contrast to ace with serial validation, under ace with parallel validation
the time needed for one run of a transaction does not depend on the (number
of) other executing transactions. In the queueing model, the total time needed
for one execution plus one validation is taken exponentially distributed with
parameter p. The time needed for the commit phase is assumed to be negligible.
Hence, we can model ace with parallel validation as a queueing network with
only one multi-server station (so without a single-server validation station). At
the multi-server station, both execution and validation are done.

As in the analysis of ace with serial validation, a probabilistic model is used
for the occurrence of data conflicts, with conflict probability p. The fake-restart
assumption, however, is not made: the time needed for a rerun of a transaction
is taken exactly equal to the time of the first run. It was possible to drop
the fake-restart assumption, because the queueing model of Fig. 7 is much less

16 CHAPTER 1

complicated (and thus better analyzable) than the model of Fig. 3.

An approximation for the response time distribution P(S ::; t) is derived using
a decomposition approach. First, the response time distribution P(Sk ::; t) of a
transaction in a closed system with fixed population k is approximated. Next,
the approximations for P(Sk ::; t) with 1 ::; k ::; N are used to approximate the
distribution P(S ::; t) in the open system with Poisson arrivals.

The approximation for the response time distribution in a closed system with
k transactions is

with
J.L(1 + 2(k - l)b) - J.LJ1 + 4(k - l)b

ak= 2(k-1)b2 '

see [13] for details. To derive this approximation, we make - in accordance
with [11] - the assumption that a transaction in execution observes other
transactions to commit according to a Poisson process.

Since we are primarily interested in P(Sk > t) (the probability that a transac
tion does not meet its deadline t), the approximation for P(Sk > t) is compared
with the value produced by a simulation of the queueing model. Relative dif
ferences of approximation compared with simulation are only a few percent for
systems with p = 0.01 and p = 0.1. For p = 0.2, relative differences up to 10%
can occur. Higher values of p were not considered, as then acc is not the
appropriate concurrency control algorithm anyway.

The extension to the open system is not treated here, but can be found in
[13]. The approximation we found for P(S > t) is also good compared with
simulation, provided the load of the system is not too high (::; 0.80, say). In
Fig. 8, the approximative and simulated values of P(S > t) are plotted for a
system with 8 CPUs, p = 0.1, A =2.9 and J.L =1. The throughput of the closed
system with 8 CPUs (so when all CPUs are always busy) is 3.7, so the load of
the system is approximately 2.9/3.7 = 0.78.

From Fig. 8, one can easily read off the probability that a transaction does not
meet its deadline t, with t ranging from 0 to 20.

Performance Modeling 17

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10
.......

Analysis
Simulation ..••..

..............

0.00 L,'---!--L----L..---L..--,---,--=:::::::::;:::;::::L::::;=z====d
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 8 Results for P(S > t), for aee with parallel validation.

7 SQSL ANALYSIS

The analysis in [5] ofthe basic SQSL scheduler assumes a Poisson arrival process
(parameter A) and exponentially distributed execution times (parameter J1.).

N:
I
I
I
I,,
I
I
I

I
I

I
I
I
I
I
I
I
I,
I
I,
1 _

Figure 9 Queueing network for basic SQSL.

Up to N transactions can be executing at the same time, and the queue is
unbounded. We assume that the database stores a fixed number d of data items.

18 CHAPTER 1

Each transaction accesses a data items. All items have an equal probability of
being accessed.

The queueing model of the SQSL scheduler is quite straightforward, as can be
seen in Fig. 9. Under the given assumptions, it proved possible to completely
analyze the timing behavior of the scheduler, using Markov models.

7.1 A Markov model

A continuous time Markov chain is the basis for our analysis. The assumptions
stated above allow us to describe the system state by the tuple (i, j), where i
is the number of executing and j the number of waiting transactions.

When the number of executing transactions is lower than the number of avail
able crus (i < N) and the number of waiting transactions is positive (j > 0),
the first transaction in the queue has a data conflict with at least one exe
cuting transaction. If all crus are executing transactions (i = N), the first
transaction in the queue is blocked independent of data conflicts.

Some probabilities

Let B(i) be the probability that a transaction T has a data conflict with one
or more out of i executing transactions:

Also, we define B(N) = 1, as all crus are occupied when N transactions can
block transaction T.

If transaction T at the head of the queue has a data conflict with at least one
of i executing transactions, B(i-I I i) is the probability that T still has a data
conflict with at least one of the remaining i-I executing transactions, after
one of the i executing transactions has left: B(i - 1 I i) = B(i - 1)/B(i). We
define A(i) = 1 - B(i) and A(i - 1 I i) = 1 - B(i - 1 I i).

The Markov property

The processing of transactions can be described by a continuous time Markov
chain with state descriptor (i, j). This follows from the exponential (thus mem-

Performance Modeling 19

oryless) inter-arrival and execution times, the fixed number of items used by
each transaction, and the fact that all items have an equal probability of being
accessed. The future state of the system depends on the current state (i, j) and
not on the past states: the Markov property holds.

Transitions

We analyze what state transitions are possible in the model.

First, transactions arrive at the system with rate >.. If there are no waiting
transactions, and i transactions are executing, with probability B(i) the arriv
ing transaction is blocked and with probability A(i) it is allowed to execute. So
(i, 0) ~ (i, 1) with rate >.B(i) and (i, 0) ~ (i +1,0) with rate >.A(i). When the
number of waiting transactions j is greater than zero, the arriving transaction
enters the queue: (i, j) ~ (i, j + 1) with rate >..

Second, if i > 0 transactions are executing, transactions finish execution at rate
iJ-l. If the queue is empty, finished transactions are not replaced, so (i, 0) ~
(i -1,0) with rate iJ-l.

If at least one transaction is waiting (j > 0) just before a transaction completes
execution, with probability B(i-I I i) the first transaction f in the queue
remains blocked:

(i,j) ~ (i -1,j) with rate iJ-lB{i -11 i).

With probability A(i - 1 I i) f begins execution.

When there are I CPUs available and the first m transactions in the queue
do not conflict with the transactions in execution, the scheduler permits k =
min(m, I) new transactions to execute. The remaining transitions that can arise
from a departure are included in the following summarizing expression:

k-2

(i,j) ~ (i -1 + k,j - k) with rate iJ-lA{i -11 i)B(i -1 + k) II A{i + z).
z=o

Note that the term B(i - 1 + k) is dropped if k = j.

20 CHAPTER 1

7.2 Response time distribution

The distribution of the response time S of a transaction is completely described
by the moments of the response time. We aim to find E[sr], the r-th moment
of S, for r ~ 1.

First the steady state distribution 7r is computed from the Markov model. This
means that 7r(i, j) gives the probability that the system is in state (i, j). These
probabilities are used in the following analysis.

We follow the path of an arbitrary transaction through the model, from ar
rival to departure. With a 'path' we mean the states that are reached during
the presence of the transaction under consideration. Tuple [i, j] describes the
situation where i transactions are in execution and j or more transactions are
waiting in the queue. The tuple (i, j) refers to the system state as defined
before. Define S[i,i) as the time until a transaction T)eaves the system, when i
transactions are executing, and j - 1 transactions are ahead of T in the queue.
If j = 0, the transaction under consideration is in execution. When the system
is in state (i, j) after an arrival, S[i,i) is the response time of the newly arrived
transaction.

Important is the observation that S[i,j) does not depend on transactions that
arrive at the system after the transaction under consideration. This follows
from the property of the Single-Queue, Static-Locking scheduler: transactions
waiting in the queue cannot be overtaken.

Consequently, arrivals of other transactions need not be considered when E[s[r. .)]
, ,j

is computed. Let Xi be the time till the next departure when i transactions
are executing (Xi is exponentially distributed with rate iJ.1.). Let P[i,i)[m,l) be
the probability that the next departure leads to a state with m transactions in
execution and £ - 1 transactions present in the queue ahead of the transaction
under consideration. From the transitions in the Markov model we have

1
A(i - 1I i)B(m) I1;'~i-l A(i + z)
B(i - 1 I i)

Pl',;J[m,~ = f'i - 1 I i) IT::':-;" -I A(i + z)

i :S m < N, f = j + i-I - m
j>O, m=i-l,£=j
m=NVf=O
j=O, m=i-l, f=j
otherwise.

Performance Modeling

Then for all [m, i]:

S[i,i] = Xi +S[m,l] with probability P[i,i][m,l] ,

21

As m+£ = i+ j -1, the moments of S[i,i] can be computed from the moments
of S[m,l] with m + £ < i + j. Once a transaction is in execution, its service time
is exponentially distributed with mean 1/J.L. Thus the boundary condition for
the recursion is S[i,O] = X for all i > 0, where X is exponentially distributed
with parameter J.L.

Let a(r,l)(i,j) be the probability that a transition to state (i, j) is caused by
an arbitrary transaction T that sees state (r, £) on arrival. An expression for
T's response time S is found by conditioning on state (r, £) and by using the
PASTA [18] property:

S = S[i,j] with probability L 71'(r, £)a(r,l)(i,j)'

(r,l):i+i =r+l+ 1

The probability a(r,l)(i,j) is given by

{

'xA(r)
_ 'xB(r)

a(r,l)(i,j) - ~

£ =0, i = r + 1, j =0
£ =0, i =r, j =1
£ > 0, i = r, j = £+ 1
otherwise.

Moments of the response time

The moments of the response time are derived directly from the recursive rela
tion. Two important rules are used to find E[sr] for r ~ 1:

• Choice. The transaction follows path I with r-th moment E[Sn, or path
m with r-th moment E[S~]. The probability that path I is taken is p.
Then

E[sr] = pE[S/] + (1 - p)E[.s:].

• Addition. The transaction first follows path I with duration S/, followed
by path m with duration Sm. Then

Based on these rules, the moments of S can be found using dynamic program
ming. Note that the analysis produces the exact values of the moments E[sr].

22

Fitting a distribution to the moments

CHAPTER 1

In [15] it is proved that each positive random variable can be approximated
arbitrarily well by a weighted sum of independent exponentially distributed
variables. We used this result to find a mixture of exponentially distributed
variables that has the same moments as S. The choice of this mixture influences
the quality of the approximation. Denote the random variable corresponding
to the chosen mixture by S. Then P(S ~ x), the probability that a transaction
meets its deadline, is approximated by P(S~ x). We say the distribution of S
is fitted to the moments of S.

We used the two-moment fit as described in [16]. The fitting procedure is not
given here for reasons of brevity, but it can fit a distribution to any combination
of E[S] and E[S2].

Simulation versus fitting

Parameters N = 4, A = ~ and Jl = 1 were used to compare our fit results
with simulation results. We used moments E[S] and E[S2] from our analysis
to approximate P(S ~ x) for x = 1, 3 and 5.

P(S < 1) P(S ~ 3) P(S ~ 5)
B(I) Fit Sim. Fit Sim. Fit Sim.
0 0.61 0.61 0.95 0.95 0.99 0.99
0.010 0.59 0.59 0.94 0.94 0.99 0.99
0.039 0.54 0.54 0.90 0.90 0.98 0.98
0.088 0.45 0.45 0.83 0.83 0.95 0.95
0.153 0.32 0.32 0.68 0.68 0.85 0.85
0.230 0.16 0.17 0.41 0.42 0.59 0.60

Table 1 Response time probabilities.

Conflict probability B(I) was varied from 0 to 0.230, corresponding with a = 0
to a = 5 in a database with d = 100. We also estimated P(S ~ x) by simulation.
Table 1 shows these numbers. The simulated values are the midpoints of a 95%
confidence interval with a width smaller than 0.02. It is clear from Table 1 that
the fitting procedure gives an excellent approximation of the response time
distribution.

Performance Modeling

8 CONCLUSIONS

23

0.40

0.30

0.20

0.10

occ
SQSL •••••.

..........................

0.00 L-_.L-_-'--_-'-_....L-_--'-_.....L._---'-_----L_----''------l
o 10

Figure 10 P(S> t) for ace and SQSL, for N = 4, >. = 2, a = 4, d = 100.

Several application areas have been identified where RT database techniques
are of interest: Telecommunication, High Energy Physics, Container Port and
Automatic Teller Machines. In these areas, applications are often divided in an
RT part composed of short transactions with soft or firm deadlines and another
part which should not perturb the first part.

Not only the mean response time, but the entire response time distribution of
the RT transactions is necessary to calculate the probability that these transac
tions will meet their deadline. The variance and higher moments of the response
time are used to obtain approximations of the response time distribution.

Analytic work has been done for the calculation of the response time distribu
tion of transactions. The OCC analysis shows that the validation time cannot
be neglected for short transactions that occur for example in telecommunica
tion applications. The basic SQSL scheduler has been satisfactorily analyzed.
The analysis of the more complex OCC scheduler is nearing completion. Once
the analysis of the OCC scheduler is complete, we plan an extensive comparison
between these two schedulers.

Such a comparison is then easy, as the analysis results allow fast recomputations
for a wide range of parameters. Fig. 10 is an example of a comparison between
OCC and SQSL for one set of parameters. Actually, Fig. 10 shows the results

24 CHAPTER 1

for a large number of experimental settings, where the deadline-length is varied
between 0 and 10. It is interesting to see that (for these specific parameters)
a break-even point exists. OCC outperforms SQSL when deadlines are short,
and SQSL outperforms OCC when deadlines are long.

REFERENCES

[1] S.S. Lavenberg. Computer Performance Modeling Handbook. Academic
Press, Orlando, Fla., 1983.

[2] R. Agrawal, M.J. Carey, and M. Livny. Concurrency Control Performance
Modeling: Alternatives and Implications. A CM Transactions on Database
Systems, 12(4):609-654, December 1987.

[3] J. Altaber, P.G. Innocenti, and R. Rausch. Multiprocessor architecture for
the LEP storage ring. In 6th Annual Workshop on Distributed Computer
Control Systems, Monterey, May 1985. IFAC.

[4] Committee Arinc 651. ARINC report 651, draft 9. Technical Report
91-207jSAI-435, Airlines Electronic Engineering Committee, September
1991.

[5] M.P. Bodlaender, S.A.E. Sassen, P.D.V. van der Stok, and J. van der
Wal. The Response Time Distribution in a Multiprocessor Database with
Single Queue Static Locking. In Proc. of the Workshop on Parallel and
Distributed RT Systems, pages 118-121, Hawaii, April 1996.

[6] Proc. of the 8th Conference on Computing in High Energy Physics, Santa
Fe, USA, 1990.

[7] M.H. Graham. How to get serializability for real-time transactions with
out having to pay for it. In Proceedings of the 14th Real- Time Systems
Symposium, pages 56-65. IEEE, December 1993.

[8] D.K. Hammer, E.J. Luit, P.D.V. van der Stok, J. Verhoosel, and O.S.
van Roosmalen. DEDOS: A Distributed Real-Time Environment. IEEE
Parallel f3 Distributed Technology, 2(4):32-47, 1994.

[9] J. Lee and S.H. Son. Using Dynamic Adjustment of Serialization Order for
Real-Time Database Systems. In Proceedings of 14th Real-Time Systems
Symposium, pages 66-75, Raleigh-Durham, December 1993. IEEE.

Performance Modeling 25

[10] J. Lee and S.H. Son. Performance of Concurrency Control Algorithms for
Real-Time Databases. In V. Kumar, editor, Performance of Concurrency
Control Mechanisms in Centralized Database Systems. Prentice-Hall, 1996.

[11] R.J .T. Morris and W.S. Wong. Performance Analysis of Locking and OCC
Algorithms. Performance Evaluation, 5:105-118, 1985.

[12] K. Ramamritham and C. Pu. A Formal Characterization of Epsilon Se
rializability. Technical Report COINS Tech. rep. 91-92, Univ. of Mass.,
1991.

[13] S.A.E. Sassen and J. van der Wal. The Response Time Distribution in
a Real-Time Database with Optimistic Concurrency Control. Technical
Report COSO R 96-17, Eindhoven University of Technology, 1996.

[14] S.A.E. Sassen, J. van der Wal, and M.P. Bodlaender. Mean Response
Times for Optimistic Concurrency Control in a Multi-Processor Database
with Exponential Execution Times. Technical Report COSOR 95-43, Eind
hoven University of Technology, 1995.

[15] R. Schassberger. Warteschlangen. Springer Verlag, 1973.

[16] H.C. Tijms. Stochastic Models, an Algorithm.ic Approach. John Wiley &
Sons, Chichester, 1994.

[17] P.D.V. van der Stok. Real-Time Distributed Concurrency Control Al
gorithms with Mixed Time Constraints. Technical Report CSN 96/18,
Eindhoven University of Technology, 1996.

[18] R.W. Wolff. Poisson Arrivals see Time Averages. Operations Research,
30:223-231,1982.

[19] P.S. Yu, D.M. Dias, and S.S. Lavenberg. On the Analytical Modeling of
Database Concurrency Control. Journal of the ACM, 40:831-872, 1993.

	Voorblad
	CONTENTS
	Chapter 1
	1 INTRODUCTION
	2 APPROACH TO PERFORMANCECALCULATIONS
	3 APPLICATION DOMAINS
	4 TRANSACTION MODELING
	5 DATABASE SCHEDULING STRATEGIES
	6 acc ANALYSIS
	7 SQSL ANALYSIS
	8 CONCLUSIONS
	REFERENCES

