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A B S T R A C T   

Strong localized downbursts generated in thunderstorms can produce surface winds very dangerous for civil 
structures and infrastructures. Modelling and simulating such severe wind systems is therefore extremely 
important for structural safety and design wind speed evaluation. This paper deals with the downburst wind field 
simulation by means of an optimization algorithm that uses a downburst analytical model, previously developed 
by the authors, and two metaheuristic algorithms, namely the Differential Evolution (DE) and the Teaching- 
Learning-Based Optimization (TLBO), for the downburst kinematic and geometrical parameters evaluation. 
The optimization problem minimizes the relative error between recorded and simulated wind speed and di-
rection time histories. A comparison is made between the performance of two algorithms for ten thunderstorm 
events measured in north-western Italy between October 2011 and October 2015. Both algorithms provide so-
lutions which are coherent with the downburst parameters values present in literature. TLBO outperforms DE 
since it has a faster convergence rate to the optimal solution.   

1. Introduction 

The study of intense thunderstorm downbursts winds and their ac-
tions and effects on structures has been a dominant topic of the research 
in wind engineering over the last forty years [1]. Thunderstorms are 
non-stationary phenomena at the mesoscale, which occur in convective 
conditions with velocity profiles substantially different from those that 
are typical of the atmospheric boundary layer (ABL). Design wind ve-
locities with mean return periods greater than 10-20 years are often 
associated with such phenomena [2]. Between the 1970’s and 1980’s 
Fujita made key contributions to the understanding of thunderstorms 
and their scales [3–6], showing that when the downdraft reaches the 
ground surface, it produces an intense radial outflow and ring vortices. 
Fujita called all these air movements “downburst” and divided these 
phenomena into “macroburst” and “microburst” depending on whether 
the outflow diameter is greater or smaller than 4 km, respectively [4]. 
Design wind speed and severe wind damage are often due to thunder-
storm outflows, and they have a focal role in structural safety [1]. 
However, this matter is still affected by huge uncertainties and a shared 
model of downburst outflows and their actions on structures like the one 
formulated by Davenport [7] for synoptic cyclones is not available yet. 
The complexity of thunderstorms makes difficult to establish physically 

realistic and simple models of these phenomena. Downbursts have a 
short life cycle, and their small size enables a limited amount of data to 
be available. Downburst associated loads on structures, depend on a 
variety of parameters such as the diameter of the downdraft, the relative 
position between the center of the downburst and the structure, the 
translation velocity of the parent storm cell and so on. These aspects 
make the assessment of downburst wind loads very complex and require 
formulating simplified analytical or empirical models of this phenome-
non able to capture their main features. 

This study represents a natural continuation of a previous work 
concerning the reconstruction of the wind field produced during a 
downburst using an analytical model developed by the authors [8]. In 
the former work, the authors estimated the analytical model’s parame-
ters using a parametric approach that turned out to be too 
time-consuming and poorly efficient. This analysis was based on 
assigning a discrete set of values to each parameter in the analytical 
model and then calculate, for all combinations among the parameters, 
the relative error between anemometric measurements and simulated 
time histories of wind speed and direction. The combination corre-
sponding to the lowest value of relative error was the one that led to 
match more closely the simulated downburst to the recorded data, and 
therefore was considered eligible for reconstructing the geometrical and 
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kinematical features of the downburst. However, the combination of, 
let’s say, 10 parameters, each one having 10 different values, corre-
sponds to 1010 relative errors that must be computed before evaluating 
the minimum, i.e. the final solution. This aspect considerably limited the 
use of this procedure to reconstruct a large number of 
thunderstorm-related downburst events. To overcome this shortcoming, 
in this paper the previous analytical model [8] is coupled with two 
global metaheuristic optimization algorithms, namely the Differential 
Evolution (DE) and the Teaching-Learning-Based Optimization (TLBO), 
with the purpose of determining the most efficient and reliable algo-
rithm to solve the optimization problem related to the model’s param-
eters identification. The algorithms are compared through the 
reconstruction of ten selected full-scale downburst events that occurred 
in the port area of La Spezia, Genoa and Livorno between October 2011 
and October 2015. 

This paper is organized into 6 Sections. Section 2 describe the full- 
scale measurements dataset used in the current study. Section 3 illus-
trates how the analytical model for simulating thunderstorm outflows is 
implemented and how the minimization problem is constructed starting 
from the definition of the objective function. Section 4 presents the 
implementation, and the pseudocodes of the two optimization 

algorithms, namely DE and TLBO. Section 5 presents the comparisons 
between the two proposed algorithm in the reconstruction of the space- 
time evolution of ten thunderstorm outflow events in the area of the 
High Tyrrhenian Sea. Section 6 summarizes the main conclusions and 
discuss prospects opened by this research. 

2. Field measurements 

The dataset of field measurements used in this paper originates from 
the two European Projects “Wind and Ports” (WP, 2009-2011) [9] and 
“Wind, Ports and Sea” (WPS, 2013-2015) [10,11]. Both projects were 
carried out by the Department of Civil, Chemical and Environmental 
Engineering (DICCA) of the University of Genova in cooperation with 
the harbor authorities of Genoa, Savona, La Spezia, Livorno and Bastia. 
One of the main objectives of these projects was to establish a statistical 
database on the various wind conditions in the Ligurian and Tyrrhenian 
Sea. In total, 28 ultrasonic anemometers (bi-axial and three-axial) have 
been installed across all ports. The sampling rate of the anemometers is 
10 Hz (excluding the anemometers in Bastia, which have sampling rate 
of 2 Hz) and the anemometers have an accuracy of 0.01 m/s for wind 
speed and 1◦ for wind direction. Depending on the harbor, the elevation 

Fig. 1. The WP and WPS monitoring network used in this study. Geographic coordinates of the anemometers and their characteristics are reported in Table 1.  

Table 1 
Main characteristics of the events considered and properties of the monitoring network.  

Location Date Time (HH:MM: SS) UTC Anemometer Code Geographical Coordinates (λ, φ) (◦N, ◦E) Height AGL (m) Vmax (m/s) Vmax (m/s) α (deg) 

La Spezia 2011-10- 
25 

15:40:00 SP 03 (44.097, 9.858) 10 37.12 26.53 187.8 

2012-04- 
11 

07:10:00 SP 02 (44.110, 9.839) 13 24.2 18.46 221.3 

2012-04- 
19 

12:50:00 SP 02 (44.110, 9.839) 13 25.64 16.6 210.3 

2012-10- 
15 

00:20:00 SP 03 (44.097, 9.858) 10 24.23 19.69 241.1 

2014-07- 
25 

06:20:00 SP 03 (44.097, 9.858) 10 22.3 15.8 289.3 

Genoa 2012-09- 
30 

21:00:00 GE 02 (44.418, 8.777) 13.3 21.53 17.1 163 

2012-10- 
28 

06:20:00 GE 01 (44.399, 8.925) 61.4 26.8 22.6 162 

Livorno 2012-10- 
01 

12:10:00 LI 01 (43.570, 10.301) 20 18.91 15.66 268.1 

2015-09- 
13 

11:00:00 LI 04 (43.541, 10.294) 20 24.08 19.34 333 

2015-10- 
04 

05:10:00 LI 01 (43.570, 10.301) 20 29.46 19.15 347.1  
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of the anemometers ranges from 10 to 75 m Above the Ground Level 
(AGL). 

In the present article, ten episodes of non-stationary thunderstorm 
downburst events detected by the anemometers in the ports of La Spezia, 
Genoa and Livorno between October 2011 and October 2015 are 
examined. Fig. 1 depicts the locations of the anemometers within the 
port areas, whereas Table 1 reports the exact location of the anemom-
eters and the main features of the downburst records analyzed in this 
document; the table includes the instantaneous peak wind velocity Vmax, 
the maximum value of the slowly-varying mean wind velocity Vmax 
(averaged over a 30 s moving window), and the wind direction α at the 
instant of peak velocityVmax. 

The strongest event analyzed in this study was recorded in La Spezia 
with Vmax = 37.12 m/s at 10 m AGL. It is worth noting that the direction 
α is merely indicative as it is the composition of thunderstorm outflow, 
storm motion and ABL flow [12]. Considering a translating downburst, 
the outflow direction detected by the sensor is the vectorial composition 
of the velocity and direction of the thunderstorm cell, treated as sta-
tionary, and its translational component [8]. The situation is compli-
cated in the frequent case in which a thunderstorm cell is embedded into 
a background larger-scale boundary layer flow field, typically synoptic 
in nature. In principle all these cases may be handled as by vector su-
perposition of the velocity and direction of flow components; however, 
there is no evidence that this approach is physically and mathematically 
appropriate. Xhelaj et al. [8] proposed in their analytical downburst 
model, as a first approximation, to continue adopting the vectorial su-
perposition until a more realistic model won’t be available in the liter-
ature. This strategy is used in the current work. As the model reported in 
Xhelaj et al. [8] is intended to provide the mean wind speed and di-
rection only (i.e., turbulence is not included in this model), the single 

anemometer recordings of the 10 Hz-sampled horizontal wind speed and 
direction are decomposed, using a 30 second moving average window, 
into a slowly varying moving mean and a residual turbulent fluctuation, 
and only the slowly varying moving mean of the wind speed and di-
rection is taken into consideration. The slowly varying mean wind 
speed, which for simplicity will henceforward be called V(t), and the 
slowly varying mean wind direction, α(t), are retrieved according to the 
directional decomposition rule for thunderstorm outflows provided by 
Zhang et. al. [13]. Each time history record used in the actual work has a 
duration Δt = 1 hour [14] and is decomposed considering a moving 
average period T = 30 s [15,16]. Except for the La Spezia downburst of 
2014-07-25, the remaining downbursts can be downloaded from the site 
of the THUNDERR project [17] database through the link http://portal. 
thunderr.eu/thunderview. 

3. Model implementation 

Section 3.1 describes the analytical model that simulates the mean 
horizontal wind speed and direction, evaluated at a generic point at 
fixed height z AGL, originating from a travelling downburst whose 
outflow is incorporated in a low-level, larger-scale ABL wind, generally 
of synoptic nature. An exhaustive description of the model is given in 
Xhelaj et al. [8]. However, for ease of reference, a short description is 
provided here. In Section 3.2, the objective function is defined, which is 
used later in the optimization procedure to calculate the model’s 
parameters. 

3.1. Thunderstorm outflow model 

The primary hypothesis behind this model assumes that the 

Fig. 2. Schematic view of a stationary downburst and outflow structure parameters. The horizontal wind velocity at height z AGL is characterized by radially 
symmetric streamlines with an annular ring of high winds (Adapted from [18]). 
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combined wind speed and direction at a fixed elevation z which co-
incides with the location of a wind sensor or a structure is the vector sum 
of three independent velocity fields, namely the radial velocity of a 
spatially stationary downburst which is reconstructed according to a 
stream jet impinging orthogonally on a flat surface, the translation ve-
locity due to the mean storm motion and the low level ABL mean wind 
velocity into which the downburst outflow near the surface is 
embedded. 

In the initial modelling phase, it is assumed that the storm cell from 
which the downburst originates does not move relatively to the ground, 
thus the wind velocity field Vd of a non-translating downburst is 
considered [3,4]. In physical terms, a necessary requirement for this 
type of downburst is a calm wind environment (i.e., a very slow-moving 
storm and wind calm conditions within the atmospheric boundary 
layer). When the downdraft jet hits the ground, it starts to propagate 
with nearly symmetric outflows and a primary vortex ring of high wind 
velocity surrounds the downdraft core. Due to conservation of angular 
momentum the vortex ring at the base of the downdraft increases its 
vorticity and expands radially. The combination of the jet impingement 
and the stretching of the primary vortex ring largely increases the wind 
velocity, generating an outflow of high wind region which occurs 
approximately at a distance of two downdraft radii from the jet axis. The 
interaction between the primary vortex ring and the surface roughness 
can generate a secondary vortex ring near the leading edge of the pri-
mary ring. 

Fig. 2 shows a schematic representation of the downburst and the 
parameters that describe the outflow structure, as adapted from 
Hjelmfelt [18]. Here, R represents the radius of the downdraft and it is 
assumed constant for the entire life cycle of the downburst, Rmaxis the 
radial distance from the downburst centre at which the maximum radial 
velocity (Vr,max) occurs, and RE is the radial extension of the outer edge 
of the outflow (or gust front) from the downburst centre. Hjelmfelt [18] 
reported that, on average, when the downburst reaches maximum in-
tensity, the extension of the outflow outer edge is approximately RE ≈

2Rmax. In Xhelaj et al. [8], the horizontal mean wind velocity at a fixed 
height z AGL due to a stationary downburst is reconstructed starting 
from a modification of the Holmes and Oliver model [19]. According to 
these authors, in the intensification region, 0 ≤ r ≤ Rmax, the horizontal 
radial velocity increases linearly with the radial distance from the 

stagnation point (r = 0) up to Rmax where the maximum velocity occurs. 
In the decay region, r > Rmax, an exponential decay of the horizontal 
radial velocity occurs. The position Rmax depends linearly on R through 
the dimensionless parameter ρ which was assumed fixed and equal to 2 
in Xhelaj et al. [8], while it is considered a decision variable and its value 
is determined by the optimization technique in this work. The model 
also incorporates an intensity-decay function that simulates the inten-
sification and the decay of the downburst event on increasing the time as 
proposed by Chay at al. [20]. This function depends on Tmax, which is the 
period of linear intensification from the initial simulation time (t = 0) to 
the maximum radial outflow intensity, while the total duration time is 
defined Tend. 

In the second modelling stage, the parent cloud producing the 
downburst is assumed to be in motion and embedded in a low level ABL 
flow (i.e., background flow). According to Fujita [3,4], due to the 
translation the front side of the storm intensify while the backside 
weakens, resulting in an asymmetric and strongly diverging directional 
flow. Also, the downburst wind near the surface is perturbed by the 
presence of the low-level ABL winds. Hjelmfelt [18,21] considered a 
linear interaction between these three-velocity fields and the main pa-
rameters that explain observed downburst events in terms of geometry 
and kinematics were retrieved by Hjelmfelt based on a linear interaction 
assumption. Accordingly, defining the translational velocity of the 
downburst cell Vtand the low level ABL (i.e., background) wind Vb, both 

Fig. 3. Schematic representation of the translating downburst outflow embedded in and ABL background wind field according to the analytical model of Xhelaj et. 
al. [8]. 

Table 2 
Model decision variables  

1 Maximum radial velocity Vr,max 

2 Downdraft radius R 
3 Dimensionless radial distance from downburst center at which Vr, 

max occurs 
ρ =

Rmax

R 
4 Period of linear intensification Tmax 

5 Duration of the downburst event Tend 

6 x-component touchdown location (att = 0) xC0 

7 y-component touchdown location (at t = 0) yC0 

8 Downburst translational velocity Vt 

9 Downburst translational direction αt 

10 Low-level ABL wind speed Vb 

11 Low-level ABL wind direction αb  
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assumed constant for the life cycle of the downburst, the wind speed and 
direction in any points of the computational grid can be calculated as the 
vector sum of the three contributions V = Vd + Vt + Vb. In Fig. 3, the 
resulting wind velocity in position O is represented, while the downburst 
touch-down position at t = 0 is C0 = (xC0,yC0). Here, a Cartesian refer-
ence system x − y with the x-axis aligned towards the East and the y-axis 
aligned towards the North is used. 

Table 2 summarizes the decision variables on which the Xhelaj et al. 
[8] model depends. They are necessary for the reconstruction of the 
thunderstorm events and consequently vary from case to case. 

3.2. Objective function evaluation 

The object of this analysis is to estimate the most appropriate value 
of the different field parameters that describe the downburst outflow. 
Table 2 provides a summary of the parameters on which the analytical 
model depends. The estimation of these parameters is performed (see 
Section 4) using global optimization algorithms. 

Optimization problems can be founded in almost any scientific field. 
Real-world optimization problems are highly nonlinear, multimodal, 
discontinuous and under a variety of complicated constraints. This 
generally implies that the search for an optimal solution, or even a sub- 
optimal solution, is not a simple task. In the most general way, an 
optimization problem can be written as:   

Problem (1) is called a multi-objective, nonlinear, constrained opti-
mization problem; X = (X1,X2,…, XD) ∈ Ω is the candidate solution with 
D decision variable parameters, F1(X)…FI(X) are the objective functions, 
Hj(X) = 0 denotes J equality constrained functions, Gk(X) ≤ 0 represents 
K inequality constrained functions, and XLB

d ≤ Xd ≤ XUB
d are D lower and 

upper bound constrains over the search space X ∈ Ω ⊆ RD. When I = 1, 
Problem (1) reduces to the standard form for a single-objective, 
nonlinear, constrained optimization problem. The simplest case of 
optimization is the single-objective (I = 1) unconstrained function 
optimization which means that both Hj and Gk are zero for each value of j 
and k. The current study deals with this type of optimization problems, 
which minimize a single objective function evaluated starting from 
simulations and recorded data. 

Let X = {Xi}
11
i=1 = {Vr,max, R, ρ, Tmax, Tf , xC0, yC0, Vt , αt , Vb, αb}

be the model decision variable vector which encapsulates the parame-
ters of the model. The chosen objective function corresponds to the 
minimization of the relative error between the observed and the simu-
lated slowly varying mean wind speed and direction. The relative error 
(RE) is used here for combining the wind speed error and the wind di-
rection error. The RE, which is also the objective function, is given by: 

F(X) = FWS(X) + FWD(X) (2)  

where FWS(X) is the relative error between the magnitude of the simu-
lated wind speed VO(t; X) at time t (Fig. 3) and the recorded wind speed 
V(t)at timet. FWD(X) is the relative error between the simulated wind 
direction αo(t; X) at time t (Fig. 3) and the recorded wind direction α(t) at 
time t. 

While is relatively easy to evaluate the FWS(X), the same cannot be 
said for the FWD(X) since the wind direction is a circular data and to 
evaluate FWD(X) some concepts of circular statistics are needed. In order 
to evaluate FWS(X), let VO(X) = {VO1VO2…VON} be the set of the 

simulated wind speed data at the observing point O in Δt = 1 h and let V 
= {V1V2…VN} be the set of the recorded slowly varying wind speed data 
in Δt = 1 h. N is the total sample of simulated wind speed data present in 
1 h. Since the simulation time step in this work is ΔtS = 1 s, then N =
3600 samples. The Relative Error between the simulated and the 
observed wind speed data is given by (see the Appendix for more detail 
on its derivation): 

FWS(X) =

∑N
i=1(VOi(X) − Vi)

∑N
i=1V2

i

2

(3) 

To evaluate the Relative Wind Direction Error FWD(X), let αO(X) =
{αO1αO2…αON} be the set of the simulated wind direction data in Δt = 1 
h and let α = {α1α2…αN} be the set of the recorded slowly varying wind 
direction data in Δt = 1 h. According to the theory of circular statistics is 
possible to show that the Relative Error between the simulated and the 
observed wind direction is given by (see the Appendix A for more details 
on its derivation): 

FWD(X) =
2
N

⋅
∑N

i=1
{1 − cos(αOi − αOi(X))} (4) 

After the definition of the objective function the decision variables 
are found by solving the following minimization problem: 

Minnimize F(X), X = {X1,X2,…,XD} ∈ Ω ⊆ RD

subjected to XLB
d ≤ Xd ≤ XUB

d d = 1, 2,…,D = 11
(5) 

Problem (5) represents a single-objective, nonlinear and bound 
constrained optimization problem and represents a special case of 
Problem (1). The minimization problem has D = 11 number of decision 
variable parameters and each parameter have its variable bounds which 
ultimately defines the search space Ω ⊆ RD where the minimization 
must be performed. The minimization process in this study was carried 
out for each of the ten events presented in Table 1. The solution of each 
optimization problem allows to estimate the model parameters X. The 
knowledge of these parameters ultimately allows to reconstruct the bi- 
dimensional slowly varying mean wind field at the height of the 
anemometer/structure and therefore to come up with the simulated 
time history of the slowly varying mean wind speed and direction. 
Appendix B provides a detailed analysis of the fact that the uncertainty 
associated with the anemometric measurements has no impact on the 
uncertainties associated with the model predictions. 

It is worth noting that the minimization process has the main goal to 
globally minimize the objective function F. The information about the 
derivative of F is impractical since the computation capacity is limited. 
The two-metaheuristic methods used in the current study, described in 
the following sections, proved being able to provide a sufficient good 
solution to the global optimization problem in hand given the incom-
plete information and the limited resource capacity. 

4. Optimization algorithm implementation 

To solve Problem (5), efficient optimization algorithms are neces-
sary. In the current work metaheuristic optimization algorithms are 
considered for the solution of the minimization problem. All modern 
nature-inspired algorithms are called metaheuristic [22,23]. The word 

minmize F(X) = (F1(X),…,Fi(X),…,FI(X)),X = (X1,X2,…,XD) ∈ Ω ⊆ RD

subject to Hj(X) = 0, (j = 1, 2,…, J) Gk(X) ≤ 0, (k = 1, 2,…,K) XLB
d ≤ Xd ≤ XUB

d d = 1, 2,…,D
(1)   
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“metaheuristic” was coined by Glover [23], and it is referred to 
higher-level procedure or heuristic designed to find, generate, or select a 
heuristic that may provide a sufficiently good solution to an optimiza-
tion problem [24]. Optimization algorithms that employ metaheuristic 
methods constitute a modern approach in the scientific method of 
optimization. The first big step in this direction comes with the advent of 
evolutionary algorithms. Between the 1960s and 1970s Holland [25] 
developed the Genetic Algorithms (GAs). GAs are stochastic 
population-based and many new evolutionary algorithms that have 
developed since then have strong similarities to genetic algorithms. 
Metaheuristic algorithms underwent a broad development in the 1980s 
and 1990s. Two important algorithm developed in that period were 
simulated annealing (SA) by Kirkpatrick et al. [26] and Tabu search 
[27]. SA is a trajectory-based algorithm technique of finding a global 
optimum solution in a very vast search space. Tabu search is a local 
search method and is the first algorithm in metaheuristic that makes 
uses of memory structures to avoid previous visited solutions. In the 
1990s two global optimization algorithms based on swarm intelligence 
emerged. Dorigo [28] developed a population-based algorithm called 
Ant Colony Optimization (ACO), which was inspired by the swarm in-
telligence of social ants. Kennedy and Eberhart [29] developed the 
Particle Swarm Optimization (PSO), which was inspired by the natural 
behavior of flocks of birds or insects swarming. In the beginning of the 
21st century, the development of new metaheuristic algorithm has 
intensified dramatically. Most of them are based on a metaphor of some 
natural or man-made process. Geem et al. developed the harmony search 
[30] algorithm in 2001, which is a music inspired algorithm and belongs 
to the class of evolutionary algorithm. In 2005, Karaboga developed the 
artificial bee colony algorithm (ABC) which is inspired by the foraging 
behaviour of bees [31]. In 2009, Yang and Deb introduced an efficient 
cuckoo search (CS) algorithm [32]. Many new metaheuristic algorithms 
are still emerging today and there is no doubt that more metaheuristic 
algorithms and new application will emerge in the future. 

In the following section two metaheuristics optimization techniques 
are considered for the minimization problem (5), namely the Differen-
tial Evolution (DE) and the Teaching Learning Based Optimization 
(TLBO) algorithms. Both algorithms are used for global search optimi-
zation since they are stochastic, and population based. Differential 

evolution (DE) [33] has gained increasing attention for solving optimi-
zation problems in many scientific and engineering fields. DE belongs to 
the category of evolutionary algorithms. The algorithm can be consid-
ered a further development of genetic algorithms. Unlike GAs, differ-
ential evolution carries out operations over each component or each 
dimension of the solution. DE requires a set of parameters to be specified 
by the user which remain invariant during the iterations. Since DE is 
population based, the user should specify the population size (i.e., the 
set of agents), cross over probability, amplification factor and also 
stopping criterion. The stopping criterion in the current study is defined 
as the total number of iterations that the algorithm will have to perform. 

TLBO was recently proposed by [34]. The inspiration for this algo-
rithm is a knowledge transfer in a classroom environment. The algo-
rithm constitutes in two phases. Considering a classroom environment, 
the teaching usually happens in two phases. One is the Teacher Phase 
and the second is the Learner Phase. In the first phase the teacher in-
teracts with the students training to increase their knowledge. In the 
second phase the students interacting among themselves try to further 
increase their knowledge. TLBO mimics these two phases. Unlike DE, 
TLBO requires as user specified parameter only the population size and 
the stopping criterion. 

Although there is a vast choice of metaheuristic technique currently 
present in the literature, the choice of TLBO and DE was made mainly 
based on the number of internal parameters that each algorithm has and 
whose calibration is very important in order to obtain a good result in 
terms of convergence of the objective function. Since in the analytical 
model D = 11 parameters have to be determined through the objective 
function, it does not seem appropriate to use metaheuristic methods 
depending on a large number of internal parameters. For example, the 
classic PSO and the real coded GA have respectively 5 and 6 internal 
parameters to be calibrated case by case, which increases the difficulty 
in finding an optimal solution a lot. This is because in addition to the 
parameters of the analytical model, it is also necessary to determine the 
parameters of the optimization algorithm. From this point of view, TLBO 
has only 2 internal parameters, which are common to all meta-heuristic 
algorithms, while DE presents 4 internal parameters to be determined (i. 
e., population size, stopping criterion, cross over probability and 
amplification factor). 

Fig. 4. Pseudocode of the Differential Evolution Algorithm.  
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Section 4.1 and 4.2 provide the generic implementation of the two 
metaheuristics algorithms, TLBO and DE as well as their corresponding 
pseudocodes. 

4.1. Implementation of the differential evolution algorithm 

Considering the minimization problem defined in Section 3.3 by Eq. 
(5) a population matrix of Np solutions vectors X(i),i = 1, 2, …, Np is 
generated using uniformly distributed random numbers within the 
domain of decision variables. The size of the population matrix Np is 
decided by the user. Each solution is called target vector and is described 
by the following notation: X(i) = (X(i)

1 , X(i)
2 ,…,X(i)

D ), where D = 11 are the 
decision variable parameters. Differential Evolution consists mainly of 
three main operations: mutation, crossover, and selection. 

In the mutation operation, the algorithm randomly chooses three 
distinct vectors from the population matrix, X(j),X(k), and X(l), and then 
generates the so-called donor vector by the following mutation scheme: 

D(i) = X(j) + f ⋅
(
X(k) − X(l) )withi, j, k, l = 1, 2,…,Npandi ∕= j ∕= k ∕= l (6) 

In Eq. (6) the parameter f is called amplification factor and should be 
defined by the user. This parameter controls the amplification of the 
differential variation (X(k) − X(l)). In principle, f ∈ [0, 2], but in practice, 
a scheme with f ∈ [0.5, 1] is more efficient and stable [35]. Altogether 
four vectors are involved in the mutation of the target vector X(i) and 
therefore the population size of the DE algorithm should be Np ≥ 4. 

The crossover operation is controlled by the crossover probability pc 
∈ [0, 1] which should be decided in the begging of the algorithm by the 
user. The crossover scheme can be carried out in two ways: binomial and 
exponential. In the current work the binomial crossover scheme is 
adopted. The later performs crossover on each of the D components of 
the donor vector D(i) and the target vector X(i) and generates the trial 
vector U(i) according to the following operation: 

U(i)
j = {

D(i)
j if r(i)j ≤ pc OR j = δ(i)

X(i)
j if r(i)j > pc AND j ∕= δ(i)

j = 1, 2…,D (7)  

where, U(i)
j is the j-th component of the trial vector U(i); D(i)

j is the j-th 

component of the donor vector D(i) and X(i)
j is the j-th component of the 

target vector X(i). Moreover, r(i)j = rand (0, 1) is a uniform random 
number on the interval [0, 1] and independently generated for each 
component j and for each solution i; δ(i) = randint(1, D) is an integer 
randomly chosen from 1 to D and newly generated for each solution i. 

If the trial vector violates the bounds of the decision variable pa-
rameters, it is necessary to bound the new solution in the following 
manner: 

U(i)
j = {

min
{

U(i)
j ,XUB

j

}
if U(i)

j ≥ XUB
j

max
{

U(i)
j ,XUB

j

}
if U(i)

j ≤ XLB
j

j = 1, 2,…D (8) 

Once the algorithm has generated all the NP trial vectors, then a 
greedy selection strategy is employed between the target vector and the 
trial vector. Population is than updated: 

X(i)
new= {

U(i) if F
(
U(i)) < F

(
X(i))

X(i) if F
(
U(i)) ≥ F

(
X(i)) (9) 

Whichever vector is better or whichever solution has the lowest 
objective function value will survive and update the population. The 
above procedure must repeat multiple times because this is the gener-
alized structure of metaheuristic techniques. The procedure is stopped 
after the maximum number of iterations T is reached. T is the user- 
defined parameter which should be fixed by the user in the beginning 
of procedure. 

The pseudocode for DE is shown in Fig. 4. 
The basic DE/Rand/1/Bin scheme is carried out in this work, but at 

least 10 different schemes have been formulated. For more detail on this 
topic, refer to Price et al. [36]. 

4.2. Implementation of the teaching learning based optimization 
algorithm 

As in the case of DE, the user should define a population matrix of Np 

Fig. 5. Pseudocode of the Teaching-Learning Based Optimization Algorithm  
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solutions vectors X(i),i = 1, 2, …, Np generated using uniformly 
distributed random numbers within the domain of decision variables of 
the minimization problem. In TLBO the population size indicates the 
number of students, and the decision variable parameters indicates the 
subjects offered in the class. The TLBO learning process is divided into 
main stages: Teacher phase and Learner phase. In the first phase a new 
solution is generated with the help of the teacher solution and the mean 
of the population. Assume X(i) = (X(i)

1 , X(i)
2 ,…,X(i)

D ) is the position of the 
i-th solution (student) in the population, the learner with the least 
objective function value is identified as a teacher Xteacher = Xf(X) = min and 
the mean position of the class with NP learners can be expressed as Xmean 

= N− 1
P ⋅

∑NP
i=1Xi. Once the teacher solution and the mean solution are 

evaluated, the position of current i-th learner X(i) which undergoes 
teacher phase is updated by the following equation: 

X(i)
new = X(i) + R. ∗ (Xteacher − TF⋅Xmean) (10) 

R = rand(0, 1, [1, D])is a random 1-by-D vector which elements are 
uniformly distributed within [0, 1] and the symbol .* indicates an ele-
ments by elements multiplication. Tf = randint(1, 2) is an integer 
random number, called the teaching factor, it has to be either 1 or 2. 
Before evaluating the objective function of the new solution, it is 
important to ensure that the new solution does not violates the lower 
and the upper bound of the decision variables. The objective function is 
to be evaluated only for the solution within the bounds. If the new so-
lution violates the bounds than it is necessary to bound the new solution 
in the following manner: 

X(i)
new,j= {

min
{

X(i)
new,j,XUB

j

}
if X(i)

new,j ≥ XUB
j

max
{

X(i)
new,j,XUB

j

}
if X(i)

new,j ≤ XLB
j

j = 1, 2,…D (11) 

Once the new solution is within the bound of the decision variables, 
the objective function of the new solution is evaluated. After this step, a 
greedy selection is performed to update the population: 

X(i)
new= {

X(i)
new if F

(
X(i)

new

)〈
F
(
X(i))

X(i) if F
(
X(i)

new

)
≥ F

(
X(i)) (12) 

If F(X(i)
new) < F(X(i)), the new solution enters the population in place of 

the old solution which was used to generate it otherwise the new solu-
tion will be discarded and the old solution will be maintained. 

In the second phase a new solution is generated starting from the 
current solution X(i), with the help of a partner solution. The partner’s 
solution is a randomly selected solution from the population matrix. Let 
the partner solution be X(p), with p being an integer number randomly 
chosen between 1 and Np and p ∕= i. The new solution evaluated in the 
learning process can be expressed by the following equation: 

X(i)
new= {

X(i) + R. ∗
(
X(i) − X(p)) if F

(
X(i)) < F

(
X(p))

X(i) − R. ∗
(
X(i) − X(a)) if F

(
X(i)) ≥ F

(
X(p)) (13)  

where F(X(i)) is the objective function value of the current solution, F 
(X(p)) is the objective function value of the auxiliary solution It is worthy 
of note that TLBO does not require any user-defined parameter for the 
Teacher phase and the Learner phase, thus making the implementation 
of TLBO much simpler than DE. Again, the newly generated solution in 
the learner phase X(i)

new must undergo corner bounding, expressed by Eq. 
(11), and after that the objective function of the new solution is evalu-
ated, and a greedy selection strategy is performed as described by Eq. 
(12). If X(i)

new is better than the current solution X(i), X(i)
new is used to replace 

X(i), otherwise the old solution X(i) is maintained and the new solution 
X(i)

new is discarded. 
The above procedure must be repeated multiple times and it is 

stopped after the maximum iteration number T is achieved. T is the user- 
defined parameter which is fixed in the beginning of the procedure. 

The pseudocode for TLBO is shown in Fig. 5. 

It is noteworthy that the original version of TLBO by Rao et al. [34] 
employed a duplicate removal strategy. In the current work the dupli-
cate removal strategy was not employed since the probability to have 
two duplicate solutions is very low. For more information on the TLBO 
algorithm refer to Rao [37]. 

5. Simulation results and comparisons of differential evolution 
with teaching learning based optimization 

In this section, in order to compare the two proposed algorithms 
(Section 4), ten different real scale downbursts events occurred in the 
port areas of La Spezia, Genoa and Livorno between October 2011 and 
October 2015 are examined. The geographic position of the three port 
areas and the anemometer locations that recorded these events are given 
in Fig. 1, while the main characteristics of each downburst event are 
briefly described in Table 1. These ten events are simulated solving the 
Xhelaj et al. [8] analytical model with the two optimization algorithms, 
namely the DE and TLBO algorithms. The application of these algo-
rithms to the downburst model is performed through the definition of 
the optimization Problem (5) described in Section 3, and its imple-
mentation as reported in Section 4. Since Problem (5) represents a 
single-objective, nonlinear and bound constrained optimization prob-
lem, the user should define carefully, according to the physics of the 
problem in hand, the lower and the upper bound of the D = 11 decision 
variable parameters which ultimately defines the search space Ω ⊆ RD 

where the optimization should be performed. This is done in Section 5.1. 
In order to do a fair comparison between the two algorithms, it is 
important that the simulation sittings are the same for both the algo-
rithms. Moreover, as explained in Section 4.2 the implementation of the 
DE is more difficult with respect to TLBO, since the choice of the user 
defined parameter in DE can have a large effect on optimization per-
formance. The common simulation settings for both of the algorithms 
and the tuning of the parameters for the DE algorithm are presented in 
Section 5.2. The comparison between the algorithms is based on the 
performance of each algorithm in finding a reasonably good optimal 
solution of Problem (5) for each of the ten test-cases, given the incom-
plete information provided by the objective functions and the limited 
resource capacity. The metric to evaluate the algorithms efficiency is 
based on the convergence behaviour of the objective function towards 
the best solution as the number of iterations increases. Section 5.3 dis-
cusses the comparisons of the two algorithms in the case of the ten 
downbursts event present in the current study. 

Table 3 
Upper and lower bound of 4 parameters as reported by Wilson et al. [38].  

1 Maximum radial velocity Vr,max(m/s) 6to18.5 
2 Downdraft radius* R(m) 500to1650 
3 Radial distance at which Vr,max occurs Rmax(m) 750to3350 
4 Period of intensification at which Vr,max occurs Tmax(min) ∼ 2 to 28  

* The downdraft radius is assumed by the authors of the current paper to 
coincide approximately with the distance from the downburst center where the 
radial velocity Vr ≥ 2 m/s. 

Table 4 
Upper and lower bound of 7 parameters as reported by Hjelmfelt [18].  

1 Maximum radial velocity Vr,max(m/ 
s) 

6to21 

2 Downdraft radius R(m) 600to1550 
3 Radial distance at which Vr,max occurs Rmax(m) 1000to3500 
4 Period of intensification at which Vr,max occurs Tmax(min) 2to16 
5 Duration of the downburst event, from 

intensification to decay 
Tend(min) 8.1to31.4 

6 Downburst translation velocity Vt 4to8 
7 Low-level ABL wind speed Vb 3to11  
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5.1. Definition of the lower and upper bound of decision variable 
parameters 

Dealing with thunderstorm downburst events, it is important to 
carefully define the lower and the upper bound of the decision variable 
parameters (Table 2), as is expected for the solution of Problem (5). To 
give a reasonable lower and upper bound of the decision variable pa-
rameters, the authors performed a literature review on the values of 
these parameters. In the following, a selection of some relevant scientific 
contributions on this matter is reported. 

Table 3 summarises the main findings from Wilson et. al [38], who 
reported some parameters based on radar reconstruction of the space 
and time scale of 38 downburst events extracted during the Joint Airport 
Weather Studies (JAWS, 1982) Project [39]. 

According to Wilson et. al [38], the average maximum radial velocity 
was 12 m/s. The average downburst radius was 900 m and the average 
radial distance from the downburst center when the maximum radial 
velocity occurs was 1550 m; consequently, on average the dimensionless 
parameter ρ = Rmax/R is equal to ρ = 1.70. Lastly the average period of 
intensification at which Vr,max occurs was 6.4 mins, and 95 % of the 
downbursts reached maximum intensity before 10 minutes. It should be 
noted that in [38], the intensification time starts when the radial ve-
locity Vr ≥ 5 m/s, this means that the time the downburst passes from 
zero to the maximum radial velocity Vr,max is grater than the data pro-
vided by Wilson et al. [38]. 

Table 4 summarises the main finding from Hjelmfelt [18], again 
based on radar reconstruction of 27 downburst events extracted from 
the JAWS Project. In this work, Hjelmfelt [18] reanalyze some cases 
already studied by Wilson et al [38]. 

According to the study carried out by Hjelmfelt [18], the average 
maximum velocity was 12 m/s. The average downburst radius was 900 
m and the average radial distance from the downburst center when the 
maximum velocity occurs was 1550 m; These results confirm the 

observation carried out by [38]. However, the average period of inten-
sification at which Vr,max occurs was 7.8 minutes, and ∼95% of the 
downbursts reached maximum intensity before 15 minutes. The mean 
duration of the entire downburst event was ∼ 16 minutes. It is worthy of 
note that the starting and the decay phase of the downburst event is 
measured when the radial velocity Vr is larger than zero, which means 
that the event itself has a slight longer life cycle that the data given by 
Hjelmfelt [18]. In the wind engineering practice, when dealing with 
thunderstorm downbursts, an important parameter that plays a major 
role on design and safety of structures with respect to the actions of 
downburst winds, is the dimensionless radial position of the maximum 
velocity ρ = Rmax/R. Table 5 summarizes the values of ρ that can be 
found in literature. 

According to the performed literature review, the lower and upper 
bounds for the optimization Problem (15) were chosen as reported in 
Table 6. The simulation space domain for the downburst is an area of 20 
× 20 km2 and the grid size in x and y direction is 50 m. The station that 
records the passing of the downburst is located at the center of this 
domain. Downburst can come from any direction; hence the translation 
direction ranges from 0◦ to 359.9◦. The same holds for the low-level ABL 
wind direction. 

5.2. Computer configuration and algorithm’s parameters settings 

All the simulations in the current study were performed in MATLAB 
R2020a (serial computing) on a 64-bit Windows 10 Home Edition with 
Intel i7 (7th Gen) central processing unit (4 cores) at 3.20 GHz and 16 
GB of RAM. According to the structure of the pseudocodes given in 
Section 4, both the algorithms can run in parallel, using all the available 
core resources, which considerably reduces the computational time. In 
order to properly compare the performance of algorithms, the simula-
tion settings should be the same for both of them. As already said, TLBO 
algorithms require only the specification of the population size and the 
maximum number of iterations for the termination criteria, whereas DE 
requires also the amplification factor f and the crossover probability pc. 
The choice of the right population size is very important in all meta-
heuristic methods, because if the population size is too small there will 
be not enough diversification, too few solutions will explore the search 
space and the algorithm will most probably converge prematurely to-
wards a basin of attraction of a local minimum. A good rule of thumb in 
metaheuristic is to use a population size NP = 10*D [35]. Since D = 11, 
the populations size for both the algorithms is NP=110. The number of 
maximum iterations for both algorithms is T = 500. Since both DE and 
TLBO are stochastic in nature the algorithms are run independently 256 
times in order to achieve a best solution, this choice allows both of the 
algorithms to explore more deeply the search space and to avoid getting 
stuck in local optimal regions. The choice of DE parameters f ∈ [0, 1] and 
pc ∈ [0, 1] can have a large impact on the optimization performance [35, 
36]. According to Zaharie [43], who carried out a mathematical 
convergence analysis concerning these parameters selection, in order to 
obtain a good convergence as the number of iterations increases the 
factor c, defined below, should be greater than 1: 

Table 5 
Summary of dimensionless radial position of maximum horizontal velocity.  

Authors ρ =
Rmax/R 

Comments 

Hjelmfetl (1988) 
[18] 

1.7 From full scale measurements 

Chay et al. (2006) 
[20] 

2 to 2.5 From computational fluid dynamics 

Kim and Hangan  
[40] 

2.2 From numerical simulations of steady and 
unstedy impinging jets 

Xu and Hangan 
(2008) [41] 

2.2 From experimental investigation 

Mason et al. (2011) 
[42] 

2.5 From numerical simulation using the cooling 
approach  

Table 6 
Lower and upper bound of the decision variable parameters for the optimization 
Problem (15).  

1 Maximum radial velocity Vr,max(m/s) 0to40 
2 Downdraft radius R(m) 200to2000 
3 Dimensionless radial distance from 

downburst center at which Vr,max occurs. 
ρ =

Rmax

R
( − )

1.6to2.6 

4 Period of linear intensification Tmax(min) 2to15 
5 Duration of the downburst event Tend(min) 15to45 
6 x-component touchdown location (att = 0) xC0(m) −

10000to10000 
7 y-component touchdown location (at t = 0) yC0(m) −

10000to10000 
8 Downburst translational velocity Vt (m/s) 0to40 
9 Downburst translational direction αt(deg) 0to359.9 
10 Low-level ABL wind speed Vb (m/s) 0to40 
11 Low-level ABL wind direction αb(deg)  1 to359.9  

Table 7 
Algorithms’ parameters setting for DE and TLBO.  

Algorithm Parameter setting 

Common settings (both DE and 
TLBO) 

Population size: NP = 110 
Maximum iterations: T = 500 
Problem dimension: D = 11 
Number of independent runs = 256 
Average time for a single simulation ∼ 30 
minutes 

DE Amplification factor: f = 0.85 
Cross over probability: pc = 0.8  
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c = 2⋅f 2⋅pc − 2⋅
pc

NP
+

p2
c

NP
+ 1 > 1 

Considering the suggestion given by Storn [35] that a good choice of 
the amplification factor and the crossover probability are respectively f 
∈ [0.5, 1] and pc ∈ [0.8, 1], preliminary tests were performed to 
determine suitable f and pc values to adopt in all the optimization 
problems. According to this preliminary analysis, the values of ampli-
fication factor f= 0.85 and crossover probability pc = 0.8 were chosen, 
which correspond to c = 1.47 > 1 for the Zaharie’s condition. This 
combination of parameters gave the best results in terms of convergence 
in the case of the DE algorithm for all the 10 cases investigated in the 
current work. With the above settings, the average time for a downburst 
simulation was ∼ 30 minutes. 

Table 7 presents the parameters setting of each algorithm. 

5.3. Simulation and result comparisons for ten downburst events in the 
port area of La Spezia, Genoa and Livorno 

In the current section, the results of ten downburst events that 
occurred in the port area of La Spezia, Genoa and Livorno (Table 1) are 
reported. The location of the anemometers that captured these ten 
downburst events are given in Fig. 1. 

A brief meteorological survey and weather scenarios of the thun-
derstorm occurred in the port area of La Spezia in 2012-04-11 is given in 
Xhelaj et al. [8], while the event that occurred in 2011-10-25 is 
described in Burlando et al. [14]. Considering the port area of Genoa, 
again a meteorological survey of the downburst occurred on 2012-09-30 
is given in Xhelaj et al., [8]. As far as the port area of Livorno is 

concerned, a brief weather scenario of the downburst event occurred on 
2015-09-13 is given in [12], while, a very detailed meteorological sur-
vey and weather scenarios analysis on the thunderstorm occurred on 
2012-10-01 is provided by [15]. 

The simulation (reconstruction) procedure is carried out by finding a 
reasonably good solution of the optimization Problem (15). For each 
case the optimization procedure is performed using the DE and the TLBO 
algorithms. To avoid distinguishing each downburst event (i.e., opti-
mization problem) by the location and the date, a code was given to each 
problem as shown in Table 8. Results are then compared together in 
order to determine which algorithm performs better. For the algorithms 
parameters setting refer to Table 7. The metric for evaluating the algo-
rithm’s performance is mainly based on the convergence behavior of the 
objective function value towards the best solution. More specifically, the 
comparison metrics are based on the best, mean and standard deviation 
(Std) objective function value of the 256 independent runs that both 
algorithms reach after 500 iterations. The best objective function value, 
or the best solution, represents the lowest value reached by the 256 
independent runs after 500 iterations (i.e., the best optimum solution of 
the optimization problem). The mean objective function value gives 
information about the overall performance of the 256 runs after 500 
iterations. If the average value approaches the best solution, all the 256 
independent runs converge approximately to the best solution achieved 
by the algorithm. However, there is no guarantee that the best solution 
coincides with the global minimum of the optimization problem. The Std 
value of the 256 objective functions after 500 iterations describes the 
amount of variation or dispersion from the mean value of these runs. 
Without however knowing the nature of the best solution provided by 
the algorithm, that is, whether the algorithm reaches a global or local 

Table 8 
Algorithm convergence results for 256 independent runs in terms of best, mean and Std for the ten downburst events in the port areas of La Spezia, Genoa and Livorno.  

Optimization Problem DE Algorithm TLBO Algorithm 
Location Date Code Best Mean Std Best Mean Std 

La Spezia 2011-10-25 S1 0.4462 0.4518 0.0024 0.4440 0.4469 0.0061 
2012-04-11 S2 0.3681 0.3742 0.0033 0.3597 0.3623 0.0038 
2012-04-19 S3 0.3367 0.3369 0.0001 0.3362 0.3365 0.0005 
2014-07-25 S4 0.1112 0.1148 0.0029 0.1108 0.1266 0.0392 
2014-07-25 S5 0.6647 0.6846 0.0090 0.6419 0.6746 0.0598 

Genoa 2012-09-30 G1 0.3549 0.3583 0.0017 0.3487 0.3494 0.0038 
2012-10-28 G2 0.3027 0.3032 0.0027 0.2939 0.2996 0.0293 

Livorno 2012-10-01 L1 0.0669 0.1216 0.0169 0.0531 0.1214 0.0304 
2015-09-13 L2 0.0675 0.0777 0.0016 0.0647 0.0772 0.0254 
2015-10-04 L3 0.2547 0.3201 0.0308 0.2204 0.2851 0.0978  

Fig. 6. Performance chart for the Problem S2, representative of the first group comprised of cases S1, S2, G1, L1 and L3.  
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minimum, then a high variability of the standard deviation of the 256 
best objective functions is an indicator that the algorithm explores the 
search space more deeply and therefore finds more optimal solutions to 
the problem. 

The best solution, the mean and the Std value that both algorithms 
reach after 500 iterations for the ten cases examined in the current work 
are given in Table 8. 

As can be noted from Table 8 in all ten downbursts cases, the algo-
rithm that has better convergence values both in the best solution and in 
the mean value of all the solutions (highlighted in bold) is the TLBO, 
with the exception of the mean value of case S4. 

At the same time TLBO presents for all the ten cases a bigger Std 
(highlighted in bold) than DE. As for cases S1, S2, G1, L1 and L3 the Std 
values achieved with TLBO are higher than DE but nevertheless they 
have the same order of magnitude, while for cases S3, S4, S5, G2 and L2 
the Std values are one order of magnitude bigger in TLBO than in DE. 

This indicates that, for the problem in hand, TLBO finds more optimal 
solutions than DE. 

To further describe the performance of both algorithms in a more 
quantitative fashion, two representative cases of the ten total cases are 
considered. 

The first case is representative of the group containing the cases S1, 
S2, G1, L1 and L3, where the Std values achieved with TLBO are higher 
than DE but still have the same order of magnitude. For this purpose, the 
case S2 is considered as representative of the first group. 

The second case is representative of the group containing S3, S4, S5, 
G2 and L2 where the Std values evaluated with TLBO are one order of 
magnitude bigger than DE. S5 is chosen as representative of the second 
group. 

Fig. 6 shows the “performance charts” for the case S2 (refer to 
Table 8 for the downburst identification) which is representative of the 
first group. 

Fig. 7. Frequency of the observations (histogram) of the 256 best objective function values relative to Problem S2, representative of the first group comprised of 
cases S1, S2, G1, L1 and L3. 

Fig. 8. Simulation results (in terms of slowly varying wind speed (top) and direction (bottom) for the Problem S2.  
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Fig. 9. Downburst wind field reconstruction for 
the Problem S5 using the overall best solution 
achieved with the TLBO algorithm. (a) Down-
burst reconstruction at simulation time = 8 
minutes; (b) Downburst reconstruction at 
simulation time = 12 minutes. The red dot in-
dicates the position of station/anemometer and 
coincides with the origin O of the reference 
frame, the blue circle indicates the downburst 
center relative to the simulation time. The blue 
dashed line indicates the downburst path.   

Fig. 10. Performance chart for the Problem S5, representative of the second group comprised of cases S3, S4, S5, G2, and L2.  

Fig. 11. Frequency of the observations (histogram) of the 256 best objective function values relative to Problem S5, representative of the first group comprised of 
cases S3, S4, S5, G2, and L2. 
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The performance chart describes for both the algorithms the 
convergence of the objective functions as the number of iterations in-
creases. This chart contains the upper and lower envelope of all the 256 
convergence curves. The area between the lower and upper envelope 
contains within it the trend of the objective function values for all the 
256 independent runs as the number of iterations increases. Obviously 
at the end of the 500 iterations, the value of the upper envelope co-
incides with the worst objective function value (worst solution) while 
the lower envelope coincides with the best objective function value (best 
solution) that both the algorithms have found. In the performance chart 
it is traced (dashed line) for both the algorithms the mean convergence 
curve as the number of iterations increases for the 256 independent 
runs. The analysis of the performance charts shows an important char-
acteristic of the two algorithms, which can be crucial for reducing the 
computational time in pseudo-operational applications of this model. In 
fact, in all of the five cases belonging to the first group, the lower en-
velope curve and the mean convergence curve associated with TLBO 
have much lower values than the DE counterpart, except when they get 
closer to the maximum iteration number. The two curves reach almost 
stable values after 50 to 100 iterations for TLBO, which indicates that 
TLBO convergences at a much faster rate than DE (almost 1 order of 
magnitude, i.e. ~50 against ~500). The rate of convergence of the al-
gorithms is a very important element when comparing algorithms, 
because it allows to reduce the computation cost by reducing the 

maximum number of iterations (stopping criterion). This fact becomes 
very relevant, in particular, when dealing with the simulation (or opti-
mization) of a large number of downburst events. 

Fig. 7 shows for the case S2, representative of the first group, the 
frequency of the observations (histogram) of the 256 best objective 
function values 

The Fig. shows the position of the mean for both the algorithms and 
explains also why the TLBO has a slightly greater value of the Std with 
respect to DE. The histogram of TLBO revels that TLBO is capable of 
detecting some solution which are far from the mean value. The pres-
ence of these outlier solutions increases the Std of TLBO with respect to 
DE, which demonstrates its greater flexibility in exploring the search 
space of the parameters. 

Fig. 8 shows for the problem S2, the time history of the overall best 
simulation results (i.e., the one that produce the lowest objective func-
tion), in terms of slowly varying mean wind speed (top) and direction 
(bottom) for both the algorithms, compared to the recorded data. 

The Fig. show in a qualitative way the goodness of fit between 
simulations and full-scale measurements. Both algorithms give very 
similar best results, as expected according to their corresponding 
objective function values reported in Table 8. 

Fig. 9 shows the downburst wind field reconstruction and evolution 
for the Problem S2 using the overall best solution achieved with the 
TLBO algorithm. The slowly varying downburst mean wind field is 

Fig. 12. Simulation results (in terms of slowly varying wind speed (top) and direction (bottom-) for the Problem S5.  

Fig. 13. Downburst wind field reconstruction 
for the Problem S5 using the overall best solu-
tion achieved with the TLBO algorithm. (a) 
Downburst reconstruction at simulation time =
15 minutes; (b) Downburst reconstruction at 
simulation time = 21 minutes. The red dot in-
dicates the position of station/anemometer and 
coincides with the origin O of the reference 
frame, the blue circle indicates the downburst 
center relative to the simulation time. The blue 
dashed line indicates the downburst path.   

A. Xhelaj and M. Burlando                                                                                                                                                                                                                   



Advances in Engineering Software 173 (2022) 103203

14

reconstructed at the height of the station where the original downburst 
signal was recorded (refer to Table 1 for the actual anemometer height 
above the ground level). Fig. 9 (a) captures the downburst phenomena at 
the time of its maximum intensification, which for the current case is 8 
minutes, while Fig. 9 (b) shows the downburst during its decay phase, 4 
minutes after the maximum intensification. 

Fig. 10 shows the “performance charts” for the case S5 (refer to 
Table 8 for the downburst identification) which is representative of the 
second group. 

Also, for the second group, with the exception of the case S3, the 
lower envelope curve associated with TLBO presents lower values than 
the DE counterpart, except when they get closer to the maximum iter-
ation number, which again indicates that TLBO converges faster than 
DE. 

Fig. 11 shows for the case S5, representative of the second group, the 
frequency of the observations (histogram) of the 256 best objective 
function values. 

The Fig. shows the position of the mean for both the algorithm. TLBO 
in this case explore more deeply the search space in the neighbourhoods 
of the mean position as is evident from the presence of more outlier 
solutions which are farther from the mean value. The frequent presence 
of the outlier solutions describes therefore the reason why the Std de-
viation of TLBO is for the second group nearly one order of magnitude 
greater than the corresponding DE. Therefore, outliers are here 
responsible for the larger variance of TLBO distribution. Conversely, DE 
produces a more compact cluster of solutions that are similar with each 
other, while TLBO produces a wider cluster or more than one cluster of 
solutions which in principle could be different from each other. This last 
feature is desirable because the existence of more optimal solutions in-
dicates that the data provided in input by the objective function (i.e., the 
recorded slowly varying mean wind speed and direction) is in some 
circumstances not really enough to overall understand the downburst 
which took place and consequently more data is needed for the correct 
reconstruction of the real physical phenomenon. Having however 
several solutions to the problem in hand and gathering supplemental 
information regarding the downburst to be simulated, such as Radar/ 
LiDAR or Satellite data, it is therefore possible to decrease the amount of 
uncertainty by choosing the correct solution which is also consistent 

with the supplemental data. 
Fig. 12 shows for the problem S5, the time history of the overall best 

simulation results (i.e., the one that produce the lowest objective func-
tion), in terms of slowly varying mean wind speed (top) and direction 
(bottom) for both the algorithms, compared to the recorded data. The 
Fig. presents some detachment from the recorded wind speed. A reason 
for this detachment is due to the fact that the La Spezia site (refer to 
Fig. 1) has a complex orography and can substantially perturb the 
downburst outflows. This aspect is not included in the analytical model 
yet. However, as far as the wind direction is concerned, there is a very 
good correlation between recoded and simulated data. 

Fig. 13 shows the downburst wind field reconstruction and evolution 
for the Problem S5 using the overall best solution achieved with the 
TLBO algorithm. The slowly varying downburst mean wind field is 
reconstructed at the height of the station where the original downburst 
signal was recorded (refer to Table 1 for the actual anemometer height 
above the ground level). Fig. 13 (a) captures the downburst phenomena 
at the time of its maximum intensification, which for the current case is 
15 minutes, while Fig. 13 (b) shows the downburst during its decay 
phase, 6 minutes after the maximum intensification. 

Table 9 shows the value of the parameters that produced the best 
overall solution using TLBO and DE algorithms for the ten downburst 
events. The values of these parameters allow to reconstruct the down-
burst time-space evolution through the analytical model for each of the 
ten cases as is seen in the Fig. 9 and 13. The two algorithms produce 
always very similar results, highly correlated to the experimental mea-
surements, which confirms the ability of the minimization problem to 
carefully match the temporal profiles of the observed data. Table 9 also 
reports, except for the touch-down locations that would be meaningless, 
the mean and the Std values of these parameters for the ten cases 
considered. These values, that are produced from both the algorithms, 
are coherent with the mean values currently found in the literature and 
reported in Section 5.1. 

6. Conclusions and prospects 

This paper proposes a comparison between two metaheuristic opti-
mization algorithms, namely the Differential Evolution (DE) and the 

Table 9 
TLBO & DE best simulations results. Downburst parameters for the ten downburst events in the port area of La Spezia, Genoa and Livorno. Solutions related to DE are 
given in parentheses.   

TLBO & (DE) - Best Solution - Decision Variable Parameters 
Code xC0(m) yC0(m) R(m) ρ( − ) Vr,max(m/s) Tmax(min) Tend(min) Vt(m/s) αt(deg) Vb (m/s) αb(deg) 

S1 -126.79 
(-292.57) 

-1288.23 
(-1357.61) 

350.00 
(356.48) 

1.80 
(1.88) 

15.92 
(16.02) 

4.77 
(4.30) 

30.76 
(27.81) 

3.51 
(3.94) 

169.56 
(177.14) 

7.54 
(7.59) 

168.15 
(167.19) 

S2 -1135.60 
(-1071.34) 

-2884.44 
(-2767.71) 

650.00 
(648.69) 

2.48 
(2.48) 

17.12 
(19.94) 

8.00 
(8.07) 

40.00 
(29.81) 

4.00 
(4.02) 

180.00 
(179.45) 

3.83 
(3.69) 

137.45 
(136.50) 

S3 1611.28 
(1669.69) 

827.17 
(802.85) 

950.00 
(889.99) 

2.40 
(2.40) 

25.98 
(25.67) 

15.00 
(14.94) 

21.67 
(23.22) 

7.00 
(6.52) 

160.49 
(159.52) 

7.30 
(7.35) 

220.61 
(220.75) 

S4 -4278.99 
(-4032.95) 

-839.46 
(-876.01) 

1452.29 
(1743.19) 

1.98 
(1.98) 

15.64 
(15.81) 

3.04 
(3.06) 

25.93 
(25.95) 

4.53 
(4.35) 

230.05 
(228.66) 

4.66 
(4.55) 

123.61 
(124.76) 

S5 -6127.60 
(-7131.21) 

4442.67 
(2542.29) 

1509.33 
(1150.76) 

2.34 
(2.41) 

23.78 
(24.03) 

15.00 
(11.06) 

24.08 
(33.36) 

3.58 
(3.57) 

260.61 
(274.90) 

1.58 
(1.89) 

112.51 
(121.38) 

G1 -433.53 
(-545.59) 

-3034.62 
(-2708.73) 

579.05 
(493.32) 

2.50 
(2.46) 

16.97 
(16.81) 

11.12 
(12.75) 

27.00 
(29.45) 

2.40 
(2.03) 

210.46 
(211.38) 

2.54 
(2.30) 

19.25 
(20.10) 

G2 1054.36 
(1124.16) 

-11.36 
(42.88) 

999.98 
(1099.03) 

2.14 
(2.02) 

18.27 
(19.92) 

10.00 
(10.76) 

20.34 
(18.67) 

6.56 
(6.69) 

170.00 
(170.00) 

14.79 
(14.82) 

174.15 
(174.31) 

L1 -463.33 
(-694.52) 

877.56 
(1272.46) 

744.84 
(1122.89) 

2.06 
(2.04) 

14.55 
(16.28) 

13.08 
(13.01) 

28.58 
(25.89) 

1.98 
(2.81) 

40.82 
(35.87) 

3.16 
(3.30) 

357.45 
(359.60) 

L2 -4718.21 
(-4127.32) 

5268.21 
(4185.79) 

1699.58 
(1514.45) 

2.40 
(2.33) 

25.43 
(28.56) 

4.01 
(4.15) 

22.15 
(23.34) 

5.68 
(4.12) 

309.39 
(308.69) 

6.73 
(6.63) 

179.50 
(177.56) 

L3 537.17 
(251.08) 

6061.05 
(5147.39) 

1499.49 
(1360.68) 

2.36 
(2.16) 

23.78 
(27.19) 

8.83 
(6.60) 

30.38 
(29.44) 

4.42 
(4.01) 

330.97 
(330.47) 

3.53 
(2.74) 

194.63 
(201.16) 

Mean values 1043.46 
(1037.95) 

2.25 
(2.22) 

19.74 
(21.02) 

9.29 
(8.87) 

27.09 
(26.69) 

4.37 
(4.21) 

213.30* 
(217.93)* 

5.57 
(5.49) 

154.32* 
(155.68)* 

Standard deviations 468.31 
(445.56) 

0.24 
(0.22) 

4.46 
(4.95) 

4.38 
(4.22) 

5.80 
(4.21) 

1.65 
(1.44) 

1.36 (1.38) 3.83 
(3.88) 

1.19 (1.18)  

* Mean value and Std are evaluated using circular statistics 
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Teaching-Learning-Based Optimization (TLBO), which are used to 
evaluate the parameters of the Xhelaj et al. [8] downburst model, 
applied to ten full-scale downburst events. The analysis of the perfor-
mance of the two algorithms for the 10 optimization problems consid-
ered led to the following conclusions:  

• TLBO is easier to use than DE, as it only requires the population 
number and the maximum number of iterations as input, while DE, in 
addition, requires also defining the amplification factor f and the 
crossover probability pc. Differential evolution performance is 
closely linked to the choice of these two parameters which should be 
calibrated by the user which inevitably leads to a higher computa-
tional time when using the DE algorithm.  

• The numerical results of the objective functions, in terms of best, 
mean and std obtained for the ten cases, show that TLBO has always 
better performance in terms of best ad mean result, while DE for all 
the ten cases has a lower std value than TLBO. The later suggest that 
TLBO explores more deeply the search space than DE.  

• The convergence analysis for the ten cases considered reveals that 
TLBO outperforms DE. TLBO has a faster convergence rate than DE, 
which makes TLBO more efficient since it is possible to reduce the 
computational cost.  

• The results of both algorithms provide, when the best solution is 
considered, a very good match between the observed and simulated 
time histories of slowly varying mean wind speed and direction.  

• The wind field reconstruction for the ten downburst cases using 
TLBO and DE as optimization algorithms provides decision value 
parameters, associated to the best solution, which are coherent with 
the values present in literature. 

It is worth noting that the result obtained by both the algorithms 
depends mostly on the definition of the objective function and the search 
space. In fact, in the current work it is used only the information given 
by one anemometer that records the passage of the downburst event. 
Clearly, if more anemometers measure the same event, this new 

information could be incorporated in the definition of the objective 
function. For example, staying in the realm of single-objective function 
minimization, it will be possible to define the objective function as the 
sum of relative errors for different anemometers. This new information 
can greatly enhance the robustness of the optimization procedure re-
sults. Analogously, the optimization procedure could be made more 
robust using different kind of meteorological data, e.g., Radar or LiDAR 
measurements, which is expected to narrow the range of variation of the 
parameters hence reducing further the search space. 

In perspective, as the TLBO algorithm turned out to be fast- 
performing and accurate enough for its application as an optimization 
technique to the Xhelaj et al. [8] downburst model, this result pave the 
way to the application of the model in two different ways. On the one 
hand, a wide catalogue of downburst events, and related parameters, 
will be obtained and the statistical analysis of these parameters will 
enable to perform long term Monte Carlo simulation on downburst 
events to create, for each parameter, the associated extreme value dis-
tribution. These distributions will be used by engineers in the design 
process for the correct evaluation of downburst wind loading on struc-
tures. For example, it will be possible to express the maximum down-
burst wind velocity as a function of the mean return period, which is a 
key issue of structural safety and sustainability. On the other hand, the 
authors will continue studying the uncertainties related to the parame-
ters found using the TLBO algorithm for each downburst reconstruction. 
Since the algorithm is stochastic, it is possible to perform a large number 
of independent runs of a single downburst event and study the vari-
ability of the 11 parameters related to the analytical model from a sta-
tistical point of view. 

Eqs. 113 
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Appendix A 

In the current appendix the calculation of Relative Wind Speed and Direction Error is explained in detail. As far as the Relative Wind Speed Error 
FWS(X) is concerned, let VO(X) = {VO1VO2…VON} be the set of simulated wind speed data at the observing point O in Δt = 1 h and let V = {V1V2…VN} 
be the set of data points of the recorded wind speed for Δt = 1 h. N is the total sample of simulated wind speed data in 1 h. Since the simulation time 
step in this work is assumed to be ΔtS = 1 s, then N = 3600. The Relative Error between simulated and recorded wind speed data is defined as follows: 

FWS(X) =
‖ VO(X)− V ‖

2
2

‖ V ‖
2
2

(A1) 

Where ‖ ⋅ ‖2 is the l2 (Euclidean) norm of a vector, ‖ V‖2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1V2
i

√

. In Eq. (A1) the numerator is the square of the Wind Speed Error. So, the 
Relative Wind Speed Error is defined as the normalization of the square of the Absolute Error with the norm squared of the recorded wind speed. 
Applying the definition of the l2 norm Eq. (A1) becomes: 

FWS(X) =

∑N
i=1(VOi(X) − Vi)

∑N
i=1V2

i

2

(A2) 

As for the Relative Wind Direction Error FWD(X), its definition is less trivial than the Relative Wind Speed Error, since wind direction is a circular 
data with a discontinuity in α = 360◦. This is the reason why FWD(X) cannot be computed as FWS(X). To overpass this issue a polar to rectangular 
mapping is introduced for each simulated and recorded wind direction data: αOi(X)⇔rOi(X) = (xOi(X),yOi(X)) = ( − sin(αOi(X)),− cos(αOi(X))) and αi⇔ri 
= (xi,yi) = ( − sin(αi),− cos(αi)), with i = 1, 2, …, N (Fig. A1). Eq. A2 

After this transformation it is possible to define the Relative Wind Direction Error following the same pattern of Eq. (A1): 

FWD(X) =

∑N
i=1‖ rOi(X) − ri ‖

2
2

∑N
i=1‖ ri ‖

2
2

(A3) 

The numerator of Eq. (A3) represents the square of the Wind Direction Error; after expanding the numerator using the definition of the l2 Norm and 
noting that 

∑N
i=1‖ ri ‖

2
2 =

∑N
i=1[sin2(αi) + cos2(αi)] = N, Eq. (A3) becomes: 

FWD(X) =
1
N

⋅
∑N

i=1

{
[sin(αi) − sin(αOi(X))]

2
+ [cos(αi) − cos(αOi(X))]

2} (A4) 

Finally, after expanding Eq. (A4) and using the trigonometric formula: cos(αi − αOi(X)) = sin(αi) ⋅ sin(αOi(X)) + cos(αi) ⋅ cos(αOi(X)) Eq. (A4) 
becomes: 

FWD(X) =
2
N

⋅
∑N

i=1
{1 − cos(αi − αOi(X))} (A5) 

The normalization of the Wind Speed and Direction Error is needed in the construction of the Objective Function in order to combine together the 
Relative Wind Speed and Direction Error. Eq. A5 

Appendix B 

The following appendix provides a detailed analysis of the fact that the uncertainty associated with the anemometric measurements has no impact 
on the uncertainties associated with the model predictions. All the anemometers used in the current study have a sampling rate of 10 Hz and an 
accuracy range of ± 0.01 m/s for the wind speed and ± 1◦ for the wind direction. Considering the uncertainty in the wind velocity, it is worth 
mentioning that for downburst reconstruction/simulation, only the 30 second moving average time histories of the wind speed and direction have 
been used. The moving average operator denoise the original signal and consequently reduce the error present in the measurements. Assuming that the 
measured wind velocity at the generic i-th sample is Vm[i] and the correct velocity is Vc[i], it is possible to assume that Vm[i] = Vc[i] + e[i], where e[i] is 
the instantaneous error present in the i-th measurement; e is a random error and therefore can be viewed as an outcome of a random variable E with a 
specified distribution. This means that each occurrence e[i] can be viewed as the outcome of the corresponding random variable E[i], with i = 1, 2, …, 
N, where N is the length of the measured signal and is equal to N = 36000 samples (i.e., 1 hour time history sampled at 10 Hz). Assuming the in-
dependence of errors it is possible to model the random variables E[i], i = 1, ..., N, as independent and identically distributed. Applying the 30 second 
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moving average operator to Vm[i] it can be shown that the measured moving average wind velocity is given by Vm[i] = Vc[i] + e[i], where e[i]
= 1

M
∑M

k=1e[i+k] with i = 1, 2, …, N − M. In this case, the forward moving average operator is considered. M is the number of samples present in 30 
seconds and so is equal to M = 300. Following the same reasoning as above, the i-th occurrence e[i] can be viewed as the outcome of the random 
variable E[i] = 1

M
∑M

i=1E[i+k]. To assess the uncertainty present in the measured moving average wind speed it is important to evaluate the distri-
bution of the random variables E[i]. According to the Central Limit Theorem (CLT), the probability distribution of the sum of M independent identically 
distributed random variables tend to become Gaussian for large values of M. Assuming that E[i] is a zero mean random variable with standard de-
viation σ, then E[i] for M → ∞ will tend to have a Gaussian distribution with zero mean and standard deviation σ = σ̅̅̅

M
√ →0, which means that in the 

limit case, the dispersion of the uncertainty when considering the measured moving average wind velocity will tend to zero; in this way the moving 
average operator denoise the signal reducing the error present in the measurements. 

From the numerical standpoint, assuming for example that all the random variables E[i] are uniformly distributed in − 0.01 ≤ e ≤ 0.01 m/s, which 
is the accuracy range of the ultrasonic anemometer, then, the standard deviation of the random variables E[i] will be σ = 0.01/

̅̅̅
3

√
= 0.005774 m/s. 

Then, if M = 32 it is possible to show that the probability density function of E[i] is almost identical to the Gaussian probability density function, and for 
M = 300 the approximation perfectly converges to the Gaussian probability density function. Therefore, it is possible to say that all the random 
variables E[i] have a normal distribution with zero mean and variance σ = σ̅̅̅

M
√ = 0.01̅̅̅̅̅̅

3⋅M
√ = 0.000333 m/s. This result ensures that 99.7 % of the outcomes 

e[i] will be in the range: 
− 3⋅ σ ≤ e[i] ≤ 3⋅ σ or − 0.001 ≤ e[i] ≤ 0.001 m/s. So, the error is in the order of mm/s and can be completely ignored since the uncertainty is very 

low. Thus, it is possible to assume that the measured moving average wind velocity Vm[i] coincides with the correct moving average wind velocity Vc[i]. 
The same result holds for the horizontal wind components, namely Vmx[i] = Vcx[i] and Vmy[i] = Vcy[i], and consequently it is possible to extend the 
result to the moving average wind direction. These results indicate that the error in the measurement has very small impact on the uncertainties 
associated with the model predictions. 
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