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Inspired by the recent development of an algebraic model which provides an adequate and unified
description of the internal structure of the lowest-lying pseudoscalar mesons, belonging both to the light
quarks sector and to the one of heavy quarks, we perform its first extension to the vector-meson case. The
algebraic model describes the meson’s structure in terms of the spectral density function that appears in a
Nakanishi integral representation of the covariant quark-antiquark bound-state amplitude, i.e., the Bethe-
Salpeter amplitude. We compute the leading-twist light-front wave functions of the ρð770Þ, ϕð1020Þ, J=ψ ,
and ϒð1SÞ mesons through their connection with the parton distribution amplitudes. Among the results we
present, the following are of particular interest: (i) transverse light-front wave functions can be obtained
algebraically from the corresponding parton distribution amplitudes, whereas that is not the case for
longitudinal light-front wave functions, which requires an intermediate step where a spectral density
function must be derived from the particular parton distribution amplitude; (ii) the derived spectral density
functions show marked differences between light and heavy vector mesons, the latter being narrower as
compared to the former, and these are also nonpositive definite, although the integral over the entire curve is
larger than zero as expected; and (iii) the longitudinal and transverse light-front wave functions of vector
mesons with light quark content exhibit steep x and p2⊥ dependence, while those of the J=ψ and ϒð1SÞ
mesons are characterized by narrow distributions in the x range but, comparatively, much more gradual
falloffs with respect to the p2⊥ range depicted.
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I. INTRODUCTION

QCD, the strongly interacting sector of the Standard
Model of particle physics, presents a series of computational
and conceptual challenges when its infrared solutions are
sought. For example, QCD’s elementary excitations (quarks

and gluons) are not those degrees of freedom directly
accessible in experiment. These are instead confined inside
color-singlet bound states named hadrons. Another impor-
tant fact of the theory is that there are numerous reasons to
believe that QCD generates forces which are so strong that
only less than 2% of the nucleon’s mass can be attributed
to the so-called current-quark masses that appear in QCD’s
Lagrangian. The rest of its mass owes itself to the strong
force capable of generating mass from literally nothing, an
emergent phenomenon known as dynamical chiral sym-
metry breaking (DCSB). The properties of the ground-state
pseudoscalar mesons, constituted from light quarks and
simultaneously being the Goldstone bosons associated with
the corresponding broken generators, are strongly influ-
enced by DCSB; for instance, the quadratic increase of their
masses is proportional to the masses of current quarks
composing these mesons [1].
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Given that naive quantum mechanical models describe
vector mesons as merely spin-flip excitations of their
pseudoscalar partners, it is natural to inquire into the impact
of DCSB within the vector-meson bound states. One of the
cleanest ways to expose differences between the impact of
DCSB in pseudoscalar and vector mesons is to compare
their wave functions. However, such a comparison cannot
adequately be investigated within nonrelativistic quantum
mechanics with a finite number of degrees of freedom;
DCSB is an emergent phenomenon intimately related with
the formulation of a quantum field theory. In this relativistic
description, the object closest to a meson’s wave function is
the so-called Bethe-Salpeter wave function (BSWF) [2],
which reduces to a Schrödinger wave function whenever a
nonrelativistic limit is sensible [3], but that is never the case
for the dressed valence-quarks of light mesons. One way to
circumvent this problem is to compute the light-front wave
function (LFWF) projection of the BSWF because the
LFWF can translate features that arise purely through the
infinitely many-body nature of relativistic quantum field
theory into notions that are more familiar when formulating
nonrelativistic quantum mechanics [4].
The BSWF can be obtained by a cumbersome compu-

tation that combines the Dyson-Schwinger equation
(DSE) for the quark propagator and the Bethe-Salpeter
equation (BSE) for mesons [5–9]. This QCD-based for-
malism has produced a plethora of theoretically interesting
and experimentally testable quantities such as mesons
masses [10,11], their other static properties [12,13], form
factors (FFs) [14,15], and parton distribution amplitudes
(PDAs) [16,17]. However, the calculation of, for instance,
parton distribution functions (PDFs) [18,19], generalized
parton distributions (GPDs) [20–22], and transverse
momentum distributions [23,24] remains a highly nontrivial
task by employing full nonperturbvative QCD tools within
the DSE-BSE formalism. Fortunately, our understanding of
the intricate interplay between the DSE of the quark
propagator and the meson’s BSE [25] allows us to construct
models which are amicable enough to allow for algebraic
manipulations and yet produce reliable predictions of the
physical observables whose extraction from first principles
remains a complicated problem.
The authors of Ref. [26] carried out the construction of

an algebraic model for the quark propagator and the Bethe-
Salpeter amplitude (BSA) of pseudoscalar mesons in terms
of a spectral density function (SDF). It leads to the
derivation of the leading-twist LFWF by merely appealing
to the definition of its Mellin moments. The resulting
LFWF permits, on one hand, an algebraic connection with
the PDA, so that the need to specify SDF is completely
circumvented with prior knowledge of the PDA, and, on the
other hand, the extraction of GPDs in the so-called
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) kin-
ematic region through the overlap representation of the
LFWFs [27] and of a series of other distributions derived
therefrom such as FFs and PDFs.

The proposed algebraic model adequately describes the
internal structure of the lowest-lying pseudoscalar mesons
with either light or heavy quark content. That is to say,
whenever a comparison is possible, the results showed
agreement with other theoretical treatments such as lattice
QCD and also with experimental results. In this work, we
extend such a study to investigate the internal structure
of the ρð770Þ, ϕð1020Þ, J=ψ , and ϒð1SÞ mesons. This
exploratory work also allows us to identify the limitations
of the algebraic model and the kind of physical observables
that can be predicted in its present simple form.
This manuscript is organized as follows. Section II is

devoted to the derivation of an algebraic model for the
quark propagator and the BSA of vector mesons in terms of
a SDF. Section III contains a derivation of the relation
between LFWFs and PDAs of vector mesons. There are
two components of the LFWF, longitudinal and transverse;
while the relation is straightforward in the latter case, one
should connect the parallel components through the SDF.
Section IV describes how to obtain the SDF from a given
valence-quark twist-2 PDA of the vector meson. Our
resulting LFWFs of vector mesons, from light to heavy
quark sectors, are presented in Sec. V; their most salient
features are also discussed. Finally, we provide a brief
summary, some concluding remarks, and potential pros-
pects for future research in Sec. VI.

II. ALGEBRAIC MODEL

Within a relativistic quantum field theory, the internal
dynamics of a meson with spin-parity quantum numbers
JP ¼ 1− (vector meson) is described by its BSWF, χv,
which in turn is related to the associated BSA, Γv, and the
quark (antiquark) propagator, Sqðq̄0Þ,

χvμðp; PÞ ¼ SqðpÞΓv
μðp;PÞSq̄0 ðp−Þ; ð1Þ

where p− ¼ p − P and P2 ¼ −m2
v with mv the mass of the

vector meson. The labels q and q̄0 denote the valence quark
and antiquark flavors, which can be different in general.
Naturally, these flavors are the same for our analysis as it
focuses on the ρð770Þ, ϕð1020Þ, J=ψ , and ϒð1SÞ mesons,
i.e., the Lorentz-vector bound states with quark content nn̄
(n ¼ u or d), ss̄, cc̄, and bb̄, respectively.
Plain expressions for the quark (antiquark) propagator

and BSAs that capture the essential features of our
algebraic model are given by

SqðpÞ ¼ ð−iγ · pþMqÞΔðp2;M2
qÞ; ð2Þ

fvΓv
μðp;PÞ ¼ iγTμMq

Z
1

−1
dwρvðwÞ

�
Δ̂ðp2

w;Λ2
wÞ
�
ν

; ð3Þ

where Δðs; tÞ≡ ðsþ tÞ−1 and Δ̂ðs;tÞ≡ tΔðs;tÞ. Moreover,
γTμ ¼ ðδμν − PμPν=P2Þγν is the transverse part with respect
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to momentum P of the vertex; fv is the vector-meson
leptonic decay constant; Mq is the dynamically dressed
quark mass; the SDF is denoted by ρvðwÞ, and it defines the
pointwise behavior of the BSA; pω ¼ pþ ω

2
P; and

Λ2
w ¼ Λ2ðwÞ ¼ M2

q −
1

4
ð1 − w2Þm2

v: ð4Þ

As noticed in Ref. [26], this particular functional ω
dependence of Λ leads to a simplification in relevant
integrals and provides closed algebraic expressions which
relate different structure distributions. Besides, Eq. (4) has
some additional conspicuous features that deserve to be
highlighted: (i) a constant term, M2

q, is retained, inherited
from the kindred models [20–22,28–34] that have been
employed successfully to compute an array of GPD-related
distributions, and (ii) all coefficients in the expression are
chosen in such a way that the positivity of Λ2

ω is guaranteed.
It is worth noting herein that the parameter ν > −1

controls the asymptotic behavior of the BSA, which must
be ultraviolet finite since it resembles the wave function of a
bound state [35]; therefore, ν does not control any possible
divergence. It just fits the asymptotic trend of the meson’s
BSWF. Moreover, ν ¼ 1 is the most natural choice since it
has been demonstrated that it yields the correct power law of
the asymptotic behavior for mesons [5] and, in particular,
ν ¼ 1 recovers the results in Refs. [20,29,30,32,33].
Inserting Eqs. (2) and (3) into (1), a straightforward

algebraic manipulation leads us to a Nakanishi integral
representation of the BSWF,

fvχvμðp;PÞ ¼ MqMv
μ;q;q̄ðp−; PÞ

Z
1

−1
dwDν

q;q̄ðp; PÞρ̃νvðwÞ;

ð5Þ

where the function Mv
q;q̄ðp−; PÞ has the tensor structure

Mv
μ;q;q̄ðp−; PÞ ¼ ð−iγ · pþMqÞγTμ ½−iγ · p− þMq̄�; ð6Þ

the function Dν
q;q̄ðp;PÞ is a product of quadratic

denominators

Dνðq; PÞ ¼ Δðq2;M2
qÞΔðp2

w;Λ2
ωÞνΔðq2−;M2

q̄Þ; ð7Þ

and the profile function ρ̃νvðwÞ is defined in terms of the
SDF as

ρ̃νvðwÞ≡ Λ2ν
w ρvðwÞ: ð8Þ

The three denominators in Dν
q;q̄ðp; PÞ can be combined

into a single one using standard Feynman parametrization
techniques,

Dν
q;q̄ðp; PÞ ¼ νðνþ 1Þ

Z
1

0

dβ
Z

1
2
½ðwþ1Þβ−ðw−1Þ�

1
2
ðβ−1Þðw−1Þ

dα

×
ð1 − βÞν−1

½ðp − αPÞ2 þ Ω2
v�νþ2

; ð9Þ

here, Ω2
v ¼ M2

q þ αð1 − αÞP2 with Mq ¼ Mq̄. Finally, a
suitable change of variables and a subsequent rearrange-
ment in the order of integration yields the following
expression for the BSWF:

χvμðp; PÞ ¼
νðνþ 1ÞMq

fv
Mv

μ;q;q̄ðp−; PÞ

×
Z

1

0

dα

�Z
1−2α

−1
dw

Z
1

2α
w−1þ1

dβ

þ
Z

1

1−2α
dw

Z
1

2αþw−1
wþ1

dβ

�

×
ð1 − βÞν−1ρ̃νvðwÞ

½ðp − αPÞ2 þ Ω2
v�νþ2

: ð10Þ

This expression serves as a starting point to compute the
PDAs and LFWFs of vector mesons as detailed in the
next section.

III. PARTON DISTRIBUTION AMPLITUDES
AND LIGHT-FRONT WAVE FUNCTIONS

A PDA is a LFWF of an interacting quantum system.
For a meson, it can be written as ϕðξ; xÞ, where ξ is the
momentum scale that characterizes the exclusive process
in which the meson is involved and x expresses the
light-front fraction of the bound-state total momentum
carried by the meson’s valence quark, equivalent to the
momentum fraction carried by the valence quark in
the infinite-momentum frame; momentum conservation
entails that the valence antiquark carries the fraction
x̄ ¼ ð1 − xÞ.
A vector meson has four leading-twist PDAs [16]. The

ϕkðξ; xÞ and ϕ⊥ðξ; xÞ are usually named longitudinal and
transverse PDAs, respectively, describing the light-front
fraction of the meson’s total momentum carried by the
quark in a longitudinally or transversely polarized vector

meson. The so-called gðvÞ⊥ ðξ; xÞ and gðaÞ⊥ ðξ; xÞ refer to
transverse polarizations of quarks in the longitudinally
polarized vector mesons. We would like to emphasize that
only ϕkðξ; xÞ and ϕ⊥ðξ; xÞ are independent at leading twist

since gðvÞ⊥ ðξ; xÞ and gðaÞ⊥ ðξ; xÞ are related to the longitudinal
PDA [36],

gðvÞ⊥ ðξ; xÞ ¼ 1

2

�Z
x

0

dv
ϕkðξ; vÞ

v̄
þ
Z

1

x
dv

ϕkðξ; vÞ
v

�
; ð11aÞ
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gðaÞ⊥ ðξ;xÞ¼ 2

�
x̄
Z

x

0

dv
ϕkðξ;vÞ

v̄
þx

Z
1

x
dv

ϕkðξ;vÞ
v

�
; ð11bÞ

with v̄ ¼ 1 − v and x̄ ¼ 1 − x. From now on, the scale
dependence of the PDAs, and of all other structure
distributions, shall be taken into account only implicitly
for the convenience of notation. The longitudinal and
transverse PDAs of a vector meson are expressed as

ϕkðxÞ ¼
Nkmv

fv
Tr

Z
d4p
ð2πÞ4

δxnðpÞ
n · P

ðγ · nÞnμχvμðp;PÞ; ð12aÞ

ϕ⊥ðxÞ ¼
N⊥
f⊥v m2

v
Tr

Z
d4p
ð2πÞ4 ðn · PÞδxnðpÞσμνPμχ

v
νðp;PÞ;

ð12bÞ

where Nk and N⊥ are normalization constants; fv and f⊥v
are the meson’s vector and tensor decay constants, with the
former, a renormalization point invariant, explaining the
strength of the vector meson decaying into an electron-
positron pair, while the tensor decay constant depends on
the mass scale relevant to the process in which the meson is
involved. The trace is taken over color and spinor indices,
δxnðpÞ ¼ δðn · p − xn · PÞ with n a lightlike 4-vector,
such that n2 ¼ 0 and n · P ¼ −mp. Finally, throughout
this manuscript, dimensionless and unit normalized PDAs,R
1
0 dxϕðxÞ ¼ 1, shall be considered.
With the BSWF at hand, it is straightforward to

follow the procedure explained originally in Ref. [37]
and thereby obtain the longitudinal and transverse PDAs
from Eqs. (12). The first step is to compute the Mellin
moments, defined as

hxmiϕ ¼
Z

1

0

dxxmϕðxÞ: ð13Þ

For the parallel PDA, these are given by

hxmiϕk ¼
Nkmv

fv
Tr

Z
d4p
ð2πÞ4

ðn · pÞm
ðn · PÞmþ2

ðγ · nÞnμχvμðp; PÞ:

ð14Þ

Inserting Eq. (10) into this expression, one arrives at

hxmiϕk ¼
Nkνðνþ 1ÞmvMq

f2v

×Tr
Z

d4p
ð2πÞ4

ðn ·pÞm
ðn ·PÞmþ2

γ · nnμMv
μ;q;q̄ðp;PÞ

×
Z

1

0

dα

�Z
1−2α

−1
dw

Z
1

2α
w−1þ1

dβ

þ
Z

1

1−2α
dw

Z
1

2αþw−1
wþ1

dβ

� ð1− βÞν−1ρ̃νvðwÞ
½ðp− αPÞ2 þΩ2

v�νþ2
: ð15Þ

After the color and Dirac traces, the Mellin moments
become

hxmiϕk ¼
4NcNkνðνþ 1ÞmvMq

f2v

Z
1

0

dα

×

�Z
1−2α

−1
dw

Z
1

2α
w−1þ1

dβ þ
Z

1

1−2α
dw

Z
1

2αþw−1
wþ1

dβ

�

× ð1 − βÞν−1ρ̃νvðwÞ
Z

d4p
ð2πÞ4

ðn · pÞm
ðn · PÞmþ2

×
M2

q þ ðp − n·p
n·PPÞ2 − ðn · pÞ2 þ ðn · PÞðn · pÞ
½ðp − αPÞ2 þ Ω2

v�νþ2
:

ð16Þ

One may conveniently decompose the momentum integral
into two parts, parallel and perpendicular,

Z
d4p
ð2πÞ4 ¼

Z
d2p⊥
16π3

Z
d2pk
π

; ð17Þ

in such a way that the Mellin moments for the LFWF,
expressed as

hxmiψ ¼
Z

1

0

dxxmψðx; p2⊥ ¼ fixedÞ; ð18Þ

can be obtained as follows:

hxmiψk ¼
4NcNkνðνþ 1ÞmvMq

f2v

Z
1

0

dα

×

�Z
1−2α

−1
dw

Z
1

2α
w−1þ1

dβ þ
Z

1

1−2α
dw

Z
1

2αþw−1
wþ1

dβ

�

× ð1 − βÞν−1ρ̃νvðwÞ
Z

d2pk
π

ðn · pÞm
ðn · PÞmþ2

×
M2

q þ ðp − n·p
n·PPÞ2 − ðn · pÞ2 þ ðn · PÞðn · pÞ
½ðp − αPÞ2 þ Ω2

v�νþ2
:

ð19Þ
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Performing the change of variable p → pþ αP, decom-
posing the integrated momentum into its parallel and
perpendicular parts, p ¼ pk þ p⊥, such that

n · p ¼ n · pk; ð20aÞ

n · p⊥ ¼ 0; ð20bÞ

p2 ¼ p2
k þ p2⊥; ð20cÞ

and carrying out the integral over pk, the Mellin moments
can be cast in the following form:

hxmiψk ¼
2NcNkνMq

f2vmv

Z
1

0

dααm

×

�Z
1−2α

−1
dw

Z
1

2α
w−1þ1

dβ þ
Z

1

1−2α
dw

Z
1

2αþw−1
wþ1

dβ

�

× ð1 − βÞν−1ρ̃νvðwÞ
�
M2

q þ p2⊥ − αð1 − αÞm2
v

ðp2⊥ þ Ω2
vÞνþ1

þ 1

2ν

1

ðp2⊥ þΩ2
vÞν

�
: ð21Þ

Finally, from the definition of the Mellin moments of the
LFWF, Eq. (18), the parallel LFWF of a vector meson is

ψkðx; p2⊥Þ ¼
2NcNkνMq

mvf2v

×

�Z
1−2x

−1
dw

Z
1

2x
w−1þ1

dβ þ
Z

1

1−2x
dw

Z
1

2xþw−1
wþ1

dβ

�

× ð1 − βÞν−1ρ̃νvðwÞ
�
M2

q þ p2⊥ þ xð1 − xÞm2
v

ðp2⊥ þΩ2
vÞνþ1

þ 1

2ν

1

ðp2⊥ þΩ2
vÞν

�
; ð22Þ

whereΩ2
v is now a function of x instead of α. Integrating out

the p⊥ dependence of ψkðx; p2⊥Þ yields the vector-meson’s
parallel PDA,

ϕkðxÞ ¼
Z

d2p⊥
16π3

ψkðx; p2⊥Þ: ð23Þ

Performing the shift ν → 1þ δ to remove the spurious
logarithmic divergence in p⊥,1 it acquires the following
form:

ϕkðxÞ¼
NcNkMq

8π2mvf2v

�Z
1−2x

−1
dw

Z
1

2x
w−1þ1

dβþ
Z

1

1−2x
dw

Z
1

2xþw−1
wþ1

dβ

�

×ð1−βÞδρ̃δþ1
v ðwÞ

�
M2

qþxð1−xÞm2
v

ðΩ2
vÞδþ1

þ 3

2δ

1

ðΩ2
vÞδ

�
:

ð24Þ

A similar calculation follows for the transverse LFWF
and PDA of a vector meson, leading to the following
expressions, respectively:

ψ⊥ðx;p2⊥Þ ¼
6NcN⊥νM2

q

fvf⊥v

�Z
1−2x

−1
dw

Z
1

2x
w−1þ1

dβ

þ
Z

1

1−2x
dw

Z
1

2xþw−1
wþ1

dβ

� ð1− βÞν−1ρ̃νvðwÞ
ðp2⊥ þΩ2

vÞνþ1
; ð25Þ

and

ϕ⊥ðxÞ ¼
Z

d2p⊥
16π3

ψ⊥ðx; p2⊥Þ

¼ 3NcN⊥M2
q

8π2fvf⊥v

�Z
1−2x

−1
dw

Z
1

2x
w−1þ1

dβ

þ
Z

1

1−2x
dw

Z
1

2xþw−1
wþ1

dβ

� ð1 − βÞν−1ρ̃νvðwÞ
Ω2ν

v
: ð26Þ

Similarly to the pseudoscalar meson case reported in
Ref. [26], one can conclude from Eqs. (22)–(26) that
enticingly simple algebraic relations between the LFWFs
and PDAs of a vector meson continue to exist for the
transverse component:

ψ⊥ðx; p2⊥Þ ¼
16π2νΩ2ν

v

ðp2⊥ þ Ω2
vÞνþ1

ϕ⊥ðxÞ: ð27Þ

However, it is no longer the case for the longitudinal one,
primarily because the integrals are nontrivial and inhibit
this simplification.
The difference that exists when dealing with vector

mesons instead of pseudoscalar ones comes basically from
the Dirac structure of their BSA, i.e., something unavoid-
able when dealing with vectors, γTμ , instead of pseudosca-
lars, γ5, in a quantum field theory approach. We are
interested in analytical expressions that relate the LFWF
with the PDA of a particular meson; in order to do so, there
is a point at which one must integrate over the transverse
degrees of freedom, p⊥. For the case of pseudoscalar
mesons, one has essentially the integral over p⊥ (Eq. (19)
of Ref. [26]),

1

8π3

Z
dp⊥p⊥

�
1

ðp2⊥ þ Λ2
1−2αÞνþ1

�
; ð28Þ

1See the text at the end of this section and the Appendix for
further details about the way of dealing with this issue and its
consequences on the final results.
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which, for ν ¼ 1, is ultraviolet finite, and therefore there is
nothing to remedy. In the case of vector mesons, the
equivalent integral reads as

1

8π3

Z
dp⊥p⊥

�
1

ðp2⊥ þ Ω2
vÞνþ1

�
; ð29Þ

for the transverse part [see Eq. (22)], which is again UV
finite when ν ¼ 1, and thus a similar procedure can be
carried out in this case as highlighted in Eq. (27). For the
longitudinal part, however, we have [see Eq. (22)],

1

8π3

Z
dp⊥p⊥

�
M2

q þ p2⊥ þ xð1 − xÞm2
v

ðp2⊥ þΩ2
vÞνþ1

þ 1

2ν

1

ðp2⊥ þ Ω2
vÞν

�
;

ð30Þ

which is logarithmically divergent in p⊥ when ν ¼ 1, and
thus some kind of regularization procedure must be adopted.
There are many ways to proceed. We have followed the one
widely used within similar approaches [14,15] and per-
formed the change of the variable ν by 1þ δ keeping δ as a
small value. This is because δ is considered an anomalous
dimension [14]. Therefore, it should be close to the value
that mimics the ultraviolet power-law behavior superim-
posed by logarithmic corrections which stem from the
anomalous dimensions and are typical of QCD-based
asymptotic behavior of the vector’s BSA [5]. In fact, the
value of δ in our case is 0.01; that is to say, the new value of
ν is just 1% larger than the one which produces the power
law part of the ultraviolet asymptotic behavior of the BSA.
We now move on to compute the SDF, required to

unravel the longitudinal case.

IV. SPECTRAL DENSITY FUNCTIONS

The valence-quark (twist-2) PDAs of vector mesons,
from light to heavy quark sectors, have been computed
elsewhere using a rainbow-ladder truncation of QCD’s
DSEs [16,17]. Our goal here is to derive the SDFs from
such results in order to obtain the corresponding LFWFs at
a later stage.
The parallel and transverse PDAs are defined through

Eqs. (24) and (26), respectively. Focusing on ϕkðxÞ, we
perform the integral over β and carry out the convenient
shift x → 1

2
ð1 − yÞ, to rewrite it as

ϕkðyÞ ¼
NcNkMq

ðδþ 1Þ8π2mvf2v

�
ð1 − yÞδþ1

Z
y

−1
dw

ρ̃δþ1
v ðwÞ

ð1 − wÞδþ1

þ ð1þ yÞδþ1

Z
1

y
dw

ρ̃δþ1
v ðwÞ

ð1þ wÞδþ1

�

×

�
M2

q þ 1
4
ð1 − y2Þm2

v

½Ω̃2
vðyÞ�δþ1

þ 3

2δ

1

½Ω̃2
vðyÞ�δ

�
; ð31Þ

with Ω̃2
vðyÞ ¼ M2

q − 1
4
ð1 − y2Þm2

v. Proceeding in the same
way for transverse PDA, one obtains

ϕ⊥ðyÞ ¼
3NcN⊥

8π2fvf⊥v ν

�
ð1− yÞδþ1

Z
y

−1
dw

ρ̃δþ1
v ðwÞ

ð1−wÞδþ1

þð1þ yÞδþ1

Z
1

y
dw

ρ̃δþ1
v ðwÞ

ð1þwÞδþ1

��
M2

q

½Ω̃2
vðyÞ�ν

�
: ð32Þ

The PDAs can be rewritten as

ϕkð⊥ÞðyÞ ¼ φ−
kð⊥ÞðyÞ þ φþ

kð⊥ÞðyÞ; ð33Þ

where we have used the definition

φ�
kð⊥ÞðyÞ ¼∓ τ�kð⊥ÞðyÞ

Z
y

�1

ρ̃δþ1
v ðwÞ

ð1� wÞδþ1
; ð34Þ

with

τ�k ðyÞ ¼
NcNkMqð1� yÞδþ1

ðδþ 1Þ8π2mvf2v

�
M2

q þ 1
4
ð1 − y2Þm2

v

½Ω̃2
vðyÞ�δþ1

þ 3

2δ

1

½Ω̃2
vðyÞ�δ

�
; ð35Þ

τ�⊥ðyÞ ¼
3NcN⊥M2

qð1� yÞδþ1

8π2fvf⊥v ν
1

½Ω̃2
vðyÞ�ν

: ð36Þ

It is possible to compute an expression for the SDF in
terms of the derivatives of the corresponding PDAs. To do
this, we calculate (for simplicity of notation, we omit the
subscripts k and ⊥ from now on)

dϕðyÞ
dy

¼ dφ−ðyÞ
dy

þ dφþðyÞ
dy

; ð37Þ

d2ϕðyÞ
dy2

¼ d2φ−ðyÞ
dy2

þ d2φþðyÞ
dy2

: ð38Þ

Differentiating the expression in Eq. (34) with respect to the
variable y, we obtain

dφ�ðyÞ
dy

¼∓ τ�ðyÞ d
dy

Z
y

�1

ρ̃δþ1
v ðwÞ

ð1� wÞδþ1

∓ dτ�ðyÞ
dy

Z
y

�1

ρ̃δþ1
v ðwÞ

ð1� wÞδþ1

¼∓ τ�ðyÞ ρ̃δþ1
v ðyÞ

ð1� yÞδþ1

∓ dτ�ðyÞ
dy

Z
y

�1

ρ̃δþ1
v ðwÞ

ð1� wÞδþ1
; ð39Þ
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where the fundamental theorem of calculus has been
applied in the last line. Now, using Eq. (34), the expression
above can be rearranged as

dφ�ðyÞ
dy

¼∓ τ�ðyÞ ρ̃δþ1
v ðyÞ

ð1� yÞδþ1
þφ�ðyÞ

τ�ðyÞ
dτ�ðyÞ
dy

¼∓
�

Λ2
y

1� y

�δþ1

ρvðyÞτ�ðyÞþ
φ�ðyÞ
τ�ðyÞ

dτ�ðyÞ
dy

; ð40Þ

where, again, Λ2
y ¼ Λ2ðyÞ and ρ̃δþ1

v ðyÞ ¼ Λ2ðδþ1Þ
y ρvðyÞ. We

notice that the first term of Eq. (39) vanishes in the sum of
Eq. (37), as well as in Eq. (38); so, it can safely be
neglected. Repeating the step and differentiating Eq. (39)
with respect to y,

d2φ�ðyÞ
dy2

¼∓ dτ�ðyÞ
dy

d
dy

Z
y

�1

ρ̃δþ1
v ðwÞ

ð1� wÞδþ1

∓ d2τ�ðyÞ
dy2

Z
y

�1

ρ̃δþ1
v ðwÞ

ð1� wÞδþ1

¼∓ dτ�ðyÞ
dy

ρ̃δþ1
v ðyÞ

ð1� yÞδþ1
þ φ�ðyÞ

τ�ðyÞ
d2τ�ðyÞ
dy2

¼∓ dτ�ðyÞ
dy

�
Λ2
y

1� y

�δþ1

ρvðyÞ þ
φ�ðyÞ
τ�ðyÞ

d2τ�ðyÞ
dy2

:

ð41Þ

From Eq. (33), we have that

φ−ðyÞ ¼ ϕðyÞ − φþðyÞ; ð42Þ

inserting Eqs. (40) and (42) into (37), one readily arrives at
the result:

dϕðyÞ
dy

¼ φþðyÞ
�

1

τþðyÞ
dτþðyÞ
dy

−
1

τ−ðyÞ
dτ−ðyÞ
dy

�

þ ρvðyÞ
��

Λ2
y

1 − y

�δþ1

τ−ðyÞ −
�

Λ2
y

1þ y

�δþ1

τþðyÞ
�

þ dτ−ðyÞ
dy

ϕðyÞ
τ−ðyÞ : ð43Þ

One can solve this for φþðyÞ to obtain

φþðyÞ ¼
�

1

τþðyÞ
dτþðyÞ
dy

−
1

τ−ðyÞ
dτ−ðyÞ
dy

�
−1

×

�
dϕðyÞ
dy

−
dτ−ðyÞ
dy

ϕðyÞ
τ−ðyÞ

−
��

Λ2
y

1− y

�δþ1

τ−ðyÞ−
�

Λ2
y

1þ y

�δþ1

τþðyÞ
�
ρvðyÞ

�
:

ð44Þ

On substituting τ�, the last terms vanish, leaving us with

φþðyÞ ¼
�

1

τþðyÞ
dτþðyÞ
dy

−
1

τ−ðyÞ
dτ−ðyÞ
dy

�
−1

×

�
dϕðyÞ
dy

−
dτ−ðyÞ
dy

ϕðyÞ
τ−ðyÞ

�
: ð45Þ

Now, inserting Eqs. (41) and (42) into (38), we get

d2ϕðyÞ
dy2

¼φþðyÞ
�

1

τþðyÞ
d2τþðyÞ
dy2

−
1

τ−ðyÞ
d2τ−ðyÞ
dy2

�

þρvðyÞ
��

Λ2
y

1−y

�δþ1dτ−ðyÞ
dy

−
�

Λ2
y

1þy

�δþ1dτþðyÞ
dy

�

þd2τ−ðyÞ
dy2

ϕðyÞ
τ−ðyÞ: ð46Þ

Substituting Eq. (45) in the expression above and solving
for ρvðyÞ, one obtains an expression for the SDF in terms of
the (leading-twist) PDA,

ρvðyÞ ¼
1

AðyÞ
�
d2ϕðyÞ
dy2

−
d2τ−ðyÞ
dy2

ϕðyÞ
τ−ðyÞ

−
BðyÞ
CðyÞ

�
dϕðyÞ
dy

−
dτ−ðyÞ
dy

ϕðyÞ
τ−ðyÞ

��
; ð47Þ

with

AðyÞ ¼
�

Λ2
y

1 − y

�δþ1 dτ−ðyÞ
dy

−
�

Λ2
y

1þ y

�δþ1 dτþðyÞ
dy

; ð48aÞ

BðyÞ ¼ 1

τþðyÞ
d2τþðyÞ
dy2

−
1

τ−ðyÞ
d2τ−ðyÞ
dy2

; ð48bÞ

CðyÞ ¼ 1

τþðyÞ
dτþðyÞ
dy

−
1

τ−ðyÞ
dτ−ðyÞ
dy

: ð48cÞ

This is the final expression for the SDF. We now have all
the necessary tools to compute the LFWF in terms of the
PDAs within this algebraic model.

V. RESULTS

The main goal of this manuscript is to provide a simple
relation between the PDAs and their corresponding LFWFs
of hidden-flavor vector mesons, from light to heavy quark
sectors. Our starting point was the recent development of a
similar theoretical framework for the lowest-lying hidden-
flavor pseudoscalar mesons in Ref. [26]. Such a connection
has been derived, developed, and presented above, con-
cluding that the transverse LFWFs can be obtained directly
from the corresponding PDAs through the algebraic rela-
tion presented in Eq. (27), whereas the calculation of
longitudinal LFWFs requires an intermediate step where
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the SDF must be derived from the particular PDA. We are
now in the position to provide numerical results for the
LFWFs from the most up-to-date knowledge of the
corresponding PDAs.
A rainbow-ladder (RL) truncation of QCD’s DSEs,

defined by an interaction compatible with modern studies
of the gauge sector [38–43], was used in Ref. [16] to
compute ρ- and ϕ-meson valence-quark (twist-2) PDAs.
These results are faithfully described by the simple para-
metrizations (renormalization scale ξ2 ¼ 2 GeV)

ϕρ
kðξ2; xÞ ¼ 3.26x0.66ð1 − xÞ0.66; ð49aÞ

ϕρ
⊥ðξ2; xÞ ¼ 2.73x0.49ð1 − xÞ0.49; ð49bÞ

ϕϕ
k ðξ2; xÞ ¼ 3.14x0.64ð1 − xÞ0.64; ð49cÞ

ϕϕ
⊥ðξ2; xÞ ¼ 2.64x0.48ð1 − xÞ0.48 ð49dÞ

or, equivalently, through following expressions exhibiting
explicitly soft end point behavior:

ϕρ
kðξ2; xÞ ¼ 15.43xð1 − xÞ

�
1þ 1.84xð1 − xÞ − 2.22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p �
; ð50aÞ

ϕρ
⊥ðξ2; xÞ ¼ 22.26xð1 − xÞ

�
1þ 2.44xð1 − xÞ − 2.76

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞÞ

p �
; ð50bÞ

ϕϕ
k ðξ2; xÞ ¼ 16.15xð1 − xÞ

�
1þ 1.92xð1 − xÞ − 2.29

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p �
; ð50cÞ

ϕϕ
⊥ðξ2; xÞ ¼ 23.77xð1 − xÞ

�
1þ 2.61xð1 − xÞ − 2.88

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p �
: ð50dÞ

The RL truncation has also been explored in connection
with heavy-light and heavy-heavy mesons [44–49]. The
main conclusion of those studies was that corrections which
go beyond the RL truncation of the dressed–quark gluon
vertex and hence the Bethe-Salpeter kernel are critical in
heavy-light systems, and an interaction strength for the RL
kernel fitted to pion properties alone is not optimal in the
treatment of these systems.
Following the breakthrough progress in Ref. [7], it has

become possible to employ more sophisticated kernels for
the quark propagator DSE and BSEs, which overcome the
weaknesses of RL truncation in all channels studied thus far
and, in particular, within the heavy quark sectors [12,13,50].
This new symmetry-preserving technique has the key
feature that it expresses more DCSB in the integral
equations connected with bound states and less in the
DSE that describes the quark propagator, arriving at a more
balanced description than the RL truncation when solving
equations involving different mass scales simultaneously.
Once the kernels have been specified, one can employ
standard algorithms, and approximations, to obtain numeri-
cal solutions for the PDAs of the lowest-lying vector
quarkonia [17], whose parametrizations can be given by

ϕJ=ψðϒð1SÞÞ
kð⊥Þ ðξ2;α¼ 2x− 1Þ ¼ 3

2
NðaÞð1−α2Þe−α2a2 ; ð51aÞ

where

NðaÞ ¼ 8a3

3
ffiffiffi
π

p ð2a2 − 1ÞerfðaÞ þ 6ae−a
2 ; ð52Þ

with

aJ=ψk ¼ 3.4; aJ=ψ⊥ ¼ 3.0; ð53aÞ

aϒð1SÞ
k ¼ 6.0; aϒð1SÞ

⊥ ¼ 5.3; ð53bÞ

and where erfðzÞ ¼ 2=
ffiffiffi
π

p R
z
0 e

−t2dt is the Gauss error
function.
Figure 1 shows the pointwise behavior of the ρ- and

ϕ-meson PDAs. Accumulated evidence suggests that the
PDAs associated with light-quark vector-meson charge-
conjugation eigenstates are concave functions whose
widths are ordered as

ϕasy <N ϕρ
k <N ϕϕ

k <N ϕρ
⊥ <N ϕϕ

⊥; ð54Þ

where “<N” means “narrower than.” The inequality (54)
actually signals that each vector-meson PDA is signifi-
cantly broader than the asymptotic distribution, a feature
strongly related with DCSB. Within the context of QCD, a
useful measure of this dilation is the energy scale to which
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one must evolve a given PDA in order that ϕasy may be
considered a reliable approximation. As remarked in
Ref. [16], it is not uniformly achieved for the vector
mesons unless ζ ≳ ζLHC, which is the energy accessible
at the LHC.
Figure 2 shows the x dependence of the J=ψ- andϒð1SÞ-

meson PDAs. It is evident that the PDAs associated with
heavy-quark meson charge-conjugation eigenstates are
piecewise convex-concave-convex, showing the following
ordering:

ϕk
ϒ <N ϕ⊥

ϒ <N ϕk
J=Ψ <N ϕ⊥

J=Ψ <N ϕasy: ð55Þ

This is to say, the PDAs of the lowest-lying heavy vector
quarkonia are much narrower than ϕasy on a large domain
of the energy scale, ξ, and they naturally evolve to the fixed
point ϕasy as ξ is increased. Nevertheless, for realistic
values of either charm or bottom quark mass, the PDAs

deviate noticeably from ϕðxÞ ¼ δðx − 1=2Þ, which is the
limiting form in the case of infinitely heavy (static) quarks.
At this point, it is worth emphasizing that all existing

continuum quantum field theory studies of meson valence-
quark distribution functions (DFs) begin with expressions
of the same kind as Eqs. (12). Therefore, in a computational
framework that preserves the multiplicative renormaliz-
ability of QCD, one has

Sqðξ1;pÞΓv
μðξ1;p; PÞ ¼ Sqðξ2;pÞΓv

μðξ2;p;PÞ; ð56Þ

implying that ϕðξ1; xÞ ¼ ϕðξ2; xÞ, i.e., the result is actually
independent of the renormalization point as long as it is
expressed in a quasiparticle basis [19]. This characteristic is
good as far as baryon number conservation is concerned
because it guarantees

1 ¼
Z

1

0

dxϕðξ1; xÞ ¼
Z

1

0

dxϕðξ2; xÞ: ð57Þ

FIG. 1. Valence-quark (twist-2) PDAs for the ρ and the ϕ
mesons at an energy scale ξ2 ¼ 2 GeV. Upper panel: longitudinal
PDAs. Lower panel: transverse PDAs. The legend of the curves is
the following: black solid, ϕρ

kð⊥ÞðxÞ; red dashed, ϕϕ
kð⊥ÞðxÞ; and

blue dotted, φasyðxÞ ¼ 6xð1 − xÞ, i.e., the PDA associated with
QCD’s conformal limit [51–53].

FIG. 2. Valence-quark (twist-2) PDAs for the J=ψ and ϒð1SÞ
mesons at an energy scale ξ2 ¼ 2 GeV. Upper panel: longitudinal
PDAs. Lower panel: transverse PDAs. The legend of the curves is

the following: black solid, ϕJ=ψ
kð⊥ÞðxÞ; red dashed, ϕϒð1SÞ

kð⊥Þ ðxÞ; and
blue dotted, φasyðxÞ ¼ 6xð1 − xÞ, i.e., the PDA associated with
QCD’s conformal limit [51–53].
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However, it also imposes the same identity for all n ≥ 1
moments; i.e., it precludes DF evolution. Consequently, the
PDAs expressed as Eqs. (12) and depicted in Figs. 1 and 2
must be interpreted as valid for ξ ¼ ξH ≈ 0.33 GeV,
intuitively identified with some hadronic scale for which
the valence degrees of freedom fully express the properties
of the hadron under study.
The quark and antiquark PDAs are connected via

momentum conservation,

ϕq
vðξH; xÞ ¼ ϕq̄

vðξH; 1 − xÞ; ð58Þ

a constricted and firm connection that prevails even after
evolution [51–53]. Finally, note also that, for mesons with
equal quark and antiquark flavors, ϕk;⊥ðxÞ are even under
the exchange x ↔ x̄ ¼ ð1 − xÞ, and they vanish at the end
points unless the underlying interaction is momentum
independent.
It is also worth noting herein that the presented formal-

ism is equally valid for any momentum scale that character-
izes the exclusive process in which the meson is involved.
That is to say, given the valence-quark (twist-2) PDA of a
vector-meson charge-conjugation eigenstate at a given
momentum scale, ξ, the formalism provides us the corre-
sponding leading-twist LFWF of the vector meson at the
same energy scale.
Let us now proceed with the computation of the longi-

tudinal and transverse LFWFs of the ρð770Þ, ϕð1020Þ, J=ψ ,
and ϒð1SÞ mesons through their connection with the
corresponding PDAs. The useful expressions can be found
in Eqs. (22) and (27); i.e., while the transverse LFWF can be
computed algebraically from its analogous PDA, the longi-
tudinal LFWF must be calculated using the SDF derived
from its PDA partner. Besides, the parameters needed to
compute the LFWFs are shown in Table I. Note that these
are not free parameters of this analysis; these are computed
in connection with the PDAs collected herein and were
originally reported in Refs. [16,17]. As shown in Table I, the
vector-meson static properties are in fairly good agreement
with the experimental data collected in the Review of
Particle Physics by the Particle Data Group [54].
The absolute values as well as the ratios of the vector-

meson decay constants reveal interesting features of these
mesons related with either the dynamical or explicit
breaking of chiral symmetry within the light or heavy
quark sectors, respectively. This is because the vector
decay constants, fv, are associated with currents which are
invariant under chiral transformations, whereas the cur-
rents that define the tensor decay constants, f⊥v , are not
chirally invariant, and hence the values of f⊥v are a clear
expression of the strength of DCSB within the vector
mesons. At ξ ¼ 2 GeV, we have

f⊥ρ =fρ ¼ 0.73; f⊥ϕ =fϕ ¼ 0.79; ð59aÞ

f⊥J=ψ=fJ=ψ ¼ 0.84; f⊥ϒð1SÞ=fϒð1SÞ ¼ 0.89; ð59bÞ

and thus, at an hadronic scale, chiral symmetry breaking is
strong and dynamical within the ρ and ϕ mesons, while it
is weaker and explicit within the J=ψ and ϒð1SÞ mesons.
We now turn our attention to the SDFs of the ρð770Þ,

ϕð1020Þ, J=ψ , and ϒð1SÞ mesons, derived from their
longitudinal PDAs. The upper panel of Fig. 3 shows the
SDFs corresponding to the hidden light-flavor vector
mesons. One can see the following salient features: the ρ
and ϕ mesons present very similar SDFs; both are positive
definite in the whole range, with a pointwise behavior
characterized by alternating convex and concave forms
which resemble the trend obtained already in Ref. [26]
for the lowest-lying pseudoscalar mesons. However, their
end points are nonzero, in contrast with the pseudoscalar
case. The lower panel of Fig. 3 shows the SDFs of hidden
heavy-flavor vector mesons. One can see in this case that the
SDFs are narrower than those of light vector mesons and,
furthermore, they are not positive definite on the entire
interval. This last feature is not a discrepancy of our
theoretical approach since the only condition that must
be fulfilled is that the area under the curve must be positive
definite, which is actually the case.
Finally, Figs. 4 and 5 show the leading-twist longi-

tudinal and transverse LFWFs of the lowest-lying vector
mesons with hidden-light and -heavy flavor, respectively.
One can see in Fig. 4 that the longitudinal and transverse
LFWFs of the ρ and ϕ mesons exhibit strong x and p2⊥
dependence. The ρmeson presents an x pointwise behavior
for the transverse component which is wider, and softer,
than its longitudinal counterpart. Moreover, the falloff
along the p2⊥ range depicted is also smoother for a
transversely polarized ρ meson than for a longitudinal

TABLE I. Vector meson static properties computed using RL
truncation for light mesons and DB-improved kernels for heavy
mesons (see the text for details). All quantities in GeV and f⊥v
values are quoted at a renormalization scale ξ ¼ ξ2 ¼ 2 GeV.
The current-quark masses are mu=dðξ ¼ ξ2 ¼ 2 GeVÞ ¼
4.5 MeV, msðξ2Þ¼99MeV, mcðξ2Þ ¼ 1.22 GeV, and mbðξ2Þ ¼
4.17 GeV, which correspond to the following dressed
quark masses Mu=dðξ ¼ ξ0 ¼ 0 GeVÞ ¼ 0.56 GeV, Msðξ0Þ ¼
0.80 GeV, Mcðξ0Þ ¼ 1.42 GeV, and Mbðξ0Þ ¼ 4.49 GeV. The
experimental data (Exp.) are taken from Ref. [54].

Meson Approach mv fv f⊥v
ρð770Þ Theory 0.740 0.150 0.110

Experiment 0.775 0.156 � � �
ϕð1020Þ Theory 1.08 0.190 0.150

Experiment 1.02 0.161 � � �
J=ψ Theory 3.07 0.255 0.213

Experiment 3.10 0.294 � � �
ϒð1SÞ Theory 9.46 0.471 0.421

Experiment 9.46 0.506 � � �

B. ALMEIDA-ZAMORA et al. PHYS. REV. D 107, 074037 (2023)

074037-10



one. The ϕ meson exhibits LFWFs which are narrower in
the x dependence and flatter in the p2⊥ range depicted than
those of the ρmeson. This last feature is directly connected
with the different mass of the dressed (anti)quark within
the ρ and ϕ mesons. For both light vector mesons, it seems
there is a difference with respect the x dependence of the
longitudinal and transverse LFWFs at their end points;
while a slightly convex form can be deduced for the
longitudinal part at the ends of the x range, a concave trend
is found for the transverse LFWF.
A different picture is shown in Fig. 5 for the lowest-

lying vector mesons with hidden heavy flavor. Both
longitudinal and transverse LFWFs are narrower, and
harder, in x dependence than those of light vector mesons.
Furthermore, all LFWFs depicted are almost constant in
the p2⊥ range depicted. With respect the x dependence, it is
worth noting that the longitudinal part seems to be even
narrower than the transverse one in both J=ψ and ϒð1SÞ
mesons. This indicates that, centered at x ¼ 1=2, a wider
range of meson’s light-front momentum is available for the
constituent heavy quark when such a meson is transversely
polarized. It is also observed in Fig. 5 that the narrow
feature of LFWFs is more prominent for the ϒð1SÞ meson
than for the J=ψ one, indicating that the features high-
lighted here are directly connected with the mass of the
meson’s constituents. Finally, in contrast with what was
found in the light quark sector, it is clearly shown in Fig. 5
that the end points of both longitudinal and transverse
LFWFs behave in approximately the same way with
respect the x dependence.

FIG. 3. Spectral density functions for the hidden light-flavor
(upper panel) and heavy-flavor (lower panel) vector mesons. For
the upper panel, the blue dotted line is the spectral density
function corresponding to the PDA associated with QCD’s
conformal limit [51–53].

FIG. 4. Longitudinal (left) and transverse (right) LFWFs of the ρ (upper row) and ϕ (lower row) mesons.
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For completeness, Tables II, III, and IV show the
computed hð2x − 1Þmi moments, with m ¼ 0; 2;…; 10,
of the leading-twist LFWFs at p2⊥ ¼ 0.0, 0.1, and 0.2,
respectively, for the vector mesons of hidden-flavor quark
content, i.e., the ρð770Þ, ϕð1020Þ, J=ψ , andϒð1SÞmesons.
The most salient features of this analysis are (i) moments of
heavy mesons are already very small from m ¼ 2–4,
whereas one must go beyond the m ¼ 10 moments in
order to obtain a similar order of magnitude for light vector
mesons; (ii) the value of a given moment generally
decreases as p2⊥ increases for any vector meson, and once
the moment’s value is small enough, it remains nearly
constant with respect to changes in p2⊥; and (iii) differences
between the values of moments are found for the longi-
tudinal and transverse LFWFs, and such differences are
more pronounced if either the order of the moment is higher
or the vector meson is lighter.

VI. SUMMARY

Following a recently proposed algebraic model
which adequately describes the internal structure of the
lowest-lying hidden-flavor pseudoscalar mesons, with
either light or heavy quark content, we have performed
its first extension to the vector-meson case, calculating
the leading-twist LFWFs of the ρð770Þ, ϕð1020Þ, J=ψ ,
and ϒð1SÞ mesons from their respective valence-quark
(twist-2) PDAs.
The PDA is usually easy to extract within a given

theoretical framework due to its simplicity. However, this
is not the case for the LFWF which is the closest physical
object in a quantum field theory to the notion of a wave
function in a nonrelativistic system. Moreover, the com-
parison of the results reported herein with those of
pseudoscalar mesons highlights features of the mechanism
that drives DCSB within these two systems.

FIG. 5. Longitudinal (left) and transverse (right) LFWFs of the J=ψ (upper row) and ϒð1SÞ (lower row) mesons.

TABLE II. Computed hð2x − 1Þmi moments, with m ¼ 0; 2;…; 10, of the leading-twist LFWFs at p2⊥ ¼ 0.0 GeV2 for the vector
mesons of hidden-flavor quark content. Odd moments are zero, and all quantities are given in GeV−2.

hð2x − 1Þmi m ¼ 0 2 4 6 8 10

ρk 5.48 0.92 0.37 0.20 0.13 0.09
⊥ 5.63 1.21 0.57 0.40 0.23 0.17

ϕk 5.24 0.87 0.35 0.19 0.12 0.08
⊥ 5.32 1.14 0.53 0.32 0.22 0.16

J=Ψk 5.30 0.13 0.011 0.002 5.3 × 10−4 2.3 × 10−4

⊥ 5.30 0.19 0.021 0.004 0.001 3.7 × 10−4

ϒð1SÞk 5.03 0.06 0.003 7.2 × 10−4 3.1 × 10−4 1.7 × 10−4

⊥ 5.03 0.07 0.003 2.5 × 10−4 2.6 × 10−5 3.6 × 10−6
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The connection between vector-meson LFWFs and
PDAs has been derived, computed numerically, plotted,
and analyzed in great detail in this work, concluding that
the transverse LFWFs can be obtained directly from the
corresponding PDA, whereas the calculation of the longi-
tudinal LFWF requires the knowledge of the SDF derived
from its corresponding PDA. This last feature is not
necessary a drawback of our theoretical framework; for
instance, the SDF, and its modification, can also serve as a
benchmark for investigating the transition between meson’s
vacuum properties and the change they undergo when
dealing with finite temperature and density.
With respect to our results on the SDFs, the ρ and ϕ

mesons present very similar SDFs, both are positive
definite in the whole range, with nonzero end points and
a pointwise behavior that alternates convex and concave
forms which resemble the ones already found for the
lowest-lying pseudoscalar mesons. As far as the SDFs of
the J=ψ and ϒð1SÞ are concerned, they are narrower than
those of light vector mesons, and furthermore, they are not
positive definite along the entire interval, although the area
under the curve is larger than zero.
Concerning the LFWFs studied herein, the ρ meson

exhibits an x dependence for the transverse component

which is wider, and softer, than its longitudinal counterpart.
Moreover, the falloff along the p2⊥ range depicted is
smoother for a transversely polarized ρ meson than for a
longitudinal one. The ϕ meson exhibits LFWFs which are
narrower in the x dependence and flatter in the p2⊥ range
than those of the ρ meson. The longitudinal and transverse
LFWFs of the lowest-lying vector mesons with hidden
heavy flavor are observed to be steeper in the x dependence
than those of light vector mesons; besides, the longitudinal
part seems to be even narrower than the transverse one in
both J=ψ and ϒð1SÞ mesons. Furthermore, all LFWFs of
heavy vector mesons are nearly constant in the p2⊥ range
depicted.
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APPENDIX: ON THE CHOICE OF ν AND LFWFs

To analyze how sensitive our results are to the particular
choice of δ ¼ 0.01, we change it by the following ones:
0.03, 0.05, 0.1, 0.3, and 0.5; that is to say, we enlarge it by
up to 50 times its original value. This modification affects
mostly the pointwise behavior of the SDF, but it has little
effect on the x and p⊥ dependence of the LFWF. This can
be seen in Figs. 6 and 7 for the ρð770Þ and J=ψ mesons,
and similar results are obtained for the corresponding
heavier ones, i.e., the ϕð1020Þ and ϒð1SÞ mesons.
The upper-left panel of Fig. 6 shows that the SDF is

sensitive to the variation of the δ parameter. The drastic

change in SDF is due to the fact that we have multiplied
the δ’s value by a factor of 50. However, as shown in the
remaining panels of Fig. 6, such a large modification
of the δ parameter produces little effect in our prediction
of the pointwise behavior of the longitudinal LFWF.
One may conclude that the change in the peak is around
10%, and even less on the ends, when modifying heavily
the δ parameter. The case of vector mesons with heavy-
quark-antiquark content is drawn in Fig. 7; one can
observe that, despite the fact that SDF behaves similarly
as in the light vector-meson case, the longitudinal LFWF
is more sensitive, with a maximum change in the peak
of around 30%, and even less on their sides. We consider
this variation tolerable for inflating the δ parameter
50 times.
All this allows us to conclude that our prediction for the

LFWFs of the ρð770Þ, ϕð1020Þ, J=ψ , and ϒð1SÞ mesons
are reasonably robust within our theoretical approach and
assumptions.

FIG. 6. Spectral density and light-front wave functions of ρ meson calculated for different values of δ ¼ ν − 1. The LFWF is plotted
for p⊥ ¼ 0.0, 0.1, and 0.2 in order to analyze in detail differences related with the p⊥ dependence.
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