
Future Generation Computer Systems 148 (2023) 211–224

D

i
t
t
w
h
r
i
t
F
t
h
l
d
t

m
t
[
t
t

c

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Embedded real-time objects’ hardness classification for robotic
grippers
Youssef Amin, Christian Gianoglio ∗, Maurizio Valle
ITEN Department, University of Genoa, Via all’opera Pia 11a, Genoa, 16145, Italy

a r t i c l e i n f o

Article history:
Received 29 November 2022
Received in revised form 22 May 2023
Accepted 3 June 2023
Available online 7 June 2023

Dataset link: https://github.com/YoussifAm
in/Object_Hardness_Classification

Keywords:
Resource-constrained devices
Machine learning
Tactile sensing
Robotic grippers
Hardness classification

a b s t r a c t

Robotic grippers can be equipped with tactile sensing systems to extract information from a ma-
nipulated object. The real-time classification of the physical properties of a grasped object on
resource-constrained devices requires efficient and effective pre-processing techniques and machine-
learning (ML) algorithms. In this paper, we propose a tactile sensing system mounted on the Baxter
robot for the hardness classification of objects. In particular, we pre-processed the raw data with low
computational cost techniques, and we designed three ML algorithms to provide real-time, energy-
efficient, and low-memory impact classification on a resource-constrained microcontroller. Results
show that convolutional neural networks (CNNs) achieve the best accuracy (> 98%), while the
support vector machine (SVM) presents the lowest memory occupation (1576 bytes), inference time
(< 0.077 ms), and energy consumption (< 5.74 µJ).

© 2023 Published by Elsevier B.V.
1. Introduction

For both humans and robots, tactile sensing is crucial for
nteraction with the environment. Tactile information conveys
o humans the physical properties of objects, such as hardness,
exture, weight, shape, etc., allowing us to identify them even
ithout any source of light [1]. Among the object properties,
ardness is considered one of the most important attributes. It
epresents the resistant force of solid materials subject to a local-
zed compressive force. It is also described as the ratio between
he applied force and the displacement created by indentation.
or humans, one of the common ways to estimate hardness is by
apping the surface of an object with a fingertip [2]. In contrast,
ardness detection in robots is still a major limitation due to the
ack of techniques to estimate it. Nevertheless, applying embed-
ed intelligence to tactile sensing systems may help to overcome
his problem.

Embedding intelligence near the sensor location has beco-
e increasingly important as it enables tactile sensing systems

o be involved in a variety of applications such as prosthetics
3–5], sensorized gloves [6,7], and robotics [8–11]. Basically, tac-
ile sensing systems consist of an array of distributed sensors
o measure the applied mechanical stimuli, a readout circuit for

∗ Corresponding author.
E-mail addresses: youssef.amin@edu.unige.it (Y. Amin),

hristian.gianoglio@unige.it (C. Gianoglio), maurizio.valle@unige.it (M. Valle).
ttps://doi.org/10.1016/j.future.2023.06.002
167-739X/© 2023 Published by Elsevier B.V.
signal conditioning and data acquisition, and embedded electron-
ics for elaborating the information. The elaboration procedure
could be either simple or complex depending on the task. As
an example, location and force estimation require simple pro-
cessing algorithms, however, extracting high-level information
regarding object properties demands more sophisticated process-
ing methodologies. The literature presents some works dealing
with high-level information extracted from tactile data in robotics
such as [12–17] for hardness classification, [18–20] for texture
recognition, and [5,21] for slippage detection. In general, the
more detailed the information to be retrieved, the more complex
techniques have to be exploited such as Machine Learning (ML)
algorithms [22,23].

ML has gained popularity as an effective technique in various
fields. Several researchers have focused on developing smart tac-
tile sensing systems based on ML algorithms [19,22,24,25]. In this
context, ML algorithms such as Support Vector Machine (SVM)
and Artificial Neural Networks (ANN) have proven to be effective
for object recognition on tactile data collected from piezoelectric
sensors [15,26].

Moreover, nowadays many companies provide on-demand
network access to a shared pool of configurable computing re-
sources with ML services on the cloud (such as google cloud [27]),
allowing to run machine learning workloads on GPUs and TPU
hardware accelerators using specific ML and AI software libraries
(e.g., TensorFlow). However, cloud computing is often not the
best solution for processing raw streaming data due to data

loss, privacy, network downtime, energy consumption, and cost.

https://doi.org/10.1016/j.future.2023.06.002
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.06.002&domain=pdf
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
mailto:youssef.amin@edu.unige.it
mailto:christian.gianoglio@unige.it
mailto:maurizio.valle@unige.it
https://doi.org/10.1016/j.future.2023.06.002


Y. Amin, C. Gianoglio and M. Valle Future Generation Computer Systems 148 (2023) 211–224

M
t
t
p
i
c
t
s
c
m
s
a
c
i
l
T
t
a

r
s
a
n
5
W
t
t
m
i
t
w
h
m

t
o
d

2

r
i
e
a
l
o
w
s
e
C
p
M

oreover, it is not feasible for tactile sensing applications due
o time requirements (< 50 ms) [28]. Therefore, the general
rend now focuses on embedding intelligence near the sensors by
roviding edge computing capabilities on the system’s dedicated
nterface electronics. Moreover, due to the recent advancement in
hip software and hardware designs, and VLSI integrated circuit
echnology used in micro-controllers manufacturing, embedded
ystems are now capable of supporting the more advanced ma-
hine and deep learning techniques [29,30]. Nevertheless, imple-
enting complex algorithms that allow the processing of input
ignals from multiple sensors on resource-constrained devices,
long with extremely tight latency requirements and low energy
onsumption, is a major challenge [31–40]. One of the solutions
s TinyML [41], which enables intelligence with low memory,
ow power, and low latency, without the need for cloud support.
hese are the main requirements for a tactile sensing system
hat can be used in many wearables, prosthetics, and robotics
pplications.
This paper presents the implementation on the edge of algo-

ithms for the processing of information extracted from tactile
ensing arrays mounted on a Baxter robot. In particular, we
ddressed two hardness classification problems: (1) 5-class hard-
ess classification of objects having the same shape, and (2)
-class hardness classification of objects having a different shape.
e designed pre-processing and ML algorithms that cope with

he deployment on a resource-constrained device. We deployed
he algorithms on edge electronics by achieving real-time perfor-
ance, low energy consumption, and high classification accuracy

n both problems. To the best of the authors’ knowledge, this is
he first paper addressing the embedded implementation of the
hole data processing pipeline for the classification of objects’
ardness through tactile sensing arrays mounted on a robot. The
ain contributions of this paper may be summarized as follows:

• we designed shallow ML algorithms for the deployment on
resource-constrained devices;

• we designed energy efficient and low time latency pre-
processing techniques to extract features from tactile signals
and normalize data;

• we deployed pre-processing techniques and ML models,
written in C language, on an edge device, namely STM32
Nucleo 745ZI-Q board;

• we employed a tactile sensing system, made of sensing ar-
rays and embedded electronics, for two hardness classifica-
tion problems, achieving high accuracy, real-time inference,
low memory footprint, and low energy consumption.

The remainder of this paper is organized as follows: Sec-
ion 2 reports related works, Section 3 the materials and meth-
ds, Section 4 the experimental setup, Section 5 the results and
iscussion, and Section 6 concludes the paper.

. Related works

The research on object properties from tactile data in robotics
anges from the design of new sensors to the formulation of
ntelligent algorithms for extracting information effectively and
fficiently. The authors in [34] presented an implementation of
smart tactile sensing system based on an embedded convo-

utional neural network (CNN) approach addressing a 22-class
bject recognition on a robot. Input data size was reduced as a
ay to optimize the proposed model, using three different input
izes. However, hardware implementation was carried on differ-
nt powerful edge platforms which contain GPUs and/or powerful
PUs, where they compared the performance, time inference, and
ower consumption for each model on each hardware platform.

oreover, Amin et al. in [26], proposed the use of a learning

212
strategy based on a loss function [42] that leads to finding the
best configuration of the prediction model balancing the gener-
alization performance and the computational cost of the whole
elaboration system. To validate their work, the authors integrated
a tactile sensing system on a Baxter robot to collect and classify
data from five daily-life objects, using four different algorithms,
while keeping track of the computational cost in terms of FLOPs.
As a result, the SVM model achieved the best balance between
accuracy and computational cost. However, when the computa-
tional cost was not relevant, the fully connected neural network
achieved the best performance.

In [43], a piezoresistive Tekscan tactile sensing system was
integrated into a robotic finger and pressure map images were
collected upon grasping four objects of different shapes. The
authors developed a novel algorithm to extract features from
the pressure maps, which were used to train an artificial neu-
ral network (ANN) to classify the shape of objects. The model
achieved a high success rate of 90%, but it was not implemented
on constrained devices for real-time classification. Tao et al. [44]
proposed a tactile sensing system based on piezoelectric sen-
sors to detect the surface roughness of fruits and vegetables
using a support vector machine (SVM) algorithm with a radial
basis function kernel. In addition, deep learning (DL) algorithms
namely CNN was employed for feature extraction from spatially
distributed tactile sensors. The model achieved a 91.07% average
classification accuracy while testing four different contact shapes.

A CNN-based model was trained in [45] to process the tactile
information in order to enable successful in-grasp manipulation
with untrained daily objects. As a result, CNN effectively handled
the tactile information from uSkin sensors. Furthermore, tactile
data from 241 distributed tactile skin sensors were used to train
feed-forward and deep neural networks to generate a controlled
in-hand manipulation of objects of different sizes and shapes [46].
In [47], a tiny CNN architecture was implemented on a Cortex-M
micro-controller to classify touch modalities applied on an E-skin.
The CNN model was optimized through layer fusion and buffer
reuse strategies to speed up the inference on the edge devices. As
a result, the CNN model achieved a real-time classification with
low energy consumption and higher classification accuracy com-
pared to other ML algorithms that were employed to classify the
same dataset. In [19], the authors proposed a low-cost Arduino-
based implementation for a real-time and highly accurate tactile
texture classification of data from multiple tactile sensors using
a random forest classifier. Twelve texture classes were used for
the data collection and classification. A memory-efficient feature
extraction method was proposed in order to achieve real-time
processing of data compared to other time consuming feature
extraction methods such as the Fourier transform. In [20], a tactile
sensing system integrated into a robotic fingertip was proposed
for object textures recognition. Tactile data generated from the
PVDF piezoelectric film were used to feed different ML algorithms
including SVM, KNN, and ANN. The results of the SVMmodel were
promising giving classification rates higher than 90%.

In state-of-the-art, some works presented ML-based solutions
for retrieving objects’ hardness information from tactile sensing
systems mounted on robots. One of many ways to create ob-
jects of different hardness is using a 3D printer with different
filling percentages [48]. This method was utilized in [35] to print
nine objects of different hardness levels by applying different
combinations between three different filling percentages and two
types of printing materials. An FPGA-based tactile system was
mounted on a Cartesian robot, and tactile data were collected
upon squeezing the objects. Two algorithms were considered
for classification: K-medoids and KNN. Both algorithms achieved
good classification accuracy reaching up to 86.7%. In [17], the

authors proposed a CNN and recurrent neural network (RNN) to



Y. Amin, C. Gianoglio and M. Valle Future Generation Computer Systems 148 (2023) 211–224

e
G
f
n
p
c
n
t
d
i
s
d
T
9
w
p
r
a
v
d
d
(
5
t
a
m
w
c
t
f
m
s
t
i
p
t
t
F
s
c
(
v
c

h
i
r
t
i
T
c
I
w
h
m
c
t
m
a
a

3

s
M

stimate the hardness of objects with different shapes using a
elSight tactile sensor. The sensor was integrated into a robot’s
ingertip and data was recorded upon grasping the object. The
etwork was able to predict well the hardness of silicone sam-
les with similar shape in the dataset, regardless of the loading
onditions; whereas for objects with rigid surfaces, the model was
ot capable of estimating their hardness well. In [49], a decision
ree and Naive Bayes methods were used to classify objects of
ifferent hardness. Data were collected from grasping objects us-
ng a two-fingered robotic gripper equipped with a tactile sensing
ystem. Models were deployed into the PIC32 micro-controller to
evelop a real-time implementation for hardness classification.
he decision tree outperformed the Naive Bayes model achieving
0% classification accuracy. In [50], piezoresistive tactile sensors
ere integrated into a robotic gripper to explore the material
roperties by squeezing the objects. Tactile information was rep-
esented over a time sequence of images that encode the pressure
pplied over the taxels. Each tactile image is an array of 64
alues (8 x 8). They extracted as features the mean and stan-
ard deviation for each tactile image (one frame) to reduce the
imensionality of the data and use it to train a K-nearest neighbor
KNN) classifier to discriminate rigid and non-rigid objects [50,
1]. Zhang et al. [13] integrated a tactile sensing system into a
wo-finger robotic gripper for the hardness classification of fruits
nd vegetables. The compression test technique was adopted to
easure and label the hardness of the objects. Tactile sensors
ere mounted on both clamps of the gripper, and data were
ollected by grasping each object multiple times. Similar to [50],
he mean and standard deviation were extracted to represent the
eatures of the tactile signals. Two models, i.e. support vector
achine (SVM) and K-nearest neighbor (KNN), were trained to
olve a four-class hardness classification problem. As a result,
he models achieved a high classification accuracy (94.37%) us-
ng simple features. The authors in [15] proposed a two stages
rocessing unit for the elaboration and hardness classification of
actile data. A tactile sensing system was mounted to Baxter robot
o collect data while grasping three objects of different hardness.
or solving 3-class hardness classification problem, five different
ingle-layer feed-forward neural networks (SLFNNs), namely fully
onnected neural network (FC) and extreme learning machine
ELM) [52], were implemented. In the end, the SLFNNs pro-
ided a good generalization performance (96.3%) keeping low the
omputational cost (<13 KFLOPs).
Only a few studies in the state-of-the-art have focused on

ardness classification for robotic applications without address-
ng computational cost problem, although such processing algo-
ithms could be computationally expensive. However, none of
hem have targeted embedded implementation of signal process-
ng and classification of models on resource-constrained devices.
herefore, having a real-time smart tactile sensing system ne-
essitates embedded implementation near the sensor location.
n this context, a pre-processing strategy and ML algorithms
ere proposed to extract high-level information regarding object
ardness from tactile data. This is challenging since processing
odels should have low memory footprint, latency, and energy
onsumption. Moreover, a comprehensive study was conducted
o assess the performance of the proposed models on a com-
ercial micro-controller Unit (MCU) STM32 board, in terms of
ccuracy, memory, latency, and energy consumption to achieve
real-time tactile sensing system for hardness classification.

. Materials and methods

The aim of this paper is to build a real-time robotic tactile
ensing system for hardness classification based on embedded
L implementation. Fig. 1 reports the diagram of the system
213
Fig. 1. Diagram of the information flow between system blocks and tasks
implemented by each block.

workflow divided into three blocks, highlighting the tasks im-
plemented in each block. The first block represents the tactile
sensing system made of sensor arrays, mounted on the clamps
of the Baxter robot, and interface electronics (IE) to collect and
filter the sampled signals. In the second block, a host PC controls
the robot to perform the grasp through the robotic operating
system and, by a LabVIEW GUI, retrieves and saves the data
from the IE. Therefore, data are preprocessed, the features are
extracted, and ML algorithms are trained offline. The trained
models are then deployed on an edge device (third block) to
provide online inference. Besides the models, the edge device
hosts the data processing and features extraction. During the
online inference, the host PC is no longer employed, except for
the Baxter robot programming to perform the grasp actions. The
system was tested on a use case addressing two classification
problems: (i) 5-class hardness classification of 3D printed objects
having the same shape, (ii) 5-class hardness classification of 3D
printed objects having a different shape.

3.1. Materials

3.1.1. Objects selection and hardness level determination
Ten objects were designed and 3D printed (shown in Fig. 2(a)).

Objects were made of two shapes: cubic and cylindrical (five
objects for each shape). The size of the cubes is 7 x 7 x 4 cm.
For the cylinders, the diameter and height are 4 cm and 7 cm,
respectively. The objects were printed using different filling per-
centages, i.e. 3% – 5% – 7% – 10% – 12% for each shape, in order
to obtain different hardness [48,53]. Filaflex material, i.e. Ther-
moplastic Polyurethane (TPU) that presents a large elasticity, was
used to print the objects.

The literature presents different techniques to measure the
hardness of an object. One of them is called the indentation
technique [54], but it suffers from damage on the object’s surface



Y. Amin, C. Gianoglio and M. Valle Future Generation Computer Systems 148 (2023) 211–224
Fig. 2. (a) 3D printed object samples in cubic and cylindrical shapes; (b)
Materials testing machine used to apply compression tests to determine the
hardness level of objects.

because it is subjected to a very large load. Another way to
express the hardness value of an object is by measuring the
maximum force obtained when compressing an object to a pre-
defined displacement [13,55]. The compression technique was
adopted in our experiments by using the Zwick/Roell machine
model Z0.5 (shown in Fig. 2(b)) to measure the hardness value
of the printed objects and provide effective labeling for their
classification. For the experiments, the maximum displacement
and velocity are set to 2 mm and 25 mm/sec, respectively, and
pressure is applied at the center of the objects. For each object,
170 trials were performed.

The loading force-displacement curves corresponding to the
compression tests are shown in Fig. 3. Figs. 3(a) and 3(b) present
the hardness values of the cube and cylindrical objects, respec-
tively, where each color represents an object of a certain filling
percentage. The figures display two trials for each object. For
objects of the same shape, differences in hardness values are
noticed. In addition, some similarities in hardness are observed in
Fig. 3(c) between objects of different shapes. The hardness values
of the cubic objects with the following filling percentages: 3%, 5%,
and 7%, are similar to the filling percentages 3%, 7%, and 10% of
the cylindrical objects, respectively. Therefore, we selected all the
cubic objects for the study and the three cylindrical objects that
match the cubes’ hardness.

The average hardness value of each object is computed over
multiple compression trials. Finally, five categorical hardness lev-
els were extracted: 0, 1, 2, 3, and 4. Table 1 reports the hardness
measurements for the eight objects and the associated label.

3.1.2. Tactile sensing arrays and acquisition system
The primary task was to integrate the tactile sensors into the
gripper of a Baxter robot and collect tactile information from

214
Table 1
Labels of printed objects based on the
hardness value.
Samples Hardness Hardness

value level

Cube 3% 4.13 0
Cylinder 3% 4.62 0
Cube 5% 8.52 1
Cylinder 7% 8.22 1
Cube 7% 12.21 2
Cylinder 10% 12.07 2
Cube 10% 27.19 3
Cube 12% 33.18 4

the objects’ grasp. Two sensor arrays were employed, consist-
ing of P(VDF-TrFE) piezoelectric sensing patches. This technology
has already been exploited in previous works that dealt with
robotic applications [14,15,26]. Different from the literature, the
sensing patches in this work are smaller and have a higher
spatial resolution: each patch consists of 8 sensors of 1 mm
diameter each and 0.6 cm center-to-center pitch. Fig. 4 shows
the structure of a sensing patch. In addition, these sensors have
high-frequency bandwidth that ranges from 0.5 Hz to 1 kHz.
For the experiments, the two sensing patches are shielded using
a special conductive tape (Model tesa 60,262, tesa) in order to
remove external changes by carrying them to the ground. Also,
protective and substrate layers are added to the top and bot-
tom sides of each patch, respectively. The readout circuit, tactile
signal conditioning, and data acquisition are done by a low-
power interface electronics (IE) equipped with ARM-Cortex M0
micro-controller and a DDC232 analog-to-digital converter with
a sampling frequency of 2 KSamples/sec. The system, made of
tactile patches and IE, is integrated into a Baxter robot (Fig. 5).
The gripper’s clamps were customized to fit the patches’ size,
while the IE was placed on the robotic arm near the sensors and
fastened with an elastic fabric strap. Eventually, a host PC was
used to control the displacement and grasping time of the gripper
using the robotic operating system (ROS), while a LabVIEW GUI
was designed for collecting, visualizing, and saving tactile data
received from the IE in real-time.

3.2. Methods

3.2.1. Data collection and pre-processing of tactile information
We programmed the IE to acquire tactile data from 16 chan-

nels simultaneously and filter the data from each channel using
a two-sample Moving Average filter (MA): y[i] = αx̃[i] + (1 −

α)y[i−1]; where α is a user-defined parameter and x̃ is the tactile
signal. The Baxter robot was programmed to perform grasp-
release actions on the objects by setting the gripper velocity
Fig. 3. Loading force-displacement compression curves of cubes and cylinders.



Y. Amin, C. Gianoglio and M. Valle Future Generation Computer Systems 148 (2023) 211–224

a
r
w
e
t

j
g
p
t
c
r
w
t
e

t
f
p e

a
o
c
T
C
M

3

l

m

Fig. 4. Sensing patch structure.

nd displacement of the manipulator to 5 mm/s and 2 mm,
espectively. Tactile data were collected from the 16 channels
hile applying 170 grasp-release actions on each object. During
ach grasp-release action, the gripper closed the clamps for 1.2 s,
hen opened them for 2 s.

The piezoelectric PVDF sensors produce charges when sub-
ected to mechanical stimulation. Therefore, as a response to
rasping, the charge across a sensor decreases forming a negative
eak, then the sensor’s response return to its initial state as
he gripper holds the object. When an object is released, the
harge increases creating a positive peak. An example of sensors’
esponse to a grasp-release action is shown in Fig. 6. In this figure,
e present the response of 8 sensors within one sensing patch
o the grasp-release event. All sensors in contact with an object
xhibit the same behavior but with different amplitudes.
However, out of the signals we extracted only the grasp peaks

o reduce the number of samples on which to compute the
eatures for the next training procedure. Using Matlab, we im-
lemented an automated pre-processing technique to extract N

consecutive samples simultaneously from each of the 16 channels
at the instance of grasp. The technique is based on a threshold
allowing an easy implementation on the IE. In this way, the
threshold acts as a trigger for the grasp signals, avoiding contin-
uously analyzing the whole raw data even though a grasp action
did not happen. Since each sensor can present a different offset
due to fabrication, a threshold must be set for each one of them.
As a result, the acquired data for each grasp action is a 2D tensor
and can be formulated as X ∈ R16×N , where 16 is the number of
sensors and N is the number of samples.
215
Table 2
Details of the six datasets built following the pre-processing of
tactile signals generated upon grasping objects of different shapes
and hardness.
Dataset name Nb. of Nb. of samples Total Nb.

classes for each class of samples

Cube_80 5 170 850
Cylinder_80 3 170 510
Cube_40 5 170 850
Cylinder_40 3 170 510
Merged_40 5 170 1360
Merged_80 5 170 1360

In particular, two values for N , i.e. N = 40 and N = 80,
were chosen to investigate the effect of having a different num-
ber of samples on the classification accuracy and computational
efficiency. Fig. 7 illustrates the pre-processing technique on one
tactile signal from one channel.

3.2.2. Datasets
After the preprocessing of tactile information for all grasps

performed on the eight objects, we obtained the datasets pre-
sented in Table 2. Cube_80 and Cylinder_80 correspond to the
grasp peaks with N = 80 samples gathered from the cubes and
cylinders, respectively. Similarly, Cube_40 and Cylinder_40 are
obtained by the grasp peaks with N = 40 samples. Moreover, we
built two datasets, namely Merged_80 and Merged_40, that were
obtained by merging Cube_80 with Cylinder_80 and Cube_40
with Cylinder_40, respectively.

3.2.3. Feature extraction
To find a good representation of the tactile data and reduce

its dimension, we extracted the mean (µ) and standard deviation
(σ ) from each grasp peak and use them as features. As a result,
ach grasp action X was transformed into a one-dimensional
rray x ∈ R32×1 as sketched in Fig. 8. This array represents
ne sample of the datasets that will be used to train hardness
lassification models. In the following, the datasets presented in
able 2 from which the features were extracted will be named
ube_80_feat, Cylinder_80_feat, Cube_40_feat, Cylinder_40_feat,
erged_40_feat, Merged_80_feat, respectively.

.2.4. Classifiers
For classifying the hardness level, we proposed three machine

earning algorithms namely a Single-layer Feed-Forward Neural
Fig. 5. Integration of the sensing patches and IE on the Baxter robot. On the left, the tactile sensing system made of the interface electronics and the sensing patch
ounted on the 3D printed clamps. On the right, the outcome of the integration on the Baxter arm.



Y. Amin, C. Gianoglio and M. Valle Future Generation Computer Systems 148 (2023) 211–224

i

Fig. 6. Example of the response of eight piezoelectric sensors containing grasp
and release events. Purple and cyan lines highlight the beginning of grasp and
release events, respectively.

Fig. 7. Example of signal pre-processing on one channel. On the left, grasp
samples (N = 40 and N = 80) are extracted when the signal crosses the
threshold. On the right, in orange the grasp signal with N = 80 sample, and
n green the grasp signal with N = 40.

Fig. 8. Features extraction computing the mean and standard deviation from a
data tensor of shape 16 × N , then reshaping the extracted features into a 1-D
tensor to feed the ML algorithms.

Network (SLFNN), a Support Vector Machine (SVM), and a shallow
Convolution Neural Network (CNN). These algorithms proved a
good trade-off between generalization accuracy and computa-
tional cost in the classification of tactile data [15,26,34,56–58].
The SLFNN and SVM were trained using the datasets after the
feature extraction. On the other hand, the CNN was trained di-
rectly on the tactile data obtained after the preprocessing phase.
These algorithms were trained to solve two classification prob-
lems: (i) hardness level on objects with the same shape, and (ii)
hardness level on objects with a different shape. For case (i), the
cube datasets were employed, i.e. Cube_40 and Cube_80 for the
CNN, Cube_40_feat and Cube_80_feat for SLFNN and SVM. While
for case (ii) the merged datasets were adopted, i.e. Merged_40
and Merged_80 for CNN, Merged_40_feat and Merged_80_feat
216
for SLFNN and SVM. In the following, the algorithms are briefly
described.

Support vector machine
The Support Vector Machine (SVM) classifier is a supervised

ML algorithm that computes the hyperplane that maximizes the
margin to the nearest samples of the two classes (i.e., the support
vectors). SVM is capable of capturing complex relationships be-
tween data points. We have implemented only the linear kernel
due to its efficiency in terms of memory and computation [59].
The inference of one input datum z follows the One-vs-One (OvO)
strategy that splits the multi-class classification into one binary
classification problem per each pair of hardness levels, solving
(1):

y = sign(w · z + b) (1)

where w and b are the support vector and bias, respectively. The
eventual label of z is assigned according to the majority of votes
among the predicted classes.

Single-layer Feed-Forward Neural Network
Single-layer Feed-Forward Neural Networks (SLFNNs) are fully

connected networks that are trained through the backpropaga-
tion technique. These models mimic the structure of the hu-
man brain’s neural network such that all neurons in one layer
are connected to the neurons in the next layer. It has proven
to be efficient in terms of computational efficiency and mod-
eling multi-class hardness classification problems [15,26]. The
prediction function of an SLFNN is:

f (z) = softmax

(
Neu∑
i=1

βi,jφ(z · wi + bi) + Bi,j with j = 1, . . . , 5

)
(2)

where z the tested datum, Neu is the number of hidden neurons,
βi,j and Bi,j are the weights and biases between the hidden and
output layer, respectively, and φ is the ReLU activation function.
w and bi are the weights and biases between the input and hidden
layers, and softmax is the Softmax function to predict the label.
The output layer contains 5 neurons, as the number of hardness
classes, indexed by j in the equation.

Convolutional neural network
A Convolutional Neural Network (CNN) is one of the most

popular deep neural networks used in a multitude of applications.
CNN is composed of different building blocks such as convolu-
tional, pooling, and fully connected layers. Unlike the SLFNN and
SVM which use hand-crafted features, CNNs are able to combine
feature extraction and classification into a single learning body.
Moreover, CNNs proved their effectiveness when applied to tac-
tile data decoding [34,56]. In this work, the tactile signals are used
to train a shallow 1-D CNN. The inputs of this network are the
grasp peaks collected in the datasets presented in Table 2. The
CNN consists of several functional blocks composed of one 1-D
convolutional with ReLU activation, a dropout, and an average
pooling layer. The blocks are stacked sequentially based on the
number of convolutions chosen by the designer. In this work,
the number of blocks was set through the filter parameter listed
below. Stacked at the bottom of the functional blocks, one 10
neurons dense layer with the ReLU activation and a dense layer
with the softmax activation function provide the classification.
The 10 neurons dense layer receives the features extracted by
the functional block and flattened by means of a Flatten layer.
Other deep learning models are much less efficient for resource-
constrained implementation, requiring a much higher number of
computations due to their complexity as recently demonstrated
in [47,56,60].



Y. Amin, C. Gianoglio and M. Valle Future Generation Computer Systems 148 (2023) 211–224

3

p
s
o
b
t
w
p
t
e
t
p
t

F

e
o
p
t
n
i
w

x

.2.5. Embedded implementation
In order to test our models on an embedded device, we im-

lemented using C language on an STM32 microcontroller [61] a
et of functions that provide the fundamental layer functionalities
f the algorithms. The implementation relies on the C standard li-
raries and is portable to any device that supports C code. Besides
he classifiers, the feature extraction and normalization stages
ere implemented on the edge as well. In the following, the
arameters of feature extraction, normalization, and algorithms
hat were saved on the STM32 microcontroller are listed. To
valuate the performance of the deployed models, we computed
he accuracy of the test sets, the memory footprint of the pre-
rocessing and classification algorithms, the inference time, and
he energy consumption.

eature extraction and normalization memory footprint
Before the online inference, we performed the same feature

xtraction and normalization steps on the input data as for the
ffline training phase (see Section 3.2.3). The features are com-
uted online when SLFNN and SVM classifiers are employed, thus
hey do not require any storage of parameters. Afterward, the
ormalization is computing on the features and on the channels
n the case of CNN. As previously mentioned, the MinMax scaler
as adopted to normalize data in the range [0, 1] as follows:

norm =
x − xmin

xmax − xmin
. (3)

where xmax and xmin are the maximum and minimum values of
features or channels, respectively. Thus, xmin and xmax computed
on the training data for each feature and channel were stored on
the device for the online normalization of data. As a result, 32
xmin and xmax values were saved for SLFNN and SVM, while 16
values were for CNN.

SVM device memory footprint
The w and b parameters of each trained SVM binary (1) classi-

fier were stored in the device. Since the OvO training strategy was
exploited and the number of hardness classes is 5, the number of
binary classifiers is 10 resulting in 10 biases b saved in the mem-
ory of the STM32. Moreover, since an input datum is represented
by 32 features, 320 values for w parameters were deployed on the
device. In the case of linear SVM, the number of parameters (and
bytes) is equal for each hardness classification problem addressed
in this paper.

SLFNN device memory footprint
According to (2), Neu β weights and B biases were saved on

the device for each class. Moreover, 32∗Neu w weights and Neu b
biases were stored as well. The amount of parameters depends on
the best configuration of neurons Neu found during the training
procedure. Formalizing, the number of parameters for SLFNN can
be computed as Nparams = Neu ∗ (nfeat + 1 + nclasses) + nclasses,
where nfeat is the number of features and nclasses the number of
classes.

CNN device memory footprint
The number of parameters stored in the device for the CNN

depends on the number of functional blocks, the number of filters
in each block, and the kernel size. These hyper-parameters were
chosen during the training procedure. The number of parameters
for each functional block can be computed as nchannels∗ker_size∗
filt+ filt , where nchannels represents the number of output filters
of the previous block (in the case of the first block nchannels
corresponds to the channels of the input, i.e. 16), ker_size the
kernel size, and filt the number of output filters. Additionally,
Neu ∗ (nfeat + 1 + nclasses) + nclasses parameters for the fully
connected layer stacked to the functional blocks were saved on
the device as well, where nfeat represents the number of features
extracted by the last functional block.
217
Inference time
The inference time is defined as the time interval that the edge

device requires to output a classification result after it receives an
input datum. The STM32 hardware abstraction layer (HAL) pro-
vides the HAL_GetTick() function that measures the elapsed time
in milliseconds [47]. Thus, it can be used to compute the inference
time on the microcontroller by calculating the difference between
a new input datum read and the previous one.

Energy consumption
The energy consumption was computed based on the follow-

ing equation:

E = P · t (4)

where P is the power consumption retrieved by multiplying the
voltage with the average Current provided by STM32CubeIDE
software [62], and t is the inference time.

Optimization using memory caching
Memory Caching optimization technique was adopted to de-

crease the inference time. It is based on cache memory which is
a small and fast temporary storage area close to the CPU that can
be found in computers/microcontrollers. It allows the processor
to retrieve data faster than accessing the DRAM memory, thus
providing a more efficient, easy, and near-instant data retrieval
solution. In general, there are three cache levels (i.e., L1, L2, and
L3) that identify increasing storage capacity and distance from the
CPU. The STM32H7 series devices contain only an L1-cache which
is small but extremely fast. It provides an optional L1-cache for
the data (D-cache) and the instructions (I-cache), with up to 16
Kbytes per type [63]. L1-cache stores a set of instructions and
data near the CPU to prevent frequently used instruction/data
from being fetched multiple times from the DRAM by the CPU.
Moreover, the bus accesses to the subsystem memory, which
takes more than one CPU cycle to execute, are different from
the CPU pipeline instruction stream execution [64]. Therefore,
cache memory is meant to speed up the read/write operations by
having the data locally available thus accessing them in only one
clock cycle, providing a huge raise in performance especially if the
model is small enough to fit entirely in the L1 cache. Therefore,
the CPU I-cache and D-cache were enabled for a performance
improvement in terms of latency [65].

4. Experimental setups

4.1. Algorithms hyper-parameters

The training procedure involved model selection, i.e. the tun-
ing of the classifier architecture hyper-parameters. That proce-
dure explored a grid of candidates for each one of the algorithms.
The best candidates were selected by evaluating the accuracy of
the validation set during the training phase.

The hyper-parameter for the SVM was the regularizer λ that
has been chosen as the norm L2 in the range λ = [10i, with i =

−4, −3, . . . , 4] during the training procedure.
The hyper-parameters for the SLFNN were:

• hidden neurons Neu = [10 ∗ i, with i = 1, 2, . . . , 10];
• L2 regularizer λ = [10i, with i = −4, −3, . . . , 4].

The hyper-parameters for the CNN were:

• number of convolutional layers from 2 to 4 (the filter can-
didates were: (8, 8), (16, 16), (16, 32), (4, 8, 16), (8, 8, 8),
(8, 16, 32), (4, 8, 16, 32));

• kernel size Ks = {8, 12, 16};
• dropout percentage 20%.



Y. Amin, C. Gianoglio and M. Valle Future Generation Computer Systems 148 (2023) 211–224

(
t
p
f

4

h
m
M
C
w
M
t
d
(
d
w
e
(
c
a
s
t
a
1
c
h
t
r
S
[

n
t
p
e
f
t
o
a

s
d
p
t

e
f
S
h
o
s
m
t
a
m
o
i
t
i
e

b
i
C
p
c

Table 3
Training and test splits for the two classification problems.
Classif. Class Train samples Test samples

problems Cubes Cylin Cubes Cylin

Cubes

1 120 – 50 –
2 120 – 50 –
3 120 – 50 –
4 120 – 50 –
5 120 – 50 –

Merged

1 80 40 90 130
2 80 40 90 130
3 80 40 90 130
4 120 – 50 –
5 120 – 50 –

The filters represented the number of kernels applied to the
input features in each functional block. For example, setting f =

4, 8, 16) implied the use of three functional blocks, the applica-
ion of 4 kernels to the input tensor, the dropout, the average
ooling, and the doubling in the number of kernels at each next
unctional block.

.2. Training strategy

To compare the performance of the algorithms on the two
ardness classification problems described in Section 3.2.4, all the
odels were trained on 4 datasets: Cube_40_feat, Cube_80_feat,
erged_40_feat, Merged_80_feat for SLFNN and SVM, while
ube_40, Cube_80, Merged_40, Merged_80 for CNN. The datasets
ere randomly split into training, validation, and testing sets.
ore precisely, in the classification problem of the cubic objects,

he datasets contain 850 data that were split as follows: 70% of
ata for training (i.e., 120 data per class), and 30% for testing
i.e., 50 data per class). Whereas, in the case of the merged
atasets, which contain a total of 1360 samples, the data splitting
as done as follows: we randomly extracted 40 samples from
ach of the three-cylinder classes that match the cube ones
Section 3.1.1), and added them to the cube training set. As a
onsequence, we removed 40 random cubes from the training set
nd considered them in the test set. The remaining 130 cylinder
amples per class were added to the cube test set. As a result,
he merged training set consists of 120 cylinders (40 per class)
nd 480 cubes (80 for the three matching hardness levels and
20 for the other two), while the merged test set consists of 390
ylinders (130 per class) and 370 cubes (90 for the three matching
ardness levels and 50 for the other two). Table 3 summarizes
he training and test splits for both classification problems with
espect to each hardness class. Before the training of SLFNN and
VM, the features of the datasets were normalized in the range
0, 1] using the MinMax Scaler. In the case of CNN, the data were
ormalized along the channels in the range [0, 1]. A grid search
echnique was employed to find the best configuration of hyper-
arameters for all the models. The best model was chosen by
valuating the accuracy of the validation split randomly extracted
rom the training set (20% of data were used for validation). For
he SLFNN and CNN other parameters were set as follows: Adam
ptimizer with a learning rate lr = 10−3, batch size bs = 64,
nd number of epochs ep = 100. Moreover, a patience p = 8

was set to implement an early stop criterion on the validation
accuracy. The three algorithms are built using Python with the
Keras library. At the end of the training, the best model for each
algorithm was deployed on the STM32 microcontroller for the
evaluation of the performance on the edge.
 a

218
Table 4
SVM accuracy.
Datasets Cubes Cylinders Overall

Cube_80_feat 100 – –
Cube_40_feat 99.6 – –
Merged_80_feat 99.2 98.21 98.59
Merged_40_feat 98.4 94.87 96.26

Table 5
SLFNN accuracy.
Datasets Cubes Cylinders Overall

Cube_80_feat 100 – –
Cube_40_feat 99.6 – –
Merged_80_feat 100 98.71 99.38
Merged_40_feat 100 95.90 97.50

5. Results and discussion

We assessed the performance of the proposed hardness classi-
fication tactile sensing system on the commercial Microcontroller
Unit (MCU) STM32 NUCLEO H745ZI-Q board in terms of accuracy,
memory, latency, and energy. This board hosts an ARM Cortex-
M7 core running at 480 MHz, with 2 MB flash memory and 1 MB
SRAM.

5.1. Accuracy

As described in Section 3.2.4, the linear SVM, SLFNN, and
the 1D-CNN algorithms were trained on four different datasets,
obtaining four models for each algorithm.

Table 4 shows the classification accuracy of the SVM models
on the test sets. The first column reports the datasets, the second
the accuracy on the cubes object, the third the accuracy on the
cylinders, and the last the overall accuracy. The accuracy of the
cylinders and the overall one were computed only in the case of
the merged datasets since they contain both objects. As a result
of reducing the number of samples used to represent a grasp
signal from N = 80 to N = 40, the classification accuracy
lightly decreases in both problems. Moreover, for the merged
atasets the accuracy on the cubes is higher than on the cylinders,
robably because only a small subset of cylinders was employed
o train the models.

Table 5 presents the classification accuracy of the SLFNN mod-
ls. The models achieve a 100% accuracy on the cubes except
or Cube_40_feat (99.6%). Concerning the merged datasets, the
LFNN presents a similar trend to the SVM: the cubes’ accuracy is
igher than the cylinders’ one. Moreover, by reducing the number
f samples to represent a grasp signal, the drop in accuracy is
mall. In general, the SLFNN outperforms the SVM when the
erged datasets were employed, meaning that it is more suitable

o classify the hardness levels when objects of different shapes
re grasped. The best SLFNN models are shown in Fig. 9. The
odels trained with the datasets containing only the cubes reach
ut for a simpler solution, i.e. with a low number of neurons
n the hidden layer. On the opposite, the models trained with
he merged datasets required a greater number of neurons, thus
ncreasing the inference time, the memory footprint, and the
nergy consumption.
The classification accuracy of CNN models is reported in Ta-

le 6. The accuracy on only cube samples (i.e., 100% and 99.6%)
s the same of SVM and SLFNN architectures. On the other hand,
NN achieves the best overall accuracies on the merged datasets,
resenting the highest performance in the classification of the
ylindrical objects. As for the other classifiers, the classification

ccuracy of Cube_40 and Merged_40 is lower than Cube_80 and



Y. Amin, C. Gianoglio and M. Valle Future Generation Computer Systems 148 (2023) 211–224

M

b
w
a
R
f
c
t
t
t
c

a
f
t
a
M

Fig. 9. Best SLFNN models: (a) Cube_80_feat, ()b) Cube_40_feat, c)
erged_80_feat, and d) Merged_40_feat.

Fig. 10. Best CNN models: (a) Cube_80_feat, (b) Cube_40_feat, (c)
Merged_80_feat, and (d) Merged_40_feat.

Merged_80, respectively. However, the drop in accuracy for the
merged dataset is lower with respect to the other two classifiers.

The best CNN models are presented in Fig. 10. All the CNN
est models consist of two functional blocks (a 1-D convolutional
ith ReLU activation, a dropout, and an average pooling layer)
nd two fully connected layers, where the first one has the
eLU activation function and the second the Softmax activation
unction providing the classification. The models for the cubes
lassification present 8 filters in both convolutional layers, while
he models that classify both shapes have 16 filters in both layers,
hus presenting a higher number of parameters, that in turn leads
o a higher inference time, memory occupation, and a energy
onsumption.
To summarize, for models trained with only the cubes, all

lgorithms achieved the same classification accuracy, i.e. 100%
or Cube_80(_feat) and 99.2% for Cube_40(_feat). Whereas, for
he models trained with both objects, CNNs outperform SLFNN
nd SVM by achieving higher classification accuracy on cylinders.

oreover, in all cases, it is observed that the accuracy decreases

219
Table 6
CNN accuracy.
Datasets Cubes Cylinders Overall

Cube_80 100 – –
Cube_40 99.6 – –
Merged_80 100 99.23 99.53
Merged_40 99.2 97.17 98.13

Table 7
SVM memory footprint on the edge device.
Datasets Pre-proc Classifiers Total

Cube_80_feat
Cube_40_feat 64 330 394
Merged_80_feat (256) (1320) (1576)
Merged_40_feat

Table 8
SLFNN memory footprint on the edge device.
Datasets Pre-proc Classifiers Total

Cube_80_feat 64 (256) 1525 (6100) 1599 (6396)
Cube_40_feat 64 (256) 765 (3060) 829 (3316)
Merged_80_feat 64 (256) 3045 (12180) 3109 (12436)
Merged_40_feat 64 (256) 2665 (10660) 2729 (10916)

when the number of samples for the grasp signals halves from
N = 80 to N = 40. The high classification accuracy is prob-
ably due to the number of sensors exploited in this study: in
a previous work [15], 96.3% accuracy was achieved by a SLFNN
classifying 3-class objects’ hardness using 300 neurons and four
tactile sensors.

5.2. Memory footprint

As described in Section 3.2.5, to normalize the input samples
during the online pre-processing stage, xmin and xmax parame-
ters in (3) must be deployed on the edge device for each feature
in case of SVM and SLFNN, or for each CNN input channel. As
mentioned, the linear SVM classifier trained with the OvO strat-
egy and with 5 classes requires 320 w and 10 biases being stored
on the device. Table 7 reports the memory footprint of the SVM
classifiers. The first column shows the training datasets, and the
second, third, and last columns report the number of parameters
stored in the memory of the edge device and the number of
bytes between the brackets for the pre-processing, the classifier,
and the total amount, respectively, for each one of the training
datasets. The parameters were represented as 32-bit floating
point numbers.

Table 8 shows the memory footprint of the SLFNNs, main-
taining the same format of Table 7. The pre-processing phase
for SLFNN models is the same one used for SVM models, thus
requiring the same memory size: On the other hand, the number
of parameters in the classifiers depends on the number of hidden
neurons as described in Section 3.2.5. According to the table, the
size of the model trained with Cube_40_feat is approximately half
of the one trained with Cube_80. In contrast, the size of the model
trained with Merged_40_feat is only 12% smaller compared to the
one trained with Merged_80_feat. It is straightforward that the
size of cubes-based models is significantly lower than the size
of the merged-based models since the lasts require more hidden
neurons to solve a more complex problem.

Similar to the SLFNN, Table 9 reports the memory footprint for
the 1-D CNN models. The MinMax normalization was performed
on the tactile data across the 16 channels, hence the total number
of xmin and xmax values is 32. Decreasing the input size resulted
in an increase in the size of the model trained with cubes of about

22%. This is possibly due to the higher number of filters needed



Y. Amin, C. Gianoglio and M. Valle Future Generation Computer Systems 148 (2023) 211–224

d

a
c
m
p
a
a
S

5

i
t
T
o
f
s
d
t

t
n
t
m
a
t

U
s
e
r
s
b
I
a

Table 9
CNN memory footprint on the edge device.
Datasets Pre-proc Classifiers Total

Cube_80 32 (128) 3217 (12868) 3249 (12996)
Cube_40 32 (128) 3953 (15812) 3985 (15940)
Merged_80 32 (128) 7393 (29572) 7425 (29700)
Merged_40 32 (128) 5793 (23172) 5825 (23300)

Table 10
SVM inference time including pre-processing.
Datasets Pre-proc Classifiers Total

(ms) (ms) (ms)

Cube_80_feat 0.138 0.03 0.168
Cube_40_feat 0.074 0.03 0.104
Merged_80_feat 0.138 0.03 0.168
Merged_40_feat 0.074 0.03 0.104

Table 11
SLFNN inference time including pre-processing.
Datasets Pre-proc Classifiers Total

(ms) (ms) (ms)

Cube_80_feat 0.138 0.126 0.264
Cube_40_feat 0.074 0.063 0.137
Merged_80_feat 0.138 0.226 0.364
Merged_40_feat 0.074 0.171 0.245

to extract more features from a smaller input. On the opposite,
the number of parameters in the model trained with Merged_40
ecreased by about 22%.
In summary, the linear SVM models outperform the SLFNN

nd 1D-CNN models in terms of memory requirements for both
lassification problems. The CNN, which achieved the best perfor-
ance in classifying the hardness of objects with different shapes,
resents the worst solution in terms of memory occupation for
ll four datasets. Straightforwardly, the SLFNN could represent
n alternative choice since it attained a higher accuracy than the
VM, with a lower memory allocation than the CNN.

.3. Inference time

For the SVM algorithm, Table 10 reports the inference time
ncluding the pre-processing. The pre-processing corresponds to
he time measured for feature extraction and data normalization.
he classification time for all SVM models is equal and requires
nly 0.03 ms, while the pre-processing affects most of the in-
erence time and depends on the input size. In fact, when the
ize of the input data is reduced by half, the pre-processing time
ecreases from 0.138 ms to 0.074 ms. In general, the inference
ime is lower than 1 ms, accomplishing real-time performance.

In the case of SLFNN (Table 11), the pre-processing time is
he same as the SVM. Unlike the SVM, the classification time is
ot negligible and it differs from one model to another due to
he different number of neurons. The inference time in cubes and
erged classification problems decreased by approximately 48%
nd 33%, respectively, when reducing the input size from N = 80
o N = 40. In the case of merged datasets, the inference time
is lower than 1 ms as SVM, thus SLFNN represents a valuable
classifier outperforming the SVM in terms of accuracy.

Finally, the inference time of CNNmodels is shown in Table 12.
nlike SVM and SLFNN, the pre-processing time for CNN input
amples corresponds only to the MinMax normalization. How-
ver, pre-processing time for both input sizes is negligible with
espect to the whole inference. Nevertheless, reducing the input
ize played an important role in decreasing the inference time
y about 50% both for cubes and merged classification problems.
n general, the inference time of the CNN models is above 4 ms

nd 7 ms in the case of cubes and merged datasets, respectively.

220
Table 12
CNN inference time including pre-processing.
Datasets Pre-proc Classifiers Total

(ms) (ms) (ms)

Cube_80_feat 0.318 8.513 8.831
Cube_40_feat 0.019 4.429 4.448
Merged_80_feat 0.318 14.723 15.041
Merged_40_feat 0.019 7.279 7.298

Table 13
Energy consumption per inference.
Datasets SVM SLFNN CNN

(µJ) (µJ) (µJ)

Cube_80(_feat) 12.51 19.65 657.82
Cube_40(_feat) 7.74 10.21 331.33
Merged_80(_feat) 12.51 27.04 1120.40
Merged_40(_feat) 7.74 18.25 543.63

Even if these times cope with a real-time application on the
STM32 Nucleo, it is worth noting that deploying the CNN in a
more resource-constrained device with a less-performing CPU,
the real-time inference could be not guaranteed.

To summarize, the SVM models achieved the lowest inference
time for both hardness classification problems. Moreover, by re-
ducing the data size to N = 40, the inference time decreased
by 38% in SVM, 48% (cubes datasets) and 33% (merged datasets)
in SLFNN, about 50% for both datasets in CNN. For the hardness
classification problem of objects with different shapes, the SVM
models are more than 2x faster than the SLFNN models, and up to
70x faster than CNN models. Nevertheless, the total time latency
of the SVM and SLFNN models is substantially low (< 1 ms)
compared to the CNN models (up to 15 ms). Nonetheless, all
algorithms met real-time requirements on the STM32 Nucleo.

5.4. Energy consumption

Table 13 shows the energy consumption of the three models
with respect to the datasets. As expected the energy consumption
(4) for the SVM models is the lowest due to the fast inference
time. SLFNN shows a slight increase in energy consumption com-
pared to the SVM due to higher latency. While the CNN models
require at least an order of magnitude higher energy consumption
with respect to the other models. Again, this result is expected
because of the higher inference time of CNN models compared
to the others (Table 12). Nevertheless, reducing the input size
from N = 80 to N = 40 has also led to a reduction in energy
consumption for all models.

5.5. Optimization

Table 14 shows the improvements in time latency perfor-
mance reached by means of the optimization technique discussed
in by means of the cache memory. The table shows for each al-
gorithm the inference time and the difference with the inference
without the optimization expressed in ms and as a percentage.
For the cube classification problem, SLFNN presents a similar
inference time to the SVM, while for the merged datasets it has
a gap of about 0.03 ms. It is worth noting that the inference
time for both classifiers is always below 0.1 ms except for SLFNN
classifying the Merged_80_feat dataset. Even CNN presents a
remarkable improvement in the inference time while using the
cache memory: for the classification of the cubes, CNN presents
an improvement of more than 70% with an inference time lower
than 2 ms, while for the merged datasets the inference time is
reduced by more than 65% achieving about 4 ms inference in case
of Merged_80 and 2 ms with Merged_40. In general, the memory
caching technique avoids the CPU to accesses many times to the



Y. Amin, C. Gianoglio and M. Valle Future Generation Computer Systems 148 (2023) 211–224

d
T
t
p
s
f
a
t
X
m
c
A
t
w
w
a
m
d
O
S
d

5

c
u
a
m
e

Table 14
SVM, SLFNN, and CNN inference time with memory caching optimization.
Datasets SVM SLFNN CNN

Inference Difference Inference Difference Inference Difference
(ms) (ms) (ms) (ms) (ms) (ms)

Cube_80(_feat) 0.077 −0.091 (−54%) 0.089 −0.175 (−67%) 1.772 −7.059 (−80%)
Cube_40(_feat) 0.045 −0.059 (−57%) 0.047 −0.090 (−66%) 1.227 −3.221 (−72%)
Merged_80(_feat) 0.077 −0.091 (−54%) 0.111 −0.253 (−70%) 4.105 −10.936 (−73%)
Merged_40(_feat) 0.045 −0.059 (−57%) 0.073 −0.172 (−70%) 1.996 −5.302 (−73%)
Table 15
Energy consumption of the models with memory caching optimization.
Datasets SVM SLFNN CNN

Energy Difference Energy Difference Energy Difference
(µJ) (µJ) (µJ) (µJ) (µJ) (µJ)

Cube_80(_feat) 5.74 −6.77 (−54%) 6.63 −13.02 (−67%) 132.00 −525.82 (−80%)
Cube_40(_feat) 3.35 −4.39 (−57%) 3.50 −6.71 (−66%) 91.40 −239.93 (−72%)
Merged_80(_feat) 5.74 −6.77 (−54%) 8.27 −18.77 (−70%) 305.78 −814.62 (−73%)
Merged_40(_feat) 3.35 −4.39 (−57%) 5.74 −12.51 (−70%) 148.68 −394.95 (−73%)
Table 16
SLFNN and CNN inference time after the deployment with X-Cube-AI tool.
Datasets SLFNN CNN

Inference Diff Not Optim Diff Mem Optim Inference Diff Not Optim Diff Mem Optim
(ms) (ms) (ms) (ms) (ms) (ms)

Cube_80(_feat) 0.09 −0.174 (−65%) +0.001 (+1%) 1.568 −7.263 (−82%) −0.204 (−11%)
Cube_40(_feat) 0.051 −0.086 (−62%) +0.004 (+9%) 1.205 −3.243 (−73%) −0.022 (−2%)
Merged_80(_feat) 0.109 −0.255 (−70%) −0.002 (−2%) 3.083 −11.958 (−80%) −1.022 (−25%)
Merged_40(_feat) 0.072 −0.173 (−71%) −0.001 (−1%) 1.453 −5.845 (−80%) −0.543 (−27%)
DRAM, thus saving many clock cycles during the inference of a
tactile datum. Since time and energy are directly proportional (4),
the improvement in latency performance results in a significant
reduction in energy consumption as can be seen in Table 15. The
percentages of energy consumption reduction are similar to the
inference time ones.

For the sake of comparison, the models were optimized and
eployed by means of the X-Cube-AI tool provided by STM [66].
he deployment of the SVM models is not supported by the
ool, thus only the results concerning the SLFNN and CNN are
resented. Table 16 shows the inference time results and has the
ame structure as Table 14. The table presents not only the dif-
erence in the inference time with the not optimized models but
lso with the optimized ones by adopting the memory caching
echnique. Concerning the SLFNN models, models supported by
-Cube-AI are up to faster than the non-optimized C written
odels, providing up to 70% inference time reduction. However,
ompared to optimized models written in C language, X-Cube-
I models achieved slightly higher inference time. Whereas in
he case of CNN, the inference time of CNN models deployed
ith X-Cube-AI is significantly lower than the non-optimized C
ritten models for both classification problems (in between 73%
nd 82% inference time reduction). and slightly lower than CNN
odels optimized with memory caching in the case of merged
atasets especially Cube_40 (only 2% inference time reduction).
n the other hand, the X-Cube-AI library is only supported by
TM devices, thus not providing a fair comparison in case of
eployment on other edge devices.

.6. Conclusive remarks

The experiments revealed that we are able to achieve high
lassification accuracy for both hardness classification problems
sing any of the proposed algorithms. However, CNN models
chieved the best accuracy for hardness classification on the
erged datasets. Whereas, in terms of memory, latency, and en-
rgy consumption, SVM models outperformed significantly CNN
221
models, and slightly SLFNN models. Furthermore, reducing the
size of the input data has resulted in remarkable improvements
in the efficiency of models in terms of memory requirements (up
to 46.7% reduction), latency (up to 50%), and energy (up to 50%),
with only slight reduction in accuracy (0.4% on the cubes and a
maximum of 2.3% in Merged models). In order to further improve
the models’ implementation, we adopted the memory caching
technique. As a result, we achieved an additional reduction in
latency and energy consumption. It is important to note that the
achieved results enable the use of these models on extremely
resource-constrained devices such as the Cortex-M0 family [67].

6. Conclusion

In this work, we presented the implementation on the edge a
real-time tactile sensing system for hardness classification based
on machine and deep learning algorithms. We developed and
implemented in plain C a set of functions that provide the funda-
mental layer functionalities of the linear SVM, SLFNN, and 1-D
CNN models, along with the pre-processing to extract the fea-
tures and normalize the data. Furthermore, the implementation
does not rely on any of the existing libraries and therefore it is
deployable to any device that supports C code.

To evaluate our work we mounted the tactile sensing system
onto a Baxter robot and collected data by grasping objects of
different hardness and shape. Two classification problems were
addressed: 5 levels of hardness classified on the same objects’
shape, and 5 levels of hardness classified on two different ob-
jects’ shape. Pre-processing techniques were employed for ex-
tracting the features and normalizing the data. The models and
pre-processing were implemented on STM32 NUCLEO H745ZI-
Q board which hosts an ARM Cortex-M7, where we assessed
the performance of the system in terms of accuracy, memory
footprint, time latency, and energy consumption. All the models
presented a high classification accuracy of close to 100% in the
first problem and above 96% in the second problem. Reducing
the input size has led to a drastic drop in inference time and



Y. Amin, C. Gianoglio and M. Valle Future Generation Computer Systems 148 (2023) 211–224

e
a
c
o
u
t
a
a
t
c
i
l
t
s
m
d
h
e
p

a
s
s
c
c
i

c
m
c
s
i
s
h
a
o
E
c
f
t
t
B
o
h
m
t

t
o
s
h
c
a

C

v
V
g
W

D

c
t

nergy consumption with a slight deterioration of the accuracy in
ll the models. We also showed that inference time and energy
onsumption can be further improved using a memory caching
ptimization strategy with a reduction of the two quantities of
p to 80% for the CNN. Eventually, SVM models have proved to be
he best models in terms of memory requirements, time latency,
nd energy consumption, whereas in terms of accuracy the CNN
chieved the highest values. On the other hand, SLFNN provided a
rade-off between accuracy on one side and latency time, energy
onsumption, and memory requirements on another, by achiev-
ng slightly lower accuracy than CNN models and slightly higher
atency time, energy consumption, and memory requirements
han SVM models. Eventually, this work demonstrated the fea-
ibility of integrating fast, small, accurate, and energy-efficient
achine learning models on a resource-constrained device, in or-
er to provide a real-time robotic tactile sensing system for object
ardness classification. This also paves the way for developing
mbedded tactile sensing systems for a variety of robotic and
rosthetic applications.
In future works, we aim to develop an automatic calibration

lgorithm for the sensors due to the observed variation in re-
ponses among different sensing patches and even within the
ame patch. This variability is attributed to the fabrication pro-
ess of the piezoelectric sensors. By implementing an automatic
alibration algorithm, we will be able to address these differences
n sensor responses, especially when using different patches.

Furthermore, during the testing, we noticed a significant de-
line in hardness classification accuracy when evaluating our
odels on cylindrical objects, which were originally trained on
ubic objects. However, we were able to mitigate this issue to
ome extent by including a few cylindrical samples in the train-
ng set. Nevertheless, in-corporating additional shapes such as
pheres, cones, and so on, as well as accommodating different
ardness levels, would require a considerable amount of time
nd effort. To overcome these challenges, we propose the use
f a soft gripper instead of a rigid one in future experiments.
mploying a soft gripper could help alleviate problems related to
hanges in object shape, thereby improving the classification per-
ormance across different shapes. Moreover, we are considering
he development of semi-supervised or unsupervised strategies
o identify different hardness levels including al-so new shapes.
y leveraging these strategies, we aim to reduce the number
f samples required for retraining the model to classify new
ardness levels. In the case of unsupervised classification, the
odels would not need to be retrained, which could save both

ime and effort.
In summary, we plan to address the sensor response variation

hrough an automatic calibration setup, mitigate the impact of
bject shape changes by using a soft gripper, and explore semi-
upervised or unsupervised strategies for identifying different
ardness levels including also new shapes. These measures will
ontribute to improving the generalization performance of our
cquisition system.

RediT authorship contribution statement

Youssef Amin: Conceptualization, Methodology, Software, In-
estigation, Validation, Data curation, Writing – original draft,
isualization. Christian Gianoglio: Software, Validation, Investi-
ation, Writing – review & editing. Maurizio Valle: Resources,
riting – review & editing, Supervision, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.
222
Data availability

The dataset and software code are publicly available at: https:
//github.com/YoussifAmin/Object_Hardness_Classification.

Acknowledgments

The authors acknowledge partial financial support from:

• TACTIle feedback enriched virtual interaction through vir-
tual realITY and beyond (TACTILITY) project: EU H2020,
Italy, Topic ICT-25-2018-2020, RIA, Proposal ID 856718.

• AI-Powered Manipulation System for Advanced Robotic Ser-
vice, Manufacturing and Prosthetics (IntelliMan) project: EU
H2022, Italy, Grant agreement ID 101070136.

Data availability

The dataset and software code are publicly available at: https:
//github.com/YoussifAmin/Object_Hardness_Classification

References

[1] B.A. Jenkins, E.A. Lumpkin, Developing a sense of touch, Development 144
(22) (2017) 4078–4090.

[2] M.A. Srinivasan, R.H. LaMotte, Tactual discrimination of softness, J.
Neurophysiol. 73 (1) (1995) 88–101.

[3] Y. Wu, Y. Liu, Y. Zhou, Q. Man, C. Hu, W. Asghar, F. Li, Z. Yu, J. Shang, G.
Liu, M. Liao, R.-W. Li, A skin-inspired tactile sensor for smart prosthetics,
Science Robotics 3 (22) (2018) eaat0429.

[4] Y. Abbass, M. Saleh, S. Dosen, M. Valle, Embedded electrotactile feedback
system for hand prostheses using matrix electrode and electronic skin,
IEEE Trans. Biomed. Circuits Syst. 15 (5) (2021) 912–925.

[5] R.A. Romeo, C. Lauretti, C. Gentile, E. Guglielmelli, L. Zollo, Method for
automatic slippage detection with tactile sensors embedded in prosthetic
hands, IEEE Trans. Med. Robot. Bionics 3 (2) (2021) 485–497.

[6] M. Borghetti, E. Sardini, M. Serpelloni, Sensorized glove for measuring hand
finger flexion for rehabilitation purposes, IEEE Trans. Instrum. Meas. 62
(12) (2013) 3308–3314.

[7] B.-S. Lin, I.-J. Lee, J.-L. Chen, Novel assembled sensorized glove platform
for comprehensive hand function assessment by using inertial sensors and
force sensing resistors, IEEE Sens. J. 20 (6) (2020) 3379–3389.

[8] J.M. Butt, H. Wang, R. Pathan, Design, fabrication, and analysis of a
sensorized soft robotic gripper, in: 2018 IEEE 8th Annual International
Conference on CYBER Technology in Automation, Control, and Intelligent
Systems, CYBER, 2018, pp. 169–174.

[9] Y. Wang, X. Wu, D. Mei, L. Zhu, J. Chen, Flexible tactile sensor array for
distributed tactile sensing and slip detection in robotic hand grasping,
Sensors Actuators A 297 (2019) 111512.

[10] S. Kim, H. Shin, K. Song, Y. Cha, Flexible piezoelectric sensor array for
touch sensing of robot hand, in: 2019 16th International Conference on
Ubiquitous Robots, UR, 2019, pp. 21–25.

[11] A. Schmitz, Y. Bansho, K. Noda, H. Iwata, T. Ogata, S. Sugano, Tactile
object recognition using deep learning and dropout, in: 2014 IEEE-RAS
International Conference on Humanoid Robots, IEEE, 2014, pp. 1044–1050.

[12] X. Qian, E. Li, J. Zhang, S.-N. Zhao, Q.-E. Wu, H. Zhang, W. Wang, Y.
Wu, Hardness recognition of robotic forearm based on semi-supervised
generative adversarial networks, Front. Neurorobot. 13 (2019) 73.

[13] Z. Zhang, J. Zhou, Z. Yan, K. Wang, J. Mao, Z. Jiang, Hardness recognition
of fruits and vegetables based on tactile array information of manipulator,
Comput. Electron. Agric. 181 (2021) 105959.

[14] Y. Amin, C. Gianoglio, M. Valle, A novel tactile sensing system for robotic
tactile perception of object properties, in: AISEM Annual Conference on
Sensors and Microsystems, Springer, 2023, pp. 182–187.

[15] Y. Amin, C. Gianoglio, M. Valle, Computationally light algorithms for
tactile sensing signals elaboration and classification, in: 2021 28th IEEE
International Conference on Electronics, Circuits, and Systems, ICECS, IEEE,
2021, pp. 1–6.

[16] X. Huang, R. Muthusamy, E. Hassan, Z. Niu, L. Seneviratne, D. Gan, Y. Zweiri,
Neuromorphic vision based contact-level classification in robotic grasping
applications, Sensors 20 (17) (2020).

[17] W. Yuan, C. Zhu, A. Owens, M.A. Srinivasan, E.H. Adelson, Shape-
independent hardness estimation using deep learning and a gelsight
tactile sensor, in: 2017 IEEE International Conference on Robotics and
Automation, ICRA, IEEE, 2017, pp. 951–958.

https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
https://github.com/YoussifAmin/Object_Hardness_Classification
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb1
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb1
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb1
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb2
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb2
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb2
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb3
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb3
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb3
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb3
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb3
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb4
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb4
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb4
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb4
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb4
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb5
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb5
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb5
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb5
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb5
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb6
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb6
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb6
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb6
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb6
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb7
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb7
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb7
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb7
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb7
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb8
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb8
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb8
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb8
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb8
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb8
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb8
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb9
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb9
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb9
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb9
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb9
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb10
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb10
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb10
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb10
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb10
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb11
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb11
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb11
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb11
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb11
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb12
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb12
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb12
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb12
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb12
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb13
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb13
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb13
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb13
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb13
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb14
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb14
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb14
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb14
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb14
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb15
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb15
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb15
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb15
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb15
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb15
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb15
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb16
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb16
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb16
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb16
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb16
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb17
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb17
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb17
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb17
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb17
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb17
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb17


Y. Amin, C. Gianoglio and M. Valle Future Generation Computer Systems 148 (2023) 211–224
[18] S. Chun, J.-S. Kim, Y. Yoo, Y. Choi, S.J. Jung, D. Jang, G. Lee, K.-I. Song,
K.S. Nam, I. Youn, et al., An artificial neural tactile sensing system, Nat.
Electron. 4 (6) (2021) 429–438.

[19] O. Kursun, A. Patooghy, An embedded system for collection and real-time
classification of a tactile dataset, IEEE Access 8 (2020) 97462–97473.

[20] A. Drimus, M.B.r. Petersen, A. Bilberg, Object texture recognition by
dynamic tactile sensing using active exploration, in: 2012 IEEE RO-MAN:
The 21st IEEE International Symposium on Robot and Human Interactive
Communication, IEEE, 2012, pp. 277–283.

[21] Z. Su, K. Hausman, Y. Chebotar, A. Molchanov, G.E. Loeb, G.S. Sukhatme,
S. Schaal, Force estimation and slip detection/classification for grip control
using a biomimetic tactile sensor, in: 2015 IEEE-RAS 15th International
Conference on Humanoid Robots (Humanoids), IEEE, 2015, pp. 297–303.

[22] A. Shrestha, A. Mahmood, Review of deep learning algorithms and
architectures, IEEE Access 7 (2019) 53040–53065.

[23] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[24] L. Zou, C. Ge, Z.J. Wang, E. Cretu, X. Li, Novel tactile sensor technology and

smart tactile sensing systems: A review, Sensors 17 (11) (2017).
[25] S. Luo, J. Bimbo, R. Dahiya, H. Liu, Robotic tactile perception of object

properties: A review, Mechatronics 48 (2017) 54–67.
[26] Y. Amin, C. Gianoglio, M. Valle, Towards a trade-off between accuracy

and computational cost for embedded systems: A tactile sensing system
for object classification, in: International Conference on System-Integrated
Intelligence, Springer, 2023, pp. 148–159.

[27] Google cloud, 2022, https://cloud.google.com/tpu, (Online; Accessed:
20-May-2022).

[28] R.S. Johansson, J.R. Flanagan, Coding and use of tactile signals from the
fingertips in object manipulation tasks, Nat. Rev. Neurosci. 10 (5) (2009)
345–359.

[29] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, K. Huang, Toward an intelligent edge:
Wireless communication meets machine learning, IEEE Commun. Mag. 58
(1) (2020) 19–25.

[30] M.T. Yazici, S. Basurra, M.M. Gaber, Edge machine learning: Enabling smart
internet of things applications, Big Data Cognit. Comput. 2 (3) (2018).

[31] H. Mao, S. Yao, T. Tang, B. Li, J. Yao, Y. Wang, Towards real-time object
detection on embedded systems, IEEE Trans. Emerg. Top. Comput. 6 (3)
(2016) 417–431.

[32] M. Rasouli, Y. Chen, A. Basu, S.L. Kukreja, N.V. Thakor, An extreme
learning machine-based neuromorphic tactile sensing system for texture
recognition, IEEE Trans. Biomed. Circuits Syst. 12 (2) (2018) 313–325.

[33] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, W. Shi, Edge computing for
autonomous driving: Opportunities and challenges, Proc. IEEE 107 (8)
(2019) 1697–1716.

[34] M. Alameh, Y. Abbass, A. Ibrahim, M. Valle, Smart tactile sensing systems
based on embedded CNN implementations, Micromachines 11 (1) (2020)
103.

[35] R. Lora-Rivera, J.A. Luna-Cortés, A. de Guzmán-Manzano, P. Ruiz-Barroso,
J. Castellanos-Ramos, Ó. Oballe-Peinado, F. Vidal-Verdú, Object stiffness
recognition with descriptors given by an FPGA-based tactile sensor, in:
2020 IEEE 29th International Symposium on Industrial Electronics, ISIE,
IEEE, 2020, pp. 561–566.

[36] D. Shadrin, A. Menshchikov, A. Somov, G. Bornemann, J. Hauslage, M.
Fedorov, Enabling precision agriculture through embedded sensing with
artificial intelligence, IEEE Trans. Instrum. Meas. 69 (7) (2020) 4103–4113.

[37] E. Ragusa, C. Gianoglio, S. Dosen, P. Gastaldo, Hardware-aware affordance
detection for application in portable embedded systems, IEEE Access 9
(2021) 123178–123193.

[38] E. Ragusa, C. Gianoglio, R. Zunino, P. Gastaldo, Random-based networks
with dropout for embedded systems, Neural Comput. Appl. 33 (2021)
6511–6526.

[39] E. Ragusa, T. Apicella, C. Gianoglio, R. Zunino, P. Gastaldo, Design and
deployment of an image polarity detector with visual attention, Cogn.
Comput. 14 (1) (2022) 261–273.

[40] X. Wang, F. Geiger, V. Niculescu, M. Magno, L. Benini, Leveraging tactile
sensors for low latency embedded smart hands for prosthetic and robotic
applications, IEEE Trans. Instrum. Meas. 71 (2022) 1–14.

[41] L. Dutta, S. Bharali, Tinyml meets iot: A comprehensive survey, Internet of
Things 16 (2021) 100461.

[42] C. Gianoglio, E. Ragusa, P. Gastaldo, M. Valle, A novel learning strategy for
the trade-off between accuracy and computational cost: A touch modalities
classification case study, IEEE Sens. J. 22 (1) (2021) 659–670.

[43] H. Liu, J. Greco, X. Song, J. Bimbo, L. Seneviratne, K. Althoefer, Tactile
image based contact shape recognition using neural network, in: 2012
IEEE International Conference on Multisensor Fusion and Integration for
Intelligent Systems, MFI, IEEE, 2012, pp. 138–143.

[44] Y. Tao, J. Zhou, Y. Meng, N. Zhang, X. Yang, Design and experiment of
tactile sensors for testing surface roughness of fruits and vegetable, Trans.
CSAM 46 (11) (2015) 16–21.

[45] S. Funabashi, T. Isobe, S. Ogasa, T. Ogata, A. Schmitz, T.P. Tomo, S. Sugano,
Stable in-grasp manipulation with a low-cost robot hand by using 3-axis
tactile sensors with a CNN, in: 2020 IEEE/RSJ International Conference on

Intelligent Robots and Systems, IROS, 2020, pp. 9166–9173. m

223
[46] S. Funabashi, A. Schmitz, T. Sato, S. Somlor, S. Sugano, Versatile in-hand
manipulation of objects with different sizes and shapes using neural
networks, in: 2018 IEEE-RAS 18th International Conference on Humanoid
Robots (Humanoids), 2018, pp. 1–9.

[47] F. Sakr, H. Younes, J. Doyle, F. Bellotti, A. De Gloria, R. Berta, A tiny
CNN for embedded electronic skin systems, in: International Conference
on System-Integrated Intelligence, Springer, 2023, pp. 564–573.

[48] I. Bogrekci, P. Demircioglu, H.S. Sucuoglu, O. TURHANLAR, The effect of
the infill type and density on hardness of 3D printed parts, Int. J. 3d Print.
Technol. Digit. Ind. 3 (3) (2019) 212–219.

[49] I. Bandyopadhyaya, D. Babu, A. Kumar, J. Roychowdhury, Tactile sens-
ing based softness classification using machine learning, in: 2014 IEEE
International Advance Computing Conference, IACC, 2014, pp. 1231–1236.

[50] A. Drimus, G. Kootstra, A. Bilberg, D. Kragic, Design of a flexible tactile
sensor for classification of rigid and deformable objects, Robot. Auton. Syst.
62 (1) (2014) 3–15.

[51] A. Drimus, G. Kootstra, A. Bilberg, D. Kragic, Classification of rigid and
deformable objects using a novel tactile sensor, in: 2011 15th International
Conference on Advanced Robotics, ICAR, IEEE, 2011, pp. 427–434.

[52] E. Ragusa, P. Gastaldo, R. Zunino, E. Cambria, Balancing computational com-
plexity and generalization ability: a novel design for ELM, Neurocomputing
401 (2020) 405–417.

[53] Q. Ma, M. Rejab, A.P. Kumar, H. Fu, N.M. Kumar, J. Tang, Effect of infill
pattern, density and material type of 3D printed cubic structure under
quasi-static loading, Proc. Inst. Mech. Eng. C 235 (19) (2021) 4254–4272.

[54] S.M. Walley, Historical origins of indentation hardness testing, Mater. Sci.
Technol. 28 (9–10) (2012) 1028–1044.

[55] S. Azhari, T. Setoguchi, I. Sasaki, A. Nakagawa, K. Ikeda, A. Azhari, I.H.
Hasan, M.N. Hamidon, N. Fukunaga, T. Shibata, et al., Toward automated
tomato harvesting system: Integration of haptic based piezoresistive
nanocomposite and machine learning, IEEE Sens. J. 21 (24) (2021)
27810–27817.

[56] C. Gianoglio, E. Ragusa, R. Zunino, M. Valle, 1-d convolutional neural net-
works for touch modalities classification, in: 2021 28th IEEE International
Conference on Electronics, Circuits, and Systems, ICECS, IEEE, 2021, pp.
1–6.

[57] J.M. Gandarias, A.J. Garcia-Cerezo, J.M. Gomez-de Gabriel, CNN-based
methods for object recognition with high-resolution tactile sensors, IEEE
Sens. J. 19 (16) (2019) 6872–6882.

[58] C. Gianoglio, E. Ragusa, P. Gastaldo, M. Valle, Trade-off between accuracy
and computational cost with neural architecture search: A novel strategy
for tactile sensing design, IEEE Sens. Lett. 7 (5) (2023) 1–4.

[59] F. Sakr, F. Bellotti, R. Berta, A. De Gloria, Machine learning on mainstream
microcontrollers, Sensors 20 (9) (2020) 2638.

[60] H. Al Haj Ali, C. Gianoglio, A. Ibrahim, M. Valle, Resource-constrained im-
plementation of deep learning algorithms for dynamic touch modality clas-
sification, in: International Conference on System-Integrated Intelligence,
Springer, 2023, pp. 105–115.

[61] STMicroelectronics, STM32-bit Arm Cortex MCUs, 2022, https:
//www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-
cortex-mcus.html, (Online; Accessed: 20-October-2022).

[62] STMicroelectronics, STM32CubeIDE, 2022, https://www.st.com/
en/development-tools/stm32cubeide.html, (Online; Accessed:
20-October-2022).

[63] Arm developer, 2022, https://developer.arm.com/documentation/ddi0489/
f/memory-system/l1-caches, (Online; Accessed: 20-October-2022).

[64] STMicroelectronics, L1–cache on STM32H7 series, 2022, https:
//www.st.com/resource/en/application_note/an4839-level-1-cache-on-
stm32f7-series-and-stm32h7-series-stmicroelectronics.pdf, (Online;
Accessed: 20-October-2022).

[65] F. Sakr, R. Berta, J. Doyle, H. Younes, A. De Gloria, F. Bellotti, Memory effi-
cient binary convolutional neural networks on microcontrollers, in: 2022
IEEE International Conference on Edge Computing and Communications,
EDGE, 2022, pp. 169–177.

[66] X-CUBE-AI, 2022, https://www.st.com/en/embedded-software/x-cube-ai.
html, (Online; Accessed: 20-June-2021).

[67] STMicroelectronics, STM32f0 series, 2022, https://www.st.com/en/
microcontrollers-microprocessors/stm32f0x0-value-line.html, (Online;
Accessed: 20-October-2022).

Youssef Amin received the B.S. degree in Electronics
engineering / Biomedical engineering and the M.Sc.
degree in electronics engineering / biomedical en-
gineering from the Faculty of engineering, Lebanese
International University, Beirut, Lebanon, in 2017 and
2019, respectively. He is currently working toward the
Ph.D. degree in science and technology for electronic
and telecommunication engineering with the Depart-
ment of Naval, Electrical, Electronic, and Telecommuni-
cations Engineering, University of Genoa, Genoa, Italy.
His main research interests include signal processing,
achine learning, embedded electronics, integrated sensing systems.

http://refhub.elsevier.com/S0167-739X(23)00218-2/sb18
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb18
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb18
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb18
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb18
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb19
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb19
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb19
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb20
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb20
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb20
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb20
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb20
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb20
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb20
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb21
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb21
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb21
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb21
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb21
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb21
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb21
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb22
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb22
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb22
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb23
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb24
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb24
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb24
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb25
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb25
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb25
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb26
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb26
https://cloud.google.com/tpu
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb28
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb28
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb28
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb28
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb28
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb29
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb29
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb29
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb29
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb29
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb30
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb30
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb30
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb31
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb31
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb31
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb31
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb31
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb32
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb32
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb32
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb32
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb32
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb33
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb33
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb33
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb33
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb33
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb34
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb34
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb34
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb34
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb34
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb35
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb36
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb36
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb36
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb36
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb36
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb37
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb37
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb37
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb37
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb37
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb38
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb39
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb39
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb39
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb39
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb39
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb40
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb40
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb40
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb40
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb40
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb41
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb41
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb41
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb42
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb42
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb42
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb42
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb42
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb43
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb43
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb43
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb43
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb43
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb43
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb43
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb44
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb44
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb44
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb44
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb44
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb45
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb45
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb45
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb45
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb45
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb45
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb45
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb46
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb46
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb46
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb46
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb46
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb46
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb46
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb47
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb47
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb47
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb47
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb47
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb48
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb48
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb48
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb48
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb48
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb49
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb49
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb49
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb49
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb49
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb50
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb50
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb50
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb50
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb50
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb51
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb51
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb51
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb51
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb51
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb52
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb52
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb52
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb52
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb52
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb53
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb53
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb53
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb53
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb53
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb54
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb54
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb54
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb55
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb55
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb55
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb55
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb55
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb55
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb55
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb55
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb55
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb56
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb56
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb56
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb56
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb56
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb56
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb56
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb57
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb57
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb57
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb57
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb57
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb58
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb58
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb58
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb58
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb58
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb59
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb59
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb59
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb60
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb60
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb60
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb60
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb60
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb60
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb60
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://developer.arm.com/documentation/ddi0489/f/memory-system/l1-caches
https://developer.arm.com/documentation/ddi0489/f/memory-system/l1-caches
https://developer.arm.com/documentation/ddi0489/f/memory-system/l1-caches
https://www.st.com/resource/en/application_note/an4839-level-1-cache-on-stm32f7-series-and-stm32h7-series-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4839-level-1-cache-on-stm32f7-series-and-stm32h7-series-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4839-level-1-cache-on-stm32f7-series-and-stm32h7-series-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4839-level-1-cache-on-stm32f7-series-and-stm32h7-series-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4839-level-1-cache-on-stm32f7-series-and-stm32h7-series-stmicroelectronics.pdf
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb65
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb65
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb65
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb65
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb65
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb65
http://refhub.elsevier.com/S0167-739X(23)00218-2/sb65
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f0x0-value-line.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f0x0-value-line.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f0x0-value-line.html


Y. Amin, C. Gianoglio and M. Valle Future Generation Computer Systems 148 (2023) 211–224
Christian Gianoglio received the master’s degree cum
laude in electronic engineering and the Ph.D. de-
gree in electrical engineering from the University of
Genoa, Italy, in 2015 and 2018, respectively. He is
currently a Researcher Fellow at DITEN, University of
Genoa. His main research areas include machine learn-
ing for resource-constrained devices, machine learning
for tactile applications, and pattern recognition for
quality assessment of insulation systems in electrical
apparatuses.
224
Maurizio Valle received the M.S. degree in electronic
engineering and the Ph.D. degree in electronics and
computer science from the University of Genoa, Italy.
From December 2019, he was a Full Professor of
Electronics with DITEN, University of Genoa, where
he leads the Connected Objects, Smart Materials, Inte-
grated Circuits (COSMIC Laboratory). He has been and
is in charge of many research contracts and projects
funded at local, national and European levels. His
research interests include bio-medical circuits and sys-
tems, electronic/artificial sensitive skin, tactile sensing

systems for prosthetics and robotics, neuromorphic touch sensors, electronic,
and microelectronic systems.


	Embedded real-time objects' hardness classification for robotic grippers
	Introduction
	Related works
	Materials and Methods
	Materials
	Objects selection and hardness level determination
	Tactile Sensing Arrays and Acquisition System

	Methods
	Data Collection and Pre-processing of Tactile Information
	Datasets
	Feature Extraction
	Classifiers
	Support Vector Machine
	Single-layer Feed-Forward Neural Network
	Convolutional Neural Network
	Embedded Implementation
	Feature Extraction and Normalization Memory Footprint
	SVM Device Memory Footprint
	SLFNN Device Memory Footprint
	CNN Device Memory Footprint
	Inference Time
	Energy Consumption
	Optimization using Memory Caching


	Experimental Setups
	Algorithms Hyper-parameters
	Training strategy

	Results and Discussion
	Accuracy
	Memory Footprint
	Inference Time
	Energy consumption
	Optimization
	Conclusive Remarks

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Data Availability
	References


