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Abstract

In this Thesis we exploit the latest cosmological observations to constrain fundamental physics
scenarios that go beyond the standard models of cosmology and particle physics. We start
by considering Macroscopic Dark Matter (MDM) candidates, which represent an appealing
alternative to particle dark matter. We focus on the process of proton capture by MDM and
constrain the parameter space of Macros using three cosmological probes: (i) the change in the
baryon density between the epochs of the Big Bang Nucleosynthesis (BBN) and the Cosmic
Microwave Background (CMB) decoupling; (ii) the production of spectral distortions in the
CMB spectrum; (iii) the kinetic coupling between charged MDM and baryons at the time of
CMB decoupling. We also show how future spectral distortions experiments, like PIXIE and
SuperPIXIE, will allow us to improve these bounds. Then, we focus on thermal axion-like
particles (hereafter axions), which are produced in the early Universe from scatterings between
particles belonging to the primordial thermal bath. Depending on their mass, thermal axions
can behave as a hot, warm or cold dark matter component. Using the latest observations
of CMB anisotropies by Planck and of Baryon Acoustic Oscillations from galaxy surveys, we
constrain the couplings of axions to photons and gluons. We compare these bounds with the
constraints derived from laboratory and astrophysical probes. In the second part of the Thesis,
we focus on the polarization of the CMB as a probe to test possible violations of fundamental
symmetries. First, we consider models that extend Maxwell’s electrodynamics by introducing
renormalizable operators which break Lorentz invariance. These consist in two terms, one of
which violates also CPT symmetry. Using the most recent observations of CMB polarization,
we derive strong bounds on the Lorentz-violating coefficients. In particular, for the CPT-odd
coefficients we obtain the strongest constraints to date, even considering non-CMB probes.
Finally, we analyze the effects of chiral scalar-tensor theories of gravity during inflation, focusing
on the non-Gaussianity of primordial gravitational waves. We compute the theoretical prediction
for the primordial bispectrum and we discuss the prospects for detecting such parity-violating
signatures with future CMB experiments.
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Part I

Introduction

We are living in the golden age of cosmology, characterized by the availability of an unprece-
dented amount of observational data. Several experiments aim at investigating our Universe
across the different epochs of its history, from the early times, when the Cosmic Microwave
Background (CMB) was produced, until the latest stage of Large-Scale Structure (LSS) forma-
tion. The standard ΛCDM cosmological model, that emerges from these observations, has been
tested repeatedly over the last few years and its six parameters are now measured at percent
and sub-percent level precision.

The ΛCDM model, which characterizes the dynamics of our Universe on its largest scales,
is complemented by the Standard Model (SM) of particle physics, which describes all the ele-
mentary particles and their interactions at fundamental level. Since its formulation in the early
1970s, the SM has predicted the outcome of numerous experiments with astonishing accuracy.

Despite the great success of the standard models of cosmology and particle physics, many
fundamental questions remain still without an answer. These include the nature of dark matter
and dark energy, the quest for a consistent and experimentally-established theory of quantum
gravity, the physics driving inflation and the origin of the baryon asymmetry in the Universe.
Interestingly, the possible solutions to these puzzles often suggest a deep connection between
cosmology and particle physics. As a result, cosmological observations are nowadays a powerful
probe to test fundamental physics scenarios and they have become precise enough to start com-
plementing, and possibly overcoming, the constraints from laboratory and collider experiments.

Most of the knowledge about our Universe comes from the observations of the CMB, an
extremely isotropic radiation released when the Universe became transparent after the formation
of the first neutral atoms. The CMB is linearly polarized at the 10% level due to Thomson
scattering between photons and free electrons at the time of last scattering. Almost all the
available information from the CMB temperature anisotropies has already been extracted by the
Planck satellite [5, 6] at large and intermediate angular scales, and by the Atacama Cosmology
Telescope (ACT) [7] at smaller scales. Nevertheless, a wealth of information is still encoded in the
CMB polarization. Constraining cosmology and fundamental physics through CMB polarization
is indeed the focus of the next-stage CMB surveys. One of the main goals is the detection of the
so-called B-modes of polarization, that are the smoking gun of primordial gravitational waves
(PGWs) sourced during inflation. Currently, the strongest bounds on B-modes come from the
BICEP/Keck array [8]. The measurement of B-modes at large angular scales will be the main
target of the LiteBIRD satellite [9]. The future ground-based experiments Simons Observatory
(SO) [10] and CMB Stage-4 (CMB-S4) [11] will also play a fundamental role in measuring
the CMB polarization at smaller angular scales and higher angular resolution. Furthermore, the
increased sensitivity of future CMB surveys to primordial non-Gaussianities will provide valuable
information to probe the dynamics of inflation and the associated high-energy physics [12].

The same physics that is imprinted in the CMB anisotropies also determined the initial
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Introduction

conditions for the clustering of matter and can thus be observed through the LSS of the Universe.
In particular, Baryon Acoustic Oscillations (BAO) provide us with a cosmological standard ruler
which allows us to further improve our bounds on the cosmological parameters. BAO data are
extracted from galaxy surveys such as BOSS DR12 [13], 6dFGS [14] and SDSS-MGS [15].

In this Thesis we exploit the most recent cosmological observations described above to con-
strain various fundamental physics scenarios which go beyond the standard models of cosmology
and particle physics.

As mentioned above, one of the big open questions of both cosmology and particle physics
is to understand the nature of dark matter (DM). Many particle DM candidates have been
proposed, including WIMPs, axions and sterile neutrinos, but no experimental evidence has been
found in favour of any of them yet. An alternative possibility is that the DM is composed of
macroscopic-size objects, generically dubbed Macro Dark Matter (MDM) [16]. In part II of this
Thesis we analyze this possibility and use cosmological observations to constrain the parameter
space of MDM. Then, we consider thermal axion-like particles (hereafter axions) produced in
the early Universe from either axion-photon or axion-gluon processes. Depending on their mass,
thermally-produced axions can behave as a hot, warm or cold dark matter component. We
constrain the axion couplings to photons and gluons using the latest observations of the CMB
from Planck and of BAO from galaxy surveys.

In part III of the Thesis we focus on the polarization of the CMB as a probe to test possible
violations of some fundamental symmetries. The CMB polarization is particular suited to test
models predicting a non-standard propagation of photons in the Universe. We consider this
possibility in the context of Lorentz- and CPT-violating extensions of Maxwell’s electromagnetic
theory [17–19]. Two observable effects are the generation of cosmic birefringence (both isotropic
and anisotropic), i.e. the rotation of the linear polarization plane of CMB photons, and the
generation of circular polarization from the conversion of the primordial linear polarization
components. Then, we consider the possibility that parity symmetry is violated in the gravity
sector during inflation. The violation of parity symmetry induces a difference in the power
spectra of left-handed and right-handed polarization states of PGWs, which is usually referred
to as chirality. This can in general leave imprints in both power spectra and higher-order
correlators of the CMB involving B-modes.

In more details, the Thesis is organized as follows:

• In chapter 1 we review the basics of the standard model of cosmology. We start by describ-
ing the foundations of the ΛCDM model. Then, after discussing the most important events
during the thermal history of our Universe, we introduce the shortcomings of the stan-
dard cosmological model and explain how the inflationary paradigm provides compelling
solutions to all of them. We also briefly recall the mechanism through which inflation
can source the primordial perturbations in the Universe. Finally, we describe the main
cosmological observables used in the analysis outlined in the rest of the Thesis.

• In chapter 2 we focus on MDM. Keeping a phenomenological approach, we consider a par-
ticular process that might be associated to MDM, namely the capture of baryons of the
cosmological plasma by Macros. We begin by discussing the cosmological phenomenology
of MDM and derive constraints on the parameter space of MDM using three cosmological
probes: (i) the change in the baryon density between the epochs of the Big Bang Nucle-
osynthesis (BBN) and the CMB decoupling; (ii) the production of spectral distortions in
the CMB spectrum; (iii) the kinetic coupling between charged MDM and baryons at the
time of CMB decoupling. This is based on the results reported in [2].

In chapter 3 we introduce the QCD axion and axion-like particles. We discuss the theo-
retical motivations behind the introduction of these new particle species and describe the
main QCD axion models. Then, we focus on axions as dark matter (DM) candidates and
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we conclude by summarizing the main experimental strategies to constrain the properties
of axions.

In chapter 4 we focus on thermally-produced axions. We discuss the thermal production of
axions in the early Universe from axion-photon or axion-gluon processes and we constrain
the axion couplings to photons and gluons using the latest observations of the CMB from
Planck and of BAO from galaxy surveys. We compare our results with the bounds derived
from astrophysical and laboratory probes and we discuss the prospects for improving our
limits using the next-stage CMB-S4 survey. This is based on the results of [3].

• In chapter 5 we derive new constraints on Lorentz-violating electrodynamics from the
most recent measurements of the CMB polarization by Planck [20, 21], BICEP/Keck [8],
ACT [7], CLASS [22] and SPIDER [23]. We focus on the minimal Standard Model Exten-
sion (SME) [17–19], which extends the electromagnetic Lagrangian with renormalizable
operators of mass dimension d ≤ 4. These include an operator of dimension d = 3 which
also breaks CPT symmetry and a dimension-4 operator which instead respects the CPT
symmetry. The CPT-odd operator is responsible for the cosmic birefringence effect, while
the CPT-even operator instead converts linear into circular polarization. The constraints
that we get on the CPT-odd parameters are roughly one and two orders of magnitude
tighter than previous limits. These are the strongest bounds obtained to date on these LV
coefficients. Concerning the CPT-even case, we improve previous CMB-based analysis by
one order of magnitude. This chapter is based on the results reported in [4].

In chapter 6 we study inflation within chiral scalar-tensor theories of gravity proposed
in [24]. First, we show that the amount of chirality in the power spectrum of PGWs
is suppressed. Motivated by this consideration and by the degeneracy between different
parity-violating theories at the level of the power spectrum statistics, we make a detailed
analysis of the parity-breaking signatures on the bispectrum of primordial tensor modes.
We comment on the impact of these parity-violating signatures on the CMB bispectra
and discuss the prospects for detecting them with future CMB experiments. This is based
on [1].

• Finally, in part IV we review the main novel results derived from the analysis discussed in
this Thesis. We draw our conclusions and discuss some future prospects.
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Chapter 1

The ΛCDM cosmological model

1.1 Foundations of the standard cosmological model

Cosmology is the branch of physics which studies the composition and the evolution of the
Universe as a whole. Started as a philosophical discipline, it is nowadays based on a solid
scientific ground, being supported by a wealth of observational data. The standard cosmological
model, known as the ΛCDM model, explains extraordinarily well the evolution of our Universe
from its early stages (corresponding to some fraction of a second) to its current state, about
13.8 billion years later, in terms of just six parameters. The standard cosmological model is
supported by three observational pillars, which have marked a revolution in our view of the
Universe in the 20th century:

(i) the observation of the expansion of the Universe, made in 1929 by Hubble [25], who found
that galaxies are receding away from each other with a velocity proportional to the relative
distance between them;

(ii) the Big Bang Nucleosynthesis (BBN), namely the explanation of the relative abundance
of light elements made by Alpher, Bethe and Gamow in 1948 [26];

(iii) the detection of the Cosmic Microwave Background (CMB) by Penzias and Wilson in
1964 [27]. This is an extremely isotropic radiation emitted when the Universe, while
cooling down, reached a temperature low enough to allow the formation of neutral atoms;
after that, photons decoupled from matter and started free-streaming across the Universe.

On the theoretical side, it is based on three main ingredients:

(i) the Cosmological Principle;

(ii) the theory of General Relativity, which provides us with a mathematical model to describe
the geometry and the dynamics of the expanding Universe;

(iii) our knowledge of the content of the Universe, which is based on the Standard Model (SM)
of particle physics.

We will analyze in more details these three aspects in the next subsections.

1.1.1 The cosmological principle

At the core of the ΛCDM model lies the Cosmological Principle, which states that:

“Each comoving observer sees the Universe around him, at a fixed time, as homogeneous and
isotropic, on sufficiently large scales.”
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1.1. Foundations of the standard cosmological model

Figure 1.1: 3D map of the Universe from the Baryon Oscillation Spectroscopic Survey of the Sloan
Digital Sky Survey-III collaboration [29]. The rectangle on the left shows a cutout of 1000 square degrees
in the sky containing nearly 120000 galaxies, consisting of roughly 10% of the total survey.

A comoving observer is one which has no motion with respect to the cosmic fluid; in practice, a
comoving observer sees the CMB as isotropic, apart from its tiny anisotropies. Isotropy means
that the space looks the same no matter in what direction we look; in other words, the space
has rotational invariance. Homogeneity means that the space looks the same at each point, with
no dependence on the position; this corresponds to translational invariance. Finally, with “large
scales” we refer to distances bigger than about 100 Mpc.1

Notice that homogeneity and isotropy are not necessarily related to each other. However,
if a space is isotropic around a point and also homogeneous, then it is isotropic around any
point. Since we have ample observational evidence for isotropy around us, like the isotropy of the
CMB [28] and the isotropy in the statistical properties of clustering of galaxies (see Fig. 1.1), and
we assume that we are not in a special place in the Universe (the so-called Copernican principle),
then it follows that the Universe is homogeneous and isotropic around each point.

1.1.2 Geometry and dynamics of the expanding Universe

As we have already said, we know on very solid observational grounds that our Universe is
expanding. Thus, we can say that the Universe is spatially homogeneous and isotropic, but it
evolves with time. In the language of differential geometry, this translates into the statement
that our Universe can be foliated into spacelike slices, such that each three-dimensional slice is
a maximally symmetric space. In other words, the spacetime is a four-dimensional manifold M4

which can be decomposed as M4 = R × Σ, where R represents the time direction and Σ is a
maximally symmetric three-manifold. Under this assumption, we can write the metric of the
spacetime, known as the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, as

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.1)

where (r, θ, φ) are comoving polar coordinates and a(t) is the scale factor, which determines
proper distances in terms of the comoving coordinates (see Fig. 1.2). Notice that we work in
units with c = 1. By an appropriate rescaling of the coordinates, k can be set equal to +1,
−1, or 0 for spaces of constant positive, negative, or vanishing spatial curvature, respectively.
Since observations tell us that our (observable) Universe is practically indistinguishable from
a Universe with vanishing spatial curvature [6], it is common practice to set k = 0. The

1We remind the reader that 1 Mpc ' 3.086× 1018 cm.
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1.1. Foundations of the standard cosmological model

Figure 1.2: The comoving distance between points on an imaginary coordinate grid remains constant
as the Universe expands. The physical distance, which is proportional to the comoving distance through
the scale factor a(t), gets larger as time evolves. Figure taken from [30].

time coordinate t is called cosmic time and represents the proper time measured by comoving
observers.

It is also useful to introduce the conformal time τ , defined through the relation

dτ =
dt

a(t)
. (1.2)

With this change of time coordinate, the flat FLRW metric factorizes into a static Minkowski
metric multiplied by the time-dependent conformal factor a(τ):

ds2 = a2(τ)
[
−dτ2 + dr2 + r2(dθ2 + sin2 θdφ2)

]
. (1.3)

The dynamics of the expansion of the Universe is encoded in the time dependence of the
scale factor a(t). This can be obtained by solving the Einstein’s equations

Gµν ≡ Rµν −
1

2
Rgµν = 8πGTµν , (1.4)

where G is the Newton constant. On the left hand side we have the Einstein’s tensor Gµν ,
which is a measure of the spacetime curvature. It depends on the metric and its first and second
derivatives. On the right hand side we find instead the stress-energy tensor Tµν , which describes
the matter/energy content of the Universe.

To be consistent with the symmetries of the metric, the stress-energy tensor must be diagonal
and the spatial components must be equal, due to isotropy. The simplest example is provided
by the stress-energy tensor of a perfect fluid, which has the form

Tµν = (ρ+ p)uµuν + pδµν = diag(−ρ, p, p, p) , (1.5)

where ρ is the energy density, p is the pressure, and uµ = (1, 0, 0, 0) is the four-velocity of the
fluid in comoving coordinates, with respect to which the fluid is at rest.

The stress-energy tensor satisfies a continuity equation

∇µTµν = 0 , (1.6)

where ∇µ is the covariant derivative. In the case of a perfect fluid, the time component of
Eq. (1.6) yields

ρ̇ = −3H(ρ+ p) , (1.7)
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1.1. Foundations of the standard cosmological model

Figure 1.3: The three possible geometries of our Universe in a 2-D analogy. Figure taken from [31].

where H = ȧ/a is the Hubble parameter. One usually refers also to Eq. (1.7) as the continuity
equation.

By specifying the Einstein’s equations to the case of a Universe described by a FLRW metric
and filled with a perfect fluid, one can obtain (from the 00- and the ii-components of Eq. (1.4))
the so-called Friedmann equations:

H2 =
8πG

3
ρ− k

a2
, (1.8)

ä

a
= −4πG

3
(ρ+ 3p) , (1.9)

which are complemented by the continuity equation. However, because of the Bianchi identities,
only two among these three equations are actually independent.

As we will soon see, if we know from the continuity equation how the energy density ρ evolves
with the scale factor a during a given era, we can integrate the first Friedmann equation (1.8)
to obtain the dependence of the scale factor on the cosmic time t. The second Friedmann
equation (1.9) then gives us the acceleration of the expansion. We will see that “ordinary
components”, like radiation and matter, satisfy ρ + 3p > 0. From Eq. (1.9) this results in a
decelerated expansion of the Universe. A cosmological constant or a slowly-rolling scalar field
(which is the simplest realization of an inflationary phase) obey instead ρ+ 3p < 0, thus leading
to an accelerated expansion.

It is also important to notice how the geometry of the Universe is linked to its total energy
density. If we define the critical density

ρcrit =
3H2

8πG
(1.10)

and the dimensionless density parameter

Ω ≡ ρ

ρcrit
, (1.11)

the first Friedmann equation can be rewritten as

Ω− 1 =
k

a2H2
. (1.12)

Since a2H2 > 0, it follows that the sign of k is equal to the sign of Ω − 1. In particular, we
have:

7



1.1. Foundations of the standard cosmological model

ρ < ρcrit ⇐⇒ Ω < 1 ⇐⇒ k < 0 ⇐⇒ open Universe

ρ = ρcrit ⇐⇒ Ω = 1 ⇐⇒ k = 0 ⇐⇒ flat Universe

ρ > ρcrit ⇐⇒ Ω > 1 ⇐⇒ k > 0 ⇐⇒ closed Universe

(1.13)

This means that the density parameter tells us which of the three possible geometries describes
our Universe. This is sketched in Fig. 1.3.

1.1.3 Energy content of the Universe

The Friedmann equations (1.8)-(1.9) represent two independent equations in three variables,
a(t), ρ(t) and p(t). This means that we need to introduce a third equation to close the system.
This can be done by specifying the equation of state of the cosmic fluid. We assume that the
cosmic fluid is described by a barotropic equation of state, which means that the pressure is a
function of the energy density only, p = p(ρ). Moreover, we assume this relation to be linear:

p = wρ , (1.14)

where w is a dimensionless constant. Plugging this ansatz into the continuity equation (1.7),
one can readily obtain the evolution of the energy density ρ with the scale factor:

ρ ∝ a−3(1+w) . (1.15)

Depending on the value of w, we can classify different sources:

• Non-relativistic matter: w = 0. In this case p = 0, and consequently

ρ ∝ a−3 . (1.16)

This is a simple consequence of the expansion of the Universe, which implies that volumes
scale as V ∝ a3. This is the case of (non-relativistic) baryonic matter and Dark Matter.

• Radiaton: w = 1/3. In this case p = ρ/3, and

ρ ∝ a−4 . (1.17)

This is the case of radiation and, more generally, relativistic particles. In addition to
the a−3 factor due to the expansion of the Universe there is a contribution due to the
redshifting of the energy, E ∝ a−1.

• Cosmological Constant: w = −1. In this case p = −ρ, and

ρ = const. (1.18)

Since the energy density is constant, the energy has to increase while the Universe is
expanding. More in general, Dark Energy has w < −1/3. From the second Friedmann
equation (1.9), this last condition leads to an accelerated expansion of the Universe, ä > 0.

Given the evolution of the energy density of these different components, it is easy to convince
ourselves that our Universe underwent an early phase during which radiation was the dominant
component. After some time, at the matter-radiation equality, the energy density of matter
became equal to that of radiation and then it became the leading component. More recently
in the cosmic history, the Cosmological Constant (or another form of Dark Energy with similar
behavior at present time) took the stage, becoming the leading actor in driving the expansion
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Figure 1.4: Energy density of radiation (red), matter (blue) and cosmological constant (green) as a
function of the scale factor of the Universe.

of the Universe. This can be appreciated in Fig. 1.4, where we show the evolution of the energy
density of radiation, matter and the cosmological constant as a function of the scale factor.

For a flat Universe, the Friedmann equation (1.8) can be easily integrated together with the
continuity equation, allowing us to obtain the time evolution of the scale factor:

a(t) ∝
{
t2/3(1+w) w 6= −1 ,

eHt w = −1 .
(1.19)

It is then straightforward to determine how the scale factor evolves during the different phases
of our Universe:

a(t) ∝


t1/2 radiation domination ,

t2/3 matter domination ,

eHt cosmological constant .

(1.20)

We summarize the solutions for a flat FLRW Universe dominated by radiation, matter or
a cosmological constant in Table 1.1, where we report also the evolution of the scale factor in
terms of the conformal time τ .

w ρ(t) ∝ a(t) ∝ a(τ) ∝
RD 1/3 a−4 t1/2 τ

MD 0 a−3 t2/3 τ2

Λ -1 constant eHt −τ−1

Table 1.1: Evolution of the energy density and scale factor for a flat Universe during the epochs
dominated by radiation (RD), matter (MD) and the cosmological constant Λ.

1.2 Thermal equilibrium cosmology

Very early in the history of our Universe all the Standard Model particles were in thermal
equilibrium with each other. The Universe consisted of a hot and dense plasma of relativistic
particles sharing a common temperature T .
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1.3. Out-of-equilibrium cosmology

The energy density of a particle species of mass m in equilibrium at temperature T is given
by

ρ =
g

(2π)3

∫ √
p2 +m2

exp (
√
p2 +m2/T )± 1

d3p , (1.21)

where g is the number of internal degrees of freedom of the species and the sign + (−) is for
fermions (bosons). In the relativistic limit T � m, this reduces to

ρ =
π2

30
gT 4 ×

{
1 bosons ,

7/8 fermions .
(1.22)

Given the previous equation, and taking into account the fact that different species can have
different temperatures Ti if some of them have decoupled from the the cosmological plasma, the
total energy density in relativistic species can be written as

ρrad =
π2

30
g∗(T )T 4 , (1.23)

where g∗ is the effective number of relativistic degrees of freedom, defined as

g∗(T ) =
∑

i= bosons

gi

(
Ti
T

)4

+
7

8

∑
i= fermions

gi

(
Ti
T

)4

. (1.24)

Another quantity which is extremely useful to describe the thermal history of the Universe
is the entropy S, which is conserved during the adiabatic expansion of the Universe. The total
entropy for a set of different particle species is given by

S =
2π2

45
g∗s(T )a3T 3 , (1.25)

where we have introduced the effective number of degrees of freedom in entropy

g∗s(T ) =
∑

i= bosons

gi

(
Ti
T

)3

+
7

8

∑
i= fermions

gi

(
Ti
T

)3

. (1.26)

Notice that, as long as all the particle species are in equilibrium at the same temperature
T , g∗(T ) = g∗s(T ). This is true at temperatures T & MeV. However, as we will discuss in
Section 1.3.2, neutrinos decouple from the cosmological plasma at T ∼ MeV. Shortly after
that, when the temperature of the Universe drops below the electron mass (me = 0.511 MeV),
electron-positron annihilations take place. As a result, cosmic neutrinos have a slightly lower
temperature with respect to the particles in equilibrium with the cosmological plasma, leading
to g∗(T . me) 6= g∗s(T . me). This can be seen in Fig. 1.5, where g∗ and g∗s are shown as a
function of the temperature T .

1.3 Out-of-equilibrium cosmology

Even though thermal equilibrium holds during most of the expansion history of our Universe,
the most relevant events occur when departure from equilibrium takes place. These include the
formation of the light elements during Big Bang Nucleosynthesis, the decoupling of neutrinos
from the cosmological plasma and recombination of electrons and protons into neutral hydrogen
followed by the formation of the Cosmic Microwave Background radiation.2 In this section we
describe in more details all these processes.

2Other important events that might be related to a departure from thermal equilibrium are the production of
dark matter and the mechanism leading to the baryon asymmetry in the Universe.
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Figure 1.5: Effective number of degrees of freedom in entropy (orange line) g∗s and effective number of
relativistic degrees of freedom (blue line) g∗ in the SM as a function of the temperature of the primordial
plasma. These are taken from the analysis of Ref. [32]. The difference between g∗ and g∗s at low
temperatures is due to electron-positron annihilations taking place when the temperature drops below
the electron mass, me = 0.511 MeV, hence leading to Tν,0 < Tγ,0

1.3.1 Big Bang Nucleosynthesis

Big Bang Nucleosynthesis (BBN) is the process during which the first light elements, i.e. deu-
terium (D), helium (3He and 4He), plus very small amounts of lithium (7Li) and beryllium
(7Be), are synthesized in the early Universe. BBN proceeds first via the production of deu-
terium through the process

n+ p+ ←→ D + γ . (1.27)

Then, deuterium is converted into 3He and 4He via the reactions

D + p+ ←→ 3He + γ , (1.28)

D + 3He ←→ 4He + p+ . (1.29)

A key fact is that, given the small value of the baryon-to-photon ratio

η ≡ nb
nγ
' 5.5× 10−10

(
Ωbh

2

0.02

)
, (1.30)

production of deuterium is delayed until the temperature of the Universe drops well below the
binding energy of deuterium. This is the so-called deuterium bottleneck. Deuterium and helium
are then produced at T ∼ 0.1 MeV, but the reaction rates are by now too low to produce any
heavier elements in significant amounts. Small fractions of 7Li and 7Be are synthesized, while
the production of heavy nuclei is blocked by the absence of stable mass-8 nuclei.

As we will also discuss in Sec. 1.3.2, weak interactions freeze-out at the temperature T ∼
MeV. Thus, in order to keep track of the correct neutron abundance, one must resort to a
Boltzmann equation (see e.g. [33]). The theoretical predictions for the abundances of D, 3He,
4He and 7Li are shown in Fig. 1.6, together with the observational bounds from WMAP.

Note that the abundance of light elements depends on the baryon-to-photon ratio (1.30)
since, as explained above, the value of η determines the time when BBN begins. Therefore,
given the measurements of the primordial abundances of light elements, one can constrain the
baryon density Ωbh

2. Using the measurements of the abundances of D and 4He from Refs. [34]
and [35], respectively, the following bound has been obtained in [36] (see also [37] for a more
recent analysis using updated expressions for nuclear rates):

(Ωbh
2)BBN = 0.0227± 0.0005 . (1.31)
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1.3. Out-of-equilibrium cosmology

Figure 1.6: Primordial abundances of the light elements as a function of the baryon-to-photon ratio η
or, equivalently, the baryon density Ωbh

2. Figure taken from [38].

Since this value is significantly lower than the total matter density, Ωmh
2 = 0.1432± 0.0013 [6],

the BBN provides a compelling evidence in favor of the existence of a non-baryonic matter
component, which is referred to as dark matter.

1.3.2 Neutrino decoupling and the Cosmic Neutrino Background

At high temperatures in the early Universe, neutrinos are kept in equilibrium with the cosmo-
logical plasma through processes like

e+ + e− ←→ νe + ν̄e ,

νe + e± ←→ νe + e± , (1.32)

ν̄e + e± ←→ ν̄e + e± .

As the Universe expands and cools down, the interaction rate Γ of neutrinos becomes of order
of the Hubble expansion rate, H. As a consequence, processes like those in (1.32) become
ineffective in keeping neutrinos in equilibrium with the cosmological plasma: this signals the
decoupling of neutrinos from the primordial plasma. An estimate of the neutrino decoupling
temperature Td can thus be obtained by imposing the condition

Γ(Td) = H(Td) . (1.33)

The interaction rate Γ can be written as

Γ = nσv , (1.34)

where n is the number density of particles, σ is the interaction cross-section and v is the average
velocity of the particles. At temperatures T > me = 0.511 MeV, the energy density of the
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1.3. Out-of-equilibrium cosmology

Universe is dominated by the species that are ultra-relativistic (UR), like photons, electrons,
positrons and neutrinos. This allows us to make two simplifications: first, the relative velocity
can be well approximated with the speed of light, v ∼ 1; secondly, in the UR limit particle masses
can be ignored and, by dimensional analysis, the particle number density can be estimated as
n ∼ T 3.

The only ingredient we miss is the interaction cross-section σ. For interactions mediated by
massive gauge bosons (which is the case of electroweak interactions), the cross-section can be
written as3 σ ∼ G2

XT
2, where GX is a (dimensional) constant related to the mass of the gauge

boson. In the case of weak interactions, GX = GF ' 1.166× 10−5 GeV−2 is the Fermi constant.
Putting all together, we are left with the following estimate of the interaction rate for weak
processes:

Γ = nσv ∼ G2
FT

5 . (1.35)

This has to be compared with the Hubble expansion rate, which, in a radiation-dominated
Universe, is roughly given by

H ∼ T 2

MPl
, (1.36)

where MPl = (8πG)−1/2 = 2.44×1018 GeV is the reduced Planck mass. Using Eqs. (1.35)-(1.36)
we find

Γ

H
∼MPlG

2
FT

3 ∼
(

T

MeV

)3

. (1.37)

Therefore, imposing the condition (1.33) we obtain a decoupling temperature for neutrinos
Td ' 1 MeV.

Since neutrinos decouple while being relativistic, their distribution function maintains the
form of a relativistic Fermi-Dirac distribution even at later times, with the neutrino temperature
evolving as Tν ∝ a−1. As long as the temperature of cosmic photons evolves in the same way,
the two species share the same temperature, Tν = Tγ . However, particle annihilations taking
place after neutrino decoupling lead to an increase in Tγ relatively to Tν , resulting in cosmic
neutrinos having a slightly lower temperature today than CMB photons. In particular, shortly
after neutrino decoupling (T ' 1 MeV) the temperature of the Universe drops below the mass
of the electron and electron-positron annihilations start taking place:

e+ + e− −→ γ + γ . (1.38)

The entropy released by these annihilations gets transferred to the cosmological plasma but
not to neutrinos, which are already decoupled from the latter. As a result, the temperature

of cosmic photons (Tγ ∝ g
−1/3
∗s a−1) decreases less than the temperature of cosmic neutrinos

(Tν ∝ a−1), which are not heated by e+e− annihilations. The ratio between the neutrino and
photon temperature can be computed imposing the conservation of entropy across the time of
electron-positron annihilation:

(g∗sT
3)|T>me = (g∗sT

3)|T<me . (1.39)

At temperatures larger than the electron mass, g∗s receives contributions from photons, electrons
and positrons, whereas at T < me only photons are relativistic. Hence

g∗s =

{
2 + 7/8× 2× 2 = 11/2 T & me

2 T . me .
(1.40)

3This is true only at temperatures below the mass of the gauge boson.
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1.3. Out-of-equilibrium cosmology

Therefore, from Eq. (1.39) we find that the temperatures after (T<) and before (T>) e+e−

annihilations are related by

T< =

(
11

4

)1/3

T> . (1.41)

This can be used to compute the temperature of the Cosmic Neutrino Background (CνB) today,
which is given by

Tν,0 =

(
4

11

)1/3

Tγ,0 ' 1.95 K ' 1.68× 10−4 eV , (1.42)

where Tγ,0 ' 2.73 K ' 2.35× 10−4 eV is the current temperature of CMB photons.
The energy density of a single massive neutrino species is

ρν(Tν) =
g

(2π)3

∫ √
p2 +m2

ep/Tν+1
d3p . (1.43)

In analogy with Eq. (1.11), we can then define the density parameter for massive neutrinos as

Ων ≡
∑
i

ρνi,0
ρcrit,0

. (1.44)

Taking into account the effects of non-instantaneous neutrino decoupling, one finds [39]

Ωνh
2 =

∑
imν,i

93.14 eV
. (1.45)

By requiring that neutrinos do not overclose the Universe, i.e. Ων < 1, Eq. (1.45) allows us to
obtain a cosmological upper bound on the sum of the neutrino masses, which reads∑

i

mν,i . 14 eV . (1.46)

This result was first derived by Gerstein and Zel’dovich [40].
To summarize, the standard cosmological model predicts that our Universe is filled with

a background of relic thermal neutrinos with density of roughly 113 particles per cm3 and
temperature of 1.95 K.

1.3.3 Hydrogen recombination and the Cosmic Microwave Background radi-
ation

A remarkable event in the thermal history of our Universe is represented by the formation of the
first neutral atoms. At high temperatures, the cosmological plasma was composed of photons,
free electrons and protons. Photons were interacting via Compton scattering with electrons,
which in turn were coupled to protons due to Coulomb interaction. When our Universe became
cold enough to allow the formation of neutral atoms (a process which is called recombination),
the density of free electrons dropped quite abruptly. As a consequence, photons decoupled
from matter and started free streaming across the Universe. These photons, which nowadays
we are able to observe with both ground and spaced-based satellites, form the so-called cosmic
microwave background radiation.

To understand when recombination takes place, we need to consider the process

e− + p ←→ H + γ . (1.47)

Let’s start by introducing the electron ionization fraction

Xe ≡
ne
nb
, (1.48)
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1.3. Out-of-equilibrium cosmology

where the baryon density nb can be written as nb ≈ np + nH = ne + nH , with the last equality
holding due to charge neutrality. At high temperatures the hydrogen is fully ionized, hence
Xe = 1. As the Universe expands and cools down, more and more electrons combine with
protons to form neutral hydrogen, leading to Xe � 1. The evolution of the ionization fraction
Xe can be studied in first approximation by writing down Saha equation, which reads (see
e.g. [33, 41]) (

1−Xe

X2
e

)
eq

=
2ζ(3)

π2
η

(
2πT

me

)3/2

eBH/T , (1.49)

where
BH ≡ mp +me −mH ' 13.6 eV (1.50)

is the binding energy of hydrogen and η is the baryon-to-photon ratio defined in Eq. (1.30). We
can then define the recombination temperature Trec as the temperature at which 90% of the
electrons have combined with protons. Imposing the condition Xe = 0.1 in Eq. (1.49) leads to

Trec ' 0.3 eV . (1.51)

Notice that this is much smaller than the hydrogen binding energy. This is due to the huge
number of photons for each hydrogen atom (see Eq. (1.30)). Even at temperatures T . BH ,
there is a large number of photons in the tail of the distribution having energy Eγ > BH , such
that any hydrogen atom which is produced is instantaneously photo-ionized. This delays recom-
bination until the temperature of the Universe has dropped enough to make photo-dissociation
not efficient anymore.

Shortly after recombination, photons decouple from baryons. Indeed, photons interact with
electrons via Thomson scattering

e− + γ ←→ e− + γ , (1.52)

with an interaction rate given by
ΓT ' neσT , (1.53)

where σT is the Thomson cross-section. As the free electron density ne decreases after recombi-
nation, also the interaction rate between photons and electrons drops. Decoupling takes place
when the interaction rate becomes of order of the Hubble expansion rate, so that the decoupling
temperature Tdec is defined by the condition

ΓT (Tdec) = H(Tdec) . (1.54)

From this requirement one obtains
Tdec ' 0.26 eV . (1.55)

Photon decoupling represents the last moment when photons interact with the primordial
plasma. This defines the so-called last scattering surface.

In order to track the electron density after freeze-out, we need to resort to the Boltzmann
equation, which is the key tool to describe processes involving departures from thermal equilib-
rium. By defining x ≡ 1/T , we can write a Botlzmann equation for the ionization fraction as
(see e.g. [33, 42])

dXe

dx
= − λ

x2
α2C

[
X2
e − (XEQ

e )2
]
, (1.56)

where XEQ
e is the equilibrium ionization fraction which follows the Saha equation (1.49), α2 is the

thermally-averaged cross-section for recombination from the excited state n = 2, λ ≡ nb/(Hx)
and C is a correction factor introduced by Peebles [42] (see also [33]).

In Fig. 1.7 we show the numerical solution of the Boltzmann equation (1.56) (solid orange
line) together with the solution of the Saha equation (dashed blue line). Notice that the Saha
equation is a good enough approximation to trace the ionization fraction around recombination,
but it fails in determining the electron density after freeze-out.
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Figure 1.7: Electron ionization fraction obtained solving the Saha (dashed blue line) and Boltzmann
equation (solid orange line). The recombination temperature (Trec ' 0.3 eV) is defined by imposing the
condition Xe = 0.1 in the Saha equation (1.49), whereas the decoupling temperature (Tdec ' 0.26 eV) is
defined by the condition Γγ(Tdec) = H(Tdec), see the main text for more details.

1.4 Thermal history of the Universe

Now that we are equipped with a physical model describing the content and the dynamics
of our Universe, we are ready to describe the key events of its thermal history, following the
discussion of Sec. 1.3. We know that, going back in time, the Universe becomes hotter and
denser. Extrapolating this argument back farther and farther in time, at some point we reach
a state of infinite density and temperature, a singularity (which we commonly referred to as
the Big Bang) that we identify as the initial time, t = 0. However, when we go beyond the
Planck epoch, tPl ∼ 10−43 (corresponding to a temperature TPl ∼ 1019 GeV), we enter a regime
in which the quantum corrections to our description of the gravitational interaction must be
taken into account. Since the ΛCDM model is based on General Relativity, which is a purely
classical theory, our description of these early stages of our Universe breaks down. Thus, given
that we do not have any successful theory of quantum gravity yet, the first moments of life of
our Universe are at the moment highly speculative. Therefore we start our description well after
the Planck time.

• Inflation and reheating: There are many reasons to believe that our Universe underwent
an early phase of accelerated expansion, called inflation. The existence of an inflationary
phase was initially proposed as a solution to the shortcomings of the standard cosmolog-
ical model, such as the horizon and the flatness problems. Soon enough it became clear
that an inflationary phase can do more than that. Indeed, inflation naturally provides a
mechanism to generate the primordial density perturbations, which are the seeds for the
following formation of the Large-Scale Structures and which can be observed through the
temperature anisotropies in the CMB. Inflation ended with the so-called reheating phase,
after which the standard radiaton era started.

• Baryogenesis: we have a great number of evidence that our Universe is (almost) entirely
composed of matter, with no antimatter. This fact, which might seem obvious at first
sight, is instead surprising from a particle physics perspective. Indeed, the CPT theorem
(valid for each local, relativistic quantum field theory) tells us that for any particle species
there exists a corresponding antiparticle with the same mass, decay width and opposite
charge. Thus, we would expect the Universe to be symmetric with respect to the content of
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matter and antimatter. Since particles and their respective antiparticles annhilate between
themselves, if the Universe was initially filled with equal amounts of matter and antimatter,
these annihilations would have led to a Universe dominated by radiation. This means that
we need to introduce in the early Universe some mechanism that generates dinamically a
baryon asymmetry starting from an initial symmetric state. This is called baryogenesis.
Although many models for baryogenesis exist, currently there are no experimental evidence
in favor of any of them.

• Electroweak phase transition: at a temperature T ∼ 100 GeV the electroweak phase
transitions occured and particles obtained their masses through the Higgs mecchanism.
The symmetry SU(2)L⊗U(1)Y of the electroweak interaction was broken to U(1)EM and
the weak interaction became short-range, since the gauge bosons W± and Z0 became
massive (mW ' 80 GeV, mZ ' 91 GeV). We will describe this mechanism more in detail
in the next chapter.

• QCD phase transition: at T ∼ 100 MeV a second phase transition occurred, namely
the QCD phase transition. After that, quarks were not “free” anymore, but formed bound
states of (color singlet) quarks triplets, called baryons, and quark-antiquark states, called
mesons.

• Neutrino decoupling: at T ∼ 1 MeV, the interaction rate of neutrinos became of order
of the expansion rate H. As a consequence, neutrinos decoupled from the primordial
plasma and from there on they freely-streamed through the Universe.

• Big Bang Nucleosynthesis: at T ∼ 0.1 MeV, soon after neutrino decoupling, the light
elements (1H, 4He, with small amounts of 2H and 3He, and with a tiny component of 7Li)
were formed. This process is known as Big Bang Nucleosynthesis (BBN).

• Electron-positron annihilation: at T ∼ 511 KeV electrons and positrons became non
relativistic, hence their abundance dropped due to the annihilation process e+e− → 2γ.
Indeed, the energy of the thermal bath was not sufficient anymore to allow the production
of e−e+ couples via the inverse process from photons. The energy coming from these
annihlations was then transferred to the thermal plasma, but not to neutrinos, which were
already decoupled. As a consequence, the temperature of the neutrino background today
(Tν,0 ' 1.95 K) is expected to be lower than the corresponding temperature of the photons
(Tγ,0 ' 2.73 K).

• Radiation-matter equality: at T ∼ 0.75 eV the energy density of matter became equal
to that of radiation: this epoch is usually referred to as matter-radiation equality. After
that, the matter-dominated era started.

• Recombination: at T ∼ 0.3 eV electrons and nuclei became bound to form the first
neutral atoms through the process e− + p → H + γ. This is called recombination (even
though they actually combined for the first time).

• Photon decoupling: soon after recombination (T ∼ 0.26 eV), photons decoupled from
the primordial plasma and started free-streaming across the Universe. Today we can ob-
serve them as a background radiation, the so-called Cosmic Microwave background (CMB)
radiation, with a temperature Tγ,0 ' 2.73 K. The energy density they had at the time of
decoupling has indeed been red-shifted due to the expansion of the Universe.

• Structure formation: much later, the primordial perturbations generated during infla-
tion grew via gravitational instability to form the structures we can observe today.
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Figure 1.8: Thermal history of our Univers. Figure taken from [43].

A sketch of the thermal history just described is shown in Fig. 1.8. In the following subsections we
will provide more details about three of the most important events in the history of our Universe:
the BBN, the decoupling of neutrinos from the cosmological plasma, and recombination, which
is followed by the decoupling of photons from matter and the formation of the CMB.

1.5 The Hot Big Bang shortcomings and the inflationary solu-
tions

The Friedmann equations introduced in Sec. 1.1.2 allow to predict the evolution of the Universe
given some initial conditions. We will now see that the standard cosmological model requires
very fine-tuned initial conditions to allow the Universe to evolve to its current state: these are
known as the horizon and flatness problems. This leads to the introduction of inflation, a phase
of accelerated expansion of the Universe taking place before the standard radiation era. As we
will discuss, inflation naturally solves these shortcomings of the Hot Big Bang model, providing
a dynamical mechanism that brings the Universe towards these initial conditions when the
standard radiation era begins.

1.5.1 The horizon problem

In order to describe the horizon problem, we first need to define some crucial quantities. Let’s
start introducing the comoving particle horizon, which is the comoving distance travelled by
light from the beginning of the Universe (t = 0) until the time t. This is defined as

τ ≡
∫ t

0

dt′

a(t′)
=

∫ a(t)

0
d ln a

(
1

aH

)
. (1.57)

Thus, it is the logarithmic integral of the comoving Hubble radius, rH = (aH)−1, which quantifies
the distance travelled by light in a Hubble time, H−1. This means that, in order to obtain τ , we
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need to integrate rH over the past interactions. For a radiation-dominated (RD) and matter-
dominated (MD) Universe, we find

τ ∝ rH ∝
{
a RD ,

a1/2 MD .
(1.58)

Note that the comoving horizon grows monotonically with time both in a Universe dominated
by radiation and by matter. This implies that comoving scales entering the horizon today have
been far outside the horizon in the past. In particular, the last scattering surface is made of
several independent patches that had never been causally connected. However, the CMB sky
appears extremely isotropic, implying that the Universe was extremely homogeneous at the
time of last-scattering, even on scales made of many causally disconnected regions. How is this
possible? This represents the so-called horizon problem.

A possible solution to the horizon problem is suggested by a deeper inspection to Eq. (1.57).
The fact that rH is an increasing function of time in FLRW models implies that τ is dominated
by the contributions coming from late times. This means that, as we have already said, at every
instant of time new regions that have never been in causal contact before come into contact for
the first time. However, if τ could be much greater than rH now, this would mean that particles
which cannot communicate today were instead in causal contact in the past. This happens if
the comoving Hubble radius was in the past much greater than it is now, so that τ gets most of
its contributions from early times. This leads us to assume that the early Universe, before the
standard FLRW phases dominated by radiation and matter, underwent a phase during which
the comoving Hubble radius was a decreasing function of time. Particles separated by many
Hubble radii today were instead in causal contact during this stage. The condition of decreasing
comoving Hubble radius means that

d

dt

(
1

aH

)
= − ä

ȧ2
< 0 ⇔ ä > 0 . (1.59)

Therefore, a decreasing comoving Hubble radius requires a phase of accelerated expansion, which
is called inflation. Using Eq. (1.9), this can be translated into a condition on the equation of
state of the energy/matter giving rise to the inflationary phase:

p < −1

3
ρ . (1.60)

This means that we need a negative pressure to realize an inflationary phase.

1.5.2 The flatness problem

The second of the shortcomings of the Hot Big Bang model is the so-called flatness problem. To
understand what it concerns, let’s rewrite the Friedmann equation (1.8) as

|Ω(t)− 1| = |k|
a2H2

= |k| r2
H(t) . (1.61)

Since in standard cosmology the comoving Hubble radius rH grows with time, it follows that the
departure of Ω(t) from unity also increases with time and it must eventually diverge. In other
words, Ω = 1 is an unstable point. A small deviation of Ω from unity in the early Universe leads
to a Universe rapidly recollapsing (in the case of a close geometry), or too rapidly expanding,
resulting in an empty Universe in which gravity does not succeed in forming structures (in the
case of an open geometry). This requires an extreme fine-tuning of the value of Ω, which must be
incredibly close to 1 in the early Universe. In particular, from the observed value of Ω today [6]

|Ω(t0)− 1| = 0.001± 0.002 (68% CL) , (1.62)
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it is possible to show that the deviation from Ω = 1 at the Planck epoch and at the epoch of
BBN must be given respectively by

|Ω(tPl)− 1| . 10−64 , (1.63)

|Ω(tBBN)− 1| . 10−16 . (1.64)

While this extreme fine-tuning of the value of Ω in the early Universe has no explanation and
must be assumed in standard FLRW models, inflation provides a natural solution to the problem.
Indeed, during the inflationary phase the comoving Hubble radius rH decreases with time, so
that

|Ω(t)− 1| ∝ e−2Ht . (1.65)

This means that, independently of the initial value of Ω, a (long enough) inflationary phase
drives naturally its value towards unity before the radiation era begins, thus solving the flatness
problem.

We want to stress that inflation does not change the global geometry of the spacetime. If the
Universe is flat, closed or open, the spatial geometry stays the same with or without inflation.
Inflation only increases the radius of curvature, so that locally (i.e. in our observable patch) the
Universe looks flat with a great precision.

1.5.3 The “unwanted relics” problem

We briefly mention another problem of the standard cosmological model which is successfully
solved by inflation. Historically, this is the problem that initially led to the introduction of the
inflationary paradigm.

It is likely that the early Universe underwent a series of phase transitions which, depending
on the broken symmetries, may have produced different topological defects like domain walls,
monopoles and cosmic strings. If produced, it is easy to show that their energy density tends
to become the dominant one in the Universe, leading to ΩTD � 1. This is obviously in contrast
with observations, which tell us that Ωtot ' 1.

Inflation naturally solves also this problem, since the accelerated expansion strongly dilutes
the energy density contribution of these topological defects.

1.6 Single-field slow-roll inflation

We have seen that inflation is a phase of accelerated expansion sourced by a negative pressure,
w = p/ρ < −1/3. The simplest way to realize such an inflationary phase is through a cosmo-
logical constant Λ, which is characterized by an equation of state with w = −1. As we can see
from Eq. (1.20), if the energy density of the Universe is dominated by Λ, the Universe under-
goes a phase during which the scale factor grows exponentially with time, a(t) ∝ eHt. This is
know as a de Sitter phase. The problem with this realization is that a cosmological constant
does not provide any mechanism through which inflation ends, and the exponential expansion
never stops. However, we know that our Universe went through a long period of decelerated
expansion, when first radiation and then matter dominated its energy content. During such
phases, the primordial perturbations generated during inflation re-entered the horizon to give
rise, via gravitational instability, to the structures we can observe today. This can not happen in
a Universe undergoing a never-ending exponential expansion. Moreover, this expansion history
is supported by other important evidence, like the CMB and BBN. For these reasons we need
to introduce some kind of “clock”, which regulates the amount of inflation and controls its end.
This can be simply realized by a slowly-rolling scalar field.

Let us consider a scalar field, which we call the inflaton, and slightly tilt (with respect to a
constant value) the potential under which the field evolves. If the potential is sufficiently flat,
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1.6. Single-field slow-roll inflation

Figure 1.9: Slow-roll potential for the inflaton field. Figure taken from [30].

the scalar field can mimic an effective cosmological constant and drives inflation. Then, inflation
could be ended by adding some mechanism triggered by some particular value of the field. In the
case of the potential in Fig. 1.9, when the potential is no longer flat and the inflaton approaches
the minimum, it begins to oscillate and then decays into ultra-relativistic particles. This phase
is called reheating. After that, the standard radiation era begins.

The dynamics of a scalar field minimally coupled to gravity is encoded in the action

S = SEH + Sφ =

∫
d4x
√−g

[
M2
Pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
, (1.66)

where MPl ≡ (8πG)−1/2 is the reduced Planck mass, g = det(gµν) is the determinant of the
metric tensor and V (φ) is the potential for the scalar field. The first term is the Einstein-Hilbert
action, while the second term describes a scalar field minimally coupled to gravity through the
metric gµν . Varying this action with respect to φ yields the Klein-Gordon equation for the scalar
field

�φ ≡ 1√−g∂ν
(√−ggµν∂µφ) = V ′(φ) , (1.67)

where V ′(φ) = ∂V/∂φ. In the case of a Universe described by a FLRW metric, this becomes

φ̈+ 3Hφ̇− ∇
2φ

a2
+ V ′(φ) = 0 . (1.68)

Note in particular the presence of a friction term ∝ φ̇ which is due to the expansion of the
Universe (indeed, it vanishes if a(t) = const). One can then compute the stress-energy tensor of
the scalar field, which is given by

Tµν ≡ −
2√−g

δS

δgµν
= ∂µφ∂νφ+ gµν

(
−1

2
gαβ∂αφ∂βφ− V (φ)

)
. (1.69)

The inflaton field can be split as

φ(x, t) = φ0(t) + δφ(x, t) , (1.70)

where φ0(t) is the “classical” value of the field, i.e. its vacuum expectation value on the initial
homogeneous and isotropic state, φ0(t) = 〈φ(x, t)〉, and δφ(x, t) are the quantum fluctuations
around it. For the moment we focus on the background dynamics of the classical field. In Sec. 1.7
we will discuss about the perturbations on top of this background solution. The components of
the stress-energy tensor then become

T 0
0 = −

[
1

2
φ̇2

0 + V (φ0)

]
, T ij =

1

2
φ̇2

0 − V (φ0) . (1.71)
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This corresponds to the stress-energy tensor of perfect fluid with energy density and pressure
given by4

ρφ0 =
1

2
φ̇2

0 + V (φ0) , (1.74)

pφ0 =
1

2
φ̇2

0 − V (φ0) . (1.75)

Therefore, the equation of state for the scalar field can be written as

wφ0 =
pφ0

ρφ0

=
φ̇2

0/2− V (φ0)

φ̇2
0/2 + V (φ0)

. (1.76)

Now notice that, if the potential term dominates over the kinetic one, i.e.

1

2
φ̇2

0 � V (φ0) , (1.77)

the equation of state reduces to wφ0 ' −1 and the Universe undergoes a quasi-de Sitter phase,
a(t) ' aieHt. The condition (1.77) is known as the slow-roll condition.

Note also that, if before the flat plateau characterizing the slow-roll phase the Universe starts
kinetic energy dominated, from Eq. (1.76) it follows that wφ0 ' 1. Then, from the continuity
equation, we have that

ρφ0 ∝ a−3(1+wφ0
) ∝ a−6 . (1.78)

This means that the kinetic energy of the inflaton field gets redshifted away quickly, and the
potential energy starts dominating. In this sense inflation is a dynamical attractor solution.

To formalize more precisely the slow-roll approximations, let us rewrite the equation of
motion for the (homogeneous) scalar field and the first Friedmann equation as

φ̈0 + 3Hφ̇0 + V ′(φ0) = 0 , (1.79)

3M2
PlH

2 =
1

2
φ2

0 + V (φ0) . (1.80)

The slow-roll approximation consists in requiring that the potential term dominates over the
kinetic term and that the potential is sufficiently flat so that the acceleration of the field is
negligible:

1

2
φ̇2

0 � V (φ0) , |φ̈0| � |3Hφ̇0| . (1.81)

The first condition leads to an inflationary phase since it implies that wφ0 ' −1, as we have
already seen. The second condition requires φ̇0 to change slowly such that the first condition
can be satisfied for a long enough time. This corresponds to the attractor solution in which the
friction force balances the external force provided by the potential, so that the acceleration of
the field is nearly equal to zero.

With these two conditions, we can rewrite Eqs. (1.80) and (1.79) respectively as

H '
√

V

3M2
Pl

, (1.82)

4If we include also the inhomogeneities in the scalar field, we get:

ρφ =
1

2
φ̇2 + V (φ) +

1

2

(∇φ)2

a2
, (1.72)

pφ =
1

2
φ̇2 − V (φ)− 1

6

(∇φ)2

a2
. (1.73)

The inflationary expansion smooths out the spatial variations, since a−2 ∝ e−2Ht. Thus, this term becomes
quickly subdominant and the two previous expressions for ρφ and pφ reduce to (1.74) and (1.75).
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φ̇0 ' −
V ′

3H
. (1.83)

These can be used to translate the conditions (1.81) into two conditions for the potential of the
inflaton field. Let us first define the so-called potential slow-roll parameters:

ε ≡ M2
Pl

2

(
V ′

V

)2

' 1

2

φ̇2
0

H2M2
Pl

, (1.84)

η ≡M2
Pl

V ′′

V
' − φ̈0

φ̇0H
+

1

2

φ̇2
0

M2
PlH

2
. (1.85)

The slow-roll conditions can now be written as

ε� 1, |η| � 1 . (1.86)

At leading order in the slow-roll parameters, ε and η can be considered constant, since

ε̇

H
= O(ε2, η2) ,

η̇

H
= O(ε2, η2) . (1.87)

We can also introduce another set of slow-roll parameters, which are not directly related to
the shape of the potential, but rather to the dynamics of the scale factor:

εH ≡ −
Ḣ

H2
=

φ̇2
0

2H2M2
Pl

, (1.88)

ηH ≡
ε̇

εH
= 2ε+ 2

φ̈0

Hφ̇0

. (1.89)

These are called Hubble slow-roll parameters. The condition εH � 1 requires the energy driving
inflation to be dominated by the potential, exactly as the first of (1.86). The condition |ηH | � 1
requires that

φ̈0

Hφ̇0

= −εH +
ηH
2
� 1 . (1.90)

Analogously to the second condition in (1.86), this tells us that the (background) evolution of
the inflaton is determined by the attractor solution in Eq. (1.83).

When the slow-roll conditions (1.86) are satisfied, the relations between the two sets of
slow-roll parameters are

εH = ε+ O
(
ε2, η2

)
, ηH = 4ε− 2η + O

(
ε2, η2

)
. (1.91)

The conditions defined through the Hubble slow-roll parameters εH and ηH are more general
than the ones defined through ε and η. Indeed in some cases, while the first ones are still
necessary to ensure a prolonged enough inflationary phase, the conditions on ε and η might
not be satisfied anymore. To give some examples, the shape of the potential could be steeper,
therefore not satisfying the first of (1.81), or the inflationary energy could be dominated by the
kinetic energy, rather than by the potential.

Note that εH can also be regarded as a parameter that characterizes the departure from an
exact de Sitter phase, in which H is constant and therefore εH = 0. In particular

ä =
d

dt
(aH) = a(H2 + Ḣ) = aH2(1− εH) . (1.92)

An accelerated expansion with ä > 0 requires εH < 1. Inflation ends when εH ∼ 1, namely when
the inflaton starts approaching the potential well.
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1.7 The primordial perturbations from inflation

In Sec. 1.5 we have seen how introducing an inflationary phase in the early Universe solves the
shortcomings of the standard cosmological model. Soon enough it became clear that an infla-
tionary phase can do more than that. Indeed, the most important feature of inflation, which
makes it a predictive theory, is that it naturally provides a mechanism to generate the primor-
dial density perturbations in the Universe, which are the seeds for the following formation of
the Large-Scale Structures and which can be observed through the temperature and polariza-
tion anisotropies in the CMB. These are an immediate consequence of introducing quantum
mechanics into the game. Indeed, the quantum fluctuations of the inflaton field are stretched
outside the horizon by the exponential expansion. As a result, the amplitude of the fluctuations
is “frozen” at a non-zero value, since no causal process can act anymore. These fluctuations
of the scalar field induce fluctuations in the energy density and hence in the curvature, which,
after the fluctuations reenter the horizon during the radiation or matter era, give rise to matter
and temperature perturbations through the Poisson equation.

Moreover, inflation also leads to the production of a stochastic background of primordial
gravitational waves (PGWs), i.e. transverse and traceless tensor perturbations of the metric.
PGWs are the “smoking gun” of inflation. Indeed, they are a key and general prediction of all
inflationary models, while alternative models to inflation typically predict an extremely small
amplitude of PGWs, practically unobservable. Thus, if observed, PGWs would represent a
strong evidence in support of the inflationary paradigm.

The primordial fluctuations can be characterized by a dimensionless power spectrum. For
a perturbation field δ, the dimensionless power spectrum ∆δ(k) quantifies the contribution to
the variance of δ per unit logarithmic interval in the wavenumber k. In the following we discuss
the predictions for the power spectra of scalar and tensor perturbations in single-field slow-roll
models of inflation.

1.7.1 Power spectrum of scalar perturbations

For scalar perturbations, it is common to introduce the so-called curvature perturbation on
uniform energy-density hypersurfaces, ζ. At linear order, this is related to the perturbation of
the inflation field δφ by

ζ = −Hδφ

φ̇0

. (1.93)

This is a gauge invariant quantity which is conserved on super-horizon scales [44].
At leading order in slow-roll parameters, the dimensionless power spectrum of scalar pertur-

bations reads

∆ζ(k) = As(k∗)

(
k

k∗

)ns−1

, (1.94)

where

As(k∗) =
H2
∗

8π2M2
Plε∗

(1.95)

is the amplitude of scalar fluctuations at the pivot scale k∗ and ns is the scalar spectral index.
This is given in terms of the slow-roll parameters by

ns − 1 = 2η − 6ε . (1.96)

Since in slow-roll inflation ε and |η| are� 1, the spectral index predicted by slow-roll inflationary
models is slightly lower than unity. This corresponds to an almost scale-invariant, red spectrum
(ns < 1), where the amplitude of the fluctuations slightly decreases for decreasing cosmological
scales. This feature can be understood in the following way. We know that different modes
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leave the horizon at different times and after that they are frozen on super-horizon scales. The
amplitude of the fluctuation of a given mode k is roughly given by the Hubble parameter H
at the corresponding horizon-crossing time. Since the Hubble parameter is weakly decreasing
during slow-roll infation, the longest modes, which leave the horizon before the shortest ones,
have a slightly higher amplitude of fluctuations. On the other hand, in an exact de Sitter phase
the Hubble parameter is constant, hence the amplitude of the fluctuations is the same for each
mode. This leads to an Harrison-Zel’dovich power spectrum.

1.7.2 Power spectrum of tensor perturbations

With a similar mechanism to that just seen for scalar perturbations, inflation generates also
transverse and traceless tensor perturbations of the metric, namely gravitational waves. This
is a common prediction of all inflationary models. Remarkably, the amplitude of primordial
gravitational waves (PGWs) in single-field slow-roll models is uniquely determined by the Hubble
parameter H during inflation. This means that a measurement of the spectrum of PGWs would
give direct information about the most important inflationary parameter, namely the energy
scale at which inflation occurred.

Analogously to the case of scalar perturbations, the dimensionless power spectrum of pri-
mordial tensor modes can be written in terms of an amplitude AT (k∗) and a spectral index nT
as

∆T (k) = AT (k∗)

(
k

k∗

)nT
, (1.97)

where

AT (k∗) =
2H2
∗

π2M2
Pl

(1.98)

and
nT = −2ε . (1.99)

Eq. (1.99) tells us that single-field slow-roll inflationary models predict an almost scale-invariant,
red-tilted (i.e. nT < 0) spectrum of PGWs, analogously to the case of scalar perturbations.
Notice that the amplitude of tensor modes depends on the value of the Hubble parameter during
inflation only. Thus, if measured, primordial tensor modes would give us direct information
about the energy scale of inflation. Indeed, from Eqs. (1.98) and (1.82), we have that

AT (k∗) ∝ H2
∗ ∝ V∗ , (1.100)

where V∗ is the energy scale of inflation when the pivot scale leaves the horizon.
We can then define the tensor-to-scalar ratio

r(k∗) ≡
AT (k∗)

As(k∗)
, (1.101)

which is a measure of the amplitude of tensor perturbations with respect to that of scalar
perturbations at the pivot scale k∗. The tensor-to-scalar ratio can be directly related to the
slow-roll parameter ε. Indeed, it is easy to show that

r = 16ε . (1.102)

This relation tells us that single field slow-roll inflationary models produce gravitational waves
with an amplitude that is much smaller than the amplitude of scalar perturbations. Combining
this result with the expression of the tensor tilt given in Eq. (1.99), one obtains the so-called
consistency relation

r = −8nT , (1.103)

which relates the amplitude of tensor perturbations to the tensor spectral index.
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Figure 1.10: Constraints in the r − ns from Planck data and in combination with BICEP/Keck and
BAO data [8]. In purple, it is shown the region where natural inflation models lie.

1.7.3 Observational bounds

Observations of the CMB anisotropies and Baryon Acoustic Oscillations (BAO) (see Sec. 1.8.4)
allow us to put stringent constraints on inflationary models. In particular, the latest Planck
data release bounds the scalar spectral index to [45]

ns = 0.9649± 0.0042 (1.104)

at 68% CL. This rules out the possibility of having a scale-invariant (Harrison-Zel’dovich) spec-
trum of scalar perturbations. As we have already discussed, this is consistent with slow-roll
models. The Planck 95% CL upper limit on the tensor-to-scalar ratio is [45]

r0.002 < 0.10 . (1.105)

This is tightened when Planck data are combined with those from BICEP/Keck 2018 (BK18)
and BAO to obtain [8]

r0.005 < 0.036 . (1.106)

Figure 1.10 shows the constraints in the r−ns plane from the measurements made by the Planck
satellite [45] and in combination with the BK18 and BAO data [8]. With the addition of BK18
data, the φ2/3 model now lies outside the 95% contour, as does the region of natural inflation
models, shown in purple in Fig. 1.10. These observations favour the so-called small-field models
of inflation, which have concave potentials with V ′′(φ) < 0 (resulting in ηV < 0) and predict a
small amplitude of primordial gavitational waves.

1.8 Cosmological observables

In the following subsections we will describe the main cosmological observables that will be used
in this Thesis as probes to test fundamental physics scenarios.
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Figure 1.11: CMB temperature map from the Planck 2018 data release [5].

1.8.1 CMB temperature anisotropies

The CMB is an extremely isotropic radiation, with an average temperature over all directions
of the sky that is given by [46]

T0 =
1

4π

∫
4π
T (n)dΩ = 2.72548± 0.00057 K , (1.107)

where T (n) denotes the CMB temperature measured in the direction identified by the unit vector
n. The tiny fluctuations from this mean value carry a huge amount of information about the
physical processes taking place in the early stages of our Universe. The most recent map of the
temperature fluctuations of the CMB obtained by the Planck satellite [5] is shown in Fig. 1.11.
These fluctuations can be characterized by introducing the quantity

δT (n) ≡ T (n)− T0 . (1.108)

The fluctuation field δT (n) is a scalar function which is defined on a sphere, being a function
of the unit vector n or, equivalently, of the polar angles θ and φ. It is useful to expand this
function in spherical harmonics as

δT (n) =

∞∑
`=1

∑̀
m=−`

aT`mY`m(n) , (1.109)

where a`m are the expansion coefficients, which satisfy the relation

a∗T`m = (−1)maT`,−m . (1.110)

Using the orthogonality condition of spherical harmonics, these can be computed as

aT`m =

∫
T (n)Y ∗`mdΩ . (1.111)

Note that the sum in Eq. (1.109) starts from the multipole ` = 1 rather than from ` = 0. This
is due to the fact that the ` = 0 mode of the function T (n) is the mean value T0, which has
already been subtracted in the definition given in Eq. (1.108).
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Figure 1.12: CMB temperature power spectrum, DTT
` = `(`+ 1)/(2π)CTT` , from the Planck 2018 data

release [5].

The coefficients aT`m are stochastic variables related to the stochastic initial conditions of our
Universe and can be characterized in terms of n-point correlation functions. Since the aT`m are
extracted from a distribution which is Gaussian to a a very good approximation, they can be
fully described by the two-point correlation function

CTT` ≡ 〈aT`ma∗T`m〉 . (1.112)

In the ideal case of full-sky observations, we can build an unbiased estimator for the power
spectrum given by5

ĈTT` =
1

2`+ 1

∑̀
m=−`

|aT`m|2 . (1.113)

The angular power spectrum is usually plotted in terms of the quantity

DTT
` ≡ `(`+ 1)

2π
CTT` . (1.114)

In Eq. (1.113), the |aT`m| denotes a statistical average over the ensemble. Under the assumption
of ergodicity, this can be recast as an average over the 2`+1 values of m for each fixed multipole
`. At small multipoles, there are only a few values of m over which we can take this average. This
results in the so-called cosmic variance, which translates in a theoretical error that dominates
at small multipoles (see Fig. 1.12).

After briefly reviewing the statistical treatment of the temperature fluctuations, we want to
recall what is the physics that determines the final shape of the power spectrum that we can
observe in Fig. 1.12. We refer the reader to [47] for a detailed treatment, while we present below
the final expression for the temperature power spectrum:

CTT` = (4π)2

(∫
k2dk

[
T T,ζ` (k)

]2
∆ζ(k) +

∫
k2dk

[
T T,h` (k)

]2
∆h(k)

)
. (1.115)

Here, ∆ζ(k) and ∆h(k) are the dimensionless primordial power spectra of scalar and tensor

perturbations, while T T,ζ` (k) and T T,h` (k) denote the scalar and tensor transfer functions (see [47]
their complete expressions). By looking at the shape of the temperature power spectrum in
Fig. 1.12, we can distinguish three main regimes:

5In the more realistic case where the sky coverage is not complete and the observations are affected by the
instrumental noise and the contamination of foregrounds, the estimator has a more complicated expression.

28



1.8. Cosmological observables

• At large angular scales (low multipoles) the spectrum is characterized by a flat plateau,
due to the so-called Sachs-Wolfe effect [48]. This corresponds to fluctuations having wave-
lengths larger than the sound horizon at recombination. Since no causal processes can act
on super-horizon scales, these fluctuations are frozen in their initial configuration, thus
providing us with direct information about the primordial perturbations from inflation.
When CMB photons climb out of the potential wells associated with these long-wavelength
density perturbations, they lose energy. The temperature anisotropies observed today are
related to the fluctuations of the gravitational potential Φ on the last scattering surface
by

∆T

T
=

Φ

3
. (1.116)

• At intermediate scales we note an oscillatory behavior corresponding to perturbations that
enter the horizon, or are already sub-horizon, before recombination. These oscillations are
due to the competition between gravity and the radiation pressure, which gives rise to
acoustic oscillations in the pre-recombination plasma. We note in particular a series of
peaks: the odd number’s ones correspond to modes which are in the maximum compres-
sion phase at the time of last scattering, while the even number’s peaks correspond to
modes at maximum rarefaction. The first peak at ` ∼ 200 is particularly important. This
corresponds to the mode which at recombination had just the time to experience a full
compression phase. In other words, the angular scale of the first peak reflects the angular
scale under which we see the sound horizon at recombination. Since we observe this char-
acteristic scale projected on the sky, and the projection depends on the spatial geometry
of our Universe, the position of the first peak allows us to constrain the curvature of our
Universe. Observations are consistent with a spatially-flat Universe [6].

• At small angular scales (high multipoles) we note that the amplitude of temperature
fluctuations is damped. During recombination, CMB photons execute a random walk
between each collision with free electrons. If we consider perturbations with wavelengths
shorter than the photon mean free path, photons can travel many wavelengths without
interacting with any electron. As a result, photons mix in the plasma between hot and
cold regions, thus smoothing the temperature fluctuations. This results in an exponential
damping of the acoustic peaks according to exp[−(k/kd)

2], with [49]

k−2
d =

∫ arec

0
da

1

a3σTneH

R2 + 16
15(1 +R)

6(1 +R)2
, (1.117)

where R = 3ρb/4ργ . This effect, which can be appreciated in Fig. 1.12, is known as Silk
damping [50].

All the features in the CMB spectrum that we have just described strongly depend on the
cosmological parameters. This means that measurements of the CMB spectrum are a powerful
probe to test the standard ΛCDM cosmological model and possible extensions to it.

The six parameters of the ΛCDM model are:

• the physical baryon density Ωbh
2, where h = H0/(100 km s−1 Mpc−1) is the reduced Hubble

constant;

• the physical cold dark matter density Ωch
2;

• the amplitude of primordial curvature perturbations As, defined in Eq. (1.95);

• the scalar spectral index ns, defined in Eq. (1.96);

• the optical depth τ ;
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Parameter Physical meaning Fiducial value (from [6])

ωb Physical baryon density (= Ωbh
2) 0.02236 ± 0.00015

ωc Physical cold dark matter density (= Ωch
2) 0.1202 ± 0.0014

100θs 100× angular size of the sound horizon at decoupling 1.04109 ± 0.00030

τ Reionization optical depth 0.0544+0.0070
−0.0081

ln(1010As) Log of the amplitude of scalar perturbations 3.045 ± 0.016

ns Scalar spectral index 0.9649 ± 0.0044

Table 1.2: Six parameters of the ΛCDM model with the corresponding fiducial values taken from the
Planck 2018 data release [6]. The amplitude and spectral index of scalar perturbations are given at the
pivot scale k∗ = 0.05 Mpc−1.

• the angular size of the sound horizon θ∗ = rs(zdec)/dA(zdec), where rs(zdec) and dA(zdec)
are respectively the comoving sound horizon and the comoving angular diameter distance
at decoupling:

rs(zdec) =

∫ ∞
zdec

cs(z)

H(z)
dz , dA(zdec) =

∫ zdec

0

dz

H(z)
, (1.118)

where

cs(z) =
1√

3 [1 +R(z)]
(1.119)

is the sound speed in the baryon-photon fluid in units with c = 1.

The six cosmological parameters are listed in Table 1.2, where we also report the constraints
from the 2018 Planck data release [6]. In the following, we briefly describe how the shape of the
CMB spectrum varies with the cosmological parameters (see [33] for more details).

Since As sets the amplitude of the primordial power spectrum, varying its value results in
an overall shift of the spectrum up or down. Varying the spectral index ns has instead the effect
of tilting the CMB spectrum, for example increasing the power at small (large) scales if ns > 1
(ns < 1).

As regards the baryon density, varying its value has several effects on the CMB spectrum.
First of all, varying the baryon density has the effect of varying the speed of acoustic waves and
thus the comoving sound horizon at decoupling. This causes a shift of the CMB spectrum. Then,
if we increase the baryon density we are giving more inertia to the baryon-photon fluid. As a
result, the compression peaks are increased while the rarefaction peaks are lowered. Moreover,
since we are increasing the electron density, we are decreasing the mean free path of photons,
which is given by λmfp = (neσT )−1. This has the effect of shifting the Silk damping scale towards
larger multipoles.

Varying the abundance of cold dark matter results in varying the total matter density Ωm.
The main effect is to change the epoch of matter-radiation equality. For example, decreasing the
matter density shifts the matter-radiation equality closer to recombination. This changes the
forcing term which drives the oscillations in the baryon-photon fluid, resulting in an increased
power at small scales.

We now discuss the impact of the optical depth τ . This is related to the reionization of the
Universe, which takes place at redshift z ∼ 6. After the Universe gets reionized, free electrons
can again scatter off photons and partially damp CMB anisotropies [51–53]. At scales which are
within the horizon at the epoch of reionization (` & 10), the CMB spectrum is suppressed by a
factor e−2τ .
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Finally, varying θ∗ has the effect of changing the comoving sound horizon at decoupling, thus
causing an overall shift of the CMB spectrum.

As already mentioned, scenarios which extend the ΛCDM model by adding new parameters
can also be constrained using CMB observations. Here, we mention a particular case which will
be useful for the analysis presented in chapter 4. Let us consider a scenario in which we have
additional light particle species beyond the Standard Model. The contribution to the energy of
radiation given by the new light relic is parametrized by the quantity Neff , which will be defined
in Sec. 4.1. Since we are increasing the energy density of radiation, the expansion rate of the
Universe at early times is enhanced. As can be seen from Eq. (1.117), changing the Hubble rate
H affects the damping scale kd. However, varying H changes also the position of the first peak
(see the definition of θ∗ and (1.118)). Thus, it is useful to consider the ratio of the angular sizes
of the damping scale and the sound horizon, θd = 1/(kddA) and θ∗ = rs/dA, so that we can
eliminate the dependence on dA, which is also function of the Hubble rate (see [54] for more
details). The ratio between these two scales is

θd
θ∗

=
1

kdrs
∝ H1/2

rec , (1.120)

where Hrec is the Hubble parameter at recombination. Increasing the energy density of light
relics (and hence Hrec), leads to a larger θd if we keep θ∗ fixed. This implies that the damping
scale is shifted to larger angular scales (smaller multipoles), so that the power at small scales
is reduced. This is how observations of the CMB temperature power spectrum allow us to
constrain the energy density of additional light relics.

1.8.2 CMB polarization and cross-spectra

The CMB radiation is linearly polarized due to Thomson scattering between photons and free
electrons at recombination and reionization. CMB polarization spectra provide us with an-
other fundamental tool to constrain the cosmological parameters, containing information often
complementary to that encoded in the temperature spectrum. For this reason, the measure-
ment of CMB polarization will be the main target of future experiments, like the LiteBIRD
satellite [9] and the ground-based experiments Simons Observatory (SO) [10] and CMB Stage-4
(CMB-S4) [11].

The polarization of the CMB can be described in terms of the usual Stokes parameters I, U ,
Q and V (see e.g. [55,56]). The I parameter describes the intensity of polarized light, U and Q
carry information about the linear polarization and V is a measure of the elliptical polarization.
The definition of Q and U depends on the choice of axes in the plane transverse to the direction
of light propagation. Under a rotation of the axes by an angle ψ, the Q and U Stokes parameters
transform as

Q −→ Q cos(2ψ)− U sin(2ψ) , (1.121)

U −→ Q sin(2ψ) + U cos(2ψ) . (1.122)

It is thus convenient to introduce the quantities Q± iU , which transform as spin-±2 fields:

(Q± iU) −→ e±2iψ(Q± iU) . (1.123)

These can be expanded in terms of spin-weighted basis as

(Q+ iU)(n̂) =
∑
`m

2a`m 2Y`m(n̂) , (1.124)

(Q− iU)(n̂) =
∑
`m

−2a`m −2Y`m(n̂) . (1.125)
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Then, since spin-0 quantities are easier to handle in explicit calculations, we can use the spin-

lowering ( ′∂ ) and spin-raising ( ′∂ ) operators (see Appendix A for their definitions and main
properties) and act twice with them on Q± iU . The resulting quantities can then be expanded
in spin-0 spherical harmonics. Acting twice with the spin operators on Q± iU , we get

′∂ 2(Q+ iU)(n̂) =
∑
`m

[
(`+ 2)!

(`− 2)!

]1/2

a2,`mY`m(n̂) , (1.126)

′∂ 2(Q− iU)(n̂) =
∑
`m

[
(`+ 2)!

(`− 2)!

]1/2

a−2,`mY`m(n̂) . (1.127)

The expansion coefficients a±2,`m can then be obtained from Eqs. (1.126)-(1.127) using the
orthogonality condition of spherical harmonics and read

a2,`m =

[
(`+ 2)!

(`− 2)!

]−1/2 ∫
dΩY ∗`m

′∂ 2(Q+ iU)(n̂) , (1.128)

a−2,`m =

[
(`+ 2)!

(`− 2)!

]−1/2 ∫
dΩY ∗`m

′∂ 2(Q− iU)(n̂) . (1.129)

Finally, we introduce the two quantities that are used when dealing with analysis of CMB
polarization, the so-called E- and B-modes:

E(n̂) =
∑
`m

aE`mY`m(n̂) , (1.130)

B(n̂) =
∑
`m

aB`mY`m(n̂) , (1.131)

where we have defined

aE`m ≡ −
2a`m + −2a`m

2
, (1.132)

aB`m ≡ −
2a`m − −2a`m

2i
. (1.133)

The fields E(n̂) and B(n̂) are rotationally-invariant and transform under parity as

E(n̂)
P−−→ E(n̂) , (1.134)

B(n̂)
P−−→ −B(n̂) . (1.135)

Thus, the E field is invariant under a parity transformation, while the B field is not. The most
important consequence of this fact is that the cross-correlators 〈EB〉 and 〈TE〉 are vanishing if
parity symmetry is preserved. This means that, if these correlators were detected to be different
from zero, they would be a clear signal of non-standard physics involving parity violation [57–59].

It is also worth stressing that circular polarization is not expected to be present at the time of
last scattering. It can be generated by known physics [60–66] as CMB photons propagate across
the Universe, but only in tiny amounts. A larger degree of circular polarization is predicted to be
produced in several scenarios beyond the standard model of particle physics [67–73]. Therefore,
observing circular polarization in the CMB would provide evidence for new physics, as will also
be discussed in chapter 5.

The full derivation of the E-modes and B-modes power spectra can be found in Ref. [47].
Here, we just report the final results, which read

CEE` = (4π)2

(∫
k2dk

[
TE,ζ` (k)

]2
∆ζ(k) +

∫
k2dk

[
TE,h` (k)

]2
∆h(k)

)
, (1.136)
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Figure 1.13: CMB E-mode polarization power spectrum from the Planck 2018 data release [5].

CBB` = (4π)2

∫
k2dk

[
TB,h` (k)

]2
∆h(k) , (1.137)

where T
E,ζ/h
` (k) and TB,h` (k) are the transfer functions for E- and B-modes. For their full expres-

sions we refer again the reader to [47]. Note that the E-modes spectrum receives contributions
from both tensor and scalar perturbations (the last one is of course the dominant contribution,
given that As � AT ), while the BB spectrum is sourced by primordial tensor perturbations only.
For this reason, a detection of B-modes would be a strong evidence in favor of the existence of
primordial gravitational waves sourced during inflation. The E-modes spectrum, as measured
by Planck [5], is shown in Fig. 1.13. The power contained in E-modes fluctuations is roughly a
factor 100 smaller than the power contained in the temperature fluctuations.

Looking at the shape of the EE spectrum in Fig. 1.13, we note the presence of acoustic
oscillations as in the TT spectrum. This reflects the fact that E-modes polarization are due to
velocity gradients in the photon-baryon plasma. Note also the presence of a peak at large angular
scales, ` < 10, which is known as the reionization bump. As we have discussed in Sec. 1.8.1,
CMB photons scatter off electrons after reionization. Since the size of horizon at reionization is
larger than at recombination, these scatterings generate a peak at large angular scales.

We can then compute the cross-correlation between E-modes and temperature fluctuations

CTE` = (4π)2

(∫
k2dk

[
T T,ζ` (k)TE,ζ` (k)

]
∆ζ(k) +

∫
k2dk

[
T T,h` (k)TE,h` (k)

]
∆h(k)

)
. (1.138)

In Fig. 1.14 we show the TE cross-spectrum as measured by Planck [5]. This also presents
acoustic oscillations.

1.8.3 CMB spectral distortions

Another important probe to test fundamental physics is represented by spectral distortions
of the CMB (see e.g. [74–76]). These are tiny departures of the CMB energy spectrum from
that of a perfect blackbody. In the early Universe, a blackbody spectrum is maintained by
a combination of processes such as Compton scattering, bremsstrahlung and double Compton
scattering. However, due to the expansion of the Universe, these interactions become less efficient
with time, such that any source of energy injection taking place at redshifts z . 106 can induce
deviations from a perfect blackbody spectrum.

If energy is released in the baryon-photon plasma during the so-called µ-era, i.e. between
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Figure 1.14: CMB TE cross-spectrum from the Planck 2018 data release [5].

the thermalization redshift

zth ≈ 1.98× 106

(
1− Yp/2
0.8767

)−2/5( Ωbh
2

0.02225

)−2/5(
T0

2.726 K

)1/5

(1.139)

and z = zµy ' 5× 104, Compton scattering will still be able to drive the plasma towards kinetic
equilibrium. However, the photon number-changing processes, like Bremsstrahlung and double
Compton, are inefficient in this range of redshifts (see e.g. [77, 78]). Because of this, energy
injection in the µ-era makes CMB photons acquire a Bose-Einstein distribution function with
chemical potential µ 6= 0. This deviation from a perfect blackbody spectrum is referred to as
µ-distortion. At redshift z ' zµy, instead, thermalization by Compton scattering becomes also
inefficient and the transition between µ and y-distortions takes place.

The µ and y-distortions can be computed as (see e.g. [79–81])

µ ' 1.401

∫ zin

0
Jµ(z)

Q̇

ργ(z)

dz

H(z)(1 + z)
, (1.140)

y ' 1

4

∫ zin

0
Jy(z)

Q̇

ργ(z)

dz

H(z)(1 + z)
, (1.141)

where zin is the redshift at which the energy release begins, ργ = (π2/15)T 4 is the energy
density of background photons, Q̇ is the heating rate and Jµ/y(z) are the distortion visibility
functions, which quantify the fraction of the energy injected into the baryon-photon plasma
that contributes to µ and y-distortions, respectively. These can be analitically approximated
as [80,81]

Jµ(z) ≈ e−(z/zth)5/2

{
1− exp

[
−
(

1 + z

5.8× 104

)1.88
]}

, (1.142)

Jy(z) ≈


[
1 +

(
1+z

6×104

)2.58
]−1

z ≥ zrec ,

0 z < zrec ,

(1.143)

where zrec = 1089.95 is the redshift at which recombination takes place. The contribution
e−(z/zth)5/2

in Jµ(z) accounts for the fact that even at redshifts z > zth a small amount of
µ-distortions is produced. The other two terms in Jµ(z) and Jy(z), instead, account for the
fact that the transition between µ and y-distortions is not sudden at z = zµy. Rather, around

34



1.8. Cosmological observables

Jμ Jy

1000 10
4

10
5

10
6

10
7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

z

v
is
ib
il
it
y
fu

n
c
ti
o
n

Figure 1.15: Visibility functions for µ and y-distortions as a function of the redshift z. It can be seen
that energy injection taking place at redshifts 104 . z . 3 × 105 results in a superposition of µ and
y-types.

this redshift the distortions consist of a superposition of µ and y-types. This can be seen in
Figure 1.15, where the distortion visibility functions for both µ and y-types are shown as a
function of the redshift.

The current upper bounds on the amount of spectral distortions are set by the FIRAS
instrument aboard the COBE satellite. At 95% CL these read [82,83]

|µ| < 9× 10−5 , |y| < 1.5× 10−5 . (1.144)

A future experiment like PIXIE, and its improved version SuperPIXIE, in case of no detection
of spectral distortions would set the 1σ limits |µ| < 3 × 10−8, |y| < 3.4 × 10−9 [75, 84] and
|µ| < 7.7× 10−9, |y| < 1.6× 10−9 [74, 75], respectively.

1.8.4 Baryon Acoustic Oscillations

Baryon Acoustic Oscillations (BAO) represent another signature of the acoustic oscillations in
the primordial plasma, but this time left imprinted in the distribution of matter (see [85] for
a review). As already discussed, the competition between the radiation pressure and gravity
gives rise to acoustic oscillations in the pre-recombination plasma. Then, shortly after CMB
decoupling, baryons are “released” from the drag of the photons at the redshift zd ' 1059 [6].
From there on, photons propagate freely while the acoustic waves “freeze in” the baryons in a
scale given by the size of the sound horizon at the drag epoch,

rd =

∫ ∞
zd

cs(z)

H(z)
dz ∼ 150 Mpc . (1.145)

This scale is left imprinted on the distribution of baryons as a density excess. Since baryons and
dark matter interact though gravity, the dark matter also preferentially clusters on this scale.
Then, given that the structures form in the potential wells of dark matter, there is a higher
probability that a galaxy forms somewhere in this higher density region of the baryon wave. As
a result, this characteristic scale appears as a localized peak in the two-point correlation function
of galaxies. A peak in the correlation function results in a damped series of oscillations in the
power spectrum, given that the two quantities are Fourier conjugates. These are the so-called
Baryon Acoustic Oscillations.

This characteristic scale appearing in the matter power spectrum provides us with a cos-
mological standard ruler which allows to improve the bounds on the cosmological parameters,
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as first suggested in [86]. In particular, the goal of BAO surveys is to measure the angular
diameter distance, DA(z), and the expansion rate, H(z). This can be done by comparing the
BAO scale in the measurements of clustering of matter with its location computed assuming a
fiducial cosmological model. In practice, variations in the cosmological parameters or changes
in the models, like the introduction of extra relativistic species (see Sec. 4.1), alter the value of
rd. As a result, the comparison between the BAO scales actually constrains the following two
quantities:

α‖ =
(H(z)rd)

fid

H(z)rd
, α⊥ =

(DArd)
fid

DArd
. (1.146)

In this Thesis we use BAO measurements from the galaxy surveys BOSS DR12 [13], 6dFGS [14]
and SDSS-MGS [15].
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Probing the Dark Sector of the
Universe with Cosmological

Observations





Chapter 2

Cosmological constraints on
Macroscopic Dark Matter

2.1 Why (Macro) Dark Matter?

One of the most astonishing results coming from cosmological observations is that only a small
fraction of the total matter content of our Universe is composed of ordinary matter. Rather, the
matter budget of our Universe is dominated by a yet-unknown form of matter, which we refer
to as Dark Matter (DM), that has negligible interactions with ordinary matter and radiation,
except through gravity. Observations of the Large-Scale Structure of the Universe tell us that
DM had to be non-relativistic around the time of structure formation, hence the name Cold
Dark Matter (CDM).

Nowadays, the existence of DM is supported by a large number of evidences on different
scales (see e.g. [87, 88]):

• on galactic scales, the most convincing piece of evidence for dark matter comes from the
observations of the rotation curves of spiral galaxies, namely the circular velocities of stars
and gas as a function of their distance from the galactic center, vc(r). The departure of
the circular velocity from the Keplerian behavior, vc(r) ∝ 1/

√
r, at large distances from

the galactic center suggests that spiral galaxies are surrounded by a DM halo;

• on scales of galaxy clusters, two compelling pieces of evidence come from the Coma Cluster
and the Bullet Cluster. Concerning the Coma Cluster, the presence of a DM component
is signaled by the discrepancy between the observed and the predicted velocity dispersion
of galaxies in the cluster. The Bullet Cluster consists instead of two colliding clusters of
galaxies. The mass distribution inside the Bullet Cluster is mapped via both X-ray obser-
vations (tracing the hot gas which emits via Bremsstrahlung) and gravitational lensing.
The two results do not match with each other, providing another compelling evidence
of the existence of a matter component which interacts through gravity but is blind to
electromagnetic interactions;

• on cosmological scales, observations of the CMB anisotropies allow us to constrain the
abundances of the total matter in the Universe, Ωmh

2, and the baryonic component, Ωbh
2

(see 1.8.1 for a more detailed discussion). The fact that Ωbh
2 < Ωmh

2 provides another
decisive proof of the existence of a DM component. The final Planck data release yields a
CDM abundance given by [6]

Ωch
2 = 0.1200± 0.0012 (Planck TT,TE,EE + lowE + lensing) . (2.1)

As discussed in Sec. 1.3.1, BBN also allows us to constrain the baryon density. Consis-
tently with CMB observations, measurements of the abundances of light elements tell us
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that Ωbh
2 < Ωmh

2, supporting again the existence of a non-baryonic matter component.
Furthermore, a CDM component is also necessary to boost the gravitational collapse of
the primordial density perturbations, allowing the tiny fluctuations observed in the CMB
to grow enough to produce the structures we observe today.

Despite the vast number of evidence in favor of the existence of dark matter, the quest for
its fundamental nature is still one of the most puzzling problems of modern physics. Over the
years, a plethora of models have been proposed, most of which explain the dark matter as a new
particle arising in some extension of the standard model (SM) of particle physics. Among the
most common particle dark matter candidates we find (see e.g. [87, 89,90] for some reviews):

• Weakly Interactive Massive Particles (WIMPs): these are particles that in the
early Universe are in thermal equilibrium with the cosmological plasma. As the Universe
expands and cools down, WIMPs eventually freeze-out and their comoving number density
gets frozen. A remarkable fact is that, in order to end up with a relic density equal to the
known dark matter density, the interaction cross-section of WIMPs must be of order of
that expected for particles with electroweak-scale interactions: this is the so-called “WIMP
miracle”. The most common example of WIMP candidate is the neutralino, which appears
in supersymmetric extensions of the SM of particle physics;

• axions: these are light and weakly coupled spin-0 bosons, which result from the sponta-
neous symmetry breaking of a new U(1) symmetry. They appear as a possible solution
to the strong CP problem of QCD, or in many theories that extend the SM of particle
physics (e.g., string theory). Axions will be discussed extensively in Chapters 3 and 4, see
in particular Sec. 3.6 for more details about axions as DM candidates;

• sterile neutrinos: these are particles that do not interact via any of the SM interaction,
but only through gravity. For this reason, they are potentially good warm dark matter
(WDM) candidates. The existence of heavy neutrinos has also been postulated since they
would provide an explanation for the smallness of the neutrino masses and the observed
neutrino oscillations via the seesaw mechanism.

Even though these DM candidates are well motivated from the theoretical point of view, no
experimental evidence has been found in support of any of them yet. It is thus important to
keep an open mind on alternative scenarios, some of which could also be realized within the SM
itself.

An appealing possibility is that dark matter consists of macroscopic-size objects, generically
dubbed Macro Dark Matter (MDM) [16]. Indeed, the interaction rate between baryons and
DM goes as nXσXv, where nX is the DM number density, σX is the interaction cross-section
and v is the relative velocity between DM and baryons. We usually assume that the DM is
weakly interacting because the cross-section σX is intrinsically small. An alternative possibility
is that this happens because the DM mass MX is very large, resulting in a small number density,
nX = ρX/MX . This is what happens in the case of MDM.

Many models that fall into this category have been proposed, including Strangelets [91–95],
Q-balls [96–100] and Compact Composite Objects [101–105]. Primordial black holes (PBHs),
that have gained much attention following the LIGO and VIRGO detection of the gravitational
wave signal from black hole mergers, are also an example of MDM (see e.g. [106, 107] for a
review). However, constraints on PBHs are usually the weakest that can be obtained for a given
MDM mass. Indeed, a black hole is the smallest object that can exist with a given mass, and
this implies it also has the smallest possible geometric cross-section.

A broad class of MDM candidates includes yet-unknown, composite states of baryonic matter.
The prototype of this kind of MDM are strangelets, consisting of up, down and strange quarks
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confined in a quark phase [91–95]. Interestingly enough, the existence of such a phase of quark
matter might help explaining the nature of compact objects originating the gravitational wave
event GW190814 observed by LIGO and VIRGO [108, 109]. Scenarios in which the DM is still
a composite object, but based on physics BSM have also been envisaged, see e.g. [110–114].

In the analysis described in this chapter we derive novel cosmological bounds on MDM. We
adopt a phenomenological approach, thus not making explicit reference to any specific model.
Rather, we focus on a particular process that might be associated to MDM, namely the capture
of protons of the cosmological plasma by Macros. In more detail, we analyze two different
scenarios. In the first, proton capture results in the Macro X transitioning to a more stable
state X ′ with energy release in the plasma. The amount of energy released is set by the binding
energy of the MDM, which we treat as a free parameter. Conversely, the newly formed X ′ can be
photodissociated by background photons. The time at which the direct and inverse processes go
out of equilibrium is determined by the binding energy of Macros, which then fixes the moment
in the cosmological evolution when the comoving density of baryons starts decreasing. This
first scenario can be thought as representative of models of “nuclear” MDM (e.g. strangelets).
In the second scenario, we consider Macros that are composed of antibaryons. In this case,
proton capture results in annihilation processes, similarly to what happens with proton capture
over ordinary antinuclei (see e.g. [115]). This also results in energy injection in the primordial
plasma; however, differently from the first scenario, there is no inverse process by which the
starting Macro population can be replenished. In both cases, we also account for the possibility
that Macros carry a non-vanishing electric charge.

2.2 Baryon capture by Macro Dark Matter

In the first part of this chapter, we consider the case of Macros composed of ordinary matter.
We focus on the following process, in which the dark matter X captures a baryon (a neutron or
proton), emitting a photon:

XN +B ←→ XN+1 + γ . (2.2)

Here, N is the baryon number of the MDM. We assume that the absorption process can continue
indefinitely, i.e. that XN+1 can absorb another baryon to give XN+2, emitting a photon of
(roughly) the same energy, and so on. In principle, the inverse process is also possible: a photon
with enough energy can rip a proton or neutron off the DM.

One thing to stress is that, if the emitted photon interacts with another Macro on timescales
short with respect to the expansion rate, the numbers of XN ’s, protons and neutrons are sep-
arately conserved on average over a Hubble time. This is a similar situation as the one with
hydrogen recombination: direct recombinations to the 1s state of atomic hydrogen do not con-
tribute to the recombination process, because the 13.6 eV photons emitted will soon ionize
newly-formed atoms. In the case of hydrogen, 2s− 1s two-photon processes are instead needed
in order for cosmic recombination to proceed.

We do not consider here the existence of excited states of MDM, but will instead note
that the photon emitted after the capture possibly quickly interacts and thermalizes with the
cosmological plasma, and is practically “lost” for the purpose of the inverse process. If such a
regime is realized, the only photons that are available for the inverse process are those of the
cosmic background.

We thus first proceed to check when this regime is realized, and then, armed with that
information, study the evolution of the DM and baryon abundances using standard tools (e.g.
the Saha equation). We will focus on redshifts before hydrogen recombination, i.e., z > 1100.
We compare the interaction rate of the emitted photon with the primordial plasma ΓγPl to the
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2.2. Baryon capture by Macro Dark Matter

Hubble expansion rate H, which is given by

H(z) = H0

[
Ωr(1 + z)4 + Ωm(1 + z)3 + ΩΛ

]1/2
. (2.3)

The rate ΓγPl consists of the sum of different contributions

ΓγPl = ΓComp + ΓPS + ΓPPn + ΓPPγ , (2.4)

namely Compton scattering, photon scattering, pair production over nuclei (both H and 4He)
and pair production over photons, respectively. The interaction rate for Compton scattering
with the electrons of the baryon-photon plasma can be written as [116]

ΓComp = nb σT

(
1 + 2fHe

1 + 4fHe

)
(1 + z)3f(x) , (2.5)

where nb is the baryon number density, σT is the Thomson cross-section, fHe ' YP /[4(1− YP )]
with YP denoting the primordial Helium abundance and

f(x) =
3

8x

[(
1− 2

x
− 2

x2

)
ln(1 + 2x) +

4

x
+

2x(1 + x)

(1 + 2x)2

]
, (2.6)

with x ≡ Eγ/me.
The interaction rate for photon scattering has instead the following expression [116]

ΓPS =
4448π4

455625
α4λ−1

c

(
T0

me

)6

x3(1 + z)6 , (2.7)

where λc = 1/me is the Compton wavelength, α ' 1/137 is the fine structure constant and
T0 ' 2.35 · 10−4 eV denotes the present-day CMB temperature.

Considering interactions of photons with both nuclei of H and 4He, the rate for pair produc-
tion over nuclei can be written as [117]

ΓPPn =


nb

[
σH
x<4(x)

(
1+2fHe
1+4fHe

)
+ σHe

x<4(x)
(

fHe
1+4fHe

)]
(1 + z)3 if x < 4

nb

[
σH
x≥4(x)

(
1+2fHe
1+4fHe

)
+ σHe

x≥4(x)
(

fHe
1+4fHe

)]
(1 + z)3 if x ≥ 4 ,

(2.8)

where

σA
x<4 =

2π

3
Z2αr2

e

(
x− 2

x

)3 [
1 +

1

2
ρ+

23

40
ρ2 +

11

60
ρ3 +

29

960
ρ4 + O(ρ5)

]
, (2.9)

σA
x≥4 = Z2αr2

e

{
28

9
ln 2x− 218

27
+

(
2

x

)3 [2

3
(ln 2x)3 − (ln 2x)2 +

(
6− π2

3

)
ln 2x+ 2ζ(3)+

+
π2

6
− 7

2

]
−
(

2

x

)4( 3

16
lnx+

1

8

)
−
(

2

x

)6( 29

2304
lnx+

77

13824

)
+ O(x−8)

}
,

(2.10)

where Z is the charge of the A nucleus, re = α/me is the classical radius of the electron and we
have also defined

ρ ≡ 2x− 4

x+ 2 + 2
√

2x
. (2.11)

Finally, the interaction rate for pair production over photons is given by [116]

ΓPPγ = nb σT

(
1 + 2fHe

1 + 4fHe

)[
2
√
π

√
ye1/y

(
1 +

9

4
y

)]
(1 + z)3 , (2.12)
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Figure 2.1: Total interaction rate for different values of the energy of the emitted photons: 1 MeV
(brown), 10 MeV (red), 100 MeV (blue) and 1 GeV (green).

where we have defined

y ≡ x T0

me
(1 + z) . (2.13)

The total interaction rate ΓγPl as a function of the redshift z is shown in Figure 2.1 for
different values of the energy of the emitted photons: Eγ = 1 MeV, 10 MeV, 100 MeV and 1
GeV.

The other relevant quantity we need to consider is the interaction rate of emitted photons
with macros, ΓγX :

ΓγX = nXσX = ΩDM ρc,0
σX
MX

(1 + z)3 , (2.14)

where the cross-section σX is purely geometrical1, i.e. σX = πR2
X , MX is the mass of Macros

ΩDM is the present DM density and ρc,0 is the current value of the critical density of the Universe.
Notice that we are also assuming that the dark matter is entirely made up of Macros, such that
nX ≡ nDM.

In Figure 2.2 we compare the three relevant rates, ΓγPl, ΓγX and H, as a function of the
redshift z. The first two are shown for different values of the injected photon energy Eγ and of the
reduced cross section σX/MX , respectively. In the upper right panel, the ratio between ΓγX and
the Hubble parameter is shown. For values of the reduced cross-section σX/MX > 10−1 cm2 g−1,
interactions between photons and Macros are frequent until after recombination. For values
σX/MX < 10−8 cm2 g−1, interactions become irrelevant. The upper left panel shows that ΓγPl >
H for the energies and redshifts under consideration. Note that this ratio does not depend on
σX/MX . The bottom panel finally shows that ΓγX < ΓγPl for σX/MX . 1 cm2 g−1. These facts
together imply that, in this region of parameter space, the injected photons thermalize efficiently
with the primordial plasma before having the chance to interact with a Macro. In this regime,
the chemical equilibrium of the reaction (2.2) is regulated uniquely by the cosmic background
photons. In the opposite regime, σX/MX & 1 cm2 g−1, the absorption of the injected photons by
Macros becomes more efficient than the absorption by the primordial plasma, since ΓγX > ΓγPl.
When this is realized, the comoving density of baryons is again conserved. In the following, we
will focus on the former case2, namely σX/MX . 1 cm2 g−1.

1Since we are considering macroscopic dark matter candidates, which have a radius RX much larger than any
relevant microscopic length scale, we are ignoring the quantum-mechanical aspects of the interaction of Macros
with other particles (see [16]). As a result, the interaction cross-sections of Macros with both photons and baryons
are purely geometrical.

2Strictly speaking, the comoving density is constant for ΓγX � ΓγPl. When the two rates are comparable,

44



2.2. Baryon capture by Macro Dark Matter

Eγ = 1 GeV Eγ = 100 MeV

Eγ = 10MeV Eγ = 1 MeV

10
3

10
5

10
7

10
9

10
-1

10
5

10
11

10
17

10
23

z

Γ
γ
P
l
/
H

σX/MX = 10
-10

cm
2
g
-1

σX/MX = 10
-5

cm
2
g
-1

σX/MX = 1 cm
2
g
-1

10
3

10
5

10
7

10
9

10
-13

10
-7

10
-1

10
5

10
11

z

Γ
γ
X
/
H

σX/MX = 10
-10

cm
2
g
-1

σX/MX = 10
-5

cm
2
g
-1

σX/MX = 1 cm
2
g
-1

10
3

10
5

10
7

10
9

10
-23

10
-17

10
-11

10
-5

10
1

z

Γ
γ
X
/
Γ
γ
P
l

Figure 2.2: On the top we report the interaction rate of photons with the primordial plasma over the
Hubble expansion rate, for different energy values: 1 MeV (green), 10 MeV (red), 100 MeV (blue) and 1
GeV (brown). On the middle panel we show the interaction rate of the emitted photon with Macros over
the Hubble rate, for different values of the reduced cross-section. On the bottom panel, we report the
ratio between the interaction rate of the emitted photon with Macros and with the primordial plasma,
for different values of the reduced cross-section and of the energy of photons: 1 MeV (solid), 10 MeV
(dashed) and 100 MeV (dotted). The black dashed lines represent the condition ΓγPl/H = 1, ΓγX/H = 1
and ΓγX/ΓγPl = 1, respectively.
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2.2. Baryon capture by Macro Dark Matter

Macros are kept in equilibrium with the cosmological plasma as long as the rate for baryon
capture is faster than the expansion rate. The rate at which macros XN absorb baryons is given
by:

Γabs = nbσXvrel ' 21.2

(
Ωbh

2

0.022

)( σX
10−15 cm2

)( T

MeV

)7/2

eV , (2.15)

where vrel is the relative velocity between the Macro and baryon fluids, Ωbh
2 is the physical

baryon density and T denotes the temperature of the baryon-photon plasma. In the last equality,
we have used the fact that, when the fluids are coupled, the relative velocity is given by the
thermal velocity of baryons, vrel ' vth =

√
3T/mp.

Deep into the radiation (RD) and matter-dominated (MD) eras the Hubble rate can be
written as:

H =


2.50× 10−16

(
T

MeV

)2
eV , (RD)

2.05× 10−19
(

ΩDMh
2

0.12

)1/2 (
T

MeV

)3/2
eV . (MD)

(2.16)

From the above expressions, it is pretty straightforward to check that Macros stay in equilibrium
until after recombination (z = 1100) if the capture cross section σX & 10−22 cm2.

At equilibrium, the densities of XN ’s and XN+1’s are related by the Saha equation (valid
for T � mB):

fX ≡
nN+1
X

nNX
=

25/2ζ(3)√
π

εB

(
gN+1

gN gB

)
η

(
T

mB

)3/2

eI/T , (2.17)

where εB = nB/nb is the fraction of baryons in protons or neutrons3, I is the binding energy of
macros, η = nb/nγ = 5.5 · 10−10(Ωbh

2/0.02) is the baryon-to-photon ratio, mB is the mass of
the neutron or proton and g is the number of internal degrees of freedom. As regards the latter,
g = 2 for neutrons and protons, while we assume that gN+1/gN ' 1 for MDM. When deriving
the Saha equation, we have assumed that both protons and photons are in thermal equilibrium.
The equilibrium for protons is justified by the fact that, as we shall see in the next section,
observations allow for only a small fraction of protons to be absorbed by Macros. In the case of
photons, we are instead using the fact that the high-energy photons released after the capture
quickly thermalize with the plasma, as commented above.

From the Saha equation, it is seen that fX � 1 for T � I, i.e., only the XN ’s are populated.
Hence there is no net absorption of baryons. However, as the Universe expands and cools down,
the abundance of XN ’s starts to be Boltzmann suppressed since there are fewer photons energetic
enough to photodissociate the XN+1. When this happens, macros effectively start absorbing
baryons. As a benchmark, we will take the redshift zin at which proton capture starts as the
one when fX = 1. In Figure 2.3 we plot zin as a function of the Macro binding energy I. As
expected, the higher is the binding energy I, the higher the redshift at which photodissociation
of Macros becomes ineffective. In particular, there is a threshold value of the binding energy,
IBBN ' 3 MeV, such that for I ≥ IBBN the effective absorption of baryons starts before Big Bang

ΓγX ' ΓγPl, a fraction of protons will still be absorbed by Macros, possibly leaving some signatures in the
cosmological observables. However, we make the conservative assumption that our analysis is valid only for
σX/MX < 1 cm2 g−1.

3After the Big Bang Nucleosynthesis (BBN), i.e. at temperatures T . 0.1 MeV, there are no free neutrons left
in the Universe and we have

εp =
1 + 2fHe

1 + 4fHe
, εn = 0 , (2.18)

where fHe ' Yp/[4(1−Yp)] and Yp is the primordial Helium mass fraction. At temperatures T & 1 MeV, instead,
weak interactions maintain the balance between neutrons and protons and thus

εp = εn =
1

2
. (2.19)
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Figure 2.3: Redshift at which the reaction (2.2) goes out of equilibrium (in the case of protons) as a
function of the Macro binding energy I. We define a threshold value of the binding energy, IBBN ' 3.44
MeV, such that for I < IBBN the absorption of baryons starts after the BBN.

Nucleosynthesis (BBN) is complete (we take BBN to end at T ' 0.1 MeV). In this case, both
protons and neutrons are absorbed by Macros and this might affect the standard BBN picture,
since the interaction rates of the two particle species with Macros are in general different (as
discussed in Ref. [16]). Moreover, the high-energy photons that are emitted during the process
might also affect the production of light elements. In the opposite regime, i.e. when I < IBBN,
the process (2.2) starts after the end of the BBN. Since there are no free neutrons left in the
Universe after BBN, Macros interact only with protons. In the following, we will concentrate
on the latter case.

2.3 Effects on cosmological observables

We now discuss the effects of the interaction between Macros and protons given in (2.2) on
cosmological observables. We focus on the following probes of proton capture: change of baryon
density between the end of BBN and the CMB decoupling; spectral distortions in the CMB;
kinetic coupling between charged MDM and baryons around the time of hydrogen recombination.
We also assess the impact on light element abundances, that might be changed after the end
of BBN due to the energy injection associated to proton capture. These effects are then used
to derive constraints on the Macro parameter space from current observations. We also discuss
detection prospects from future CMB spectral distortions experiments.

2.3.1 Baryon density between BBN and CMB epochs

Cosmological observations allow to measure the baryon density at different epochs. Light element
abundances depend on the baryon density at the time of BBN, while CMB anisotropies probe
this quantity around the time of hydrogen recombination.4 For the BBN we take the value
of Ωbh

2 reported in Eq. (1.31). This has been derived in [36] using the measurements of the
abundances of deuterium and 4He from Refs. [34] and [35], respectively.5 For the CMB, instead,

4More correctly, light element abundances allow to probe the baryon-to-photon ratio at the time of BBN.
Things are more complicated for the CMB, since the anisotropy pattern depends on both η and nb around
the time of recombination. However, since we are neglecting the effect of photons injected between BBN and
recombination, we can drop the distinction.

5As mentioned in Sec. 1.3.1, a new analysis has been performed in [37] using updated expressions for nuclear
rates. The inclusion of these new results does not alter significantly our conclusions.
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we use the constraint from the 2018 Planck data release [118]:

(Ωbh
2)BBN = 0.0227± 0.0005 , (Ωbh

2)CMB = 0.02236± 0.00015 . (2.20)

These values are consistent within the respective uncertainties. This fact can be used to constrain
the amount of protons captured by Macros between BBN and recombination, and from that the
capture cross-section.

Let us define the comoving number density of protons as6 Np ≡ a(t)3 np. Following the
discussion in the previous section, we can take Np = const for z > zin. At lower redshifts, we
can neglect the photodissociation of Macros and the comoving density evolves according to

Ṅp = −ΓpX Np (z < zin) , (2.21)

where ΓpX is the rate at which protons are captured by Macros. For Macros with surface
potential VX , the capture rate can be written as [16]

ΓpX = nXσXvrel ×
{
e−VX/T VX ≥ 0 ,

1− VX/T VX < 0 ,
(2.22)

where we approximate the relative velocity between Macros and protons vrel with the thermal
velocity vth of the latter (see discussion in Sec. 2.3.3). If Macros have a positive surface potential,
protons have to face a potential barrier which tends to suppress their absorption rate, as encoded
in the exponential factor present in Eq. (2.22). For negative surface potentials, the proton
absorption rate is instead enhanced. We will mainly consider values of the surface potential
|VX | ' O(MeV), as expected for strangelets and nuclear-type MDM [93]. However, to keep our
discussion more general, we will also analyze cases with smaller values of VX . If we think of
nuclear-like Macros, we expect them to have a positive electric charge. In this case, as discussed
e.g. in [93] for strange matter, an external shell of electrons is formed around the Macro such that
the global charge vanishes, while protons of the cosmological plasma feel an effective negative
charge when they are close to the external electronic shell.

The temperature of the baryon-photon plasma evolves as T ' T0(1 + z), where T0 denotes
the present-day CMB temperature. As above, we use the fact that

nXσX = ΩDM ρc,0
σX
MX

(1 + z)3 , (2.23)

when evaluating the interaction rate.
The formal solution to Eq. (2.21) reads, for t > tin,

Np(t) = Np,in exp

[
−
∫ t

tin

ΓpX dt

]
, (2.24)

where tin represents the time at which the absorption of protons by Macros starts, and Np,in =
Np(tin). The logarithmic ratio of the comoving number densities at BBN and recombination is
then:

∆ logNp ≡ log

(
Np(tBBN)

Np(tCMB)

)
=

∫ tCMB

max(tin,tBBN)
ΓpX dt . (2.25)

This expression can be used to evaluate ∆ logNp for given values of σX/MX , VX and I (since
the latter determines zin).

Using the measured values in Eq. (2.20), we find the following observational constraint:

(∆ logNp)obs = 0.015± 0.029 . (2.26)

Enforcing this constraint produces the exclusion plot shown in Figure 2.4.

6In our analysis we are assuming that only free protons of the cosmological plasma are captured by Macros,
neglecting instead the possibility that He nuclei are also absorbed.
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Figure 2.4: Constraints on the reduced cross-section as a function of the Macro surface potential,
for different values of the binding energy I. The shaded regions are excluded by the BBN and CMB
measurements of the baryon density. As discussed in Section 2.2, these constraints are valid for σX/MX .
1 cm2 g−1, since for higher values of the reduced cross-section the injected photons are not absorbed
efficiently by the cosmological plasma.

2.3.2 CMB spectral distortions

The capture of protons by Macros leads also to the injection of high-energy photons in the
primordial plasma, see Eq. (2.2). As discussed in Section 1.8.3, a possible observational effect
of any source of energy release in the early Universe is the production of spectral distortions in
the CMB. The amount of µ and y-distortions can be computed using Eqs. (1.140)-(1.141). The
heating rate Q̇ is in our case given by

Q̇ = np(z)ΓpX(z)I , (2.27)

where the time evolution of the proton density is computed using Eq. (2.21) and hence taking
into account the capture by Macros. Notice that we are assuming that all the energy released
goes into heating. This is justified because, as we have shown in Section 2.2, the interaction
rate of the emitted photons with the primordial plasma is always much greater than the Hubble
expansion rate.

In Figure 2.5 we show the amount of µ and y-distortions that are produced as a function of
the parameters of the model. Both types of spectral distortions are always below the current
upper bounds set by FIRAS, |µ| < 9 × 10−5 and |y| < 1.5 × 10−5 (95% CL) [82, 83]. However,
they are within the reach of the proposed PIXIE and SuperPIXIE experiments which, in case of
no detection, would set the 1σ limits |µ| < 3×10−8, |y| < 3.4×10−9 [75,84] and |µ| < 7.7×10−9,
|y| < 1.6×10−9 [74,75], respectively. The region of the parameter space that would be accessible
to PIXIE (SuperPIXIE) are those within the solid (dashed) lines.

Notice that the amount of spectral distortions is maximized for values of the reduced cross-
section σX/MX ∼ 10−6 and 10−7 for VX = −1 MeV and VX = −10 MeV, respectively. As one
might naively expect, spectral distortions decrease for smaller values of the reduced cross-section
since fewer protons are absorbed, resulting in less photons being released in the baryon-photon
plasma. However, the amount of spectral distortions decreases also for higher values of the
reduced cross-section: this happens because a large number of protons is absorbed at redshifts
close to zin. This means that for high values of I (and hence of zin) most of the energy release
takes place before the µ and y-eras, thus not giving rise to any detectable spectral distortion.
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Figure 2.5: Contour plots of µ and y-distortions as a function of the reduced cross-section σX/MX and
the Macro binding energy I, for two different values of the surface potential VX : −1 MeV (left panel)
and −10 MeV (right panel). The regions of parameter space within the black solid and dashed lines are
excluded assuming a null detection of spectral distortions from PIXIE (|µ| < 3× 10−8, |y| < 3.4× 10−9)
and SuperPIXIE (|µ| < 7.7 × 10−9, |y| < 1.6 × 10−9), respectively. The regions above the red lines are
excluded by the constraints from the baryon density, as discussed in the previous section.

Finally, let us remark that no sizeable spectral distortions are produced if VX ≥ 0. Indeed, as
we can see from Figure 2.4, only in the case with I ∼ IBBN a non-negligible amount of protons
is absorbed if these have to face a potential barrier. However, also in this case most of the
absorptions take place at high redshifts, when the thermal energy of protons is large enough to
overcome the potential barrier.

2.3.3 Tight coupling between baryons and charged Macro DM at recombi-
nation

If the dark matter is electrically charged, it can scatter off electrons and protons with the
possibility of getting coupled to the baryon-photon plasma. If this condition were realized at
recombination, MDM would effectively behave like baryons as regards its effects on the CMB
anisotropies. Since we are assuming that Macros form the entirety of the DM, this can not be
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the case and hence we must require that the two fluids are not coupled at recombination7.

Following [120], the momentum transfer rate due to DM-baryon scattering can be written as

Γc =
∑
i=p,e

8
√

2πα2q2
Xniµ

1/2
i

3MXT 3/2
ln

(
3TλD
|qX |α

)
, (2.29)

where

µi =
MXmi

MX +mi
(2.30)

is the DM-baryon reduced mass (which in the case of Macros reduces to the mass of protons/-
electrons, since MX � mp � me), qX is the charge of DM in units of the elementary charge,
α ' 1/137 is the fine structure constant and

λD =

√
T

4παne
(2.31)

is the Debye length of the cosmological plasma.

The condition for the tight coupling between baryons and DM is that the momentum transfer
rate is much larger than the Hubble expansion rate, Γc � H. The tight coupling between baryons
and charged DM has been largely studied in the context of millicharged DM, where the DM is
made up of particles carrying an electric charge much smaller than the elementary charge (see
e.g. [120–124]). In these scenarios, from Eq. (2.29) one can easily see that Γc/H ∝ T−1/2 during
the radiation era (neglecting the logarithmic dependence in the screening term). This means
that the DM and baryons are not coupled at high redshifts and then eventually get coupled
when Γc/H becomes of order unity.

The scenario considered in the present analysis differs in one aspect: protons are being
absorbed by Macros, thus their number density has a different scaling than the usual one (i.e.
nb ∝ T 3). Hence, the number of target protons that enters in the momentum transfer rate (2.29)
is a function of the Macro parameters and is obtained again by numerically integrating Eq. (2.24).

The electric charge of Macros is instead fixed by the Macro surface potential and cross-
section. For Macros with surface potential VX and cross-section σX expressed in units of eV
and eV−2 respectively, the charge is given by

qX =
VX(σX/π)1/2

α
. (2.32)

Now we have everything required to compute the momentum transfer rate given in Eq. (2.29).
CMB observations do not allow for a coupling between the two components at recombination,
so we require Γc/H < 1 at that time. By imposing this condition, we derive the constraints
shown in Figure 2.6. Note that these limits are likely conservative, because we expect that
even relatively small momentum transfers between DM and baryons at the recombination epoch
would leave a detectable imprint on CMB anisotropies. However, quantifying this effect would
require a dedicated analysis, so for the time being we use the conservative condition Γc/H < 1.

7In this discussion we are assuming that the dark matter fluid approximation is still valid, in spite of the
low number density of Macros. This is true provided that the diffusion time for a photon to cross the average
separation between two Macros is small compared to the Hubble time, H−1. In terms of the mass of Macros, this
condition can be written as [119] (

MX

g

)2/3

(1 + z)3 � 1039 . (2.28)

Even for very massive MDM candidates (e.g. MX ∼ 1020 g), this condition is satisfied up to high redshift values
(z ∼ 108). Thus, we can safely assume that the dark matter fluid approximation is valid when dealing with
DM-baryon interactions at the CMB epoch.
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Figure 2.6: Constraints on the Macro cross-section and mass for different values of the surface potential
VX . These comes from the requirement that Macros and baryons are not tightly coupled due to Coulomb
scattering at the recombination epoch.

Notice that the curves in Figure 2.6 correspond to constant values of σX/MX . Indeed, the
momentum transfer rate Γc depends on the ratio q2

X/MX ∝ σX/MX and the proton number
density also depends on σX/MX (see Eqs. (2.22)-(2.24)). There is then the logarithmic depen-

dence on qX ∝ σ
1/2
X , which is however very weak and gives negligible contributions. We can

write the resulting constraints on the reduced cross-section as

σX
MX

. 2× 10−11

( |VX |
MeV

)−2

cm2 g−1 . (2.33)

Before closing this section some comments are in order regarding our treatment of the charge
of Macros and the relative velocity between MDM and baryons. Concerning the first aspect,
we have assumed that the charge of Macros remains constant, despite the fact the protons are
being captured. Since we are thinking of Macros as macroscopic nuclei, we might imagine that,
as protons are absorbed, Macros get rid of the excess charge by converting protons to neutrons
through weak processes.

As regards the relative velocity between baryons and Macros, this is in principle given by
vrel = (v2

th + v2
bulk)1/2, where vth is the thermal velocity of baryons and vbulk is the relative bulk

velocity between the DM and baryon fluids. The latter is non-vanishing only if the two matter
components are not coupled. If this is not the case, DM and baryons behave as a single fluid
and the relative velocity is simply given by the thermal speed of baryons. A detailed treatment
of the relative motion between the DM and baryon fluids can be found in [125, 126]. For the
purposes of our discussion we can approximate the relative bulk velocity as

vbulk(z) ' min

[
1,

1 + z

103

]
× 10−4 . (2.34)

This is constant at redshifts z & 103 and then decreases as (1 + z). In Figure 2.7 we show
how the bulk, thermal and relative velocities evolve with redshift in the case in which DM and
baryons are not coupled (i.e. vbulk 6= 0). It can be seen that at redshifts z & 104 the thermal
component is the dominant one and the approximation vrel ' vth is then justified in this range
of redshifts. Let us now discuss what happens at redshifts z . 104. First of all, notice that in
this regime the bulk motion gives the largest contribution to vrel. It is then useful to recall that
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Figure 2.7: Relative bulk velocity between the baryon and DM fluids (red dashed line), thermal velocity
of protons (blue dashed line) and relative velocity (black solid line) defined as vrel = (v2

th + v2
bulk)1/2.

baryons and Macros are decoupled at high redshifts and get coupled only when Γc/H becomes
of order unity. If this condition is realized at redshifts z & 104, then approximating the relative
velocity with the thermal one is well justified throughout all the expansion history, since at
z . 104 (i.e. when baryons and the DM are coupled) there is no relative bulk motion between
the two components. If instead Macros and baryons become coupled at z < 104 but before
CMB decoupling, by assuming that vrel ' vth in this range of redshifts we are underestimating
the capture rate (2.22), since vth < vrel. We have however verified that always approximating
vrel ' vth has a negligible impact on our results.

2.3.4 Light element abundances

Another possible effect due to photon injection is to alter the light element abundances after
BBN [127–131]. For the energies under consideration (i.e., Eγ . 3.44 MeV), two relevant
processes to consider are the photodissociation of the deuterium and the 7Be, whose energy
thresholds are given by Eth = 2.2246 MeV and Eth = 1.5866 MeV, respectively [127, 128]. The
equation which regulates nuclear abundances (YA ≡ nA/nb, with A = d, 7Be) in redshift space
is given by (see e.g. [129,130])

dYA
dz

= − 1

H(z)(1 + z)

[∑
T

YT

∫ ∞
0

dEγfγ(Eγ , z)σγ+T→A(Eγ)+

−YA
∑
P

∫ ∞
0

dEγfγ(Eγ , z)σγ+A→P (Eγ)

]
, (2.35)

where σγ+T→A is the cross-section for the production of A via the photodissociation of nuclei
T , σγ+A→P is the cross-section for the analogous destruction channel and fγ is the nonthermal
photon distribution function. The latter can be computed by solving the usual Boltzmann
equation with the source term

Sγ = np(z)ΓpX(z)pγ , (2.36)

where pγ is the injection spectrum. In the case of Macros composed of ordinary matter, the
energy of the injected photons is given by the Macro binding energy, hence pγ = δ(Eγ − I). As
discussed in Section 2.2, the interaction rate of photons with the cosmological plasma, ΓγPl, is
much faster than the expansion rate H. As a result, fγ is driven to a quasi-static equilibrium
(i.e. ∂fγ/∂t = 0), such that fγ = Sγ/ΓγPl [129–131].
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For the energies under consideration, only destruction processes need to be considered. Thus,
Eq. (2.35) can be easily integrated as

ln

(
YA(zf )

YA(zi)

)
=

∫ zf

zi

dz

H(z)(1 + z)

np(z)ΓpX(z)

ΓγPl(I, z)
σγ+A→P (I) . (2.37)

The explicit expressions of the photodissociation cross-sections of d and 7Be can be found in
Refs. [127] and [128], respectively.

It is now possible to evaluate the impact of the energy injection on the abundances of d and
7Be by means of Eq. (2.37). We find that the resulting effects are negligible and do not allow
us to constrain MDM. This happens because the emitted photons quickly thermalize with the
baryon-photon plasma and are practically “lost” as photodissociation sources.

2.4 Antimatter Macros: proton-antiproton annihilations

In this section we discuss the second scenario considered in our analysis, i.e. dark matter in the
form of macroscopic objects composed of antimatter. Following [132], we refer to this class of
DM candidates as anti-Macros.

Before the recombination epoch, free protons of the cosmological fluid can be captured by
anti-Macros, analogously to what happens in the case of Macros composed of ordinary mat-
ter. The annihilations between protons and antiprotons then lead to the release of high-energy
photons in the baryon-photon plasma.

Differently to what happens in the case of Macros (see Eq. (2.2)), there is no inverse process
available for keeping the comoving density of baryons constant at high redshifts. This implies
that, as soon as anti-Macros are produced, they start absorbing protons. This also means that
the constraints that we find are independent of the binding energy of anti-Macros. We leave
instead the redshift at which anti-Macros are produced as a free parameter. To keep contact
with the previous sections, we label again this as zin.

Some regions of the parameter space of anti-Macros have already been constrained in [132],
where the authors focused on the case with VX = 0. Following the discussion of the previous
sections, we now derive new constraints from the absorption of protons between the BBN and
recombination and from spectral distortions of the CMB. Moreover, the condition that baryons
and anti-Macros were not coupled at decoupling has still to be imposed. In Section 2.3.3 we
have seen that the resulting constraints on the Macro parameter space are independent of the
binding energy I. Since the latter fixes the redshift at which the capture of protons begins, this
means that these constraints are independent of zin. The same conclusion has to be true also
in the case of anti-Macros, which then have to obey the same constraints as those shown in
Figure 2.6.

2.4.1 Baryon density between BBN and CMB epochs

As we have done in Section 2.3.1 for Macros, we can constrain the parameter space of anti-
Macros by requiring that the number of protons that have been absorbed between the BBN and
CMB epochs does not exceed the experimental constraints, i.e. ∆ logNp ≤ (∆ logNp)obs within
the observational uncertainty.

Since the capture rate is equal to the case of Macros, these results coincide with those of
Figure 2.4, with the only difference that zin replaces I as a phenomenological free parameter. In
particular, from Figure 2.4 we can derive the constraints on anti-Macros through the following
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mapping: 
I = 0.1 MeV −→ zin ' 1.1× 107 ,

I = 1 MeV −→ zin ' 1.2× 108 ,

I = 3.44 MeV −→ zin ' 4.3× 108 .

(2.38)

2.4.2 CMB spectral distortions from pp̄ annihilations

If Macros are composed of antimatter, annihilations with protons of the cosmological plasma
result in the release of high-energy photons. This process has been discussed in [132], where the
reduced cross-section of anti-Macros has been constrained by analyzing the effects of this energy
injection on the CMB anisotropies and the BBN. The heating rate depends on which specific
process takes place after the pp̄ annihilations (like, e.g., the nature of the cascade of particles
that are produced). Denoting with k the fraction of the rest energy of the proton and antiproton
that is actually released in the baryon-photon plasma, we can write the heating rate as [132]

Q̇ = np(z)ΓpX(z)(2kmp) . (2.39)

In the following we take k = 0.2. This is consistent with the scenario in which pp̄ annihilations
result in the production of multi-pion states, including both neutral and charged pions. The
latter (or their decay products, i.e. electrons, muons and neutrinos) are able to escape anti-
Macros, while neutral pions decay after their production into four photons, each having energy
Eγ ∼ 100 MeV [132].

The amount of µ and y-distortions produced by anti-Macros can then be computed through
Eqs. (1.140)-(1.141). The results are shown in Figure 2.8 for two different values of the initial
redshift, zin = 108 and zin = 107. We also show the constraints obtained exploiting the upper
bounds on spectral distortions by FIRAS, as well as the forecasted constraints obtained assuming
a null detection of spectral distortions by PIXIE and SuperPIXIE. The constraints derived
in [132] for VX = 0 are also included and are marked with a red triangle.

Notice in particular that in this case it is possible to exclude some regions of parameter space
thanks to the upper bounds on spectral distortions set by FIRAS. However, these bounds are
weaker than those obtained by the capture of protons and the tight coupling condition, as we
will also discuss in the next section. On the other hand, PIXIE and SuperPIXIE would allow
us to improve the current constraints.

2.5 Summary of the constraints and discussion

Figure 2.9 summarizes the constraints on Macros and anti-Macros obtained from the analysis
discussed in the previous sections. We show the results for both neutral and charge MDM. In
the latter case, we consider two values of the surface potential of MDM, namely VX = −0.01 and
−10 MeV. We now comment on the main features of these results. Let us start by discussing
the case of neutral MDM:

• for Macros composed of ordinary matter, the only constraints we find are derived by
imposing that the amount of protons absorbed between the BBN and the CMB epochs
does not exceed the observational bound (2.26). The resulting constraints are shown in
the top left panel of Figure 2.9. An analytical fit to these is given by

σX
MX

. 6.8× 10−7

(
I

MeV

)−1.56

cm2 g−1 . (2.40)

No sizeable spectral distortions are produced, implying that future spectral distortions
experiments, like PIXIE and SuperPIXIE, would not allow to improve the bound (2.40);
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Figure 2.8: Contour plots of µ and y-distortions as a function of the reduced cross-section σX/MX and
the surface potential VX of anti-Macros, for two different values of the initial redshift: 107 and 108. These
are due to the emission of high energy photons as a result of pp̄ annihilations. The region of parameter
space within the black solid lines is excluded by FIRAS (|µ| < 9× 10−5, |y| < 1.5× 10−5). The regions
of parameter space within the black dashed and dotted lines are excluded assuming a null detection
of µ-distortions from PIXIE (|µ| < 3 × 10−8, |y| < 3.4 × 10−9) and SuperPIXIE (|µ| < 7.7 × 10−9,
|y| < 1.6 × 10−9), respectively. The dot-dashed blue curves correspond to the bounds (2.33), obtained
by requiring that anti-Marcos and baryons are not coupled at decoupling. The red point denotes the
constraint derived in [132], which has been obtained for VX = 0.

.
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• for neutral anti-Macros, the current constraints are dominated by the baryon density
condition for zin & 4×105, while for zin . 4×105 the FIRAS bounds on spectral distortions
give the tightest constraints on the reduced cross-section. Future CMB spectral distortion
experiments will probe a much larger region of the parameter space, as can be appreciated
in the top right panel of Figure 2.9.

In the case of charged MDM with strong enough surface potential, the tightest constraints
come from requiring that Macros and baryons are not coupled at recombination due to Coulomb
scattering8 (Γc/H < 1). For small potentials (see e.g. the VX ' −0.01 MeV case shown in the
lower panels of Figure 2.9) the bounds from the baryon density can be tighter in some region of
parameter space.

The tight coupling condition leads to the following conservative bound on the reduced cross-
section (see also Figure 2.6)

σX
MX

. 2× 10−11

( |VX |
MeV

)−2

cm2 g−1 , (2.41)

where VX denotes the Macro surface potential. An interesting point to remark is that these
constraints are basically insensitive to both the Macro binding energy (or zin, in the case of
anti-Macros) and the sign of the surface potential. Our interpretation for this goes as follows:
first of all, the sign of the surface potential VX determines the sign of the Macro electric charge
through Eq. (2.32), but this does not affect the momentum transfer rate (2.29), which depends
only on the absolute value of the charge. Secondly, both I and VX affect the behavior of np(z),
but Γc does depend on the combination npµp + neµe. Since we are assuming that electrons are
not absorbed by Macros, even if a non-negligible fraction of protons is absorbed, the value of
the momentum transfer rate does not change too much, given that all the electrons are still
available as scattering targets.

We stress that, because of this last point, the constraints from the tight coupling condition
are valid also in the region of parameter where σX/MX & 1cm2 g−1, contrary to constraints
from the baryon density and spectral distortions (see the discussion in Sec. 2.2). Indeed, as
discussed above, the constraints from the tight coupling are basically only due to the charge of
Macros, which is not related to the absorption of protons, but rather remains constant at its
initial value. Therefore, Coulomb scattering takes place also in the region of parameter space
with σX/MX & 1cm2 g−1 and the condition (2.41) has still to be satisfied.

It is then important to stress how future spectral distortions experiments would allow to
improve these constraints in the case with VX < 0:

• for Macros composed of ordinary matter, we find that future spectral distortions ex-
periments would improve the bounds on the reduced cross-section for small values of
|VX | . 0.05 MeV. This can be seen in the lower right panel of Figure 2.9, where we report
the sensitivity region for SuperPIXIE including both µ and y-type spectral distortions for
the case with VX = −0.01 MeV;

• for anti-Macros, we can see that the sensitivity window for SuperPIXIE roughly coincides
with the region of parameter space excluded by the the tight coupling condition for VX =
−10 MeV, see central left panel of Figure 2.9 . For smaller values of the surface potential,
SuperPIXIE would instead improve the bounds on anti-Macros. This is shown in the lower
left panel of Figure 2.9 for the case with VX = −0.01 MeV.

8Notice that in Figure 2.9 we do not report the constraints on charged anti-Macros derived from the FIRAS
bounds on spectral distortions. Indeed, as can be seen in Figure 2.8, these are always below the constraints
derived from the tight coupling condition.
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Figure 2.9: Constraints on the reduced cross-section as a function of the Macro binding energy I (or
the initial redshift zin, in the case of anti-Macros), for different values of the surface potential VX . The
shaded regions are excluded by current constraints, while the hatched regions represent the sensitivity
windows for SuperPIXIE. In the upper panels we show the constraints on neutral Macros (left) and
neutral anti-Macros (right). In the central panels, instead, we report the constraints on charged Macros
(left) and anti-Macros (right) with a surface potential VX = −10 MeV. Analogous bounds are shown
in the lower panels, for VX = −0.01 MeV. The constraints from the baryon density and from spectral
distortions are valid for σX/MX . 1 cm2 g−1, since for higher values of the reduced cross-section the
injected photons are not absorbed efficiently by the cosmological plasma. The bounds derived from the
tight coupling condition are instead valid also for σX/MX > 1 cm2 g−1.
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We now want to compare our results with the cosmological constraints on Macros derived
in previous literature. In particular, some constraints on σX/MX as a function of VX have
been derived in Ref. [16]. However, there are some key differences with respect to our analysis
that we want to outline. The constraints obtained in [16] come from the requirement that
the standard BBN predictions are not altered by the interactions between Macros and baryons
(both protons and neutrons). Indeed, phrased within our theoretical framework, the authors of
Ref. [16] consider the case I > IBBN, since the absorption of baryons starts before BBN. This
means that we are actually probing different regions of the parameter space. It is also worth
mentioning that the constraints derived in [16] do not take into account the injection of photons
in the primordial plasma, but are uniquely based on protons and neutrons being captured with
a different rate by Macros. Since the absorption of baryons occurs earlier in their scenario, a
non negligible fraction of baryons is absorbed also for VX > 0, provided that VX ∼ O(MeV). In
our case, instead, the lower thermal energy of protons makes it difficult to overcome a potential
barrier VX & 1 MeV. In particular, only if I ∼ IBBN, i.e. if the absorption of protons starts just
after the BBN, we find competitive constraints on the reduced cross-section for VX ∼ 1 MeV.
On the other hand, the BBN constraints derived in [16] are insensitive to the case with VX = 0,
when protons and neutrons are absorbed with the same rate, thus not affecting primordial
abundances. Baryon absorption between BBN and decoupling, instead, is also sensitive to the
case with VX = 0, as we have already seen.

Energy injection resulting from pp̄ annihilations by anti-Macros has also been considered in
Ref. [132]. There, the authors derived a bound on σX/MX from the effects of the energy injection
on CMB anisotropies and BBN, which results in σX/MX . 2× 10−10 cm2 g−1. Differently from
our analysis, this bound has been derived only in the case with VX = 0.

It is interesting to briefly comment on the implications of our findings for Macro particles with
a density of the order of the one of nuclear matter, ρnuc = 3.6×1014 g cm−3. It is straightforward
to see that an upper limit on the reduced cross section σX/MX < α will in this case translate
to a lower limit on the mass MX/g > 1.4 × 10−29α−3. In the case of neutral macros, this
yields MX > 1.4× 10−8 g for a binding energy I = 3.44 MeV, coming from the requirement that
baryons are not absorbed in large amounts between the times of BBN and CMB decoupling.
For charged macros with negative surface potential, the tight-coupling constraint in Eq. (2.41)
implies MX > 1.7× 103 (|VX |/MeV)6 g .
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Chapter 3

Axions and axion-like particles

3.1 The strong CP problem of QCD

Our description of nature at its most fundamental level relies on the Standard Model (SM) of
particle physics, which describes all the elementary particles known in nature and their mutual
interactions. It incorporates three of the four fundamental forces, namely the electromagnetic,
weak and strong interactions. The SM is a non-abelian gauge theory whose local symmetry
group is

SU(3)C × SU(2)L × U(1)Y , (3.1)

where:

• SU(3)C is the gauge group of quantum chromodynamics (QCD) and describes the strong
interaction;

• SU(2)L × U(1)Y defines the electroweak (EW) sector of the SM, providing a unified de-
scription of the electromagnetic and weak interactions. It also includes the Higgs field,
which gives mass to the matter fields of the SM via a spontaneous symmetry breaking
(SSB).

From a modern perspective, the SM can be seen as an effective field theory (EFT) valid up to
some (cut-off) energy scale, see e.g. [133]. This means that, when writing down the low-energy
Lagrangian of the model, we should always include all the renormalizable operators (i.e., those
having mass dimension d ≤ 4) which respect the symmetries of the theory. In particular, QCD
allows for the presence of a CP-violating θ-term in the Lagrangian, which can then be written
as

LQCD =
∑
q

q̄
(
iγµDµ −mq

)
q − 1

4
Gµνa Gaµν + θ

g2
s

32π2
Gµνa G̃aµν , (3.2)

where gs is related to the strong coupling constant αs via gs =
√

4παs, G
a
µν is the gluon field

strength tensor, G̃aµν ≡ 1
2εµνρσG

ρσ
a is its dual and the index a runs over the adjoint indices of the

SU(3) group, i.e. a = 1, ..., 8. Besides being allowed by the symmetry of the theory, the θ-term
in Eq. (3.2) arises in a natural way from the study of the QCD vacuum structure (see [134] for
a review).

Another potential source of CP violation is contained in the quark masses. Indeed, when
writing down a mass term for quarks in the Lagrangian as

Lmass = q̄iRMijqjL + h.c. , (3.3)

the mass matrix M is in general complex. To get the physical basis, the mass matrix must be
diagonalized. Since this transformation is chiral and chiral transformations change the QCD
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vacuum, the net effect is to change the coefficient in front of the GG̃ term to [134]

θ̄ = θ + arg (detM) . (3.4)

The most important effect of the θ̄-term is to generate an electric dipole moment (EDM) of
the neutron dn, which is defined in terms of the non-relativistic Hamiltonian

H = −dnE · Ŝ . (3.5)

The Lagrangian term responsible for the neutron EDM can be expressed in terms of a Lorentz-
invariant operator as [135–137]

L = − i
2
dnn̄γ5σµνnF

µν . (3.6)

Precise calculations using QCD sum-rules yield the following value of the EDM of the neu-
tron [136]:

dn = (2.4± 1.0) θ̄ × 10−16 e cm . (3.7)

By comparing this prediction with the strongest experimental upper bound, given by [138]

|dn| < 1.8× 10−26 e cm , (3.8)

we obtain an upper limit on the value of the θ̄-parameter that reads

|θ̄| . 10−10 . (3.9)

Why nature selects such a small value of θ̄ represents the so-called strong CP problem [139–142].
Is there any dynamical mechanism able to drive θ̄ naturally to zero?

3.2 The Peccei-Quinn solution and the QCD axion

Among the possible solutions to the strong CP problem, the most appealing one has been pro-
posed by Roberto Peccei and Helen Quinn in 1977 [139]. The core of the idea is to introduce
a new global U(1)PQ chiral symmetry, dubbed the Peccei-Quinn symmetry, which gets sponta-
neously broken at a given energy scale fa. This results in the appearence of a new degree of
freedom, a Nambu-Goldstone boson (NGB) which is called the axion [141,142]. The dynamical
axion field replaces in the theory the CP-violating θ̄ parameter, and is dynamically driven to a
CP-conserving phase as a result of the dynamics of the axion itself. This ensures the conservation
of CP symmetry in the QCD sector.

The effective Lagrangian for the axion field a can be written as

La =
1

2
(∂µa)(∂µa) + ξ

a

fa

g2
s

32π2
Gµνa G̃aµν + Lint

[
∂µa/fa, ψ

]
. (3.10)

In addition to the canonical kinetic term, the axion Lagrangian includes all the possible model-
dependent couplings with matter fields ψ, which depend on the derivative of the axion field given
its NGB nature. The second term in (3.10) is present to make sure that the Noether current of
the U(1)PQ symmetry has a chiral anomaly

∂µJ
µ
PQ = ξ

g2
s

32π2
Gµνa G̃aµν , (3.11)

where ξ is a model-dependent parameter. The presence of this anomalous coupling of the axion
with gluons is what allows for the axion to provide a solution to the strong CP problem discussed
in the previous section. Indeed, we can now write the total Lagrangian of the theory as
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L = LSM + Lθ̄ + La

= LSM +
1

2
(∂µa)(∂µa) +

(
θ̄ + ξ

a

fa

)
g2
s

32π2
Gµνa G̃aµν + Lint

[
∂µa/fa, ψ

]
, (3.12)

where LSM is the Lagrangian of the SM. After the SSB of the Peccei-Quinn symmetry, all the
values of the vacuum expectation value (VEV) of the axion 〈a〉 ∈ [0, 2π] lying in the circle of
the minima are in principle allowed. However, QCD instanton effects related to the GG̃ term
generate an effective potential for the axion,1 which is periodic in the effective vacuum angle
θ̄ + ξ〈a〉/fa:

Veff ∼ cos

(
θ̄ +

ξ〈a〉
fa

)
. (3.13)

This potential is minimized for

〈a〉 = − θ̄
ξ
fa . (3.14)

Thus, as the axion field evolves towards the minimum of its potential, the CP-violating θ̄-term
is removed. This provides a dynamical solution to the strong CP problem and removes the need
for a fine-tuning of the value of θ̄.

The effective potential Veff also generates a mass term for the axion, which thus becomes a
pseudo Nambu-Goldstone boson (pNGB). The axion mass is given by

m2
a =

〈
∂2Veff

∂a2

〉
〈a〉=−faθ̄/ξ

= − ξ

fa

g2
s

32π2

∂

∂a

〈
Gµνa G̃aµν

〉
〈a〉=−faθ̄/ξ . (3.15)

This can be computed using EFT techniques and reads [141,143]

ma =

√
mumd

mu +md

mπfπ
fa

' 0.57

(
107 GeV

fa

)
eV , (3.16)

where mπ ≈ 135 MeV and fπ ≈ 92 MeV are the mass and the decay constant of the neutral
pion, while mu ≈ 2.16 MeV and md ≈ 4.67 MeV are the masses of the up and down quarks.

Note that both the axion mass in Eq. (3.16) and the couplings in (3.10) are proportional to
1/fa. This means that for large values of fa the axion is a light and weakly-coupled particle.
Models in which this condition is realized are referred to as invisible axion models. These will
be discussed in Sec. 3.3.

3.3 A survey of QCD axion models

The first realization of the PQ mechanism was proposed by Weinberg and Wilczek in 1977 [141,
142] and is now known as the PQWW or “visible” axion model. In this model, an extra
Higgs doublet is introduced to enforce the U(1)PQ symmetry, while the SM quarks are charged
under this new symmetry and generate the anomaly of the PQ current. This realization of
the PQ mechanism leads to an axion decay constant fa of order of the elctroweak scale, vEW '
246 GeV. Since the axion couplings to SM fields are proportional to 1/fa and fa is not sufficiently
suppressed, this model has been soon ruled out by experimental searches [144–147].

This led to the so-called “invisible” axion models, where fa � vEW, so that the axion
is very light and very weakly-coupled. The two prototypes of this class of models are the
Kim-Shifman-Vainshtein-Zakharov (KSVZ) [148,149] and the Dine-Fischler-Srednicki-Zhitnitsky
(DFSZ) [150,151] models. These will be introduced in Secs. 3.3.1 and 3.3.2, respectively.

1Intuitively, we can think that the Mexican hat potential typical of the SSB gets tilted. Thus, the shift
symmetry for the axion is broken, and an effective potential with minimum 〈a〉 6= 0 is generated.
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3.3.1 The KSVZ axion

The KSVZ model [148, 149] is the simplest invisible axion model and extends the SM by in-
troducing a new SM singlet complex scalar field Φ and a SM singlet heavy colored fermion
Ψ = ΨL + ΨR. The latter is coupled to Φ via a Yukawa-like coupling and hence acquires a mass
after the SSB of the PQ symmetry. The Lagrangian of the model can be written as [152]

LKSVZ = |∂µΦ|2 + iΨ̄ /DΨ−
(
yΨΨ̄LΦΨR + h.c.

)
− VKSVZ(Φ) (3.17)

and features a U(1)PQ symmetry acting on the fields as
Φ → eiαΦ ,

ΨL → eiα/2ΨL ,

ΨR → e−iα/2ΨR .

(3.18)

The potential VKSVZ(Φ) has the usual Mexican-hat-like shape

VKSVZ(Φ) = λΦ

(
|Φ|2 − v2

a

2

)2

, (3.19)

where va denotes the vacuum expectation value of the scalar field. The KSVZ axion appears as
the phase of the complex scalar field Φ, which in polar coordinates can be written as

Φ =
1√
2

(va + ρa) e
ia/va . (3.20)

After the SSB of the PQ symmetry, both the radial mode ρa and the fermion acquire a mass,
which are respectively given by

mρa =
√

2λΦva , mΨ =
yΨva√

2
. (3.21)

If the quartic coupling λΦ ∼ O(1), the radial mode is very heavy, while the mass of the fermion
can be smaller than the symmetry breaking scale va for small values of the Yukawa coupling yΦ.
Neglecting the heavy radial mode, the Lagrangian after the SSB of the PQ symmetry is

LKSVZ =
1

2
(∂µa)2 + iΨ̄ /DΨ−

(
mΨΨ̄LΨRe

ia/va + h.c.
)
. (3.22)

By performing a field-dependent axial transformation

Ψ→ e−iγ5
a

2va Ψ , (3.23)

and then integrating out the heavy fermion Ψ, one obtains the low-energy effective Lagrangian
for the axion

LaKSVZ =
1

2
(∂µa)2 +

g2
s

32π2

a

va
Gµνa G̃aµν , (3.24)

where the GG̃ term arises due to the anomalous nature of the transformation (3.23) under QCD.
With the identification va = fa we recover the Lagrangian (3.10) with the anomaly coefficient
ξ = 1 and with no derivative couplings to SM fields.

In the model discussed so far, the new fermion Ψ is neutral under hypercharge, so that
E/N = 0. If instead Ψ carries an hypercharge similar to down-type or up-type quarks, we have
E/N = 8/3 or E/N = 2/3, respectively.

63



3.4. Low-energy effective Lagrangian for the axion

3.3.2 The DFSZ axion

The DFSZ model [150, 151] contains two Higgs doublets Hu and Hd like the original PQWW
model plus an additional SM singlet complex scalar field Φ. The presence of this additional
scalar field allows to the decouple the PQ symmetry breaking scale from the electroweak scale,
making this a viable model. An important difference with respect to the KSVZ model is that
the DFSZ axion couples also to SM fermions at tree-level. The Lagrangian for scalars can be
written as

Lscalars
DFSZ = (DµHu)†(DµHu) + (DµHd)

†(DµHd) + (∂µΦ)†(∂µΦ)− VDFSZ(Hu, Hd,Φ) , (3.25)

where VDFSZ(Hu, Hd,Φ) is a model-dependent potential which is responsible for the SSB of both
the PQ and the EW symmetries, taking place at the scales vΦ and v, respectively. The ratio of
the VEVs of the two Higgs fields is parametrized as tanβ = vu/vd.

Depending on which of the two Higgs doublets are involved in the Yukawa couplings to SM
fermions, two variants of the model are possible, dubbed DFSZ-I and DFSZ-II:

LYDFSZ−I = −Yuq̄LuRHu − Ydq̄LdRHd − Ye l̄LeRHd + h.c. , (3.26)

LYDFSZ−II = −Yuq̄LuRHu − Ydq̄LdRHd − Ye l̄LeRH̃u + h.c. , (3.27)

where H̃u = iσ2H
∗
u. The final effective Lagrangian for the DFSZ axion is given by (see [152] for

more details)

LaDFSZ =
1

2
(∂µa)2 +

αs
8π

a

fa
Gµνa G̃aµν +

gaγ
4

a

fa
FµνF̃µν +

(
1

3
cos2 β

)
∂µa

2fa
ūγµγ5u

+

(
1

3
sin2 β

)
∂µa

2fa
d̄γµγ5d+ Ce

∂µa

2fa
ēγµγ5e , (3.28)

where

gaγ =
αEM

2πfa

(
E

N
− 2

3

4 + z

1 + z

)
. (3.29)

In the above expression z ≡ mu/md ' 0.493(19) [153] is the ratio between the masses of the up
and down quarks, while E/N = 8/3 and 2/3 the DFSZ-I and DFSZ-II models, respectively. The
coupling of the axion to the electron in Eq. (3.28) for the two variants of the model is given by
CDFSZ−I
e = sin2 β/3 and CDFSZ−II

e = − cos2 β/3. In the DFSZ model the axion decay constant
is fa = va/6, where va ' vΦ, so that, as already anticipated, fa is decoupled from the EW scale.

3.4 Low-energy effective Lagrangian for the axion

As we have seen in the previous section, there are many possible concrete realizations of the
QCD axion and we do not know yet which is the correct UV completion of the model, if any.
To study the low-energy phenomenology of the axion, it is useful to write down an effective
Lagrangian valid at energies smaller than the symmetry breaking scale fa, see e.g. [154]. At
energies between the EW and the QCD scales, the effective Lagrangian is

L
>ΛQCD

a,eff =
1

2
(∂µa)(∂µa) +

αs
8π

a

fa
GiµνG̃

µν,i +
gaγ
4
aFµνF̃

µν +
∂µa

2fa

∑
f

Caf ψ̄fγ5γ
µψf , (3.30)

where the index f runs over all SM fermions. The dependencies on the specific axion model
are put inside the coefficients gaγ and Cf . In particular, the axion-photon coupling gaγ can be
written as in Eq. (3.29). The KSVZ and DFSZ models introduced in the previous section fit
this EFT description in the following way:
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3.5. Axion-like particles

• The KSVZ model is characterized by Cf = 0 for each SM fermion at tree level and E/N = 0
in its simplest realization (see the discussion at the end of Sec. 3.3.1).

• In the DFSZ model, the ratio E/N is equal to 8/3 and 2/3 for the DFSZ-I and DFSZ-
II scenarios, respectively. Moreover, there are non-vanishing tree-level couplings with
fermions. The couplings to electrons, up and down quarks are respectively given by [152]

DFSZ− I : Ce =
sin2 β

3
, Cu =

sin2 β

3
, Cd =

cos2 β

3
, (3.31)

DFSZ− II : Ce = −cos2 β

3
, Cu =

sin2 β

3
, Cd =

cos2 β

3
. (3.32)

We remind the reader that β is related to the ratio between the VEVs of the two Higgs
doublets Hu and Hd, see Sec. 3.3.2.

At energies below ΛQCD gluons and quarks confine, so the effective Lagrangian must be
written in terms of the couplings to nucleons and mesons. It also includes the potential for the
axion generated by instanton effects. Thus, we can write the following effective Lagrangian

L
<ΛQCD

a,eff =
1

2
(∂µa)(∂µa)−m2

af
2
a

[
1− cos

(
a

fa

)]
+
gaγ
4
aFµνF̃

µν +
∂µa

2fa

∑
f

Caf ψ̄fγ5γ
µψf + Laπ ,

(3.33)
where the index f now runs over the light SM leptons and nucleons and Laπ denotes the axion-
pion interaction Lagrangian, which is given by

Laπ =
∂µa

fa

Caπ
fπ

(
π0π+∂µπ− + π0π−∂µπ+ − 2π+π−∂µπ0

)
. (3.34)

The couplings of the axion to nucleons and pions are given by [143,152]

Cap = −0.47(3) + 0.88(3)Cu − 0.39(2)Cd , (3.35)

Can = −0.02(3) + 0.88(3)Cd − 0.39(2)Cu , (3.36)

Caπ = 0.12(1) +
1

3
(Cd − Cu) , (3.37)

where Cu = Cd = 0 for the KSVZ axion, while for the DFSZ axion these coefficients depend on
β as in Eqs. (3.31)-(3.32).

3.5 Axion-like particles

Along with the QCD axion, other light particles with similar properties arise from various ex-
tensions of the SM, such as the spontaneous breaking of additional global symmetries [155–159],
Goldstone modes from string theory compactification [160, 161], or accidental symmetries [162,
163]. In particular, models of string theory generically predict the production of axions from
the decay of moduli fields, which would appear at present time as a homogeneous axion back-
ground. This axion component can lead to various electromagnetic and gravitational signals,
such as the axion-photon conversion in intergalactic media or the appearance of superradiance
around spinning black holes. Analogously to the QCD axion, these axion-like particles would
contribute to the present dark matter budget [164,165] and might possibly play important roles
in many other cosmological scenarios, including inflation, baryogenesis and dark energy. Since
these axion-like particles are not necessarily linked to the PQ mechanism, their mass ma and
couplings to SM fields ga do not in general follow the relation ma ∝ ga ∝ 1/fa described in
the previous sections for the QCD axion. This means that the parameter space available for
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axion-like particles is much broader. In the following, we refer to generic axion-like particles
simply as “axions”.

In analogy with what discussed for the QCD axion, the effective Lagrangian for a generic
axion below the energy scale fa can be written as

Leff ⊃
1

2
(∂µa)(∂µa)− 1

2
m2

0a
2 +

αs
8π

Cg
fa

aGiµνG̃
µν,i +

1

4
g0
aγaFµνF̃

µν , (3.38)

where g0
aγ is the axion-photon coupling and Cg is the (dimensionless) coupling of the axion to

gluons. Note the presence of an explicit mass term m0 for the axion in the Lagrangian (3.38),
leading to a soft explicit breaking of the shift symmetry.2 Within this model, the QCD axion
theory is recovered by setting Cg = 1 and m0 = 0.

Likewise for the QCD axion, the axion-gluon coupling in (3.38) induces an irreducible electric
dipole moment (EDM) of the neutron n oscillating with time t via a chiral one-loop process as
dn = gda0 cos(mat), where a0 is the local value of the axion field at the position of the nucleus
and gd is the axion-EDM coupling. The Lagrangian term responsible for the neutron EDM can
be expressed in terms of a Lorentz invariant operator as [135,136] (see the discussion in Sec. 3.1)

L = − i
2
gdan̄γ5σµνnF

µν , (3.39)

with

gd =
Canγ
mn

Cg
fa

, (3.40)

where mn is the mass of the neutron and Canγ ≈ 0.0033. Note that for the QCD axion the
coupling gd is proportional to its mass (since Cg = 1 and fa ∝ 1/ma), while it is generally
independent of the mass for an axion-like particle, for which the one-to-one correspondence
between fa and ma in Eq. (3.16) does not hold anymore. The quantity gd appearing in Eq. (3.40)
could also receive contributions from the coupling of the axion with fermions [136]. Here, we
have focused on the irreducible component that results from the coupling of the axion with the
gluon field, so the relation above relies on the other contributions being suppressed.

The Lagrangian in Eq. (3.38) can be formally mapped into a chiral axion Lagrangian by a
rotation of the quark fields that makes the axion-gluon term disappear [154]. Once the effects of
the explicit mass breaking are taken into account, the effective axion mass squared in the chiral
representation reads [154,166]

m2
a = m2

0 +

(
Cg
fa

)2

F 2
πm

2
π

z

(1 + z)2
' m2

0 +

[
5.7

(
1012 GeV

fa/Cg

)
µeV

]2

, (3.41)

where mπ ≈ 135 MeV and Fπ ≈ 92 MeV are the mass and the decay constant of the neutral
pion, respectively, and z ≡ mu/md ' 0.493(19) [153] is the ratio between the masses of the
up and down quarks. Note that by setting m0 = 0 and Cg = 1 we recover the relation (3.16)
which holds for the QCD axion. In the case of generic axions, the effective mass ma contains
two contributions from the explicit symmetry breaking term m0 and from the effective mixing
of the axion with the neutral π, η, η′ mesons (see e.g. Ref. [134]). The presence of m0 prevents
the axion from solving the strong-CP problem, and for sufficiently large values of m0 Eq. (3.41)
gives ma ≈ m0 so that the axion mass can be treated as an independent parameter. In the
cosmological analysis discussed in Chapter 4 we consider a regime in which the value of the
effective mass transitions from being dominated by the QCD effects to the value m0. Since we
restrict the analysis to the region ma & 0.1 meV, QCD effects can be ignored for sufficiently
large values of fa & 1010 GeV.

2While an explicit mass term is forbidden for the QCD axion in order to solve the strong CP problem, it is
present for a generic axion.
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Figure 3.1: Parameter space for a generic axion. The yellow band represents the canonical QCD
axion region, identified by the values E/N = 5/3 and E/N = 44/3 [167–169]. This includes the KSVZ
(E/N = 0) and the DFSZ-I (E/N = 8/3) models. Note however that QCD axion solutions outside of
this yellow band have also been constructed and are still viable [170–174].

In addition to the effective axion mass, the mapping onto the chiral axion Lagrangian leads
to an effective coupling of the axion with the photon, with strength

gaγ = g0
aγ −

αEM

3π

Cg
fa

4 + z

1 + z
≈ g0

aγ − 2.3× 10−15

(
1012 GeV

fa/Cg

)
GeV−1 . (3.42)

For the QCD axion Cg = 1 and

g0
aγ =

αEM

2πfa

E

N
, (3.43)

so that we recover Eq. (3.29), which tells us that gaγ ∝ 1/fa ∝ ma. For a generic axion, the
coupling g0

aγ is instead a free parameter, so that the axion-photon coupling gaγ and the axion
decay constant fa can be treated as independent parameters. The same is true for gaγ and the
axion mass ma. This can be explicitly seen in Fig. 3.1, where we show the full parameter space
available for a generic axion in the gaγ −ma plane, together with the region of parameter space
where canonical QCD axion models satisfying Eq. (3.43) lie.

3.6 Axion cosmology: the axion as a dark matter candidate

Axions might play an important role in many cosmological scenarios, including inflation, baryo-
genesis and dark energy. Most importantly, they represent a potentially good dark matter
candidate. Axions can be produced in the early Universe via either thermal or non-thermal pro-
cesses. Depending on the production mechanism and their mass, they can constitute a hot or a
cold dark matter component. In the following we discuss the production of axions in the early
Universe via both thermal and non-thermal processes, and we see which are the implication for
axions as dark matter candidates.

3.6.1 Non-thermal production: the vacuum realignment mechanism

The non-thermal mechanism through which axions can be produced in the early Universe is
closely connected to the PQ mechanism itself and the evolution of the axion potential. This
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3.6. Axion cosmology: the axion as a dark matter candidate

mechanism is usually referred to as vacuum realignment (VR) and leads to a population of cold
axions, which thus represent a good CDM candidate (see e.g. [175–177]).

We start discussing the case of the QCD axion. As we have seen in Sec. 3.2, axions emerge
as physical degrees of freedom after the SSB of the PQ symmetry. Since at this stage there is
no potential for the axion, the quantity a/fa can take any value between −π and π. Then, at
the QCD scale, instanton effects switch on a potential for the axion. When this happens, the
axion field needs not to be at the minimum of this potential. This difference is parameterized
by the misalignment angle, θi ≡ ai/fa. If there is an initial misalignment, the axion field
oscillates around the minimum of the potential. In this phase axions behave as a non-relativistic
component and the energy stored in the oscillations contributes to the cold DM density.

In order to evaluate the relic abundance of cold axions produced via the VR mechanism, we
need to distinguish among two scenarios:

• if the PQ symmetry is broken during inflation and then never restored (the pre-inflation
scenario), inflation selects a single patch of the Universe with a given value of θi. This
region is stretched to a size larger than the observable Universe, leading to a homogeneous
value of the initial misalignment angle θi. The misalignment angle is thus a free, unpre-
dictable parameter of the model. In this case the relic abundance of axions established via
the VR mechanism is [152,178,179]

Ωah
2 ' 0.12

(
fa

9× 1011 GeV

)7/6

θ2
i F (θi) , (3.44)

where F (θi) is a factor that takes into account anharmonicities in the axion potential.
Thus, in the pre-inflation scenario the PQ scale has to be . 1012 GeV (or equivalently
ma & 6 µeV) for θ2

i F (θi) ∼ 1, in order not to exceed the observed cold dark matter
density, Ωch

2 ' 0.12. Larger values of the PQ scale and smaller axion masses are possible
if one allows for a fine-tuning of θi to a very small value. The first case is referred to as
the “natural” axion, while the region with fa � 1012 GeV and θi � 1 is the so-called
“anthropic” window. In the pre-inflation scenario, topological defects produced when the
SSB of the PQ symmetry takes place are inflated away. Thus, axion production from the
decay of topological defects does not play any significant role;

• if instead the PQ transition happens after inflation, or the PQ symmetry is restored after
inflation (the post-inflation scenario), the Universe remains divided in different patches,
each one of them randomly sampling all possible values of θi with equal probability. The
relic density of cold axions produced via vacuum realignment can then be computed by
averaging the misalignment angle to 〈θ2

i 〉1/2 = π/
√

3 ' 1.81. The axion relic abundance is
thus [152,178,179]

Ωah
2 ' 0.12

(
fa

1.9× 1011 GeV

)7/6

. (3.45)

The right cold dark matter density is obtained for fa ' 2 × 1011 GeV, or ma ' 30 µeV.
Moreover, in the post-inflation scenario the decay of topological defects produced during
the PQ phase transition via the Kibble mechanism [180] gives a contribution to the produc-
tion of axions. This adds up to the one from the VR mechanism reported in Eq. (3.45).
The contribution from the decay of cosmic axion strings is particularly relevant. This
can be computed via numerical simulations and can be roughly one [181–183] or even
two [184, 185] orders of magnitude higher than the one from the VR mechanism. This
would increase the lower limit on the axion mass to ma ∼ meV.

Analogously to the case of the QCD axion, ALPs can also be produced via the VR mecha-
nism, thus contributing to the abundance of CDM [164,178,186]. For values of the axion decay
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constant fa ≤ 1016 GeV, axions can account for the entirety of the CDM abundance for an axion
mass around ma ' 10−19 eV (see e.g. [178]). Given the very small values of the mass, these are
commonly referred to as ultralight axions (ULAs). These particles arise for example from string
theory compactifications [161] and have an associated de Broglie wavelength λdB ∼ kpc, thus
falling into the category of fuzzy dark matter. This results in a suppression of the structures
at small scales, which might potentially solve the so-called “CDM small-scale crisis” [187, 188].
In order for ULAs to contribute to the energy density of DM, the oscillations of the axion field
must start before matter-radiation equality. This sets a lower limit on the mass of ULAs to be
a DM candidate given by ma & 10−27 eV.

CMB observations give the constraints ma > 10−24 eV in order for ULAs to make up all the
DM [189]. This is obtained using a combination of Planck temperature data, WMAP large-scale
polarization data and small-scale data from the Atacama Cosmology Telescope (ACT) and the
South Pole Telescope (SPT). This bound is improved to ma > 10−23 eV when Planck data are
combined with those from Dark Energy Survey year 1 [190]. Even stronger bounds arise by
exploiting the information encoded in the small-scale matter power spectrum. In particular,
Lyman-α forest data yield the bound ma & 10−21 eV [191].

3.6.2 Thermal production

Besides the non-thermal production discussed in Sec. 3.6.1, axions might also be produced ther-
mally in the early Universe. Thermal axions are produced from scatterings involving particles
belonging to the cosmological plasma at early times, see e.g. Refs. [192–200]. While axions pro-
duced from non-thermal processes are a natural cold DM candidate, thermally-produced axions
can constitute either a hot, warm or cold DM component, depending on their mass. We will
discuss in more details the thermal production of axions in the next chapter. In particular, we
refer the reader to Sec. 4.3 for more details about the production of thermal axions resulting
from processes due to the axion-photon and axion-gluon couplings.

3.7 Experimental searches for the axion

In this section we present a brief overview of the different experimental approaches aimed at
detecting axions, see [179, 201–203] for more details. The state-of-the-art bounds in the axion-
photon coupling-axion mass plane are summarized in Fig. 3.2, together with the projected
sensitivities of some future experiments [204].

3.7.1 Axions in the lab

We start by describing the strategies to directly detect axions in laboratory experiments. These
are all based on the so-called Primakoff effect, i.e. the conversion of axions and photons into each
other in the presence of magnetic fields. It is common to divide these experimental approaches
into three main categories:

• Haloscopes

Haloscope experiments try to detect axions that constitute our local dark matter galactic
halo. This means that haloscopes rely on the assumption that axions constitute the entirety
of the DM. They are composed by a microwave cavity within a large superconducting
magnet. This produces a strong magnetic field which triggers the conversion of axions
into photons. The Axion Dark Matter eXperiment (ADMX) has reached the sensitivity
to constrain axion dark matter in the µeV mass region [205], with a sensitivity to the
axion-photon coupling of order of gaγ ∼ 10−15 GeV−1, see Fig. 3.2. The future MADMAX
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Figure 3.2: Summary of the constraints on the gaγ − ma plane and projected sensitivities for future
experiments, see the main text for details. Figure taken from [204].

experiment [206] at DESY will be able to probe axions with a coupling to photons down
to gaγ ∼ few × 10−14 GeV−1 for masses ma ∼ 10−4 eV.

• Helioscopes

Helioscope experiments try to detect axions emitted by the Sun. They consist of a magnet
which aims at converting X-rays produced by the Sun into axions, when passing through
a transverse magnetic field. The CAST helioscope at CERN has been able to exclude
the dark red region of parameter space in Fig. 3.2. For axions with mass ma . 0.02 eV,
the CAST bound on the axion-photon coupling is gaγ < 0.66 × 10−10 GeV−1 at 95%
CL [207]. The successor of CAST is the International Axion Observatory (IAXO) [208],
which aims at detecting solar axions with a sensitivity to the axion-photon coupling of
gaγ ∼ few × 10−12 GeV−1. In case of no detection, the bounds on the axion-photon
coupling will be improved by more than one order of magnitude with respect to the current
limits from CAST. With respect to both haloscopes and LSW experiments, helioscopes
are also sensitive to axion produced in the Sun via their couplings to electrons. The CAST
experiment has been able to obtain constrains on the axion-electron coupling [209], but
the strong astrophysical bounds on this coupling are far from the reach of lab experiments.

• Light-shining-through-walls (LSW)

LSW experiments aim at producing and detecting axions in the lab. First, axions are
produced by shining laser light through a strong magnetic field. These travel through
a wall which blocks the laser light. A second magnetic field behind the wall will cause
some of these axions to reconvert back to photons, which can then be detected. At the
moment, LSW experiments have been able to set upper bounds on the axion-photon
coupling of order of 10−6− 10−7 GeV−1, which are three order of magnitudes weaker than
those from CAST. In Fig. 3.2 we can see the bounds from the ALPS experiment [210] at
DESY and from the OSQAR [211] and CROWS [212] experiments at CERN. The future
ALPS-II experiment [213] has the potential to increase the sensitivity on gaγ by more
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than three orders of magnitude, allowing to probe axions with a coupling to photon down
to gaγ ' 2 × 10−11 GeV−1. An advantage with respect to haloscopes and helioscopes is
that LSW experiments do not rely on any astrophysical or cosmological assumption. On
the other hand, contrary to both haloscopes and helioscopes, current and proposed LSW
experiments will not be able to reach enough sensitivity to probe the region of parameter
space of QCD axion models, as can be seen in Fig. 3.2.

3.7.2 Axions in astrophysics

Considerations about stellar evolution provides a very powerful way to constrain the axion
couplings to photons, electrons, and nucleons, often exceeding the results achieved in laboratory
experiments. Axions can be produced in the stellar interiors from the Primakoff conversion of
thermal photons in the electrostatic field of electrons and nuclei. The emission of such axions
provide an additional cooling mechanism for stars. In particular, the presence of this cooling
process in the Sun would have an impact on its lifetime and even more on helioseismological
observations and in the measured solar neutrino flux. These two considerations have been
used to bound the axion-photon coupling to gaγ ≤ 4.1 × 10−10 GeV−1 [214] and gaγ ≤ 7 ×
10−10 GeV−1 [215], respectively.

Even more stringent bounds are derived from horizontal-branch (HB) stars, which lead to the
bound gaγ < 0.66×10−10 GeV−1 at 95% CL [216], under the assumption that the axion-electron
coupling is negligible.

As will be discussed in the next chapter, axions provide an additional source of energy loss
from supernovae other than neutrino emission. Thus, considerations over the energy loss by
supernovae represent a powerful probe to constrain the couplings of the axion to SM fields (see
e.g. [217–221]).

3.7.3 Axions in cosmology

As discussed in Sec. 3.6, axions might play different roles in cosmology. Depending on how they
are produced, axions can constitute either a hot or cold component, thus altering in different
ways the cosmological evolution. Thus, cosmological observations, including measurements of
CMB anisotropies and of the distribution of Large-Scale Structures (LSS), can play an important
role in constraining the axion properties [222–232], providing complementary information to that
obtained from laboratory experiments and astrophysical observations. This will be discussed at
length in Chapter 4.
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Chapter 4

Cosmological bounds on
thermally-produced axion-like
particles

In this chapter we focus on thermal axions, which are produced in the early Universe from
scatterings involving particles belonging to the primordial thermal bath. In particular, we
consider scattering processes that are due to the axion-gluon and axion-photon couplings in
the effective Lagrangian (3.38). This thermal population of axions then decouples from the
cosmological plasma at a temperature Td � ma (i.e. when axions are still relativistic), with Td
being a function of the axion coupling with gluons or photons. We consider axion masses in
the range between 10−4 and 100 eV. Depending on the value of the axion mass, axions play a
different cosmological role and can behave as a hot, warm or cold DM component. Using the
latest cosmological observations of the CMB by the Planck satellite and of BAO from galaxy
surveys, we derive constraints on the axion mass and axion couplings to photons and gluons.
See also Refs. [222–232] for other recent works dealing with cosmological bounds on the QCD
axion and axion-like particles.

4.1 Extra radiation: the effective number of relativistic species

Any light species beyond the Standard Model (BSM) present in the early Universe contributes to
the total energy density of radiation. Within the SM of particle physics, i.e. when only photons
and neutrinos are accounted for, this can be written after electron-positron annihilation as

ρrad = ργ

[
1 +

7

8

(
4

11

)4/3

Nν

]
, (4.1)

where ργ = (π2/15)T 4 is the energy density of CMB photons and Nν is the effective number
of neutrino species. Under the assumption that neutrinos decouple instantaneously from the
cosmological plasma, thus not receiving any of the entropy that is released when electrons and
positrons annihilate, the effective number of neutrino species is Nν = 3, as one naively expects.
However, since neutrino decoupling is not really instantaneous, neutrinos with large momenta
are partially heated during electron-positron annihilations, leading to non-thermal distortions
in the neutrino distribution function. This results in a slightly higher value of Nν . Moreover,
the effects of neutrino flavour oscillations and finite-temperature QED corrections must also
be taken into account. Taking into considerations all these subtleties, the effective number of
neutrino species in the SM has been first computed in Ref. [233], finding that Nν = 3.046. More
recently, the value Nν = 3.044 has been obtained independently in Refs. [234–237], where the
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4.1. Extra radiation: the effective number of relativistic species

authors have updated previous calculations taking into account the effects of finite-temperature
QED corrections to higher orders in the elementary electric charge and the complete expression
of the collision integrals. Although Nν = 3.044 is the newly recommended value, the difference
is irrelevant given the sensitivity of current experiments, hence we fix the value to Nν = 3.046
in the analysis discussed in this chapter.

The introduction of an effective number of neutrino species turns out to be convenient also
to parametrize the possible presence of additional relativistic species BSM in the early Universe.
In this case we speak of the effective number of relativistic species, Neff , which is defined as

Neff ≡ NSM
eff + ∆Neff , (4.2)

where ∆Neff quantifies the deviation from the expected SM value for neutrinos, NSM
eff = Nν =

3.046. For a light particle species Φ, and in the absence of entropy production after e+e−

annihilation, ∆Neff does not change with time and can be simply obtained as the density of Φ
(in the limit mΦ → 0) relative to the density of a single massless neutrino species, i.e.

∆Neff ≡
ρΦ(mΦ = 0)

ρν,mless
=
ρΦ(mΦ = 0)

7
8

(
4
11

)4/3
ργ

=
8

7

(
11

4

)4/3(gΦ

gγ

)(
TΦ

Tγ

)4

, (4.3)

where gΦ and gγ = 2 are the number of internal degrees of freedom for the species Φ and for
photons, respectively. In the particular case in which Φ is the axion a, ga = 1. Let us assume
that the species Φ decouples from the primordial plasma at a temperature Td. After this epoch,
particles of the cosmological plasma becoming non-relativistic release their entropy in the CMB
photons, while the temperature of Φ is unaffected. This is analogous to what has been discussed
in section 1.3.2 for cosmic neutrinos. Therefore, using entropy conservation we can write the
ratio of the Φ and photon temperatures as

TΦ

Tγ
=

(
g∗s(TCMB)

g∗s(Td)

)1/3

, (4.4)

where g∗s(TCMB) = 2 + (7/11)NSM
eff ' 3.94. Inserting Eq. (4.4) into Eq. (4.3) yields

∆Neff ' 0.027× gΦ

(
g∗s(Td)

106.75

)−4/3

. (4.5)

The value of ∆Neff as a function of the decoupling temperature Td is shown in the top panel
of Fig. 4.1 for scalar particles (gΦ = 1) like the axion, Weyl fermions (gΦ = 7/4) and massless
gauge bosons (gΦ = 2). In the bottom panel of Fig. 4.1 we show instead the evolution of
g∗s in the Standard Model as a function of the temperature, adopting the parametrization
of [32].1 Note that the higher is the temperature at which axions decouple from the cosmological
plasma, the lower is the contribution to ∆Neff . In particular, the lowest contribution to ∆Neff

is obtained in case Φ decouples above the mass of the heaviest SM particle, the top quark
(mt = 172.69± 0.30 [239]). In this case, all the particles of the SM annihilate when Φ is already
decoupled from the cosmological plasma, so that the present temperature of Φ is maximally
suppressed with respect to that of CMB photons. This minimum amount of extra radiation
reads

∆Neff =


0.027 Goldstone boson (spin-0) ,

0.047 Weyl fermion (spin-1/2) ,

0.054 Massless gauge boson (spin-1) .

(4.6)

1See also [238] for a different parametrization and [198] for a comparison of the two approaches and results.
Note in particular that the difference is negligible for decoupling temperatures Td . 100 MeV (see Fig. 13 of [198])
corresponding to the range in reach of current experiments for light axions, see Fig. 4.7. Although a higher
decoupling temperature can be probed for heavier axions of mass ma & 1 eV, we expect that our choice for the
parametrization of g∗s(T ) would not significantly impact on the final constraints.
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Figure 4.1: Top panel : ∆Neff as a function of the decoupling temperature Td for different particle
species. Bottom panel : evolution of the effective number of degrees of freedom in entropy in the Standard
Model, g∗s, as a function of the temperature T . This is obtained following the analysis of [32].

This tells us that, if future cosmological surveys will reach the sensitivity to probe ∆Neff = 0.027,
they will be able to detect (or exclude the presence of) any particle species BSM that has ever
been in thermal equilibrium with the cosmological plasma.

At the moment, the most up-to-date constraint on Neff comes from the Planck collaboration,
which at 68% CL obtains [6]

Neff = 2.99± 0.17 , (4.7)

using a combination of TT,TE,EE+lowE data from the 2018 data release, plus observations from
BAO. This is consistent with the SM prediction, NSM

eff = 3.046. Future surveys, like CMB-S4,
will be extremely sensitive to the deviation of Neff from its SM value, with a forecast constraint
∆Neff . 0.06 at 95% CL [11,240].

4.2 Relic abundance of thermal axions

As discussed at the beginning of the chapter, we are considering a scenario in which axions
are produced thermally in the early Universe and then decouple from the cosmological plasma
while they are still relativistic. The present number density of axions na(T0), where T0 is the
temperature of cosmic photons today, is related to the photon number density nγ due to entropy
conservation as

na(T0) =

(
g∗s(T0)

g∗s(Td)

)
nγ
2
. (4.8)
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Setting g∗s(T0) ' 3.94 and nγ ' 411 cm−3 [82,83], the fractional abundance of relativistic axions
at present is

ωa ≡ Ωah
2 '

( ma

130 eV

)(g∗s(Td)
10

)−1

, (4.9)

where Ωa is the energy density of axions in units of the critical density ρcrit = 3H2
0/(8πG), H0

is the Hubble constant, and h = H0/(100 km s−1 Mpc−1) is the reduced Hubble constant. The
dependence on the decoupling temperature Td in Eq. (4.9) can be recast into a dependence on
∆Neff using Eq. (4.5) with gΦ = ga = 1. We can thus rewrite the fractional axion abundance as
a function of ∆Neff as

ωa ' 0.011
(ma

eV

)
∆N

3/4
eff . (4.10)

To have a better physical insight on the CMB constraints on axions, it is also useful to
determine whether axions behave as a hot or a cold DM component at the epoch of CMB
decoupling. This depends on both the axion mass and decoupling temperature. An estimate
is obtained by computing the ratio between the thermally-averaged momentum and the axion
mass at recombination, which is given by [224]

〈pa,rec〉
ma

≈ 2.7
Ta,rec

ma
= 2.7

TCMB

ma

(
g∗s(TCMB)

g∗s(Td)

)1/3

. (4.11)

At the epoch of recombination, axions are hot DM provided 〈pa,rec〉/ma & 1. In the opposite limit
〈pa,rec〉/ma � 1, axions behave as a CDM component. In the first case, axions are relativistic at
recombination and the parameter space is bounded directly by the CMB constraints on Neff . In
the second case, where axions do not contribute to Neff and are non-relativistic at recombination,
the parameter space is constrained by requiring that the relic abundance of thermal axions does
not exceed that of CDM, namely ωa ≤ ωc. In the intermediate regime, say 〈pa,rec〉/ma . 1,
axions act instead as warm dark matter. In this case, only a full detailed analysis can give us
information about how the axion parameter space is bounded, as we discuss in more details in
Sec. 4.5.2.

We conclude this section by stressing that cosmology is sensitive to two parameters related to
the physics of the axion: the axion mass ma and the axion contribution to ∆Neff (or, equivalently,
the axion decoupling temperature Td, since the two parameters are related via Eq. (4.5)). Since
the ultimate goal of this analysis is to constrain the axion mass and the axion couplings to the
photon and gluon fields, we need a relation between these couplings and Td. This will be the
subject of Sec. 4.3.

4.3 Thermal production and decoupling of axions from the cos-
mological plasma

As already discussed, thermal axions are produced from scattering processes between particles
belonging to the primordial thermal bath. Axions then decouple from the cosmological plasma
when the production rate becomes of order of the expansion rate H(T ). Since the production
rate depends both on the axion couplings ga and temperature, imposing the freeze-out condition
yields a relation between ga and Td.

In more details, we first introduce the thermal axion production rate γ ≡ dna/dt, which
expresses the rate of production of thermal axions from the primordial plasma times the number
density of axions na, as derived from the imaginary part of the axion self-energy (see Refs. [193,
241–243] for more details). The evolution of the axion number density na = na(T ) proceeds
according to a Boltzmann equation,

dna
dt

+ 3H(T )na = γ

(
1− na

neq
a

)
, (4.12)
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Figure 4.2: The effective number of charged relativistic degrees of freedom gQ(T ) as a function of the
temperature of the primordial plasma T .

where neq
a (T ) = (ζ(3)/π2)gaT

3 is the number density at equilibrium. As discussed above, freeze-
out occurs when the axion production rate ceases to keep pace with the expansion rate, at the
decoupling temperature Td such that

H(Td) ' Γ(Td, ga) ≡ γ(Td, ga)/n
eq
a (Td) . (4.13)

The relation between Td and ga is provided by the expression above, once one is able to write
down the axion production rate in terms of the axion coupling under consideration. Adopting a
phenomenological approach, in our analysis we assume that either axion-photon or axion-gluon
processes are dominant in establishing a thermal population of axions. The two cases will be
discussed separately in the following subsections.

4.3.1 Axion-photon processes

The leading mechanism contributing to the production of thermal axions due to an axion-photon
coupling is the Primakoff effect, which describes the resonant conversion of photons into axions
in the presence of the strong magnetic field of charged particles. Production in the primordial
plasma proceeds with the rate [225,244,245]

ΓQγ→Qa '
αEMπ

2g2
aγ

36ζ(3)

[
ln

(
T 2

m2
γ

)
+ 0.8194

]
nQ , (4.14)

where mγ = T/(6αEM

√
gQ(T )) is the plasmon mass, gQ(T ) =

∑
iQ

2
i g∗,i(T ) is the effec-

tive number of relativistic degrees of freedom for the i-th charged species of charge Qi, and
nQ =

∑
iQ

2
ini ≡ (ζ(3)/π2)gQ(T )T 3 is the effective number density of charged particles in the

cosmological plasma. In principle, to derive the evolution of gQ(T ) with the temperature we
would need to isolate the contribution to g∗(T ) from each charged particle species and weight it
by the particle’s charge squared. This is particularly challenging during the QCD phase tran-
sition epoch, where the total contribution to g∗(T ) is usually derived from lattice QCD results
(see e.g. [32, 238, 246]). To overcome this issue, we first compute gQ as described above (i.e.
gQ =

∑
iQ

2
i g∗,i) for temperatures T < 100 MeV and T > 500 MeV, with [247]

g∗,i(T ) =
15gi
π4

∫ ∞
xi

(y2 − x2
i )

1/2

ey ± 1
y2dy , (4.15)
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Figure 4.3: Axion-photon coupling gaγ as a function of the decoupling temperature Td, as described in
Eq. (4.16).

where the + (−) sign is for bosons (fermions) and xi = mi/T . The behavior of gQ within the
temperature range 100 MeV < T < 500 MeV, where the QCD phase transition takes place, is
then reconstructed by interpolating between the two regimes previously obtained. The result is
shown in Fig. 4.2.

The Primakoff effect establishes a thermal population of axions that decouples from the
primordial plasma at the temperature Td, which is related to the axion-photon coupling gaγ
by [245]

gaγ ' 10−8 ×
√
g∗

gQ

(
Td

GeV

)−1

GeV−1 . (4.16)

The relation between gaγ and Td expressed in Eq. (4.16) is shown Fig. 4.3. As one naively expects,
the higher is the axion-photon coupling the longer axions stay coupled to the cosmological
plasma, resulting in a lower decoupling temperature.

In addition to the thermal production via the Primakoff effect, a non-zero coupling gaγ would
also induce the axion to decay into a pair of photons. The rate for the decay of axions in two
photons is given by (see e.g. Refs. [245,248,249])

Γa→γγ =
g2
aγm

3
a

64π
' 4.97× 10−44

(
gaγ

10−7 GeV−2

)2 (ma

eV

)3
GeV . (4.17)

The decay of axions would be accompanied by a reduction of their cosmological abundance and
an injection of photons with energy Eγ = ma/2. In our analysis we are assuming that axions
are a stable relic on cosmological timescales and we are not accounting for a possible conversion
of matter into radiation. This is true provided that the decay time of the axion is larger than
the current age of the Universe, i.e. τD ∼ Γ−1

a→γγ � H−1
0 . Using the expression for the decay

rate in Eq. (4.17), the condition of stability of axions leads to the requirement

Γa→γγ
H0

' 3.48× 10−2

(
gaγ

10−7 GeV−1

)2 (ma

eV

)3
� 1 . (4.18)

In our final results we do not consider the region of parameter space in which the condition (4.18)
is not satisfied (see the red hatched areas in Fig. 4.8 and 4.9).

4.3.2 Axion-gluon processes

In case the dominant axion coupling is the one with gluons, a thermal population of axions
can be established through scatterings off the quark-gluon plasma at temperatures above the
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Figure 4.4: Left panel : Axion production rate times the inverse axion-gluon coupling squared,
γg(fa/Cg)

2, as a function of the temperature T of the primordial plasma. This is a reproduction of
Figure 2 of Ref. [197]. Right panel : Axion-gluon coupling, parametrized by the inverse axion decay con-
stant Cg/fa, as a function of the decoupling temperature Td. The freeze-out condition in Eq. (4.13) is
imposed together with the axion production rate shown in the left panel to obtain Td.

QCD phase transition [193–195], and through hadronic scatterings (mainly pion scatterings)
at temperatures below the QCD phase transition [250–255]. In our analysis we adopt the
latest result for the axion production rate obtained in Ref. [197]. As anticipated above, at a
temperature TN ' 2 GeV well above the QCD phase transition,2 the axion production rate γg is
regulated by gluon scattering processes, quark/antiquark annihilations and scatterings between
quarks/antiquarks and gluons:

g + g −→ g + a ,

q + q̄ −→ g + a , (4.19)

q/q̄ + g −→ q/q̄ + a .

Instead, at temperatures below the QCD phase transition, the leading contribution is given by
pion scatterings derived from the effective Lagrangian (3.34):

π+π− −→ π0 + a ,

π+/π− + π0 −→ π+/π− + a . (4.20)

As shown in [196], the calculation for the axion-pion scattering rates using chiral perturbation
theory (ChPT) is not reliable above the temperature TChPT ' 62 MeV, since at higher temper-
atures perturbations can no longer be neglected and the effective field theory description breaks
down. To overcome this issue, the axion production rate between the temperatures TChPT and
TN has been obtained in Refs. [197, 198] by interpolating between the two regimes. The result,
reported in Figure 2 of Ref. [197], provides us with the most up-to-date description for the func-
tion γgf

2
a .3 We reproduce this result in Fig. 4.4 (left panel), where we show γgf

2
a as a function

of the temperature of the primordial plasma.

Once we have an expression for the axion production rate, we impose the condition of
thermal production at freeze-out in Eq. (4.13) to obtain a relation between the axion-gluon
coupling Cg/fa and the decoupling temperature Td. This is shown in Fig. 4.4 (right panel).

2At this temperature the strong coupling constant is αs(TN ) ' 0.3, thus for T < TN a perturbative treatment
of QCD processes is no longer justified.

3Note that in Ref. [197] the authors study the case of the QCD axion, for which we recall that Cg = 1. The
result for the axion production rate can be adopted also for generic axions through the mapping fa → fa/Cg.
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4.4. Data sets and analysis

Parameter Prior

ωb [0.005, 0.1]

θs [0.5, 10]

τ [0.01, 0.8]

ln(1010As) [1.61, 3.91]

ns [0.8, 1.2]

ωc+a [0.001, 0.99]

∆Neff [0, 1]

log(ma/eV) [−6, 4]

Table 4.1: Priors used for the cosmological parameters in the ΛCDM+∆Neff+ma model. For the
ΛCDM+∆Neff the same priors are used, except for the axion mass which is fixed to a specific value.

4.4 Data sets and analysis

We now discuss the data sets composition and the software used in the analysis. We use the
most recent Planck 2018 data of CMB temperature and polarization anisotropies [6] together
with BAO data from galaxy surveys, consisting of BOSS DR12 [13], 6dFGS [14] and SDSS-
MGS [15]. To compute the theoretical predictions we employ a modified version of the publicly-
available Boltzmann solver code CAMB, which correctly includes the propagation of the axion
by incorporating a Bose-Einstein distribution function.4 This is an advance compared with the
majority of previous approaches, in which cosmological constraints on bosonic thermal relics had
been obtained by treating them as additional effective neutrino species (see instead Refs. [224,
256] for a few exceptions). The Markov Chain Monte Carlo sampler CosmoMC [257] is then used
to derive constraints on the parameters of the model. We check the convergence of the chains
by controlling that the Gelman-Rubin parameter R − 1 < 0.01, with the first 30% of total
steps discarded as burn-in. The posterior distributions are then obtained and plotted using the
GetDist package [258].

Following the discussions in the previous sections, we extend the standard cosmological model
(or ΛCDM model) with two additional parameters:5 the axion mass ma and its contribution to
the effective number of relativistic species, ∆Neff . We refer to this as the ΛCDM+∆Neff+ma

model. The vector spanning the eight-dimensional parameter space is represented by

Θ∆Neff+ma ≡ {ωb, θs, τ, ln(1010As), ns, ωc+a, ma, ∆Neff} , (4.21)

where ωb ≡ Ωbh
2 is the physical density of baryons, θs is the angular acoustic scale at recombina-

tion, τ is the reionization optical depth, As is the normalization of the power spectrum, and ns
is the scalar spectral index, see Ref. [6] for additional information. In addition, ωc+a ≡ ωc + ωa
labels the density of CDM plus axions. The latter parametrization is useful because for certain
values of ma thermal axions behave as CDM, so that in this case ωc+a quantifies the total amount
of cold particles. The “non-axionic” CDM abundance can then be derived as ωc = ωc+a − ωa,
where ωa is computed via Eq. (4.10). Given the modification on ωc+a, the first six parame-
ters in the vector Θ∆Neff+ma describe the ΛCDM model. The priors for each component of
Θ∆Neff+ma are reported in Table 4.1. In particular, we draw the values of ∆Neff from a flat

4This code has been previously used in Ref. [224] to derive the cosmological constraints on thermal QCD axions
in low-reheating scenarios.

5We stress again that for a specific QCD axion model, the mass and decoupling temperature are related via
Eq. (3.41) with m0 = 0 and Cg = 1. Hence, in the case of the QCD axion we would have only one additional
parameter with respect to ΛCDM, instead of the two parameters used here, since gaγ ∝ ma ∝ 1/fa.
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prior ∆Neff ∈ [0, 1], for the axion mass we set a logarithmic prior as log(ma/eV) ∈ [−6, 4], while
the list of flat priors on the other cosmological parameters are chosen so that the results of
ΛCDM are recovered when the axion field is removed. We assume that only one of the active
neutrino species is massive, and we fix the sum of neutrino masses to the minimal value allowed
by flavour oscillation experiments in the normal hierarchy scenario,

∑
mν = 0.06 eV. Once the

CAMB model is run with this setup and the model has been constrained, the bounds on ∆Neff

are then converted into constraints on the axion couplings to photons and gluons following the
prescription outlined in Sec. 4.3.

We also perform a series of runs, here ΛCDM+∆Neff , in which the mass of the axion is fixed
and we allow ∆Neff to vary over the range in Table 4.1, thus implementing the runs over the
parameter space spanned by the vector

Θ∆Neff
≡ {ωb, θs, τ, ln(1010As), ns, ωc+a, ∆Neff} . (4.22)

We perform 9 different set of runs (each one with only Planck data and in combination with
BAO) with a different value of the axion mass chosen within

ma ∈ {10−4, 10−3, 10−2, 0.1, 1, 3, 10, 30, 100} eV . (4.23)

This procedure allows us to determine an upper bound on ∆Neff , and ultimately on the axion
couplings, as a function of the axion mass. These results have been used to picture the constraints
on ∆Neff in Fig. 4.7 and then on the axion couplings to photons and gluons, see Figs. 4.8 and 4.9,
respectively.

4.5 Results of the Monte Carlo analysis

In this section we discuss the results of the Monte Carlo analysis for the two models considered
in this work, namely ΛCDM+∆Neff+ma and ΛCDM+∆Neff with fixed axion mass. Then, in
Sec. 4.6 we translate the bounds on ∆Neff into bounds on the axion couplings to photons and
gluons, which are the quantities that we want eventually to constrain.

4.5.1 ΛCDM+∆Neff+ma model

We first discuss the results for the run with the full set of parameters spanned by Θ∆Neff+ma .
The corresponding constraints on the cosmological parameters of the ΛCDM+∆Neff+ma model
are reported in Table 4.2, where we also include the bounds on the axion couplings to photons
and gluons (see Sec. 4.6 for details). Figure 4.5 shows the constraints obtained using Planck
2018 TT,TE,EE+lowE data (red) only and with the additional inclusion of BAO data (blue).
Note in particular the second peak of the probability distribution of ma and the degeneracy of
∆Neff with H0 and ωc+a. The shape of the 1D distribution of ma can be understood as follows.
At smaller masses, the axion is fully relativistic at the CMB epoch and the constraints mostly
come from the axion contribution to ∆Neff . For very small masses, say ma < 10−2 eV, the axion
behaves as dark radiation and it is mostly constrained by its contribution to ∆Neff . This explains
why the distribution for low masses is flat. For intermediate masses, 10−2 eV . ma . 1 eV, the
axion behaves as hot dark matter. Thus, it must decouple early enough so that its contribution
to the energy density budget is sufficiently diluted. This explains the sharp cutoff in the 1D
distribution. At higher masses, the axion effectively behaves as a cold dark matter component.
The second peak in the 1D distribution corresponds to the values of the axion mass that satisfy
the cosmological constraints on the abundance of cold dark matter. The inclusion of BAO data
better constrains the late-time dynamics of the Universe, thus sharpening the second peak in
the 1D distribution of ma. In more detail, BAO data exclude the high-ωc+a/low-H0 region of
the parameter space (see the corresponding 2D contours in Fig. 4.5). This effect, combined
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Figure 4.5: Triangle plot including 2D and 1D posteriors for different cosmological parameters in the
ΛCDM+∆Neff+ma model. Note in particular the shape of the 1D distribution of log(ma) and the impact
of including BAO data in the analysis. See text for details.

with the degeneracy between the Hubble constant and ∆Neff , explains the behaviour of the 1D
distribution of ∆Neff when BAO data are included in the analysis (for a detailed discussion,
see Sec. 4.5.2). As obtained in previous literature, we note that hot axions may feebly mitigate
the tension over the different Hubble constant measurements (see Ref. [259] for a recent review)
although they do not erase it [260].

4.5.2 ΛCDM+∆Neff model with fixed axion mass

We now turn to the discussion of the series of runs for the ΛCDM+∆Neff model, with the axion
mass fixed to specific values as discussed in Sec. 4.4. Each run leads to a constraint on ∆Neff

and on the parameters of ΛCDM, as shown in Fig. 4.6 for the specific case with ma = 10−2 eV
(left panel) and ma = 10 eV (right panel).

For small values of ma the axion is a hot DM component which greatly contributes to ∆Neff

while not affecting ωa. However, the increase in ∆Neff leads to an increased ωc, as shown from
the correlation between the two quantities in the left panel of Fig. 4.6. As CMB temperature
and polarization data pin down the angular scale of sound horizon θs, an increase in ∆Neff also
leads to a higher H0. On the other hand, a massive axion would actively contribute to the CDM
budget while not affecting Neff , see the right panel of Fig. 4.6. In this latter case, we obtain
the bounds over ΛCDM although the total dark matter budget is given by the contribution
ωc + ωa. This is a modification of late-time cosmology that does not alter the numerator of
θs but it changes the angular diameter distance at the denominator, so that an increase in the
CDM budget is compensated by a decrease in H0. This explains why the correlation between
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Parameter Planck TT,TE,EE+lowE Planck TT,TE,EE+lowE+BAO

ωb 0.02242± 0.00017 0.02249± 0.00015

H0 67.90+0.75
−1.1 km s−1 Mpc−1 68.38+0.58

−0.94 km s−1 Mpc−1

τ 0.0553+0.0074
−0.0082 0.0563± 0.0079

ln(1010As) 3.051+0.016
−0.017 3.051± 0.017

ns 0.9676+0.0050
−0.0061 0.9700+0.0044

−0.0053

ωc+a 0.1221+0.0016
−0.0024 0.1215+0.0014

−0.0025

∆Neff < 0.337 < 0.358

ma < 11.66 eV < 3.14 eV

gaγ < 2.84× 10−8 GeV−1 < 3.16× 10−8 GeV−1

Cg/fa < 6.98× 10−8 GeV−1 < 1.06× 10−7 GeV−1

gd < 2.47× 10−10 GeV−2 < 3.77× 10−10 GeV−2

Table 4.2: Constraints on the cosmological parameters for the ΛCDM+∆Neff+ma model, obtained
both from using Planck 2018 TT,TE,EE+lowE datasets alone and in combination with BAO. The limits
on the first six parameters are reported at 68% CL, whereas the upper bounds on ma, ∆Neff , and the
couplings are at 95% CL.

these quantities in the right panel of Fig. 4.6 is negative.

We note that the inclusion of BAO data on these two different runs acts in opposite directions
with respect to constraining ∆Neff : for lighter axions, the inclusion of BAO data leads to a
broader 1D distribution of ∆Neff , while for heavier axions the inclusion of BAO data leads to
tighter constraints on all parameters, including ∆Neff . This behaviour is ultimately due to the
different role of the axion in the two regimes. Light axions are hot DM, so that their properties
are mainly constrained by a measurement of ∆Neff . Since the inclusion of BAO data pushes H0

towards higher values (see the posterior in Fig. 4.6), the bound on ∆Neff relaxes. Heavier axions
behave instead as CDM and the constraints are mainly due to the larger value of the axion relic
abundance. Since the inclusion of BAO data improves the bound on ωc+a, the constraints on
∆Neff are also tightened.

All these features can be well appreciated by looking at Fig. 4.7, where we collect the bounds
on ∆Neff for the different values of the axion mass considered in our analysis. Here, the solid
cyan line represents the limits that we obtain from the full analysis with Planck+BAO data.
The region of parameter space excluded by cosmological data is the one lying below this curve.
To have better physical insights about the results of the Monte Carlo analysis, we include in the
plot the additional information discussed in Sec. 4.2:

• the color shades report the relic abundance of thermal axions ωa as a function of the
effective axion mass ma in Eq. (3.41) (horizontal axis) and decoupling temperature Td
(vertical left axis) or, equivalently, the value of ∆Neff (vertical right axis). The scaling
of ∆Neff is not logarithmic as this quantity is related to Td by a complicated function
involving the effective number of entropy degrees of freedom g∗s(T ) at temperature T .
The contours range from 10−7 to the top left corner of the figure to 10 to the bottom
right;
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Figure 4.6: Triangle plot including 2D and 1D posteriors for different cosmological parameters in the
ΛCDM+∆Neff model. Left panel: axion mass fixed to ma = 10−2 eV. Note that, somehow unexpectedly,
the inclusion of BAO data leads to a broader 1D distribution of ∆Neff , see text for details. Right panel:
axion mass fixed to ma = 10 eV. The inclusion of BAO data leads to tighter constraints on all parameters,
including ∆Neff .

• the dashed white lines mark the current limits on cold dark matter (CDM), ωa < ωc, and
hot dark matter, ωa < ωh. For CDM we take ωc = 0.1202±0.0014 at 68% CL from Planck
2018 results with TT,TE,EE+lowE data [6]. For hot DM we take instead ωh ≈ 2× 10−3.6

Both the hot and cold DM bounds indirectly constrain the value of ∆Neff as a function of
the effective axion mass ma through Eq. (4.10);

• the solid red lines allow us to distinguish the regions of parameter space where the axion is
relativistic or non-relativistic at recombination. Indeed, these are the curves for which the
average axion momentum at recombination, see Eq. (4.11), is 〈pa,rec〉 = {102, 1, 10−2}ma

from left to right. The axion is non-relativistic (ultra-relativistic) in the right (left) corner
of the plot, when 〈pa,rec〉 � ma (〈pa,rec〉 � ma);

• finally, we show the curve of constant ∆Neff = 0.376. This value corresponds to the 95%
CL upper limit on ∆Neff that we obtain for an axion with mass ma = 10−4 eV (i.e. in the
regime with 〈pa,rec〉/ma � 1), from Planck 2018 TT,TE,EE+lowE data in combination
with BAO measurements.

In the region in which axions are ultra-relativistic at recombination, the relevant constraints
are ∆Neff . 0.376 and ωa < ωh ' 2 × 10−3. In the region in which axions are non-relativistic
at recombination, the only relevant constraint is that coming from the observed dark matter
density: ωa < ωc ' 0.12. This intuition is nicely confirmed by looking at the bounds obtained
by the full, more accurate analysis exactly accounting for the interplay between the axion mass
and temperature. In the leftmost part of the plot (ma . 0.1 eV), where axions are effectively
massless and behave as dark radiation, the cyan curve reproduces the constrain on ∆Neff . In the
region ma ' 1 eV, the axion mass starts to be relevant and axions behave as hot dark matter
and the full analysis essentially yields the ωa < ωh bound. Finally, in the rightmost part of

6The bound on hot dark matter is obtained here by translating cosmological constraints on the sum of neutrino
masses Σmν [6] to a constraint on their energy density ωh.
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Figure 4.7: Relic abundance ωa of thermal axions as a function of the axion mass ma and decoupling
temperature Td (or, equivalently, ∆Neff). The vertical dashed white lines represent the bounds on
the abundance of hot and cold DM as defined in the main text. The horizontal dashed white line
corresponds to ∆Neff = 0.376 (see main text for details). Also shown are the bounds on Td (solid cyan
line) as a function of ma. The red lines represent the pairs of axion parameters with constant values of
〈pa,rec〉/ma = {102, 1, 10−2} from left to right.

the plot, ma & 30 eV axions are cold and indeed we reproduce the cold dark matter bound.
In the “warm” axion region, 1 eV . ma . 30 eV, it is not possible to obtain a useful bound
on Td from a qualitative analysis. It is of course legit to expect that the actual bound will lie
between the hot and cold dark matter bounds, but this is of little utility even for the purpose
of getting an order-of-magnitude estimate, since as it is clear from the figure the region between
the hot and cold DM curves spans many orders of magnitude in Td. In this region, a complete
analysis like the one presented in this work is the only way to obtain meaningful bounds on
axion properties. The full analysis also helps to uncover features that might fail intuition. For
example, the plot shows that a truly “cold” regime is only reached for relatively small values
(. 10−2) of the momentum-to-mass ratio at recombination; even for values of 〈pa,rec〉/ma of a
few ×10−2, the constraints are (possibly much) stronger than the ones that one would naively
obtain solely from the requirement ωa < ωc. In other words, Planck measurements of the CMB
anisotropies are very sensitive even to a little “warmness” of axions (and other light relics in
general). This was noted, in the different framework of QCD axions in low reheating scenarios,
also in Ref. [224].

4.6 Bounds on the axion couplings to photons and gluons

In this section we translate the cosmological bounds on ∆Neff into bounds on the axion couplings
to photons and gluons. We discuss both the cases of the QCD axion and a generic axion-like
particle. As discussed in Sec. 4.3, the bounds on ∆Neff can be converted into bounds on gaγ using
Eq. (4.16) when the axion is mainly produced by axion-photon scatterings, or equivalently on a
bound on Cg/fa or gd using the relation shown in Fig. 4.4 when the axion is mainly produced
from quark-gluon interactions.
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We first consider the case of the ΛCDM+∆Neff+ma model. In the range of axion masses
spanned in this work, we obtain the following marginalized constraints at 95% CL on the axion
couplings:

gaγ <

{
2.84× 10−8 GeV−1 Planck 2018

3.16× 10−8 GeV−1 Planck 2018 + BAO ,
(4.24)

Cg
fa

<

{
6.98× 10−8 GeV−1

1.06× 10−7 GeV−1
or gd <

{
2.47× 10−10 GeV−2 Planck 2018

3.77× 10−10 GeV−2 Planck 2018 + BAO .
(4.25)

Cosmological bounds on the coupling between ALPs and photons have been derived in
Ref. [225], where the axion has been treated as an additional effective neutrino species. We note
that the bound on gaγ reported in (4.24) is stronger by roughly a factor 2.

We now consider the bounds on the axion couplings in the case of the ΛCDM+∆Neff model
with fixed axion mass. The results for the axion-photon and axion-gluon couplings are discussed
in Sections 4.6.1 and 4.6.2, respectively.

4.6.1 Axion-photon coupling

For a fixed mass, we convert the bound on ∆Neff into a bound on gaγ using Eq. (4.16). The
resulting upper bounds at 95% CL are shown in Fig. 4.8, both from the Planck 2018 dataset
alone (orange diamonds connected with a dashed line) and in combination with BAO data (blue
diamonds connected with a dashed line).

The red hatched area (top right corner) excludes the region of the parameter space for which
the decay rate of the axion into two photons is faster than the expansion rate of the Universe,
so that the condition in Eq. (4.18) is not satisfied. Finally, the green region is excluded by the
constraints on the axion-photon coupling derived by the CAST helioscope at CERN [207]. The
allowed region of the parameter space is what is left from the combination of the constraints
above, i.e., the region in the bottom right part of the figure, on the left of the green curve, below
the blue diamonds and on the right of the hatched region.

The yellow band in the figure identifies the region of parameter space where QCD axion
models lie. Indeed, we recall that for the QCD axion we have (see Sec. 3.4)

g0
aγ =

αEM

2πfa

E

N
, (4.26)

where E/N is the ratio between the colour and the electromagnetic axion anomalies. Gener-
ally speaking, different QCD axion theories predict different values of the E/N ratio, which is
expected to span from 5/3 to 44/3 [167–169]. Explicit constructions that embed the axion into
the SM include the DFSZ model [150,151] in which a new Higgs doublet is introduced, and the
KSVZ model [148,149] in which exotic heavy quarks are introduced. The line marked “KSVZ”
corresponds to the choice E/N = 0 which is obtained if the charge of the heavy quarks vanishes,
while the line marked “DFSZ” corresponds to the choice E/N = 8/3. Note that QCD axion
solutions outside of this yellow band have also been constructed and are still viable [170–174].

Similarly to what has been discussed for the results on ∆Neff , the trend in the constraints
with heavier axion masses can be understood as follows. If we increase the value of ma while
keeping gaγ fixed, we are increasing the abundance of hot axions. This effect can be compensated
by decreasing the value of gaγ , which leads to an axion relic abundance that is more diluted with
respect to that of cosmic photons. This is the reason why the limit on gaγ tightens up when
moving to higher values of ma. For ma & 10 eV, axions behave as CDM at recombination and
the constraints on the parameter space result from requiring that the cosmological abundance
of CDM does not exceed that of thermal axions. This leads to less stringent constraints on gaγ ,
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Figure 4.8: Summary of constraints in the axion-photon coupling gaγ- axion mass ma plane. Colored
diamonds connected with dashed lines are 95% CL upper bounds on the axion-photon coupling gaγ as
a function of the axion mass ma, from Planck 2018 alone (orange) and Planck 2018+BAO (blue). The
yellow band represents the representative QCD axion region considered (see text for details), including
the KSVZ (E/N = 0) and the DFSZ (E/N = 8/3) models. The red hatched area labeled “Axions
decay before today” indicates the region of parameter space where the axion lifetime before its decay
into photons is smaller than the age of the Universe, see Eq. (4.18). The green shaded area represents
the region excluded by the CAST helioscope [201,207], with data taken from [204].

explaining the rise of the bound in this mass range. Finally, for ma ∼ 100 eV the constraints
tightens again as the cold axion population is overproduced.

We note again that the inclusion of BAO weakens the constraints on gaγ for light axions,
while heavier axions are better constrained combining Planck with BAO data (see the discussion
in Sec. 4.5.2).

The measurements of small-scale CMB anisotropies from ACT [261, 262] provide a further
opportunity to constrain the properties of additional light relics. As reported in Ref. [261],
combining ACT with Planck data yields the bound Neff = 2.74± 0.17 at 68% CL, which signals
a preference for a number of relativistic species smaller than the SM value 3.046. Even though
we leave a complete analysis including ACT data for future work, we anticipate how the bounds
on the axion-photon coupling are improved in the region of parameter space where axions behave
as dark radiation. Indeed, as we have already discussed, light axions are directly constrained by
the measurement of ∆Neff , thus we expect that they receive a higher benefit from the inclusion
of ACT data with respect to heavier axions. Moreover, when dealing with heavier axions which
behave as warm or cold DM, a more careful treatment of non-linearities is required. We plan to
present a detailed analysis that includes ACT data for the full mass range explored in this work in
a future release. In the case of an axion with mass ma = 10−4 eV, the bound on the axion-photon
coupling from the combination of Planck, BAO and ACT data reads gaγ < 2.19× 10−8 GeV−1

at 95% CL. This represents an improvement by a factor of about 1.6 with respect to the case
with only Planck+BAO.

Finally, let us comment on how the cosmological constraints we have derived compare with
those coming from laboratory experiments.7 Our results are tighter than the bounds placed

7We do not consider the constraints from the axion haloscope ADMX since they hold for axion masses of
order of few µeV [205], which are smaller than those considered in this work. Moreover, haloscope experiments
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Figure 4.9: Summary of constraints in the axion-gluon coupling-axion mass plane. The vertical axis
shows the axion-gluon coupling Cg/fa (left) or the EDM coupling gd (right) according to Eq. (3.40).
Colored diamonds connected with dashed lines are 95% CL upper bounds on the axion-gluon coupling
as a function of the axion mass ma, from Planck alone (orange) and Planck+BAO (blue). The yellow
band represents the QCD axion region, which is determined by the uncertainties in the computation of
the axion mass in Eq. (3.41) with m0 = 0 and Cg = 1. The green shaded area represents the region of
parameter space excluded by SN1987A energy loss consideration [219], as expressed in Eq. (4.27). The
red hatched area labeled “Axions decay before today” indicates the region of parameter space where the
axion lifetime before its decay into photons is smaller than the age of the Universe, see Eq. (4.18). The
magenta shaded area is excluded by BBN considerations [264]. Notice that the latter constraints are
derived under the assumption that axions account for the entirety of the DM, whereas the other bounds
do not have this restriction.

by the CAST helioscope for values of the axion mass ma & 3 eV, according to Fig. 4.8. A
conservative bound on gaγ for light axions has been derived based on the possible effect of
these particles on the stellar evolution of massive stars, which translates into gaγ . 0.8 ×
10−10 GeV−1 [263] which is tighter than what we obtain by using cosmological data. An even
stronger bound arises from the comparison of the ratio of stars in horizontal over red giant branch
found in a group of globular clusters with the corresponding predictions from accurate models
of stellar evolution. This leads to gaγ . 6.6 × 10−11 GeV−1 at 95% CL [216]. Nevertheless,
the bounds we derive are independent and complementary to laboratory searches and stellar
evolution.

4.6.2 Axion-gluon coupling

We now proceed to consider the bounds obtained on the axion-gluon coupling Cg/fa. To derive
these bounds, we use the results for the set of runs ΛCDM+∆Neff for fixed axion mass to then
convert the bounds over ∆Neff into a bound over Cg/fa using the method outlined in Sec. 4.3.2.
In Fig. 4.9 we show the 95% CL upper bounds on the coupling Cg/fa (vertical left axis) in the
case where the leading interaction in establishing a thermal population of axions is the axion-
gluon interaction. The yellow band in the figure represents the region of parameter space in
which the representative QCD axion models lie. Similarly to what has been discussed in relation

make the assumption that axions account for all the dark matter, while the constraints derived from cosmological
observations do not have this restriction.
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to Fig. 4.8, the region above the blue (orange) diamonds is excluded by Planck alone (Planck
in combination with BAO). These results are translated into a constraint on the coupling gd
(vertical right axis) according to Eq. (3.40).

In analogy with the results in Fig. 4.8, the red hatched area in Fig. 4.9 represents the region
of parameter space where the lifetime of the axion before it decays into photons is smaller than
the age of the Universe. The decay is due to the effective axion-photon coupling induced by the
coupling with gluons, which is obtained by setting g0

aγ = 0 in Eq. (3.42).

The magenta shaded area is excluded by BBN considerations [264]. Indeed, the presence of an
oscillating axion field during BBN alters the neutron-proton mass difference, which controls the
ratio between the abundances of neutrons and protons. In turns, this affects the final prediction
for the abundance of 4He. We stress that these bounds are derived under the assumption that
axions account for the entirety of the DM, while the other constraints shown in Fig. 4.8 (including
the cosmological ones) do not have this restriction.

We also compare our results with the constraints obtained from the considerations over the
energy loss by supernovae. If axions exist, they provide an additional source of energy loss with
respect to the standard neutrino emission from supernovae. The analysis performed in Ref. [217]
(see also [218]) yields the bound

Cg/fa . 2.5× 10−9 GeV−1 . (4.27)

This excludes the green shaded region in Fig. 4.9 labeled “SN1987A”. We note that these bounds
are stronger than the cosmological ones derived in our analysis. Nevertheless, the two analysis are
independent, since the physics behind the cosmological and astrophysical constraints is different
and the experiments used to derive the two bounds are affected by different systematics. Thus,
the cosmological bounds provide a complementary probe to exclude a region of parameter space
also excluded by supernovae considerations.

Similarly to the case of the axion-photon coupling, we briefly comment on how the bounds
on the axion-gluon are improved with the inclusion of ACT data. For ma = 10−4 eV, we find
Cg/fa < 2.79×10−8 GeV−1 or, in terms of the EDM coupling, gd < 9.89×10−11 GeV−2 at 95%
CL, from Planck+ACT+BAO. This represents an improvement by a factor of about 5.7 with
respect to the case with only Planck+BAO.

Finally, we briefly comment on the implications of our analysis for the KSVZ axion. A proper
derivation of the bounds for this case would require enforcing the relation between the axion
mass and coupling as a prior in the Monte Carlo run, but this is beyond the scope of the present
analysis. We can anyhow estimate the constraint we would get on fa (since Cg = 1 for the QCD
axion) from such an analysis by looking at the intersection of our bounds with the QCD axion
region in Fig. 4.9. In this way we get fa & 2 × 107 GeV, which translates into an upper limit
on the mass of the KSVZ axion given by ma . 0.3 eV. This is in agreement with the results
derived in Refs. [222–224], where cosmological bounds on the KSVZ axion have been derived.

4.7 Future prospects

Future cosmological surveys will test scenarios of exotic thermal relics with improved sensitiv-
ity with respect to what discussed in our analysis. The next-generation ground-based CMB
experiment CMB-S4 has a forecast sensitivity

∆Neff . 0.06 (4.28)

at 95% CL [11, 240]. Since, as we have extensively discussed, light axions (ma . 10−2 eV) are
mostly constrained by the bound on ∆Neff , we can estimate to which extent the bounds on
the axion couplings will be improved by future surveys for small axion masses. The sensitivity
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of CMB-S4 reported in (4.28) will allow to probe the existence of a light (thermal) axion with
coupling to photons as weak as gaγ ' 1.1 × 10−8 GeV−1, or with coupling to gluons as weak
as Cg/fa ' 8.3 × 10−9 GeV−1 or, equivalently, gd ' 2.9 × 10−11 GeV−2. For the axion-photon
coupling this represents an improvement by roughly a factor 3. The bound on the axion-gluon
coupling would instead improve our current estimates by about one order of magnitude. It
will be particularly interesting to see whether the bounds on the axion-gluon coupling will be
improved enought to overcome those coming from SN1987A for masses ∼ O(10 − 100 eV). A
detailed analysis regarding the whole range of masses is the subject of an ongoing work.
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Chapter 5

Constraints on Lorentz-violating
electrodynamics from CMB
polarization

Lorentz symmetry is at the foundation of our current understanding of physics at the fundamen-
tal level. Nevertheless, different theoretical considerations suggest the possibility that it might
be an exact symmetry only at low energy scales. In particular, this hypothesis is deeply rooted
in quantum gravity, see e.g. [265–267]. Both string theory and loop quantum gravity, two of the
main contenders for a theory of quantum gravity, predict the possibility that Lorentz symmetry
might not hold exactly.

A general approach to describe departures from the Lorentz symmetry is that of effective
field theory. This allows us to account for Lorentz violations by extending the Lagrangian of
the Standard Model with Lorentz-violating (LV) operators, which can be ordered based on their
mass dimension d. This results in the so-called Standard Model Extension (SME) [17–19].

In the analysis presented in this chapter we focus on renormalizable operators of mass di-
mension d ≤ 4, which defines the minimal SME, and consider in particular the photon sector of
the minimal SME. The non-standard propagation of photons leads to distinctive signatures on
the polarization of the CMB, such as the generation of the cosmic birefringence effect and the
conversion of linear into circular polarization. We use the most recent observations of the CMB
polarization from Planck [20, 21], BICEP/Keck [8], ACT [7], CLASS [22] and SPIDER [23] to
constrain the Lorentz-violating coefficients appearing in the Lagrangian of the minimal SME.

Besides using the most recent datasets, another novelty of our analysis consists in the fact
that we analyze the effects of the Lorentz-violating operators on the CMB spectra all together.
Instead, previous studies focus on one single operator at a time, thus neglecting the possible in-
terplay between them. In order to do so, we employ the formalism developed in Ref. [268], which
we will briefly review in Sec. 5.2.1. This allows us to describe the effects of non-standard prop-
agation of radiation in terms of an effective susceptibility tensor and then derive the associated
modifications of the CMB spectra.

5.1 Minimal Standard Model Extension for Lorentz violation in
the photon sector

As described above, Lorentz-violating effects are usually described within the framework of
the SME [17–19, 67]. This is an effective field theory which is constructed as an expansion in
Lorentz-violating operators of increasingly higher mass dimension d. For the photon sector and

92



5.1. Minimal Standard Model Extension for Lorentz violation in the photon
sector

in a general spacetime with metric gµν , this is characterized by the action

S =

∫
d4x
√−g

[
−1

4
FµνF

µν +
1

2
εαβµνAβ(k̂AF )αFµν −

1

4
(k̂F )αβµνFαβFµν

]
, (5.1)

where g = det(gµν) and εαβµν = εαβµν/
√−g, where εαβµν is the completely antisymmetric Levi-

Civita symbol. Here, Aµ and Fµν are the electromagnetic 4-potential and field-strength tensor,

so that the first term in Eq. (5.1) is the standard Maxwell Lagrangian. The coefficients (k̂AF )α
and (k̂F )αβµν parametrize CPT-odd and CPT-even Lorentz violations, respectively. These can
be written as polynomial expansions in the 4-momentum operator pµ = i∂µ as [19,67]

(k̂AF )α =
∑

d odd≥ 3

(k
(d)
AF )

λ1...λ(d−3)
α ∂λ1 . . . ∂λ(d−3)

, (5.2)

(k̂F )αβµν =
∑

d even≥ 3

(k
(d)
F )αβµνλ1...λ(d−4)∂λ1 . . . ∂λ(d−4)

, (5.3)

where k
(d)
AF and k

(d)
F are constant coefficients of mass dimension 4− d.

Here, we focus on renormalizable operators of mass dimension d ≤ 4: this defines the so-
called minimal SME. In this case, the CPT-odd operator is characterized by the vector (kAF )α ≡
(k

(3)
AF )α and has dimension d = 3, while the CPT-even term is parametrized by the tensor

(kF )αβµν ≡ (k
(4)
F )αβµν and has dimension d = 4. The tensor (kF )µαβγ is thus dimensionless and

respects the following symmetries

(kF )µαβγ = −(kF )αµβγ = −(kF )µαγβ , (5.4)

(kF )µαβγ = (kF )βγµα , (5.5)

(kF )αβαβ = 0 , (5.6)

thus implying a total of 19 independent components. The vector (kAF )α has dimension of a
mass and has 4 independent components.

Applying the Euler-Lagrange equations to the action in Eq. (5.1) in the minimal case leads
to the following modified Maxwell equations:

∂ν(
√−gFµν) + εµνρσ(kAF )ν

√−gFρσ + ∂ν
[
(kF )µνρσ

√−gFρσ
]

= 0 . (5.7)

The usual Maxwell theory is invariant under conformal transformations of the metric. Indeed,
under a transformation of the kind

gµν → g̃µν = f(x)gµν , gµν → g̃µν = f−1(x)gµν , (5.8)

the action describing the standard electromagnetic theory,

SEM =

∫
d4x
√−g

(
−1

4
gµαgνβFµνFαβ

)
, (5.9)

is left unchanged. Since the FLRW and Minkwoski spacetimes are related to each other by a
conformal transformation with f = a2, the conformal invariance of Maxwell’s theory implies
that the equations of motion in FLRW are the same as in Minkowski.

In order for this invariance to be preserved by the minimal SME action, the coefficient
(kF )αβµν must transform as

(kF )αβµν → a−4(kF )αβµν , (5.10)

such that the a−4 factor cancels out the a4 coming from
√−g. The vector (kAF )α instead has to

be left invariant by the conformal transformation, since the scaling of
√−g is canceled by that

of the Levi-Civita tensor εαβµν ∝ 1/
√−g.
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A well-known analogy exists between Lorentz-violating electrodynamics in vacuum and the
standard Maxwell electrodynamics in an anisotropic medium, see e.g. Ref. [269]. This analogy
can be exploited to define an effective suceptibility tensor χ from the modified Ampère-Maxwell
equation, i.e. the space component (ν = i) of Eq. (5.7). We start by writing the latter in Fourier
space as

(∇×B)i − 1

c2

∂Ei
∂τ

= −2(kAF )0B
i − 2

c
(kAF ×E)i − 2

c2
(kF )i0k0 ∂Ek

∂τ
+

2

c
(kF )ij0k (∂jEk)

− 1

c
(kF )i0jkεjkr

∂Br

∂τ
− (kF )ijklεklr(∂jB

r) . (5.11)

Fixing the temporal gauge, A0 = 0, the electric and magnetic fields can be written in terms of
the vector potential as

Ei(ω,k) = iωAi(ω,k) , Bi(ω,k) = i [k×A(ω,k)]i . (5.12)

This allows us to rewrite Eq. (5.11) in terms of A as

− [k× (k×A)]i −
ω2

c2
Ai = −2

ω2

c2
(kF )i0j0A

j + 2
ω

c
(kF )ij0k k

jAk +
ω

c
(kF )i0jk ε

jkr(k×A)r

+ (kF )iljk ε
jkrkl(k×A)r − 2i(kAF )0(k×A)i − 2i

ω

c
(kAF ×A)i .

(5.13)

This equation can be compared with the standard (i.e., in the absence of LV effects) Ampère-
Maxwell equation in an anisotropic medium with no external sources, which reads (see e.g. [270])

ω2

c2
Ai + [k× (k×A)]i = −ω

2

c2
χijA

j . (5.14)

This allows us to define an effective susceptibility tensor

χij =− 2(kF )i0j0 − 2i
c

ω
εikj(kAF )k + 2

c

ω

[
−i c
ω

(kAF )0εikj + (kF )ik0j + (kF )i0kj

]
kk

+ 2
c2

ω2
(kF )ilkjk

lkk , (5.15)

where ω and k are the comoving angular frequency and wave-number, respectively:

ω = aωphys , k = akphys . (5.16)

Note that the parity-odd operator introduces in χij only zero- and first-order terms in the wave-
vector, whereas the parity-even operator produces also a contribution that is quadratic in k.
This does not come as a surprise, since it is not possible to construct a quadratic term in the
wave-vector by contracting its components with those of the 3D Levi-Civita tensor and the
three-vector kAF .

Now that we have the explicit expression of the susceptibility tensor χ, we can apply the
formalism developed in [268] to compute the modified CMB spectra. This will be the subject of
the next section.

5.2 Imprints of Lorentz violations on CMB spectra

In this section we compute the effects of the LV operators on the CMB spectra. To begin, in
Sec. 5.2.1 we review the formalism adopted for the calculations, which has been developed in
Ref. [268]. Then, in Secs. 5.2.2 and 5.2.3 we analyze the effects of the CPT-odd and CPT-even
operators, respectively. Finally, in Sec. 5.2.4 we present the final expressions of the CMB power
spectra.
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5.2.1 Review of the formalism

The formalism developed in Ref. [268] allows us to map the components of the susceptibility
tensor χ on three quantities, ρQ, ρU and ρV , which describe a general mixing between the U , V
and Q Stokes parameters according to the following transport equation:

d

ds

QU
V

 = −

 0 ρV −ρU
−ρV 0 ρQ
ρU −ρQ 0

QU
V

 . (5.17)

Here, s is an affine parameter along the photon path and we have neglected possible emission
and absorption terms. From Eq. (5.17) it is clear that ρV mixes Q and U polarization and gives
rise to the cosmic birefringence effect, i.e. the rotation of the linear polarization plane of CMB
photons during their propagation from the last scattering surface to us. Instead, ρQ and ρU mix
the linear polarization components with V , leading to the generation of circular polarization
from the conversion of the primordial linear polarization components. The ρ’s coefficients are
related to the components of χ by (see [268])

ρQ = 2πν
[ (
χxxc

2
θ − χyy

)
c2
φ +

(
χyyc

2
θ − χxx

)
s2
φ + χzzs

2
θ

]
, (5.18)

ρU = 4πν (χyy − χxx) cθsφcφ , (5.19)

ρV = 4πν
[
χxycθ + (χyzcφ + χxzsφ)sθ

]
, (5.20)

where cX ≡ cosX, sX ≡ sinX and the angles (θ, φ) identify the direction of propagation of
light.

Note that ρV is a pseudoscalar and hence has spin 0. In order to work with quantities of
definite spin only, we introduce the spin-±2 fields

ρ±2 ≡
ρQ ± i ρU√

2
. (5.21)

Then, since the effects of the LV operators on the CMB spectra are integrated along the line of
sight of propagation of CMB photons, we define the quantities

ρ̄V (τ) ≡ (τ − τLS)−1

∫ τ

τLS

dτ ′ ρV (τ ′) , (5.22)

ρ̄±2(τ) ≡ (τ − τLS)−1

∫ τ

τLS

dτ ′ ρ±2(τ ′) , (5.23)

where τLS is the conformal time at the last scattering surface. We can now expand (τ0− τLS)ρ̄V
and (τ0 − τLS)ρ̄±2 in spherical harmonics as

ρ̄V (θ, φ)(τ0 − τLS) =
∑
`m

bV,`m Y`m(θ, φ) , (5.24)

ρ̄±2(θ, φ)(τ0 − τLS) =
∑
`m

b±2,`m ±2Y`m(θ, φ) , (5.25)

where τ0 denotes the conformal time today.
The coefficients bV,`m and b±2,`m relate the observed CMB spectra, CXX` , to the ones that

are expected if no LV effects are in place, C̃XX` , in the following way [268]:

CTE` =

(
1− Z

2

)
C̃TE` , (5.26)

CEE` = (1− Z) C̃EE` +
∑
`1

K11
`1`C̃

EE
`1 +

∑
`1

K22
`1`C̃

BB
`1 , (5.27)
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CBB` = (1− Z) C̃BB` +
∑
`1

K11
`1`C̃

BB
`1 +

∑
`1

K22
`1`C̃

EE
`1 , (5.28)

CEB` =
bV,00√

4π
(C̃EE` − C̃BB` ) , (5.29)

CEV` =
∑
`1

K13
`1`C̃

EE
`1 +

∑
`1

K24
`1`C̃

BB
`1 , (5.30)

CBV` =
∑
`1

K23
`1`C̃

EE
`1 −

∑
`1

K14
`1`C̃

BB
`1 , (5.31)

.CV V` =
∑
`1

K33
`1`C̃

EE
`1 +

∑
`1

K44
`1`C̃

BB
`1 , (5.32)

where
4πZ =

∑
`m

(
|bV,`m|2 + |b2,`m|2

)
, (5.33)

and the K kernels can be written in terms of Wigner 3j-symbols as

K11
`1` =

2`1 + 1

4π

∑
`2m2

`+`1+`2 odd

[(
`1 `2 `
−2 0 2

)]2

|bV,`2m2 |2 , (5.34)

K22
`1` =

2`1 + 1

4π

∑
`2m2

`+`1+`2 even

[(
`1 `2 `
−2 0 2

)]2

|bV,`2m2 |2 , (5.35)

K33
`1` =

2`1 + 1

4π

∑
`2m2

[(
`1 `2 `
−2 2 0

)]2

|b−2,`2m2 − (−1)`+`1+`2b2,`2m2 |2 , (5.36)

K44
`1` =

2`1 + 1

4π

∑
`2m2

[(
`1 `2 `
−2 2 0

)]2

|b−2,`2m2 + (−1)`+`1+`2b2,`2m2 |2 , (5.37)

K13
`1` =

2`1 + 1

4π

∑
`2m2

`1+`2+` odd

(
`1 `2 `
−2 0 2

)(
`1 `2 `
−2 2 0

)
bV,`2m2

(
b∗−2,`2m2

+ b∗2,`2m2

)
, (5.38)

K24
`1` =

2`1 + 1

4π

∑
`2m2

`1+`2+` even

(
`1 `2 `
−2 0 2

)(
`1 `2 `
−2 2 0

)
bV,`2m2

(
b∗−2,`2m2

+ b∗2,`2m2

)
, (5.39)

K23
`1` = −i 2`1 + 1

4π

∑
`2m2

`1+`2+` even

(
`1 `2 `
−2 0 2

)(
`1 `2 `
−2 2 0

)
bV,`2m2

(
b∗−2,`2m2

− b∗2,`2m2

)
, (5.40)

K14
`1` = i

2`1 + 1

4π

∑
`2m2

`1+`2+` odd

(
`1 `2 `
−2 0 2

)(
`1 `2 `
−2 2 0

)
bV,`2m2

(
b∗−2,`2m2

− b∗2,`2m2

)
. (5.41)

Given the formalism discussed in this section, the first step we need to perform is to compute
the ρ’s coefficients. Then, we can derive the spherical harmonics coefficients bV,`m and b±2,`m

which enter Eqs. (5.26)-(5.41). We proceed in this direction in sections 5.2.2 and 5.2.3, where
we analyze the effects of the CPT-odd and CPT-even operators, respectively.

5.2.2 Effects of the CPT-odd operator

We start by considering the impact of the CPT-odd operator on the CMB polarization. In this
case, the explicit expressions of the ρ̄’s coefficients read

ρ̄Q = 0 , (5.42)
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ρ̄U = 0 , (5.43)

ρ̄V = 4c
[
(k̄AF )1cφsθ + (k̄AF )2sφsθ + (k̄AF )3cθ + (k̄AF )0

]
, (5.44)

where the bar once again denotes quantities averaged along the line of sight, i.e.

(k̄AF )0 ≡
∫ τ0

τLS

(kAF )0 dτ , (k̄AF )i ≡
∫ τ0

τLS

(kAF )idτ . (5.45)

From Eqs. (5.42)-(5.44) we understand that the CPT-odd part of the Lagrangian only leads to
a mixing among the U and Q Stokes parameters, hence giving rise to cosmic birefringence, but
no circular polarization is generated, since ρ̄Q = ρ̄U = 0.

We can then expand ρ̄V in spherical harmonics as in Eq. (5.24), where the expansion coeffi-
cients bV,`m can be obtained using the orthogonality condition of spherical harmonics as

bV,`m =

∫ π

0
dθ sin θ

∫ 2π

0
dφ ρ̄V (θ, φ)(τ0 − τLS)Y ∗`m(θ, φ)

= (−1)m

√
2`+ 1

4π

(`+m)!

(`−m)!

∫ π

0
dθ sin θ

∫ 2π

0
dφ ρ̄V (θ, φ)(τ0 − τLS)P−m` (cos θ)e−imφ .

(5.46)

Then, inserting Eq. (5.44) into Eq. (5.46), we find

bV,00 = 8
√
πc (k̄AF )0 , (5.47)

bV,10 = 8

√
π

3
c (k̄AF )3 , (5.48)

bV,1−1 = 4

√
2π

3
c
[
(k̄AF )1 + i(k̄AF )2

]
, (5.49)

bV,11 = −4

√
2π

3
c
[
(k̄AF )1 − i(k̄AF )2

]
= −b∗V,1−1 . (5.50)

The coefficients bV,`m vanish for ` > 1.

5.2.3 Effects of the CPT-even operator

Differently from the previous scenario, the presence of the CPT-even operator leads to ρ̄V = 0,
but ρ̄Q 6= 0 and ρ̄U 6= 0, meaning that circular polarization is generated from the conversion of
the primordial linear polarization components. As discussed in Sec. 5.2.1, to study this effect
it is convenient to introduce the quantities ρ̄±2, which under rotations transform as spin-±2
functions. Their explicit expressions are given by

ρ̄+2 =
ω√
2

{[
4sθsφ

(
cθ
(
(k̄F )3020 + (k̄F )3121

)
− (k̄F )2110 − (k̄F )3230

)
− 4cθc2φ

(
(k̄F )3220 − (k̄F )3110

)
− 4sθcφ

(
(k̄F )3130 − (k̄F )2120 + cθ

(
(k̄F )3221 − (k̄F )3010

) )
− s2φ

(
(c2θ + 3)

(
(k̄F )2010 + (k̄F )3231

)
− 4cθ

(
(k̄F )3120 + (k̄F )3210

) )]
+ i
[
c2φ

( (
(k̄F )3120 + (k̄F )3210

)
(c2θ + 3)− 4cθ

(
(k̄F )2010 + (k̄F )3231

) )
+ 4sθsφ

(
cθ
(
(k̄F )3130 − (k̄F )2120

)
− (k̄F )3010 + (k̄F )3221

)
+ 4sθcφ

(
(k̄F )3020 + (k̄F )3121 − cθ

(
(k̄F )2110 + (k̄F )3230

) )
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− s2φ(c2θ + 3)
(
(k̄F )3110 − (k̄F )3220

)
+ 2s2

θ

(
2(k̄F )3021 + (k̄F )3120 − (k̄F )3210

) ]}
, (5.51)

and ρ̄−2 = ρ̄∗+2, where we have defined

(k̄F )αβµν ≡
∫ τ0

τLS

ω(kF )αβµν dτ . (5.52)

Then, since spin-0 quantities are easier to handle in explicit calculations, we can use the spin-
lowering and spin-raising operators (see Appendix A for their definitions and main properties)
and act twice with them on ρ̄±2. The resulting quantities can then be expanded in spin-0

spherical harmonics. Acting twice with the spin-lowering operator ′∂ on ρ̄+ we get

′∂ 2ρ̄+ = ′∂ 2
∑
`m

b2,`m 2Y`m(n̂) =
∑
`m

[
(`+ 2)!

(`− 2)!

]1/2

b2,`mY`m(n̂) . (5.53)

The coefficients b2,`m can then be obtained from Eq. (5.53) using again the orthogonality con-
dition of spherical harmonics and read

b2,`m = (−1)m

√
2`+ 1

4π

(`+m)!

(`−m)!

(`− 2)!

(`+ 2)!

∫ π

0
dθ sin θ

∫ 2π

0
dφ ′∂ 2ρ̄+2(θ, φ)P−m` (cos θ)e−imφ ,

(5.54)
where we have also used the following property of spherical harmonics

Y ∗`m(θ, φ) = (−1)mY`−m(θ, φ) = (−1)m

√
2l + 1

4π

(`+m)!

(`−m)!
P−m` (cos θ)e−imφ , (5.55)

with Pm` (cos θ) denoting the associated Legendre polynomials. Note that, since ρ̄−2 = ρ̄∗+2, it
follows that

b∗−2,`m = (−1)mb2,`−m . (5.56)

Inserting in Eq. (5.54) the explicit expression of ρ̄+2 given in Eq. (5.51), we find that the
coefficients b±2,`m are non-vanishing only for ` = 2. The explicit expressions of the b2,`m are
given by

b2,2−2 = 4

√
2π

5

{
(k̄F )3110 − (k̄F )3220 + i

[
(k̄F )3120 + (k̄F )3210 − (k̄F )2010 − (k̄F )3231

]}
, (5.57)

b2,2−1 = 4

√
2π

5

{
(k̄F )3130 − (k̄F )2120 + (k̄F )3221 − (k̄F )3010

+ i
[
(k̄F )2110 + (k̄F )3230 − (k̄F )3020 − (k̄F )3121

]}
, (5.58)

b2,20 = 8i

√
π

15

[
2(k̄F )3021 + (k̄F )3120 − (k̄F )3210

]
, (5.59)

b2,21 = 4

√
2π

5

{
− (k̄F )3130 − (k̄F )2120 − (k̄F )3221 + (k̄F )3010

− i
[
(k̄F )2110 + (k̄F )3230 + (k̄F )3020 + (k̄F )3121

]}
, (5.60)

b2,22 = 4

√
2π

5

{
− (k̄F )3110 + (k̄F )3220 + i

[
(k̄F )3120 + (k̄F )3210 + (k̄F )2010 + (k̄F )3231

]}
.

(5.61)
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The b−2,`m can be readly obtained from Eqs. (5.57)-(5.61) using the condition (5.56).
In doing these computations we have assumed that the standard dispersion relation for

photons holds true, i.e. ω = ck. In principle, we should take into account the corrections
to the dispersion relation, which are of the kind ω = ck [1 + O(kF , kAF )]. When included in
Eqs. (5.57)-(5.61), these corrections lead to higher-order contributions in kF and kAF . Since LV
effects are constrained to be very small [271], we can work at leading order in the LV coefficients,
so that we can take ω ' ck.

5.2.4 CMB spectra within the minimal SME

Now that we have the explicit expressions of the coefficients bV,`m (see Eqs. (5.47)-(5.50)) and
b±2,`m (see Eqs. (5.57)-(5.61)) we are ready to evaluate the imprints of the LV operators on
the CMB spectra, according to Eqs. (5.26)-(5.41). These effects are encoded in the following 4
dimensionless phenomenological parameters related to the bV,`m and b±2,`m:

4π β2
AF,T = b2V,00 , (5.62)

4π β2
AF,S =

∑
m

|bV,1m|2 , (5.63)

4π β2
F,E =

∑
m

|b−2,2m + b2,2m|2 , (5.64)

4π β2
F,B =

∑
m

|b−2,2m − b2,2m|2 . (5.65)

Using Eqs. (5.47)-(5.50) and (5.57)-(5.61), these can be rewritten in terms of the LV coefficients
appearing in the action (5.1) as

β2
AF,T = 16c2

[
(k̄AF )0

]2
, (5.66)

β2
AF,S =

16

3
c2|k̄AF|2 =

16

3
c2
([

(k̄AF )1

]2
+
[
(k̄AF )2

]2
+
[
(k̄AF )3

]2)
, (5.67)

β2
F,E =

64

5

[(
(k̄F )3020 + (k̄F )3121

)2
+
(

(k̄F )3010 − (k̄F )3221

)2
+
(

(k̄F )2010 + (k̄F )3231

)2
]

≡ 64

5
k̄2
F,E , (5.68)

β2
F,B =

32

15

{
2
(

2(k̄F )3021 + (k̄F )3120 − (k̄F )3210

)2
+ 6
[(

(k̄F )3120 + (k̄F )3210

)2

+
(

(k̄F )3110 − (k̄F )3220

)2
+
(

(k̄F )2120 − (k̄F )3130

)2

+
(

(k̄F )2110 + (k̄F )3230

)2]}
≡ 32

15
k̄2
F,B . (5.69)

The coefficients β2
AF,T and β2

AF,S are related to the time and space components of the vector

kAF and thus account for CPT-odd Lorentz violations. The coefficients β2
F,E and β2

F,B are
instead related to some combinations of the components of the tensor kF and thus parametrize
CPT-even Lorentz violations. The modified CMB spectra are then given by

CTE` =

(
1− Z

2

)
C̃TE` , (5.70)

CEE` = (1− Z) C̃EE` +
∑
`1

K11
`1`C̃

EE
`1 +

∑
`1

K22
`1`C̃

BB
`1 , (5.71)
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CBB` = (1− Z) C̃BB` +
∑
`1

K11
`1`C̃

BB
`1 +

∑
`1

K22
`1`C̃

EE
`1 , (5.72)

CEB` =
√
β2
AF,T

(
C̃EE` − C̃BB`

)
, (5.73)

CTB` =
√
β2
AF,T C̃

TE
` , (5.74)

CV V` =
∑
`1

K33
`1`C̃

EE
`1 +

∑
`1

K44
`1`C̃

BB
`1 , (5.75)

CEV` = CBV` = 0 , (5.76)

where

Z = β2
AF,T + β2

AF,S +

(
β2
F,E + β2

F,B

)
4

, (5.77)∑
`1

K11
`1`C̃

XX
`1 = β2

AF,S

4

`+ `2
C̃XX` , (5.78)

∑
`1

K22
`1`C̃

XX
`1 = β2

AF,T C̃
XX
` + β2

AF,S

(
`2 − 4

`(2`+ 1)
C̃XX`−1 +

(`− 1)(`+ 3)

(`+ 1)(2`+ 1)
C̃XX`+1

)
, (5.79)

∑
`1

K
33(44)
`1`

C̃XX`1 = β2
F,B(E)

(
(`− 2)(`− 3)

4(4`2 − 1)
C̃XX`−2 +

3(`2 + `− 2)

2(4`2 + 4`− 3)
C̃XX`

+
(`+ 3)(`+ 4)

4(4`2 + 8`+ 3)
C̃XX`+2

)
+ β2

F,E(B)

(
`− 2

2(2`+ 1)
C̃XX`−1 +

3 + `

2(2`+ 1)
C̃XX`+1

)
.

(5.80)

By inspecting the expressions (5.70)-(5.80) we can identify the effects of different classes of LV
operators:

• the CPT-odd operator, parametrized by β2
AF,T and β2

AF,S , leads to the well-known cos-

mic birefringence effect. In particular, β2
AF,T , related to the time component of the 4-

vector kAF , gives rise to isotropic birefringence [57,272–277], which produces non-vanishing
EB and TB spectra and the mixing between EE and BB spectra. Anisotropic birefrin-
gence [278–283] is induced by the parameter β2

AF,S , related to the space components of
kAF . This mixes the EE and BB spectra by introducing a coupling among different mul-
tipoles (i.e. off-diagonal correlations), such that the `-th multipole is coupled to both the
(`− 1)-th and (`+ 1)-th ones;

• the VV spectrum is sourced from EE and BB spectra when the CPT-even operators
are present. Similarly to what observed for anisotropic birefringence, a coupling between
different multipoles is induced. In this case, it affects all the multipoles between the (`−2)-
th and the (`+2)-th. Note that the VV spectrum is the only one which, if measured, could
break the degeneracy between β2

F,E and β2
F,B, since in the other spectra only the sum of

these two parameters comes into play. In this model, no mixing is predicted between V
modes and E- or B-modes;

• both the CPT-even and CPT-odd operators rescale the EE, BB and TE spectra via the
parameter Z.

The modifications to the CPT-even linear polarization spectra, Eqs. (5.70)-(5.72), and the
introduction of the circular polarization spectrum, Eq. (5.75), have been implemented in a
customized version of the Boltzmann code CAMB [284,285], hereafter camb-cpt.
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Figure 5.1: Standard CMB power spectra (no LV) in solid lines and with Lorentz violating effects (LV)
in dashed lines. The LV spectra are generated according to Eqs. (5.70)-(5.75) with the choice of the
parameters β2

AF,T = β2
AF,S = β2

F,E = β2
F,B = 0.001 using camb-cpt. The VV spectrum is non-vanishing

only in the LV case, sourced by both the EE and BB ones. Note that the LV and standard EE spectra
almost overlap and are practically indistinguishable within the scale of this plot.

Figure 5.1 shows a comparison between the standard CMB spectra (i.e. in the absence of LV
effects) and those including LV effects obtained with camb-cpt by setting all the β2 parameters
equal to 0.001. The most relevant feature is the leakage of E- into B-modes. Another clear effect
is the VV power spectrum mostly sourced by the E modes. The linear-polarization spectra are
also rescaled by the Z factor in Eq. (5.77), which depends on all the β2 parameters.

5.3 Data sets and analysis

We perform a Monte Carlo Markov Chain (MCMC) analysis to obtain constraints on the Lorentz-
violating parameters β2

AF,T , β
2
AF,S , β

2
F,E , β

2
F,B jointly with other cosmological, foreground and

nuisance parameters. To this scope, the code camb-cpt has been interfaced with the MCMC
sampler Cobaya [286]. Using the Gelman-Rubin convergence statistics [287], we assume that our
MCMC chains have reached convergence when R− 1 . 0.01.

We analyze the following data:

• Planck 2018: Planck temperature and polarization power spectra [20] and lensing recon-
struction power spectrum [21], from the Planck 2018 legacy release;

• BICEP/Keck 2018 (BK18): combination of all the B-modes data collected by BICEP2,
Keck Array and BICEP3 experiments until the 2018 season [8];

• ACT: Atacama Cosmology Telescope temperature and polarization power spectra as pub-
lished in the Data Release 4 [7]. Since the ACT data are always used in combination with
Planck, we follow the prescription of the ACT collaboration and only consider multipoles
larger than 1800 in temperature. For more details see section 6.2.3 of [7];

• VV: V modes power spectra as published by CLASS [22] and SPIDER [23] experiments.

101



5.4. Results of the MCMC analysis

For Planck, BK18 and ACT we employ the official likelihood packages released by the respective
collaborations. For the V-modes data, a simple custom-made likelihood has been added to the
framework. The χ2 for the V modes is computed as:

χ2
V V =

∑
b

(DV V
b,theory −DV V

b,data)2

σ2
b

, (5.81)

where DV V
b,data and DV V

b,theory are the data and the binned theory respectively and σ2
b is the error

on the bandpowers. Since CLASS and SPIDER are both completely noise dominated, we can
safely add together their respective χ2 computed as in Eq. (5.81).

In our analysis we consider the following data combinations:

(i) Planck 2018;

(ii) Planck 2018+BK18;

(iii) Planck 2018+BK18+CLASS+SPIDER;

(iv) Planck 2018+BK18+ACT.

Notice that we do not consider the combination Planck 2018+BK18+ACT+SPIDER+CLASS
since the inclusion of V-modes data does not add any constraining power, as will be discussed
in Section 5.4 for more details.

The ΛCDM+r model (i.e., allowing for non-vanishing primordial gravitational waves with
amplitude set by the tensor-to-scalar ratio r) provides our baseline scenario, unless otherwise
stated. See Ref. [6] for details about parametrization, theoretical assumptions and priors used.
For the foreground and nuisance parameters, we follow the prescriptions provided by Planck [6]
and BICEP [8] collaborations. In addition to the baseline, we consider the β2 parameters defined
in Eqs. (5.66)-(5.69). On those parameters we impose uniform positive priors. Further model
extensions are not considered in this work.

5.4 Results of the MCMC analysis

In this section we present the constraints derived on the phenomenological parameters β2
AF,T ,

β2
AF,S , β2

F,E and β2
F,B using the aforementioned datasets and parametrizations. We also discuss

the possible correlations with the parameters of the standard ΛCDM model.

5.4.1 Constraints on the CPT-odd phenomenological parameters only

As a first step in our analysis, we consider only the CPT-odd term in Eq. (5.1) and fix to zero
the parameters related to the CPT-even term. The effect of this term on the CMB spectra is
encoded in the two parameters β2

AF,T and β2
AF,S and leads to isotropic and anisotropic birefrin-

gence effects, respectively (see the discussion at the end of Sec. 5.2.4). In Figure 5.2, we show
the two-dimensional and one-dimensional posterior probability distributions of a subset of cos-
mological parameters, including β2

AF,T and β2
AF,S , explored in the analysis with the combination

of Planck+BK18 data. The baseline model is given by the ΛCDM+r cosmology. To better
elucidate the effect of β2

AF,T and β2
AF,S on the constraints of the remaining parameters, we also

vary them one at the time while fixing the other to zero. We note that varying either β2
AF,T

or β2
AF,S has equivalent impact on the constraints on other cosmological parameters. This is

due to the fact that both β2
AF,T and β2

AF,S lead to qualitatively equivalent modifications of the
BB spectrum. Indeed, an inspection of Eq. (5.72) and Eq. (5.79) shows that the overall effect
produced by non-vanishing β2

AF,T or β2
AF,S is an effective rotation of E-modes into B-modes.
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Figure 5.2: One and two-dimensional posterior probability distributions for a subset of parameters var-
ied in the MCMC analysis. We report the constraints obtained when assuming a ΛCDM+r+β2

AF,T+β2
AF,S

model (in green), ΛCDM+r+β2
AF,T (in red), ΛCDM+r+β2

AF,S (in blue) and ΛCDM+r (in orange) using

Planck+BK18 data. Note the tighter limit on r when one of the β2
AF parameters is allowed to vary with

respect to the case in which they are both equal to zero. Opening to both β2
AF further improves the

individual constraints on β2
AF,T , β2

AF,S and r, see the main text for a detailed discussion.

Such rotation competes with r in increasing the power in B-modes (see Figure 5.1, where the
two β2

AF and r enhance the reionization and recombination bumps in the BB power spectrum).
This explains why the marginalization over β2

AF,T and β2
AF,S tightens the constraints on r with

respect to those obtained in the ΛCDM+r baseline analysis.

Even though in Figure 5.2 we report the results from Planck+BK18, the two β2
AF could be

also constrained with Planck data only, exploiting their effect on E-mode polarization. However,
the resulting bounds on β2

AF,T and β2
AF,S are nearly an order-of-magnitude broader than those

obtained when adding BK18 to Planck data. This is due to the lack of constraining power from
B-modes which are more strongly affected by the two β2

AF .

In Fig. 5.3 (left panel), we show the constraints on a subset of parameters and compare the
results obtained with Planck data only in ΛCDM+β2

AF and ΛCDM+r+β2
AF with those obtained

with the combination of Planck+BK18 data in ΛCDM+r+β2
AF . As expected, the bounds on

β2
AF are tightened when r is varied jointly with the CPT-odd parameters, even if using Planck

data only. However, the improvement is dramatic when BK18 data are added to the analysis.
In the right panel of Fig. 5.3 we show a zoom-in of the lower right triangle to better appreciate
the impact of BK18 data on the constraints on the β2

AF . We stress again that no V-modes are
sourced by the CPT-odd term of the Lagrangian.
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Figure 5.3: Left panel : one and two-dimensional posterior probability distributions for a subset
of parameters varied in the MCMC analysis. We report the constraints obtained when assuming a
ΛCDM+β2

AF,T + β2
AF,S (in pink) and a ΛCDM+r+β2

AF,T + β2
AF,S (in cyan and green) models. The

former using only the Planck dataset, while the latter using both Planck and Planck+BK18. Note how
much the constraints on the β2

AF parameters improve when we include BK18 data. Right panel : zoom-in
showing the constraints on β2

AF,T and β2
AF,S using Planck+BK18.

5.4.2 Constraints on the CPT-even phenomenological parameters only

We now focus on the CPT-even term of the action in Eq. (5.1). The effects on the CMB spectra
are in this case encoded by the two parameters β2

F,E and β2
F,B, which are responsible for an overall

rescaling of the TE, EE and BB spectra via the parameter Z, see Eqs. (5.70), (5.71), (5.72).
If we restrict our analysis to consider only linear polarization, the impact of the two β2

F,E/B is
degenerate. However, the CPT-even term sources a degree of circular polarization from a mixing
of E- and B-modes appropriately rescaled by β2

F,E and β2
F,B, see Eq. (5.75). The sourcing of

V-modes could in principle be used to individually constrain the β2
F,E/B, provided that a V-mode

experiment puts statistically significant bounds on the VV signal. However, the signal-to-noise
ratio in the SPIDER and CLASS data is insufficient to put significant bounds on the two
parameters. This is shown in Fig. 5.4, where the posterior distributions of all the cosmological
parameters, including β2

F,E , with and without V-mode data are perfectly overlapping. We expect

this to be exactly the same for β2
F,B, since in the absence of sensitive enough V-mode data both

β2
F,E and β2

F,B parameters are constrained through the rescaling of TE, EE and BB spectra
within Z. Therefore, in the following, we neglect the contribution of V modes data and we quote
results for the effective parameter β2

F , defined as

β2
F ≡

β2
F,E + β2

F,B

4
. (5.82)

In Fig. 5.5, we show the 2D and 1D posterior distributions of a subset of cosmological
parameters explored with the combination of Planck+BK18 and Planck+BK18+ACT data.
We compare the results within the ΛCDM+r + β2

F model and the baseline ΛCDM+r model.
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Figure 5.4: One and two-dimensional posterior probability distribution for the full set of parameters
varied in the MCMC analysis. We report the constraints obtained when assuming the ΛCDM+r+β2

F,E

model using the Planck+BK18+CLASS+SPIDER dataset (in lime) and assuming ΛCDM+r+β2
F,E (in

purple) and ΛCDM+r (in orange), both using the Planck+BK18 dataset. The cases ΛCDM+r+β2
F,E

with and without V-modes data are perfectly overlapping, showing the lack of constraining power from
the current circular polarization data and justifying the choice of sampling over the combination β2

F in
Eq. (5.82).

Differently from what discussed for the CPT-odd parameters, we do not see any improvement
in the bounds on r when β2

F is varied. In this case, we expect a positive correlation between r and
β2
F , contrarily to what happens with the β2

AF . Indeed, a non-vanishing β2
F reduces the amplitude

of the BB spectrum, which could be compensated by higher values of r. However, we do not
appreciate such a correlation in Fig. 5.5. The reason is that most of the constraining power on
β2
F comes from TE and EE spectra, making any degeneracy with r undetectable. Indeed, the

sensitivity on β2
F from T- and E-modes only is at the same level as that on β2

AF,T/S , being driven

by the scaling in amplitude of EE and TE spectra. In Fig. 5.5, we also note a shift in Ωbh
2 and

Ωch
2 with respect to the constraints obtained when β2

F = 0. The shifts can be easily explained
when considering the impact of the parameters on the shape of the TE and EE spectra. The
main effect of the non-vanishing β2

F on the polarization power spectra is to rescale their overall
amplitude through Z in Eq. (5.77). A change in Ωbh

2, instead, affects the amplitude of the TE
and EE acoustic oscillations both in the photon density field (by modifying the inertia of the
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Figure 5.5: One and two-dimensional posterior probability distributions for a subset of parameters
varied in the MCMC analysis. We report the constraints obtained when assuming ΛCDM+r+β2

F (in
purple when using the Planck+BK18 dataset, in blue when adding ACT) and ΛCDM+r (in dashed
orange and dashed cyan respectively). Since not enough constraining power comes from current V-mode
data, we are note able to disentangle the effects of β2

F,E and β2
F,B , and we can only set a limit on their

combination β2
F = (β2

F,E + β2
F,B)/4. Note the shifts in the posteriors of Ωbh

2 and Ωch
2 when considering

the ΛCDM + r + β2
F extension, see the main text for a detailed discussion.

baryon-photon fluid, which is relevant for the temperature transfer function) and in the photon
velocity field (as a result of the change in the density), which is relevant for the E-polarization
transfer function. From these considerations, we can understand the correlation between β2

F and
Ωbh

2. At sub-degree scales (high multipoles `), a change in Ωbh
2 modifies the damping angular

scale since a different baryon density affects the photon mean free path. As a result, the power
at small scales is more or less suppressed depending on the value of Ωbh

2. This effect goes in
the opposite direction of the change in the amplitude of the first peaks: a lower value of Ωbh

2

increases the amplitude of the oscillations at intermediate scales and suppresses the power at
small scales. A similar effect at intermediate scales is provided by Ωch

2. A decrease of the latter
delays the onset of matter-radiation equality, thus shifting to larger scales the boosting effect
due to radiation driving on the acoustic oscillations. Therefore, we expect Ωch

2 to decrease
when allowing for a non-vanishing β2

F .

The inclusion of ACT data causes the same shift of Ωbh
2 and Ωch

2 when sampling over β2
F ,

as can be seen in Fig. 5.5. Moreover, the limit on β2
F is broader. This is likely driven by the

known preference of ACT for larger As and ns [262], which can be compensated by a larger
value of β2

F .
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Planck+BK18+ACT dataset. The posterior in dashed yellow is the reference for the ΛCDM+r case
using same dataset. The joint marginalization over all the β2 parameters improves the constraints on
β2
F , while keeping unchanged those on r and the β2

AF parameters.

5.4.3 Joint constraints on the CPT-odd and CPT-even phenomenological
parameters

Finally, we investigate the case in which all the CPT-even and CPT-odd parameters are jointly
varied. This allows us to investigate how the interplay between the effects induced by different
operators affects the constraints on the LV parameters. Figure 5.6 shows the 2D and 1D posterior
probabilities of a subset of cosmological parameters plus the β2 assuming a ΛCDM+r+β2

AF,T +

β2
AF,S+β2

F model. For comparison, we also include the posteriors for the ΛCDM+r+β2
AF,T+β2

AF,S

and ΛCDM+r+β2
F models. On the one hand, we see that the bounds on β2

F improve when all
the β2 are allowed to vary. In fact, in absence of V-mode data, the only effect of β2

F is to con-
tribute to the rescaling of the CMB spectra via Z, in the same way as β2

AF,T and β2
AF,S do. On

the other hand, the constraints on β2
AF,T and β2

AF,S do not improve significantly when the two

parameters are varied jointly with β2
F . In fact, besides rescaling the spectra, they also induce

a mixing between E and B modes, which allows to disentangle them from β2
F . Note again the

improved bounds on r when β2
AF,T and β2

AF,S are varied. The inclusion of ACT mostly affects

the constraint on β2
F (see Figure 5.7), as discussed before. We have collected the 95% CL on r,

β2
AF,T , β2

AF,S , β2
F for the cases analyzed in Tab. 5.1.
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Figure 5.7: One and two-dimensional posterior probability distributions for the LV parame-
ters β2 varied in the MCMC analysis. We report the constraints obtained when assuming a
ΛCDM+r+β2

AF,T+β2
AF,S+β2

F model using Planck+BK18 (in dark blue) and Planck+BK18+ACT (in

red). Including ACT data weakens the constraints mostly on β2
F , see the main text for a detailed discus-

sion.

5.5 Implications for the LV coefficients in the minimal SME
action

In this section we translate the bounds on the phenomenological parameters β2
AF,T , β2

AF,S and

β2
F introduced in Eqs. (5.66), (5.67) and (5.82) into constraints on the LV couplings kAF and kF

appearing in the action in Eq. (5.1). We focus on the constraints obtained with the full dataset
combination, Planck+BK18+ACT, in the case where the three parameters are jointly varied.
The full set of constraints derived from different data and parameter combinations can be found
in Table 5.2.

Focusing first on the CPT-odd effects, the constraints on the time component of kAF are

usually rephrased as bounds on the parameter k
(3)
(V )00 = −

√
4π(kAF )0 (see Refs. [271,273]). This

parameter can be linked to the phenomenological parameter β2
AF,T as follows:

|k(3)
(V )00| =

√
π

2c(τ0 − τLS)

√
β2
AF,T ' 6× 10−43

√
β2
AF,T GeV , (5.83)

where we have assumed that (kAF )0 is constant along the line of sight and

c(τ0 − τLS) =
c

H0

∫ zLS

0

dz

[Ωr(1 + z)4 + Ωm(1 + z)3 + ΩΛ]1/2
' 9444 Mpc . (5.84)
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Dataset Model (ΛCDM+) r × 10−2 β2
AF,T

×10−2

β2
AF,S

×10−2
β2
F

×10−2

Planck β2
AF,T+β2

AF,S - < 1.29 < 1.28 -

Planck r+β2
AF,T+β2

AF,S < 11.5 < 0.987 < 0.953 -

Planck+BK18 r < 3.36 - - -
Planck+BK18 r+β2

AF,T < 3.07 < 0.0813 - -

Planck+BK18 r+β2
AF,S < 3.13 - < 0.0805 -

Planck+BK18 r+β2
AF,T+β2

AF,S < 3.00 < 0.0673 < 0.0697 -

Planck+BK18 r+β2
F < 3.36 - - < 4.76

Planck+BK18 r+β2
AF,T+β2

AF,S+β2
F < 3.02 < 0.0675 < 0.0692 < 4.60

Planck+BK18+VV r+β2
F < 3.36 - - < 4.73

Planck+BK18+ACT r+β2
AF,T < 3.11 < 0.0765 - -

Planck+BK18+ACT r+β2
AF,S < 3.11 - < 0.0765 -

Planck+BK18+ACT r+β2
AF,T+β2

AF,S < 3.03 < 0.0665 < 0.0668 -

Planck+BK18+ACT r+β2
F < 3.35 - - < 4.91

Planck+BK18+ACT r+β2
AF,T+β2

AF,S+β2
F < 3.03 < 0.0655 < 0.0645 < 4.76

Table 5.1: Bounds at 95% CL on r, β2
AF,T , β2

AF,S , β2
F for the listed datasets and models. Eqs. (5.70)-

(5.80) show how the β2 parameters affect the CMB spectra. The limits have been expressed in units of
10−2. The key “VV” represents the combined CLASS+SPIDER dataset for V-modes.

In order to get the estimate in Eq. (5.84), we have used the best-fit values for the cosmological
parameters taken from Planck 2018 (TT, TE, EE + lowE constraints for ΛCDM model), namely
H0 = 67.27 km s−1 Mpc−1, zLS = 1089.95, zeq = 3407, Ωm = 0.3166, ΩΛ = 0.6834 and
Ωr = Ωm/(1 + zeq) ' 9.290× 10−5 [6].

Analogously, from Eq. (5.67) we find for the space components of kAF

|kAF| ' 2.93× 10−43
√
β2
AF,S GeV . (5.85)

For what concerns the CPT-even effects, recasting our constraints on β2
F into bounds on the

components of kF is less trivial, due to the frequency dependence of Eqs. (5.68)-(5.69). From
Eqs. (5.68)-(5.69) we obtain

kF,E+B ≡
(

2k2
F,E +

k2
F,B

3

)1/2

' 1.29× 10−28
( ν

GHz

)−1√
β2
F . (5.86)

To account for the fact we are combining information coming from different experiments, ob-
serving the sky in different frequency channels, we can define an effective frequency νf following
the method presented in Ref. [288]. Given the frequency dependence in Eq. (5.86), we find

νf =


∑

i
1
σ2
i

[
ln
(
νi+

GHz

)
− ln

(
νi−

GHz

)]
∑

i
1
σ2
i

(
νi+

GHz −
νi−

GHz

)

−1

GHz , (5.87)

where
[
νi−, ν

i
+

]
is the frequency interval of the i-th frequency channel and σi is the noise level.

Using Eq. (5.87), we obtain νf = 158.8 GHz, 121.7 GHz and 122.7 GHz for Planck [5, 289],
BK18 [8, 290] and ACT [262,291], respectively.

We now report the 95% CL constraints on the LV coefficients using Planck+BK18+ACT
data, in the case where the three parameters β2

AF,T , β2
AF,S and β2

F are all free to vary. For the
CPT-odd terms we find

|k(3)
(V )00| < 1.54× 10−44 GeV , (5.88)
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Dataset Model (ΛCDM+)
|k(3)

(V )00| × 10−44 |kAF| × 10−44

kF,E+B × 10−31

(GeV) (GeV)

Planck β2
AF,T+β2

AF,S < 6.81 < 3.31 -

Planck r+β2
AF,T+β2

AF,S < 5.96 < 2.86 -

Planck+BK18 r+β2
AF,T < 1.71 - -

Planck+BK18 r+β2
AF,S - < 0.83 -

Planck+BK18 r+β2
AF,T+β2

AF,S < 1.56 < 0.77 -

Planck+BK18 r+β2
F - - < 2.31

Planck+BK18 r+β2
AF,T+β2

AF,S+β2
F < 1.56 < 0.77 < 2.27

Planck+BK18+ACT r+β2
AF,T < 1.66 - -

Planck+BK18+ACT r+β2
AF,S - < 0.81 -

Planck+BK18+ACT r+β2
AF,T+β2

AF,S < 1.55 < 0.76 -

Planck+BK18+ACT r+β2
F - - < 2.35

Planck+BK18+ACT r+β2
AF,T+β2

AF,S+β2
F < 1.54 < 0.74 < 2.31

Table 5.2: Bounds at 95% CL on k
(3)
(V )00, |kAF| and kF,E+B for the listed datasets and models The

constraints on kF,E+B are derived taking νf = 158.8 GHz for Planck alone and νf = 121.7 GHz for the
combination of Planck, BK18 and ACT. As discussed in the main text, this choice is justified by the
highest constraining power on LV coefficients given by BK18 data.

|kAF| < 0.74× 10−44 GeV , (5.89)

whereas for the CPT-even operator we obtain

kF,E+B < 2.31× 10−31
( νf

121.7 GHz

)−1
. (5.90)

Note that the bound on kF,E+B in Eq. (5.90) has been obtained by normalizing the effective
frequency to 121.7 GHz, which is the value computed for BK18. This choice is motivated by the
fact that BK18 data give the highest constraining power on the LV coefficients, see discussion
in Sec. 5.4.

The bounds on the LV coefficients derived in previous literature are collected in [271], see

Tables D15 and D16. For the CPT-odd case, an upper bound on the parameter |k(3)
(V )00| has been

obtained in Ref. [292] using WMAP data, leading to the result |k(3)
(V )00| < 4.9×10−43 GeV at 95%

CL. We note that the limit derived in our analysis using Planck+BK18+ACT data is stronger
by more than one order of magnitude, see Eq. (5.88). Analogously, a limit on the coefficient
|kAF| from WMAP data has been obtained in [67,273], yielding |kAF| < 2× 10−42 GeV at 95%
CL. In this case, the bound derived in our analysis is stronger by two orders of magnitude, see
Eq. (5.89). We stress that the bounds on the CPT-odd coefficients derived in this work are
the strongest to date, both considering CMB and other sources. See again Ref. [271] for an
exhaustive list of current bounds.

For what concerns CPT-even Lorentz violation, our bound on kF,E+B improves previous
constraints by roughly one order of magnitude [67]. The CMB-based cosmological bounds on
the CPT-even coefficients are only overcome by those obtained from optical polarimetry of
extragalactic sources, see Refs. [271,293,294].

The bounds presented in the previous paragraphs are obtained in the most general case with
all the β2 parameters jointly varied. This represents a further novelty of our work. However,
it is worth mentioning that, since all the parameters compete for the same power, the bounds
obtained with a single parameter exploration are slightly weaker, as can be seen in Table 5.2.
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Chapter 6

Imprints of chiral scalar-tensor
theories of gravity on CMB bispectra

As we have discussed in Chapter 1, inflation is currently the most widely accepted paradigm
able to solve the shortcomings of the standard cosmological model, while at the same time pro-
viding a mechanism to source the primordial density perturbations in the Universe. Standard
single-field slow-roll models of inflation are based on General Relativity (GR) as the theory of
gravity. However, despite the fact that GR has passed every experimental test so far, there
are different reasons to expect that it does not provide the complete description of the grav-
itational interaction. From the point of view of fundamental physics, a quantum description
of the gravitational interaction still lacks and cannot be included within the framework of GR.
Furthermore, when trying to describe all the fundamental interactions in a unified framework,
effective actions with non-minimal couplings with the geometry or higher-order terms involving
curvature invariants usually appear. Since inflation involves extremely high energy scales, it is
possible that signatures of modifications to GR are left imprinted in the statistical properties
of the primordial fluctuations produced during the inflationary phase. For this reason inflation
can represent a fundamental stage to test possible departures of gravity from GR.

An interesting possibility to consider is that parity symmetry is broken in the gravity sector,
as predicted by several candidates of quantum gravity. A common example is represented by
the gravitational Chern-Simons term, proposed for the first time in Ref. [57]. This naturally
appears in the context of anomaly cancellation in string theory (via the so-called Green-Schwarz
mechanism [295–301]) and in loop quantum gravity [302–306]. The Chern-Simons operator is
also commonly introduced as a low energy effective field theory in an expansion in the curvature
invariants [307]. Indeed, it represents the fully-covariant operator with the lowest number of
derivatives that breaks parity. Another example of parity violation in the gravitational sector
arises in Horava-Lifshitz gravity, see e.g. [308, 309].

In slow-roll inflation with the additional presence of these terms, the parity violation gen-
erates a different behavior in the propagation of the right (R) and left (L) handed polarization
modes of primordial gravitational waves (PGWs). At linear level, the amount of parity violation
is quantified by the relative difference between the super-horizon R and L-handed tensor power
spectra, which in the literature is usually referred to as chirality of PGWs. Both the Horava-
Lifshitz [310,311] and the Chern-Simons [312–316] terms are predicted to give rise to a low level
of chirality of PGWs.

Recently, based on the Chern-Simons term, other ghost-free parity-breaking theories of grav-
ity have been proposed in Ref. [24]. With respect to Chern-Simons gravity, these new theories
include operators with first and second derivatives of the non-minimally coupled scalar field.
The level of parity violation induced by these theories in the primordial tensor power spectrum
has been explored in [317]. Compared to the Chern-Simons scenario, one of the distinguishable
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features of higher derivatives of the coupling scalar field is that they lead to the velocity bire-
fringence phenomenon, i.e. they induce a difference in the propagation speed of the two circular
polarizations. However, despite this distinctive feature, the final amount of chirality produced
in the tensor power spectrum is still small and degenerate with the case of Chern-Simons grav-
ity. This degeneracy manifests in the fact that the final predictions for the level of chirality
is proportional to the ratio H/MPV, with H denoting the Hubble parameter during inflation
and MPV the characteristic energy scale of the parity-violating theories. In the absence of a
complete theory of quantum gravity, MPV is an unknown quantity. This makes all these models
indistinguishable from the observational point of view just taking into consideration the power
spectrum statistics.

This degeneracy between the different parity-violating theories can be broken by considering
higher-order correlators, such as the primordial bispectra. Indeed, primordial bispectra encode
information, like the shape function, that may be characteristic of the specific inflationary model
(see e.g. [318–321] for general considerations), possibly removing any kind of degeneracy. In
particular, various scenarios with parity-violating signatures in tensor non-Gaussianity due to
modified gravity operators have already been considered in Refs. [322–332].

In the analysis discussed in this chapter we will extend these studies by analyzing the effects
of the parity-violating operators introduced in [24] on the graviton bispectrum.

6.1 Chiral scalar-tensor theories with higher-order derivatives

In this section we introduce chiral scalar-tensor theories with higher-order derivatives as proposed
in Ref. [24]. These consist in parity-breaking covariant terms having more derivatives with
respect to both the Einstein-Hilbert and the gravitational Chern-Simons terms. The latter is the
fully-covariant parity-breaking operator having the least number of derivatives (see, e.g., [307,
333]). The action of these parity-breaking theories has the following form

S =

∫
d4x
√−g

[
M2
Pl

2
R+ LPV + Lφ

]
, (6.1)

where g = det [gµν ], MPl = (8πG)−1/2 is the reduced Planck mass, R is the Ricci scalar, LPV is
a Lagrangian containing parity-violating operators and Lφ is the Lagrangian for a scalar degree
of freedom, which is assumed to be non-minimally coupled to gravity. Since we are interested in
the effects of these parity-breaking theories during inflation, we will assume φ to play the role
of the inflaton field, with Lφ being the following Lagrangian

Lφ = −1

2
gµν∂µφ∂νφ− V (φ) , (6.2)

where V (φ) denotes the (slow-roll) potential of the inflaton field. The parity-violating La-
grangian of the theory can be written as the sum of two pieces

LPV = LPV1 + LPV2 , (6.3)

where LPV1 contains up to only first derivatives of the scalar field and is given by [24]

LPV1 =

4∑
A=1

aALA , (6.4)

where1

L1 = εµναβRαβρσR
ρ

µν λφ
σφλ , L3 = εµναβRαβρσR

σ
νφ

ρφµ ,

1Here we are implicitly assuming that the higher derivative operators are suppressed by corresponding powers
of the Planck mass, MPl. We will reintroduce these factors explicitly at the end of this section.
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L2 = εµναβRαβρσR
ρσ

µλ φνφ
λ , L4 = εµνρσRρσαβR

αβ
µνφ

λφλ , (6.5)

where ερσαβ is the covariant Levi-Civita tensor defined in terms of the antisymmetric Levi-Civita
symbol ερσαβ as ερσαβ = ερσαβ/

√−g, φµ ≡ ∇µφ with ∇µ denoting the covariant derivative,
Rαβρσ is the Riemann tensor and R is its trace. Notice that the couplings aA in (6.4) are generic
functions of the scalar field and its kinetic term, i.e. aA = aA(φ, φµφµ). In [24] it has been shown
that in the so-called unitary gauge, where the scalar field is homogeneous, these operators do
not introduce the Ostrogradsky (unstable) modes2 under the constraint

4a1 + 2a2 + a3 + 8a4 = 0 , (6.6)

that leaves only 3 independent coefficients.

The term LPV2 includes also second-order derivatives of the scalar field and reads [24]

LPV2 =

7∑
A=1

bAMA , (6.7)

where

M1 = εµναβRαβρσφ
ρφµφ

σ
ν , M4 = εµναβRαβρσφνφ

ρ
µφ

σ
λφ

λ,

M2 = εµναβRαβρσφ
ρ
µφ

σ
ν , M5 = εµναβRαρσλφ

ρφβφ
σ
µφ

λ
ν ,

M3 = εµναβRαβρσφ
σφρµφ

λ
νφλ , M6 = εµναβRβγφαφ

γ
µφ

λ
νφ

λ,

M7 = (�φ)M1 , (6.8)

where in this case φσν ≡ ∇σ∇νφ and bA = bA(φ, φµφµ). Here, in order to avoid the Ostrogradsky
modes in the unitary gauge, the following conditions have to be imposed [24]

b7 = 0 , b6 = 2(b4 + b5) , b2 = −A
2
∗

2
(b3 − b4) , (6.9)

where A∗ = φ̇(t)/N and N is the lapse function (see Eq. (6.10) and the subsequent discussion).
In this case, we are left with 4 independent coefficients.

We will adopt the Arnowitt-Deser-Misner (ADM) formalism for the perturbed Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric (see e.g. [44, 335,336]), where the metric reads

ds2 = −(N2 −NiN
i) dt2 +Ni dx

idt+ hij dx
idxj , (6.10)

where N and Ni are the lapse function and shift vector, respectively, and hij is the three-
dimensional spatial metric.3 Focusing only on transverse and traceless tensor perturbations γij ,
the (non-linear) perturbed spatial metric reads [44, 338]

hij = a2 [exp γ]ij = a2

[
δij + γij +

1

2!
γikγ

k
j + ...

]
, (6.11)

with

γi
i = 0 , ∂iγ

ij = 0 . (6.12)

2See [334] for a discussion about Ostrogradsky ghosts.
3In the 3+1 decomposition of spacetime, the lapse function N measures the proper time between adjacent

space-like hypersurfaces, and captures the fact that the coordinate time can pass more quickly in some spacetime
regions than in others; the shift vector Ni measures the change of coordinates (relative to the normal) from
one hypersurface to the other, namely describes how spatial coordinates are propagated between two adjacent
hypersurfaces. See e.g. [337] for more details.
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It is well-known that in GR the lapse function N and the shift vector Ni are non-dynamical
fields, see e.g [44]. Rather, they are Lagrange multipliers that enforce the so-called Hamiltonian
and momentum constraints. This means that they can be removed in the final action after
solving their algebraic Euler-Lagrange equations in terms of dynamical fields. In general, in a
modified gravity setting, the equations of motion for N and Ni are changed, with the possibility
to have a larger number of dynamical degrees of freedom. However, it has been shown in [24]
that in the unitary gauge and under the constraints (6.6) and (6.9), N and Ni remain auxiliary
fields as in GR.

Furthermore, if one is not interested in expanding the actions beyond cubic order in the
perturbations, it is sufficient to find the expressions of the lapse function N and the shift vector
Ni at first order (see [44,339]). Since we are focusing only on tensor fluctuation modes and it is
not possible to have first order perturbations in N and Ni including only tensor perturbations,
we are left solely with their zero-th order value, namely

N = 1 , Ni = 0 . (6.13)

Imposing the condition (6.13) together with the constraints (6.6) and (6.9), one finds the fol-
lowing final expressions for the Lagrangians PV1 and PV2 [24]:

√−gLPV1 =
2φ̇2

M4
Pl

εijl
[
2(2a1 + a2 + 4a4)

(
KKmiDlK

m
j + (3)RmiDlK

m
j −KmiK

mnDlKjn

)
−(a2 + 4a4)

(
2KmiK

n
j DnK

m
l + (3)Rjlm

nDnK
m
i

)]
, (6.14)

√−gLPV2 = 2
φ̇3

M5
Pl

εijl
[
b1KmiDlK

m
j +

(b4 + b5 − b3)

M3
Pl

φ̇KmiK
n
j DnK

m
l

]
, (6.15)

where Kij = ḣij/2 is the extrinsic curvature tensor, K = hijKij its trace, Di denotes the
three-dimensional covariant derivative, (3)Rmi and (3)Rjlm

n are the three-dimensional Ricci and
Riemann tensors respectively. Notice that we have reintroduced the Planck mass through di-
mensional analysis.

In the rest of our analysis, we will assume that (6.14) and (6.15) represent the fundamental
Lagrangians defining the theories that we will study. Indeed, as commented in [24], because
of the presence of the Ostrogradsky modes in the original theories (6.4)-(6.7), there are two
possible approaches to follow: the first is to consider these theories as low energy effective
field theories valid up to the energy scale at which the Ostrogradsky modes appear; the second
possibility is to restrict the theories to the unitary gauge, with the additional constraints (6.6)-
(6.9), and treat them as new Lorentz-breaking (and parity-violating) theories. The latter is the
approach adopted in Ref. [24], which we will also follow in our analysis. Notice that the two
Lagrangians (6.14)-(6.15) do not contain any higher order time derivative of the metric, but
only higher order space derivatives. Because of this fact, these theories break Lorentz invariance
similarly to what happens in Horava-Lifshitz gravity [308, 309]. As we will see in the rest of
this chapter, this feature will have important consequences on the phenomenology of the models
under scrutiny, both in the propagation of PGWs (leading to a speed of propagation of tensor
modes different from the speed of light during inflation) and in the predictions for primordial
bispectra.

Before analyzing in details the effects of these parity-breaking operators on primordial tensor
modes, some comments are in order regarding inflation within these modified gravity theories.
The first thing to consider when introducing some modifications to gravity is how this affects
the dynamics at the background level. In our specific case, it is easy to check that the new
operators have no effects on the background dynamics of inflation, that is the same as in single-
field slow-roll models with GR. At the perturbation level, instead, rotational invariance implies
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that N -point correlation functions of scalar perturbations can have parity-odd signals only for
N ≥ 4, i.e. the trispectrum (N = 4) is the lowest order correlator involving only scalars that
can manifest parity-breaking signatures [340]. This implies that the power spectrum of scalar
perturbations has the usual expression that is obtained within GR.

6.2 Chirality in primordial tensor power spectra

In this section we review the effects of the higher order operators introduced in [24] on the
dynamics of PGWs, with a particular focus on the parity-breaking signatures that arise in the
primordial tensor power spectrum. This has been studied in [317] (see also [341–343] for an
analysis of the propagation of gravitational waves in the late-time Universe within these parity-
breaking theories). We first start by recalling the Fourier expansion of PGWs,

γij(x, t) =

∫
d3k

(2π)3

∑
s=L,R

γs(k, t)ε
(s)
ij (k)eik·x , (6.16)

where γs(k, t) are the mode function of primordial tensor modes, s is the polarization index

and ε
(s)
ij (k) are the polarization tensors in the chiral basis, i.e. in the basis of L and R circular

polarization states (see Appendix D for an explicit representation of the polarization tensors
that will be used in the following computations). This is defined in terms of the more common
+ and × basis as

εRij(k) =
ε+ij(k) + iε×ij(k)

√
2

, εLij(k) =
ε+ij(k)− iε×ij(k)

√
2

, (6.17)

and the mode functions in the two different bases are related by

γR(k, t) =
γ+(k, t)− iγ×(k, t)√

2
, γL(k, t) =

γ+(k, t) + iγ×(k, t)√
2

. (6.18)

This decomposition into circular polarization states is particularly useful when studying parity-
violating theories. Indeed, while the + and × polarization states are mixed by the parity-
violating terms, the equations of motion for the L and R polarization modes are decoupled. One
can prove that the following relations hold (see e.g. [312])

εLij(k)εijL (k) = εRij(k)εijR(k) = 0 ,

εLij(k)εijR(k) = 2 ,

εRij(−k) = εLij(k) ,

ε
(s)∗
ij (−k) = ε

(s)
ij (k),

γL(−k) = γ∗R(k) ,

klε
mljε

(s)j
j (k) = −iλskε(s)im(k) , (6.19)

where λR = +1 and λL = −1, and εmlj with 3 Latin indices denotes the Levi-Civita anti-
symmetric symbol. We will make an extensive use of these relations throughout the following
analysis.

The first step required to compute the power spectrum of PGWs is to expand the La-
grangians (6.14)-(6.15) at second order in tensor perturbations. Working at leading order in
slow-roll parameters, the action derived by Lagrangian PV1 (6.14) (including the contribution
from standard gravity) at quadratic order in tensor perturbations is given by

SPV1
γγ =

∑
s=L,R

∫
dτ

∫
d3k

(2π)3

[
A2
T,s|γ′s(k, τ)|2 −B2

T,sk
2|γs(k, τ)|2

]
, (6.20)
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where the prime denotes a derivative with respect to the conformal time τ and we have defined

A2
T,s ≡

M2
Pl

2
a2

(
1− λs

kphys
MPV1

)
, B2

T,s ≡
M2
Pl

2
a2

[
1− 4

M6
Pl

φ̇2

a
(ḟ + ġ)λsk

]
, (6.21)

with

MPV1 ≡
M6
Pl

8

1

φ̇2

1

(f + g)H
, (6.22)

and
f ≡ a1 +

a2

2
+ 2a4 , g ≡ a2

2
+ 2a4 , (6.23)

where the dot denotes a derivative with respect to cosmic time. From Eq. (6.21) we realize that
the right-handed graviton modes (λR = +1) with a physical wavenumber, kphys = k/a, larger
than MPV1 get a negative kinetic term, thus becoming unstable. At the quantum level this
instability may result in severe problems, since it leads either to a violation of unitarity or to
the propagation of negative energy modes forward in time. Since unitarity has to be preserved
in order for the theory to make sense, we must admit the presence of particles with negative
energies, which means that the energy spectrum is unbounded from below. However, in such a
case, the vacuum state would be highly unstable under the decay into particles of positive and
negative energies [344]. So, to avoid to deal with this kind of problem we introduce a UV cut-off
Λ ≤ MPV1 in the theory and consider only gravitons with kphys < Λ at the inset of inflation.
Then, since deep inside the horizon the condition kphys � H holds, it follows that we must
assume MPV1 � H during inflation in order for the theory to make sense.4

As explained in Sec. 6.1, the couplings ai that enter in the definitions (6.23) of f and g are
functions of the scalar field and its kinetic term (= φ̇2/2 in the unitary gauge). This allows us
to reabsorb the φ̇2 terms in Eqs. (6.21)-(6.22) by defining two new couplings5

f1 ≡
φ̇2

M4
Pl

f , g1 ≡
φ̇2

M4
Pl

g , (6.24)

that are still dimensionless like f and g. If we now define the graviton speed as

c2
T,s ≡

B2
T,s

A2
T,s

, (6.25)

the action (6.20) can be rewritten as

SPV1
γγ =

∑
s=L,R

∫
dτ

∫
d3k

(2π)3
A2
T,s

[
|γ′s(k, τ)|2 − c2

T,sk
2|γs(k, τ)|2

]
. (6.26)

By making the field redefinition
µs ≡ AT,sγs , (6.27)

we can then rewrite the action for the new field as

SPV1
γγ =

∑
s=L,R

∫
dτ

∫
d3k

(2π)3

[
|µ′s(k, τ)|2 − c2

T,sk
2|µs(k, τ)|2 +

A′′T,s
AT,s
|µs(k, τ)|2

]
. (6.28)

4Notice that assuming just MPV1 & H is not enough, as in this case a given physical mode kphys encounters
issues near the horizon crossing. Thus, this model can be considered well-defined only when MPV1 � H, i.e. in
the “effective field theory” limit, with MPV1 playing the role of the scale of new physics.

5Notice that, despite the fact that operators in (6.4) contain 6 derivatives, only some of them act on the
perturbations, while the others act on the background. Thus, since these theories make sense only in unitary
gauge, we are allowed to reabsorb some of the (time) derivatives through a coupling redefinition.
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Varying this action yields the equations of motion for the fields µs, which read

µ′′s +

(
c2
T,sk

2 −
A′′T,s
AT,s

)
µs = 0 , (6.29)

where the time-dependent effective mass is

A′′T,s
AT,s

=
d

dτ

(
A′T,s
AT,s

)
+

(
A′T,s
AT,s

)2

=
2 + 3ε

τ2
− λsk

τ

H

MPV1
+ O

(
ε2,

H2

M2
PV1

, ε
H

MPV1

)
, (6.30)

and ε is a slow-roll parameter, defined as

ε =
M2
Pl

2

(
V ′

V

)2

' 1

2

φ̇2

H2M2
Pl

. (6.31)

The first term in Eq. (6.30) is the usual contribution present in slow-roll models of inflation
with standard gravity. The second term, instead, is a new contribution that arises similarly in
inflationary models with the gravitational Chern-Simons coupling (see [312,313,316,328]), with
the Chern-Simons mass replaced in our case by MPV1. Thus, the equations of motion for the
fields µs are

µ′′s +

(
c2
T,sk

2 − ν2
T − 1

4

τ2
+ λs

k

τ

H

MPV1

)
µs = 0 , (6.32)

with

νT '
3

2
+ ε , (6.33)

and

c2
T,s ' 1− λsk

H

MPV1
τ (6.34)

at leading order in slow-roll dynamics and in the ratio H/MPV1.
From Eq. (6.32) we realize that, due to the presence of the higher derivative operators, the

speed of propagation of tensor modes is modified in this model, since cT,s 6= 1; this is actually
already evident from the action (6.20), since the time and space derivatives of the field are
multiplied by different functions. In particular, from (6.34) we notice that the two circular
polarization states propagate with a different speed during inflation, being this dependent on
the polarization index s: this is the so-called velocity birefringence phenomenon and it is the
main difference at quadratic level with respect to the case with Chern-Simons gravity. We also
stress that the speed of tensor modes is not constant, but varies with time during inflation.
This is a peculiar feature of this kind of models. Notice that in the limit where f1 = g1 = 0
(MPV1 =∞) we recover the usual result, cT,s = 1, as expected.

There is a further important feature that arises from Eq. (6.34): during inflation one of
the two polarization states of PGWs is superluminal (i.e. cT,s > 1), while the other one is
subluminal. This was already noticed e.g. in [342] and is a phenomenological manifestation of
the breaking of Lorentz invariance that occurs in this model. Notice that such an invariance is
recovered at the end of inflation, since cT,s → 1 for kτ → 0.

We can now canonically quantize the fields µs by expanding them in terms of the creation
and annihilation operators

µ̂s(k, τ) = us(k, τ)âs(k) + u∗s(k, τ)â†s(−k) . (6.35)

The creation and annihilation operators satisfy the equal time commutation relations

[âs(k), â†s′(k
′)] = (2π)3δ(3)(k− k′)δss′ , [âs(k), âs′(k

′)] = 0 = [â†s(k), â†s′(k
′)] , (6.36)
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and act on the vacuum state as
âs|0〉 = 0 , 〈0|â†s = 0 . (6.37)

The equations of motion for the mode functions us follow straightforwardly from Eq. (6.32) and
read

u′′s +

[
k2

(
1− λsk

H

MPV1
τ

)
− ν2

T − 1
4

τ2
+ λs

k

τ

H

MPV1

]
us = 0 . (6.38)

This equation has the same form as Eq. (4.11) of [317] when taking c2 = 0 and c1ε∗ = H/MPV1.
As shown in [317], equations of the kind of (6.38) admit an approximate analytical solution in
terms of Airy functions [345]

us(y) = α

(
ξ(y)

g(y)

)1/4

Ai(ξ) + β

(
ξ(y)

g(y)

)1/4

Bi(ξ) , (6.39)

where α and β are two integration constants, y = −kτ and the functions ξ(y) and g(y) in our
conventions are given by

g(y) =
ν2
T

y2
− 1− λsy

H

MPV1
+ λs

H

MPV1

1

y
, (6.40)

and

ξ(y) =


(
−3

2

∫ y
ys0

√
g(y′) dy′

)2/3
y ≤ ys0 ,

−
(

3
2

∫ y
ys0

√
g(y′) dy′

)2/3
y ≥ ys0 ,

(6.41)

with

ys0 = −
1− 21/3

[
1 + 3

(
H

MPV1

)2
]
/Y − 2−1/3Y

3λs
H

MPV1

, (6.42)

where

Y =

Y1 +

√√√√−4

[
1 + 3

(
H

MPV1

)2
]3

+ Y 2
1


1/3

, (6.43)

Y1 =− 2 + 27ν2
T

(
H

MPV1

)2

− 9

(
H

MPV1

)2

. (6.44)

The final solution for us(y) is found by matching the sub-horizon limit (y →∞) of (6.39) with
the following initial condition

lim
y→+∞

us(y) =

√
1

2ωk
exp

(
−i
∫ τ

τi

ωk dτ
′
)
, (6.45)

that physically corresponds to the assumption that the Universe was initially in an adiabatic
vacuum state. Here ωk = k

√
−g(−kτ) denotes the dispersion relation of PGWs that can be

read off by Eq. (6.38). Notice that (6.45) corresponds to the usual Bunch-Davies initial vacuum
state in the limit in which ωk = k. By doing this matching we find [317]

α =

√
π

2k
eiπ/4 , β = i

√
π

2k
eiπ/4 , (6.46)
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that fixes our solution. In [317] it has been shown that this analytical approach is in optimal
agreement with exact numerical solutions.

We can now derive the super-horizon power spectra for the two circular polarization modes
of tensor perturbations, which are defined as

PLT = 2
|uL(y)y�1|2

A2
T,L

, PRT = 2
|uR(y)y�1|2

A2
T,R

. (6.47)

At leading order in slow-roll the final result reads [317]

PLT =
PT
2

exp

[
π

16

H

MPV1

]
, PRT =

PT
2

exp

[
− π

16

H

MPV1

]
, (6.48)

where here PT denotes the total tensor power spectrum as predicted in general relativity.
The level of parity violation in the power spectra of primordial tensor modes can be quantified

by means of the chirality parameter χ, which is defined as the relative difference between the
power spectra of right and left polarization modes. The leading-order contributions to the
chirality can be computed by Taylor-expanding the exponentials in Eqs. (6.48), since H/MPV1 �
1. Thus, we find

χ ≡ PRT − PLT
PRT + PLT

= − π

16

H

MPV1
. (6.49)

From Eq. (6.49) it is clear that, just as it happens with the gravitational Chern-Simons cou-
pling [312, 313, 316, 328], chirality is suppressed by the requirement of dealing with an effective
field theory, i.e. H/MPV 1 � 1.

Another interesting aspect to consider is how the tensor-to-scalar ratio is modified with
respect to the result obtained within standard gravity. The total dimensionless tensor power
spectrum can be written as

∆PV1
T = ∆R

T + ∆L
T = ∆T

[
1 +

π2

256

(
H

MPV1

)2
]

= ∆T

(
1 + χ2

)
. (6.50)

Since, as discussed in Sec. 6.1, the scalar power spectrum does not receive any contribution from
the parity-violating operators, the tensor-to-scalar ratio can be readily computed as

rPV1 ≡
∆PV1
T

∆S
= r

(
1 + χ2

)
, (6.51)

where r is the tensor-to-scalar ratio obtained in slow-roll models without the parity-breaking
operators. We can clearly see that, since the chirality χ is � 1 in this model, the correction to
r is suppressed.

The presence of the new operators induces some corrections also to the spectral index of
tensor perturbations, that quantifies how the amplitude of the fluctuations varies with the scale.
This has the following expression

nT ≡
d ln ∆PV1

T

d ln k
' −2ε+

π2

128

(
H

MPV1

)[
−2ε

(
H

MPV1

)
− ṀPV1

M2
PV1

]
, (6.52)

where
ṀPV1

M2
PV1

' ε
(

H

MPV1

)
−
√

2εMPl

(
H

MPV1

)
(∂f1/∂φ) + (∂g1/∂φ)

f1 + g1
. (6.53)

Thus, even in this case the corrections to the standard result (nT = −2ε) are in general small,
making PGWs predicted within this model far from the reach of GW interferometers.
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Now we want to make a similar analysis for the Lagrangian PV2, given by Eq. (6.15). At
second order in tensor perturbations it has the following form

SγγPV2 =
∑
s=L,R

∫
dτ

∫
d3k

(2π)3

[
Ã2
T,s|γ′s(k, τ)|2 − M2

Pl

2
a2k2|γs(k, τ)|2

]
, (6.54)

where we have defined

Ã2
T,s ≡

M2
Pl

2
a2

(
1− λs

kphys
MPV2

)
, (6.55)

with

MPV2 ≡
MPl

2

(
b̃1 − b

H

MPl

)−1

. (6.56)

Just like in the previous case, we have reabsorbed the powers of φ̇2 by defining two new couplings
b̃1 and b as

b̃1 ≡
φ̇3

M6
Pl

b1 , b ≡ φ̇4

M8
Pl

(b4 + b5 − b3) , (6.57)

where b1, b3, b4 and b5 are the independent couplings of the model. The energy scale MPV2 has
been introduced for the same reason as MPV1 in the case with only first derivatives of the scalar
field: it represents the energy scale at which the right-handed graviton modes acquire a negative
kinetic term, thus becoming unstable. Proceeding as in the previous case, we introduce a UV
cut-off Λ ≤ MPV2 imposing that kphys < Λ. By requiring also that the modes started deep
inside the horizon, it follows that H/MPV2 � 1.

By defining the new field µs ≡ ÃT,sγs and repeating the same steps as in the previous case,
we obtain the following equations of motion

µ′′s +

(
c̃2
T,sk

2 − ν2
T − 1

4

τ2
+ λs

k

τ

H

MPV2

)
µs = 0 , (6.58)

where also in this case

νT '
3

2
+ ε (6.59)

holds at leading order in slow-roll parameters. The speed of propagation of tensor modes during
inflation can be written at leading order in slow-roll and in the ratio H/MPV2 as

c̃2
T,s ' 1− λsk

H

MPV2
τ . (6.60)

If we then canonically quantize the field µs as

µ̂s(k, τ) = us(k, τ)âs(k) + u∗s(k, τ)â†s(−k) , (6.61)

we can immediately write down the equations of motion for the mode functions us, which read

u′′s +

[
k2

(
1− λsk

H

MPV2
τ

)
− ν2

T − 1
4

τ2
+ λs

k

τ

H

MPV2

]
us = 0 . (6.62)

This is basically the same equation as Eq. (6.38), with MPV2 replacing MPV1. We can thus
write the solution of Eq. (6.62) in terms of the Airy functions and the integration constants are
again fixed by imposing the adiabatic initial condition (6.45). We can then compute the leading
order contribution to the chirality parameter χ, which takes the following form

χ = − π

16

H

MPV2
. (6.63)
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As in the PV1 model, the chirality of PGWs is suppressed since H/MPV2 � 1. Analogous
considerations hold for the tensor-to-scalar ratio and the spectral index of tensor perturbations,
that have the same expressions as in Eqs. (6.51)-(6.52) with MPV2 replacing MPV1.

At this point, we want to make a brief comment about the observability of this signature:
as emphasized in the introduction, the CMB EB and TB angular cross-correlators are able to
probe parity-breaking in the primordial Universe only for models predicting maximum chirality,
i.e. χ ' 1 [346], while the models under considerations predict χ � 1. Moreover, as we have
already discussed, in general we do not expect a significant modification of the standard slow-
roll models tensor tilt (see Eq. (6.52)), making in general difficult to probe these models with
forthcoming interferometers.

Thus, measuring the linear effects of these parity-breaking operators seems very challenging.
Another important aspect to keep in mind is the high degeneracy regarding their signatures
on the primordial power spectra. In fact, the final predictions for the level of chirality (6.49)
and (6.63) are equivalent apart for a redefinition of the MPV scale, which is unknown in the
absence of a more fundamental theory able to predict its value. This makes these models
indistinguishable just taking into consideration the power spectrum statistics.

Therefore, it is interesting and crucial to investigate the kind of parity-breaking signatures
that arise in higher-order correlators, like the graviton bispectrum. Indeed, as already discussed,
higher-order correlators contain features that may be characteristic of the specific inflationary
model under consideration, thus possibly removing any kind of degeneracy. For this reason,
in the next section we present a detailed study of the effects of the parity-violating operators
introduced in Sec. 6.1 on the primordial tensor bispectra.

6.3 Chirality in primordial tensor bispectra

Before entering into the details of the computations, let us first recall the basic definition of the
bispectrum, which is the Fourier transform of the three-point correlation function. Given three
perturbation fields δ1(x, t), δ2(x, t) and δ3(x, t), the bispectrum B(k1, k2, k3) is defined through
the relation

〈δ1(k1)δ2(k2)δ3(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)B(k1, k2, k3) . (6.64)

The Dirac delta enforces the invariance under spatial translations and implies that the wave
vectors k1, k2 and k3 must form a closed triangle in Fourier space. Because of rotational
invariance, instead, B(k1, k2, k3) depends only on the magnitude of the three wave vectors. The
bispectrum B(k1, k2, k3) can further be rewritten as [319–321]

B(k1, k2, k3) = fNL
S(k1, k2, k3)

(k1k2k3)2
, (6.65)

where fNL is a dimensionless parameter quantifying the amplitude of the bispectrum6 and the
shape function S(k1, k2, k3) encodes the functional dependence of the bispectrum on the specific
triangle configurations. Typically, the shape function is normalized such that S(k, k, k) = 1 in
the equilateral limit, where the three momenta are equal. Notice that, due to the fact that
the momenta form a closed triangle, once we specify two of the three momenta, the third is
automatically fixed. As a consequence, the shape function depends only on the ratios between

6The exact definition of fNL is fixed except for a constant normalization that may vary depending on the
literature and the kind of primordial bispectrum under consideration. As an example, within the Planck mission
it has been chosen to normalize the fNL coefficient of the scalar bispectrum such that [321]

fζNL =
5

18

Bζ(k, k, k)

P 2
ζ (k)

. (6.66)

Here Bζ(k1, k2, k3) and Pζ(k) denote respectively the scalar bispectrum and power spectrum from inflation.
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two of the three momenta and the third (at least for almost scale invariant bispectra), e.g.
x2 = k2/k1 and x3 = k3/k1.

The bispectrum of primordial tensor modes (evaluated at a given conformal time τ) can be
computed by means of the in-in formalism (see, e.g., [44, 339,347,348]) as

〈γs1(k1, τ)γs2(k2, τ)γs3(k3, τ)〉 = −i
∫ τ

−∞
dτ ′〈0|

[
γs1(k1, τ)γs2(k2, τ)γs3(k3, τ), Hγγγ

int (τ ′)
]
|0〉 ,
(6.67)

where Hγγγ
int = −Lγγγint denotes the interaction Hamiltonian at cubic order in tensor perturbations.

In the computation of the in-in integrals we will adopt the usual iε-prescription, which amounts
to deform the contour of integration by making the rotation −∞→ −∞(1− iε) in the complex
plane (see, e.g., [44]). The iε contribution turns off the interactions in the far past and projects
onto the vacuum state of the free theory. We are in particular interested in evaluating the
primordial bispectrum on super-horizon scales, i.e. taking the limit τ → 0 of Eq. (6.67).

6.3.1 Graviton bispectra for constant coupling functions

We start with the computation of the bispectrum from the Lagrangian PV1. The explicit expres-
sions of the operators of LPV1 at cubic order in tensor perturbations, as well as the interaction
Hamiltonian, can be found in Appendix B. We can then plug the interaction Hamiltonian (B.6)
into the in-in formula (6.67) and use the Wick theorem, with the contractions between the fields
that are given by definition by

〈0|γs1(k1, 0)γs2(k, τ)ε
(s2)
ij (k)|0〉 = (2π)3δs1s2δ

(3)(k1 + k)us1(k1, 0)u∗s2(k, τ)ε
(s2)∗
ij (k) , (6.68)

〈0|γs1(k1, 0)γ′s2(k, τ)ε
(s2)
ij (k)|0〉 = (2π)3δs1s2δ

(3)(k1 + k)us1(k1, 0)u∗′s2(k, τ)ε
(s2)∗
ij (k) . (6.69)

The bispectrum of primordial tensor perturbations can then be written as7

〈γs1(k1)γs2(k2)γs3(k3)〉PV1 = (2π)3δ(3)(k1+k2+k3) 4 Im

(
9∑
i=1

IiC
s1s2s3
i (k1,k2,k3)

)
+perm. (ki) ,

(6.70)
where we have defined

I1 ≡ −us1(k1, 0)us2(k2, 0)us3(k3, 0)

∫ 0

−∞

dτ ′

τ ′
(f1 + g1)

du∗s1
dτ ′

(k1, τ
′)
du∗s2
dτ ′

(k2, τ
′)u∗s3(k3, τ

′) ,

I2 ≡ −us1(k1, 0)us2(k2, 0)us3(k3, 0)

∫ 0

−∞
dτ ′

f1

2

du∗s1
dτ ′

(k1, τ
′)
du∗s2
dτ ′

(k2, τ
′)
du∗s3
dτ ′

(k3, τ
′) ,

I3 ≡ us1(k1, 0)us2(k2, 0)us3(k3, 0)

∫ 0

−∞
dτ ′

(f1 + g1)

2

du∗s1
dτ ′

(k1, τ
′)u∗s2(k2, τ

′)u∗s3(k3, τ
′) ,

I4 ≡ us1(k1, 0)us2(k2, 0)us3(k3, 0)

∫ 0

−∞
dτ ′

g1

2
u∗s1(k1, τ

′)u∗s2(k2, τ
′)
du∗s3
dτ ′

(k3, τ
′) ,

I5 ≡ −us1(k1, 0)us2(k2, 0)us3(k3, 0)

∫ 0

−∞
dτ ′

(
f1 +

g1

2

) du∗s1
dτ ′

(k1, τ
′)u∗s2(k2, τ

′)u∗s3(k3, τ
′) ,

I6 ≡ us1(k1, 0)us2(k2, 0)us3(k3, 0)

∫ 0

−∞
dτ ′

f1

2

du∗s1
dτ ′

(k1, τ
′)u∗s2(k2, τ

′)u∗s3(k3, τ
′) ,

I7 ≡ −us1(k1, 0)us2(k2, 0)us3(k3, 0)

∫ 0

−∞

dτ ′

τ ′
(f1 + g1)u∗s1(k1, τ

′)
du∗s2
dτ ′

(k2, τ
′)
du∗s3
dτ ′

(k3, τ
′) ,

7The delta functions in the momenta lead to terms like ε
(s)∗
ij (−k), but ε

(s)∗
ij (−k) = ε

(s)
ij (k) (6.19). The delta

functions in the polarization indices instead reduce the initial nine polarizations (3+6 in the interaction Hamilto-
nian) down to only three.
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I8 ≡ us1(k1, 0)us2(k2, 0)us3(k3, 0)

∫ 0

−∞
dτ ′

(f1 + g1)

2
u∗s1(k1, τ

′)u∗s2(k2, τ
′)
du∗s3
dτ ′

(k3, τ
′) ,

I9 ≡ −us1(k1, 0)us2(k2, 0)us3(k3, 0)

∫ 0

−∞
dτ ′

g1

2

du∗s1
dτ ′

(k1, τ
′)
du∗s2
dτ ′

(k2, τ
′)
du∗s3
dτ ′

(k3, τ
′) , (6.71)

where the Cs1s2s3i (k1,k2,k3), whose full expressions can be found in Appendix C, are defined
in terms of contractions between the wave vectors and the polarization tensors.

As a first approximation we assume that a(τ) ' −1/(Hτ), which holds at leading order in
slow-roll, and take the Hubble parameter H as constant during inflation. In the same spirit, we
approximate the exact graviton mode function with the mode function in a de Sitter space-time.
For tensor modes, this is given by (see, e.g., [44, 348])

us(k, τ) =
iH

MPl

√
k3

(1 + ikτ) e−ikτ . (6.72)

This is justified because the corrections to the mode function (6.72) that arise in this model are
proportional to ε and H/MPV1, which are both very small during inflation. So, using the de
Sitter mode function gives the leading order contribution to the bispectrum. For the moment
we also take the coupling functions f1 and g1 to be constant, leaving the more general case of
time dependent couplings for the next section.
We can now solve analytically the integrals in Eq. (6.71), which give

I1 = (f1 + g1)

(
H6

M6
Plk

3
1k

3
2k

3
3

)
k2

1k
2
2

[
1

k2
T

+ 2
k3

k3
T

]
, (6.73)

I2 =
f1

2

(
H6

M6
Plk

3
1k

3
2k

3
3

)
k2

1k
2
2k

2
3

6

k4
T

, (6.74)

I3 =
f1 + g1

2

(
H6

M6
Plk

3
1k

3
2k

3
3

)
k2

1

[
1

k2
T

+ 2
k2 + k3

k3
T

− 6
k2k3

k4
T

]
, (6.75)

I4 =
g1

2

(
H6

M6
Plk

3
1k

3
2k

3
3

)
k2

3

[
1

k2
T

+ 2
k1 + k2

k3
T

− 6
k1k2

k4
T

]
, (6.76)

I5 = −
(
f1 +

g1

2

)( H6

M6
Plk

3
1k

3
2k

3
3

)
k2

1

[
1

k2
T

+ 2
k2 + k3

k3
T

− 6
k2k3

k4
T

]
, (6.77)

I6 =
f1

2

(
H6

M6
Plk

3
1k

3
2k

3
3

)
k2

1

[
1

k2
T

+ 2
k2 + k3

k3
T

− 6
k2k3

k4
T

]
, (6.78)

I7 = (f1 + g1)

(
H6

M6
Plk

3
1k

3
2k

3
3

)
k2

2k
2
3

[
1

k2
T

+ 2
k1

k3
T

]
, (6.79)

I8 =
f1 + g1

2

(
H6

M6
Plk

3
1k

3
2k

3
3

)
k2

3

[
1

k2
T

+ 2
k1 + k2

k3
T

− 6
k1k2

k4
T

]
, (6.80)

I9 =
g1

2

(
H6

M6
Plk

3
1k

3
2k

3
3

)
k2

1k
2
2k

2
3

6

k4
T

, (6.81)

where we have defined the total momentum kT ≡ k1 + k2 + k3. Notice that all the previous
integrals give real results. Since all the Cs1s2s3i (k1,k2,k3) terms in Eq. (6.70) are real (this is
true also for the contributions proportional to iεijl in Eqs. (C.3)-(C.4)-(C.6)-(C.7), as can be
easily checked by direct computations), the full bispectrum vanishes:

〈γs1(k1)γs2(k2)γs3(k3)〉PV1 = 0 . (6.82)
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Hence, no parity-violating signatures arise in the graviton bispectrum if the couplings f1 and g1

are taken to be constant. Notice that this is true under the approximation of using the de Sitter
mode function for tensor modes. We expect that, using the exact solutions from the equation of
motion of PGWs, may lead to a non-vanishing result, but with contributions that are suppressed
by slow-roll parameters and the ratio H/MPV1 (see [323] for a detailed analysis of this issue in
the case of slow-roll inflation with the parity-violating Weyl cubic term).

However, since there are no reasons for the coupling functions to be constant throughout
all inflation, it is interesting to study the more general scenario in which the couplings are free
to vary with time. In this case, using the de Sitter mode function will give the leading order
non-vanishing contribution.

Before doing this, let us make a similar analysis for the Lagrangian PV2. Once again, we
refer the reader to Appendix B for the full expression of the interaction Hamiltonian at third
order in tensor perturbations, which is reported in Eq. (B.9). By plugging this into the in-in
formula (6.67), we find

〈γs1(k1)γs2(k2)γs3(k3)〉PV2 = (2π)3δ(3)(k1 + k2 + k3) Im

[
λs1
2
Ĩ1 k1ε

mi
(s1)(k1)ε(s2)

mr (k2)εr(s3)i(k3)

− i

2
(Ĩ2 + Ĩ3)εijlk1rε

(s1)m
l (k1)ε

(s2)r
j (k2)ε

(s3)
mi (k3)

]
+ perm. (ki) ,

(6.83)

where we have defined

Ĩ1 ≡ −us1(k1, 0)us2(k2, 0)us3(k3, 0)

∫ 0

−∞

dτ ′

τ ′

[
b̃1
MPl

H
− b
]
du∗s1
dτ ′

(k1, τ
′)
du∗s2
dτ ′

(k2, τ
′)u∗s3(k3, τ

′) ,

Ĩ2 ≡ −us1(k1, 0)us2(k2, 0)us3(k3, 0)

∫ 0

−∞

dτ ′

τ ′

[
b̃1
MPl

H
− b
]
u∗s1(k1, τ

′)
du∗s2
dτ ′

(k2, τ
′)
du∗s3
dτ ′

(k3, τ
′) ,

Ĩ3 ≡ us1(k1, 0)us2(k2, 0)us3(k3, 0)

∫ 0

−∞
dτ ′

b

2

du∗s1
dτ ′

(k1, τ
′)
du∗s2
dτ ′

(k2, τ
′)
du∗s3
dτ ′

(k3, τ
′) . (6.84)

Also in this case, we first work under the approximation of constant coupling functions and using
the de Sitter mode functions given in Eq. (6.72) for gravitons, taking the Hubble parameter H
to be constant during inflation. The integrals in (6.84) can then be easily solved and give

Ĩ1 =

[
b̃1
MPl

H
− b
](

H6

M6
Plk

3
1k

3
2k

3
3

)
k2

1k
2
2

[
1

k2
T

+ 2
k3

k3
T

]
, (6.85)

Ĩ2 =

[
b̃1
MPl

H
− b
](

H6

M6
Plk

3
1k

3
2k

3
3

)
k2

2k
2
3

[
1

k2
T

+ 2
k1

k3
T

]
, (6.86)

Ĩ3 = −3b

(
H6

M6
Plk

3
1k

3
2k

3
3

)
k2

1k
2
2k

2
3

k4
T

. (6.87)

Just like in the PV1 case, all the integrals give real contributions and thus none of the parity-
breaking operators contributes to the bispectrum of primordial tensor modes:

〈γs1(k1)γs2(k2)γs3(k3)〉PV2 = 0 . (6.88)

Soon after our analysis was completed, Ref. [332] came out. Here, the authors have derived
the most general tree-level bispectra for a massless graviton to all orders in derivatives, assuming
scale invariance and adopting a boostrap approach. Interestingly, one of the results of this
analysis is that a contact parity-odd correlator can only arise when 2n∂η + n∂i ≤ 3, where n∂η
and n∂i are the number of time and space derivatives in the parity-odd interaction, respectively.
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6.3. Chirality in primordial tensor bispectra

Looking at the explicit expressions of the interaction terms considered in our analysis (see
Appendix B), we see that the previous condition is not satisfied. This explains why we find
vanishing tensor bispectra in the scale-invariant limit.

6.3.2 Graviton bispectra for time dependent coupling functions

So far, we have explicitly demonstrated that the parity-breaking operators introduced in [24] give
no contributions to the primordial tensor bispectrum, assuming the de Sitter mode function for
gravitons and in the case of constant coupling functions. However, as already discussed, there are
no theoretical reasons why the couplings should be constant during all the inflationary phase.
Indeed, the couplings in Eqs. (6.24)-(6.57) depend on the scalar field and its kinetic term in
full generality. Moreover, they could acquire a non-trivial time evolution because they might
also depend on fields other than the inflaton field, being therefore not necessarily limited to a
slow-roll evolution. Furthermore, it has been shown, e.g. in Ref. [324] for the parity-violating
Weyl cubic terms, that, even if these operators do not contribute to the graviton bispectrum for
constant couplings in the de Sitter limit [323], they can instead leave non-vanishing signatures
if the couplings are free to vary with time.

Motivated by these reasons, we now extend the analysis of the previous section to the more
general scenario where the coupling functions are allowed to evolve with time during inflation,
and investigate whether parity-breaking signatures may arise in the primordial graviton bispec-
trum.

We start by analyzing the PV1 model (defined by the Lagrangian (6.15)). We restrict in
particular to the interesting case where

f1 + g1 = 0 , (6.89)

such that the model is free from instabilities (see Eqs. (6.21),(6.22), (6.24), and the discussion
after Eq. (6.23)). Indeed, when the condition (6.89) is realized, the cut-off scale MPV1 → ∞
and all the corrections to the quadratic action for tensor modes (6.20) disappear (this can also
be seen directly from the equations of motion (6.38)). In particular, this means that we recover
cT,s = 1 and χ = 0. Notice also that in such a case the theory makes sense without requiring an
effective field theory treatment. If we drop (6.89), then the couplings have to obey H/MPV 1 � 1,
which will significantly limit also the amplitude of tensor bispectra.

In order to make explicit computations, we need to assume a specific form of the coupling
functions. In the rest of the analysis we consider the case of a dilaton-like coupling, that
naturally arises in theories with extra dimensions, like string theory. This can be written as
f1 = e(φ−φ∗)/M , where M is some arbitrary energy scale. In slow-roll inflation this leads to a
coupling that is simply given by some power of the conformal time8 (see [324] for more details)

f1(τ) =

(
τ

τ∗

)A
, A = ±

√
2ε
MPl

M
, (6.92)

where ε is the usual slow-roll parameter, defined as in Eq. (6.31). The value of τ∗ is fixed by
the initial condition of Eq. (6.90). For example, we can take τ∗ to be the time when the scale

8Indeed, in slow-roll inflation the equation of motion for the inflaton field is

φ′ ' ±
√

2εMPlτ
−1 , (6.90)

where the + and − signs are for ∂V/∂φ > 0 and ∂V/∂φ < 0 respectively. This can be integrated to give

φ = φ∗ ±
√

2εMPl ln

(
τ

τ∗

)
. (6.91)

Substituting this into the exponential dilaton coupling, we end up with Eq. (6.92).
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corresponding to present observable Universe crosses the horizon during inflation, such that
|τ∗| = k−1

∗ ∼ 14 Gpc [324]. In this case, f1 would be of order unity for the current cosmological
scales.

Thanks to the constraint (6.89), the integrals I1, I3, I7, I8 in Eq. (6.71) vanish,

I1 = I3 = I7 = I8 = 0 . (6.93)

As regards the other integrals, once we have replaced the explicit expression of the mode func-
tion (6.72) for gravitons in (6.71), we end up with integrals of the kind

I(n,A) = τ−A∗

∫ 0

−∞
dτ τn+AeikT τ , (6.94)

with n+A > −1. These can be performed analytically (with the usual iε prescription) and give

I(n,A) = τ−A∗ (−1)(A+n) (ikT )(−1−A−n) Γ(n+ 1 +A)

= (−1)n (−i)(−n−1) (n+A)! (−kT τ∗)−A(−kT )(−n−1)
[
cos
(π

2
A
)

+ i sin
(π

2
A
)]

, (6.95)

where Γ(x) = (x − 1)! is the Gamma function and in the second equality we have used the
Euler’s formula. Using Eq. (6.95) we find

I2 = −I9 =
(3 +A)!

2

(
H6

M6
Plk

3
1k

3
2k

3
3

)
k2

1k
2
2k

2
3

k4
T

(−kT τ∗)−A
[
cos
(π

2
A
)

+ i sin
(π

2
A
)]

, (6.96)

I4 =
1

2

(
H6

M6
Plk

3
1k

3
2k

3
3

)
(−kT τ∗)−A k2

3

[
−(1 +A)!

k2
T

− (2 +A)!
k1 + k2

k3
T

+ (3 +A)!
k1k2

k4
T

]
×
[
cos
(π

2
A
)

+ i sin
(π

2
A
)]

,

(6.97)

I5 = −I6 =
1

2

(
H6

M6
Plk

3
1k

3
2k

3
3

)
(−kT τ∗)−A k2

1

[
−(1 +A)!

k2
T

− (2 +A)!
k2 + k3

k3
T

+ (3 +A)!
k2k3

k4
T

]
×
[
cos
(π

2
A
)

+ i sin
(π

2
A
)]

.

(6.98)

Notice that for A = 0 we recover the result of the previous section, since the imaginary parts
of the integrals (6.96)-(6.98) vanish and the bispectrum receives no contributions from the PV1
operators. When instead A 6= 0 (i.e. for time dependent couplings), the imaginary parts of these
integrals switch on parity-breaking signatures in the primordial tensor bispectrum. This can be
computed by plugging Eqs. (6.96)-(6.98) into Eq. (6.70). By doing so, we find

〈γs1(k1)γs2(k2)γs3(k3)〉PV1 = (2π)3δ(3)(k1 + k2 + k3)

(
H

MPl

)6 (τ∗
τ̄

)−A
sin
(π

2
A
)

× 2BPV1
s1s2s3(k1,k2,k3) + perm. (ki) ,

(6.99)

where we have defined

BPV1
s1s2s3(k1,k2,k3) =

1

k3
1k

3
2k

3
3

{
(3 +A)!

k2
1k

2
2k

2
3

k4
T

T s1s2s31 (k1,k2,k3) + k2
3

[
−(1 +A)!

k2
T

−(2 +A)!
k1 + k2

k3
T

+ (3 +A)!
k1k2

k4
T

]
T s1s2s32 (k1,k2,k3)

+ k2
1

[
−(1 +A)!

k2
T

− (2 +A)!
k2 + k3

k3
T

+ (3 +A)!
k2k3

k4
T

]
× T s1s2s33 (k1,k2,k3)

}
.

(6.100)
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Figure 6.1: Shapes of the RRR and RRL graviton bispectra in the PV1 model, with A = 1. The
quantities BRRR(1, x2, x3)x2

2x
3
3 and BRRL(1, x2, x3)x2

2x
3
3 are plotted as functions of x2 = k2/k1 and

x3 = k3/k1. They are both normalized to unity in the equilateral limit, x2 = x3 = 1.

The T s1s2s3i (k1,k2,k3) are again defined in terms of contractions between the wave vectors and
the polarization tensors. Their full expressions, which can be written as linear combinations of
the Cs1s2s3i (k1,k2,k3), can be found in Appendix C.

In Eq. (6.99) we have evaluated the bispectrum at the horizon-crossing time of the total
momentum kT , τ̄ = −1/kT . In fact, it is well known that, when performing in-in integrals,
the main contributions arise around the horizon crossing of the overall momentum kT in the
case of derivative interactions, as in the models under study. Notice that, because of the term
(τ∗/τ̄)−A arising due to the time dependence of the coupling, the amplitude of the bispectrum is
scale-dependent. In particular, for values of A < 0 the amplitude increases going to small scales.
For A > 0, instead, the amplitude of the graviton bispectrum increases going to large scales.

In Fig. 6.1 we plot the shape functions for two different polarization configurations, the first
having s1 = s2 = s3 = R and the second with s1 = s2 = R and s3 = L. The other cases
differ from these only by a minus sign, thus giving the same shape function. In particular,
from the definition (6.65), we show the quantities BRRR(1, x2, x3)x2

2x
3
3 and BRRL(1, x2, x3)x2

2x
3
3

as functions of x2 = k2/k1 and x3 = k3/k1. The plots are done assuming A = 1, but we
have checked that the qualitative behaviour of the shapes is independent from the value of A,
which thus affects only the amplitude (and, in particular, its scale-dependence) of the primordial
bispectra. As already remarked in the previous sections, the shape function of the bispectrum is
a powerful tool to discriminate among the various inflationary models. Indeed, different models
of inflation contain different interaction terms between the dynamical fields of the theory, and
thus leave distinctive signatures in the shapes of the primordial bispectra [321].

To quantify how much a shape S1 is similar to a reference shape S2, it is common to introduce
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the cosine of the two shapes

cos(S1, S2) ≡ S1 · S2

(S1 · S1)1/2(S2 · S2)1/2
, (6.101)

where the scalar product is defined as (see, e.g., [319,324,349])

S1 · S2 ≡
∑
ki

S1(k1, k2, k3)S2(k1, k2, k3)

P (k1)P (k2)P (k3)
. (6.102)

Here, the summation runs over all the wave vectors that form a triangle in the momentum space
and P (k) denotes the (tensor) power spectrum. By definition, the cosine is equal to 1 when
S1 = S2. Apart for an overall coefficient (that eventually cancels out when computing (6.101)),
the quantity (6.102) can be expressed as an integral over x2 and x3 as9

S1 · S2 ∝
∫ 1− kmin

kmax

kmin
kmax

dx2

∫ 1− kmin
kmax

1−x2

dx3 x
4
2x

4
3 S1(1, x2, x3)S2(1, x2, x3) . (6.103)

As far as CMB experiments are concerned, in the following we evaluate the cosine between the
shapes by summing over all the corresponding configurations in multipole space (using, as a
first approximation, that ` ∝ k) for multipoles ` ranging, in an ideal case, from `min = 2 up to
`max = 1000.10 In the case of the shapes plotted in Fig. 6.1, we find

cos
(
BPV1
RRR, BS

)
'


0.006 , S = equilateral

0.795 , S = local

0.328 , S = orthogonal

(6.104)

for the RRR case, while for the RRL polarizations we have

cos
(
BPV1
RRL, BS

)
'


0.046 , S = equilateral

0.546 , S = local

0.299 , S = orthogonal .

(6.105)

From these results and Fig. 6.1, we realize that the maximum contributions come mainly from
the squeezed configuration (corresponding to, e.g., k3 � k1 ' k2).

We now compute the bispectrum from the PV2 Lagrangian (6.15), assuming time dependent
couplings. Analogously to what we have done for the PV1 model, we restrict to the case with

b̃1
MPl

H
− b = 0 , (6.106)

such that the model is free from instabilities. As a time dependent dilaton-like coupling we
choose

b(τ) =

(
τ

τ∗

)A
, A = ±

√
2ε
MPl

M
. (6.107)

9Notice that the ratio between two scales that enter in a given bispectrum can never be exactly 0 or 1, as in
both cases we would deal with unphysical infinite-wavelength modes. This motivates the presence of the ratios
kmin/kmax in the extremes of integration in (6.103), so that the cosine between shapes depends on the ratio
between the minimum and maximum scales that a given experiment can probe.

10In such a case, the choice of `max = 1000 is just indicative. Notice that this choice is rather optimistic if
one considers bispectra involving the B-mode polarization field of the CMB (see [350, 351]). However, we have
explicitly checked that the cosines between the shapes are only weakly dependent on `max for `max & 100.
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Figure 6.2: Shapes of the RRR and RRL graviton bispectra in the PV2 model, with A = 1. The
quantities BRRR(1, x2, x3)x2

2x
3
3 and BRRL(1, x2, x3)x2

2x
3
3 are plotted as functions of x2 = k2/k1 and

x3 = k3/k1. They are both normalized to unity in the equilateral limit, x2 = x3 = 1.

The integrals Ĩ1 and Ĩ2 in Eq. (6.84) vanish, while for Ĩ3 we find

Ĩ3 = −(3 +A)!

(
H6

M6
Plk

3
1k

3
2k

3
3

)
k2

1k
2
2k

2
3

k4
T

(−kT τ∗)−A
[
cos
(π

2
A
)

+ i sin
(π

2
A
)]

. (6.108)

The bispectrum in Eq. (6.83) can thus be rewritten as

〈γs1(k1)γs2(k2)γs3(k3)〉PV2 = (2π)3δ(3)(k1 + k2 + k3)
(3 +A)!

2

(
H

MPl

)6 (τ∗
τ̄

)−A
sin
(π

2
A
)

×BPV2
s1s2s3(k1,k2,k3) + perm. (ki) ,

(6.109)

where we have defined

BPV2
s1s2s3(k1,k2,k3) =

1

k3
1k

3
2k

3
3

{
k2

1k
2
2k

2
3

k4
T

[
iεijlk1r ε

(s1)m
l (k1)ε

(s2)r
j (k2)ε

(s3)
mi (k3)

]}
. (6.110)

Thus, also the PV2 operators give a non-vanishing contribution to the three graviton bispectrum
in the case of time-dependent couplings. Notice that in the limit where A = 0 we recover the
result of the previous section and the parity-breaking signatures are not present anymore.

In Fig. 6.2 we plot the shape functions for the polarization configurations RRR and RRL.
As in the previous case, we can compute the cosine of the shape functions. For `max = 1000, we
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find

cos
(
BPV2
RRR, BS

)
'


0.999 , S = equilateral

0.421 , S = local

0.205 , S = orthogonal

(6.111)

for the RRR case, and

cos
(
BPV2
RRL, BS

)
'


0.700 , S = equilateral

0.429 , S = local

0.095 , S = orthogonal

(6.112)

for the RRL polarizations. The RRR shape peaks in the equilateral configuration (corresponding
to k1 ' k2 ' k3), as can also be seen directly from Fig. 6.2. The RRL shape receives instead a
non-negligible contribution also in the squeezed configuration.

6.3.3 Comments on the consistency relation

An interesting feature of the bispectra just derived is that they potentially lead to the breaking of
the single field slow-roll consistency relation for tensor bispectra [44,352–354].11 These relations
allow to predict the strict squeezed limit behaviour of the primordial bispectra in terms of the
primordial power spectra [44, 352–358, 360–363]. According to these and neglecting the small
scale dependence of the power spectra, the squeezed limit expression of the 3-graviton bispectrum
is predicted to be

〈γs1(k1)γs2(k2)γs3(k3)〉
∣∣
k1→0

= (2π)3δ(3)(k1 + k2 + k3)
3

2
P s1T (k1)P s2T (k2) ε

(s1)
ij

ki2k
j
2

k2
2

δs2s3 .

(6.113)

In the literature we already find some examples of models breaking the tensor consistency rela-
tion, such as scenarios where we have either additional particle content [354,364,365], violation
of the adiabatic evolution of tensor perturbations [366–368], or violation of spatial diffeomor-
phisms [369,370].

In our case, we have found that both RRR (LLL) and RRL (LLR) tensor bispectra orig-
inated by the new PV1 parity-breaking operators give a nonzero contribution in the squeezed
limit (see Fig. 6.1), which is proportional to the couplings f1 and g1. On the contrary, primordial
tensor power spectra, being the same of general relativity due to the constraint (6.89), do not
depend by either f1 or g1. The result is that this squeezed signal is not predicted by Eq. (6.113),
leading to the violation of the 3-graviton consistency relation. A similar pattern is also shared
by the RRL (LLR) bispectrum originated by the PV2 parity-breaking operators.12 Notice that
a similar pattern has been found previously in [325,326] in the context of studies of primordial

11It has been argued (see, e.g., [355–358]) that in the context of single field slow-roll models of inflation primordial
bispectra in the squeezed limit (when one of the ki modes is much smaller than the others) correspond to a gauge
artifact: in such a case one can perform a residual gauge transformation, passing from global coordinates to
Conformal Fermi Coordinates (CFC), the latter being the coordinate frame of an observer that follows inflation
in the background perturbed by this long-wavelength mode kL. After performing this coordinate transformation,
the squeezed limit bispectrum vanishes at leading order in the kL/kS ratio, with corrections that, by the virtue of
the equivalence principle, must be quadratic in kL/kS . However, recently in [359] it has been shown that at least
for the case of the scalar bispectrum this gauge artifact is valid only in the unphysical exactly infinite-wavelength
limit where the long mode kL = 0, while for physical modes kL 6= 0 we lose this residual gauge freedom so that
the consistency relations are indeed physical and measurable.

12The reason why the RRR (LLL) bispectrum originated by PV2 operators does not follow this behavior seems
to be that, in the case where one correlates the same polarizations states, the squeezed contributions arise from
the operators with more spatial derivatives, e.g. those in Eq. (6.14) which contain the Riemann or Ricci tensors
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non-Gaussianities in Horava-Lifshitz gravity: in such a case we get squeezed parity-violating
tensor bispectra that violate the tensor consistency relation, as they get a nonzero contribution
in the exact squeezed limit that is not completely predicted by how primordial tensor power
spectra in the right-hand side of (6.113) are modified by Horava-Lifshitz gravity.

We argue that this analogy is not accidental, but related to the fact that both the theories
introduce parity-violating operators that violate also the Lorentz symmetry. In this regards,
notice that this signature can be found only in particular late-time observables sensitive to the
parity violation. In fact, for instance the modification introduced to the overall tensor bispectra
(when summing over all the tensor polarizations) is equal to zero, due to the fact that the
graviton bispectra under consideration have odd parity, i.e. they obey

〈γR(k1)γR(k2)γR(k3)〉 = −〈γL(−k1)γL(−k2)γL(−k3)〉 , (6.114)

and analogously for RRL bispectrum versus LLR.

6.4 Imprints of parity violation during inflation on CMB bis-
pectra

In this section we want to briefly discuss the observational prospects for detecting these parity-
breaking signatures in the primordial bispectra through CMB experiments. In order to find
out CMB bispectra sensitive to our parity-breaking signature, we follow the same reasoning as
in [324, 330, 371, 372]. The starting point is the expression of the following spherical harmonic
coefficients of the temperature (X = T ) and E/B-mode polarization (X = E/B) anisotropies
from the two circular polarization states of tensor perturbations [373, 374]

a
(t)X
`m = 4π(−i)`

∫
d3k

(2π)3
TX`(t)(k)

∑
s=±2

(s
2

)x
γs(k)−sY

∗
`m(k̂) , (6.115)

where for convenience of the subsequent notation we have defined γ±2(k) ≡ γR/L(k). Here,

sY`m(k̂) denotes a spin-weighted spherical harmonic, TX`(t)(k) is the tensor transfer function, and

x ≡ 0 (1) for X = T,E (B). The explicit expressions of the tensor transfer functions can be
found in Ref. [373]. Using Eq. (6.115), the CMB bispectra sourced by the primordial graviton
bispectra can be written as

〈
a

(t)X1

`1m1
a

(t)X2

`2m2
a

(t)X3

`3m3

〉
=

3∏
n=1

4π(−i)`n
∫

d3kn
(2π)3

TXn`n(t)(kn)
∑
sn=±2

(sn
2

)xn
−snY

∗
`nmn(k̂n)

× 〈γs1(k1)γs2(k2)γs3(k3)〉 . (6.116)

Using the following well-known property of the weighted spherical harmonics

−sY`m(−k̂) = (−1)` sY`m(k̂) , (6.117)

in the PV1 case. However, in the PV2 model these operators do not give any contribution to tensor perturbations
(see Appendix B), as they also contain the derivative of the lapse function, which vanishes since N = 1. Because
of this, in the PV2 model we find a signal that peaks in the equilateral shape when the three polarizations
are equal, but peaks in between the equilateral and squeezed limits for bispectra involving mixed polarization
states. A similar feature has been found in the bispectra of PGWs in Horava-Lifshitz gravity for some of the
operators, as noticed in [325]. We expect however that squeezed contributions may be present in the PV2 model
in mixed correlators between scalar and tensor perturbations, since in this case also the operators with more
spatial derivatives contribute to the final result.
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we can rewrite Eq. (6.116) as

〈
a

(t)X1

`1m1
a

(t)X2

`2m2
a

(t)X3

`3m3

〉
=

3∏
n=1

4π(−i)`n
∫

d3~kn
(2π)3

TXn`n(t)(kn)
∑
sn=±2

(sn
2

)xn
−snY

∗
`nmn(k̂n)

× (−1)x1+x2+x3+`1+`2+`3〈γ−s1(−k1)γ−s2(−k2)γ−s3(−k3)〉 . (6.118)

Now, matching Eq. (6.116) with (6.118) under the parity-odd condition (6.114), we find that〈
a

(t)X1

`1m1
a

(t)X2

`2m2
a

(t)X3

`3m3

〉 [
1 + (−1)x1+x2+x3+`1+`2+`3

]
= 0 (6.119)

must always hold, independently from the kind of CMB modes that we are cross-correlating.
Thus, a non-vanishing contribution to the CMB angular bispectrum is confined to the following
multipole configurations

x1 + x2 + x3 + `1 + `2 + `3 = odd . (6.120)

It is worth stressing that these combinations are not realized by the usual parity-conserving
theories like Einstein gravity, for which the sum defined in (6.120) has to be even. For this
reason they can be robust indicators of parity-breaking models with odd tensor bispectra if they
are detected.

According to the latest forecasts and previsions (see, e.g., [350, 351, 372, 375]), forthcoming
CMB experiments focusing on the polarization field (like, e.g., the LiteBIRD mission) will be able
to probe order 1 amplitudes of tensor squeezed non-Gaussianities through the measurement of
the CMB angular bispectra involving the B-modes. This would justify a more detailed analysis
of the detection prospects of these models in CMB angular bispectra in view of next experiments
focusing on the search for the B-mode polarization field of the CMB.
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Part IV

Overview and conclusions

Over the past decades, our understanding of the Universe has been revolutionized. In the era of
precision cosmology, a wealth of cosmological observations has allowed to establish the concor-
dance ΛCDM model, which describes the evolution of our Universe from its early stages until
today in terms of just six parameters. At the same time, the Standard Model (SM) of particle
physics, which describes our Universe at subnuclear level, has been tested with impressive pre-
cision in a number of laboratory and collider experiments. Nevertheless, there are still plenty
of open issues that are yet to be understood, such as the nature of dark matter (DM) and dark
energy or the physics underlying inflation. Moreover, the stunning level of accuracy that cosmo-
logical observations have reached allows us to test with increasing precision possible departures
from the standard models of cosmology and particle physics. This is the topic of this Thesis,
where we have used the latest measurements of the Cosmic Microwave Background (CMB) and
the Large-Scale Structure (LSS) of the Universe to constrain fundamental physics scenarios that
go beyond the two aforementioned standard models.

First of all, in chapter 1 we have reviewed the foundations of the standard cosmological
model, its shortcomings and we have introduced the inflationary paradigm as a possible solution
to them. Inflation also provides a compelling mechanism to produce the primordial perturbations
in the Universe.

Then, in chapter 2 we have analyzed the possibility that the DM is composed of macroscopic-
size objects, dubbed Macro Dark Matter (MDM) [16]. By keeping a phenomenological approach,
we have focused on a particular process that might be associated to MDM, namely the capture
of baryons of the cosmological plasma by Macros. This results in the injection of high-energy
photons in the baryon-photon plasma. We have considered two broad classes of MDM: in
the first one, Macros are composed of ordinary matter and the amount of energy released is
set by the binding energy I of Macros, which we have treated as a free parameter; in the
second scenario, Macros are composed of antibaryons and proton capture results in proton-
antiproton annihilations. We have derived constraints on the Macro parameter space from three
cosmological processes: the change in the baryon density between the end of the Big Bang
Nucleosynthesis (BBN) and the CMB decoupling, the production of spectral distortions in the
CMB and the kinetic coupling between charged MDM and baryons at the time of recombi-
nation. In the case of neutral Macros we have found that the tightest constraints are set by
the baryon density condition in most of the parameter space. For Macros composed of ordi-
nary matter and with binding energy I, this has led to the following bound on the reduced
cross-section: σX/MX . 6.8 × 10−7 (I/MeV)−1.56 cm2 g−1. Charged Macros with surface po-
tential VX , instead, are mainly constrained by the tight coupling with baryons, resulting in
σX/MX . 2× 10−11 (|VX |/MeV)−2 cm2 g−1. Finally, we have shown that future CMB spectral
distortions experiments, like PIXIE and SuperPIXIE, would have the sensitivity to probe larger
regions of the parameter space.
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Then, we have focused on axions. In chapter 3 we have introduced the QCD axion as a
possible solution to the strong CP problem of QCD. We have discussed the main QCD axion
models, namely the KSVZ and the DFSZ axions, and we have seen how the parameter space
can be expanded to consider more general axion-like particles (hereafter simply axions).

In chapter 4 we have considered thermal axions in the mass range 10−4 ≤ ma ≤ 100 eV.
These are produced from scattering processes between particles belonging to the primordial
cosmological plasma. Depending on their mass, thermally-produced axions play a different cos-
mological role and can behave either as dark radiation or as a hot, warm or cold DM component.
Our analysis naturally accounts for all these possibilities. Under the assumption that axions are
predominantly produced from either axion-photon or axion-gluon processes, we have constrained
the axion couplings to photons and gluons using data of the CMB temperature and polarization
anisotropies and baryon acoustic oscillations (BAO). The bounds on the axion-photon coupling
are stronger than those obtained from the CAST collaboration for masses ma & 3 eV. The
bounds on the axion-gluon coupling are only overcome by those coming from SN1987A energy
loss considerations. Nevertheless, the cosmological limits derived in our analysis are independent
and complementary to the astrophysical ones. For the KSVZ (QCD) axion, our results translate
into a lower limit on the axion decay constant given by fa & 2×107 GeV. This implies an upper
limit on the mass of the KSVZ axion given by ma . 0.3 eV.

Future CMB surveys will be able to probe the presence of thermal relics with improved
sensitivity. Considering the forecast sensitivity of CMB Stage-4 (CMB-S4) to extra relativistic
species, the bound on the axion-photon coupling will be improved by roughly a factor 3 in the
case of light axions behaving as dark radiation (ma . 10−2 eV). The bound on the axion-gluon
coupling would instead improve our current estimates by about one order of magnitude. As
regards heavier axions behaving as warm or cold DM, including the measurements of small-scale
CMB anisotropies calls for a more careful treatment of non-linearities in the CMB lensing. This
is still an open issue which must be taken into account when dealing with data from both ACT
and future surveys like CMB-S4 and SO.

In chapter 5 we have derived new bounds on Lorentz-violating (LV) electrodynamics exploit-
ing the most recent measurements of the CMB polarization. In the framework of the minimal
Standard Model Extension (SME) [17–19], we have considered the effects generated by renormal-
izable operators of mass dimension d ≤ 4. These consist of a CPT-odd (d = 3) and a CPT-even
(d = 4) operator. Such operators are responsible, respectively, for cosmic birefringence, i.e. the
rotation of the linear polarization plane of CMB photons, and for the generation of circular
polarization. Our analysis relies on the formalism developed in Ref. [268]. We have provided the
first concrete application of this formalism, which allows to describe the effects of non-standard
propagation of radiation in terms of an effective susceptibility tensor and then derive the as-
sociated modifications to the CMB spectra. In our specific case, the effects of the minimal LV
operators on the CMB spectra are encoded in four phenomenological parameters, defined in
Eqs. (5.66)-(5.69). The parameters characterizing the CPT-odd term are β2

AF,T and β2
AF,S and

are related to the time and space components of the vector kAF in the action in Eq. (5.1). The
CPT-even term is parameterized by β2

F,E and β2
F,B, which depend on the components of the ten-

sor kF . We have shown that, given the sensitivity of current V-modes experiments, we are able
to constrain only the combination of the CPT-even coefficients defined in Eq. (5.86), which we
have labeled kF,E+B. This parameter has been constrained to kF,E+B < 2.31×10−31 at 95% CL.
This improves the previous bound derived using CMB data by roughly one order of magnitude.
This is only overcome by the bound coming from optical polarimetry of extragalactic sources.

The limits we have obtained on the CPT-odd coefficients, i.e. |k(3)
(V )00| < 1.54 × 10−44 GeV

and |kAF| < 0.74 × 10−44 GeV at 95% CL, are respectively one and two orders of magnitude
stronger than previous CMB-based limits. These are the strongest constraints to date, even
looking beyond CMB analyses.
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The method adopted in our analysis paves the way for many possible extensions and general-
izations of our work. On one hand, a detailed forecast analysis will shed light on the sensitivity
of future CMB surveys to Lorentz violations. Indeed, CMB polarization is the main target of
next-generation CMB surveys. Likely, future experiments which will improve the current mea-
surements of V-modes will allow to disentangle the effects of the two CPT-even parameters,
potentially setting individual bounds on these two coefficients. At the same time, our study
could be extended to consider possible generalizations of the theoretical model, both in the
context of current and future CMB data. As an example, it would be interesting to analyze the
effects of the non-renormalizable (d > 4) operators of the SME action on the CMB. These might
carry more direct information about the high-energy physics underlying the effective Lagrangian
of the SME.

Finally, in chapter 6 we have studied inflation within chiral scalar-tensor theories of gravity,
that extend Chern-Simons gravity by including parity-violating operators containing first and
second derivatives of the non-minimally coupled inflaton field [24]. The parity violation induces
a different behaviour in the propagation of the two circular polarization states of primordial
gravitational waves (PGWs). At linear level, this effect is quantified by the relative difference
between the left-handed and right-handed tensor power spectra, the so-called chirality of PGWs.
We have shown that the amount of chirality in the power spectrum of PGWs is suppressed and
it is degenerate with the prediction of other parity-violating theories of gravity. Motivated by
these considerations, we have made a detailed analysis of the parity-breaking signatures on
the bispectrum of primordial tensor modes. We have shown that the new contributions to the
graviton bispectra are vanishing if the couplings in the new operators are constant in a pure
de Sitter phase. An explanation based on symmetry arguments has been proposed in [332].
If instead the coupling functions are time-dependent during inflation, the tensor bispectra ac-
quire non-vanishing contributions from the parity-breaking operators even in the exact de Sitter
limit, with maximal signal in the squeezed and equilateral configurations. We have discussed
the impact of these parity-violating signatures on the CMB bispectra and the prospects for
detecting them with forthcoming CMB experiments. Indeed, it is widely known that primordial
non-Gaussianities (PNG) are a powerful observable, given their direct connection to the high-
energy physics underlying the inflationary dynamics. The increased sensitivity of future CMB
experiments to PNG might open a unique window to probe fundamental physics at energies far
beyond the ones accessible with both laboratory experiments and astrophysical observations.

With the huge amount of available data, cosmological observations have marked a revolution
in our understanding of the Universe. Even though many questions are still left without an
answer, the increasing precision of future cosmological surveys will give us an unprecedented
opportunity to shed light on some of these open issues, bringing to important advances in our
comprehension of the fundamental laws of Nature.
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Appendix A

Spin-weighted functions and spin
operators

Here, we briefly review the definitions and the main properties of the spin-raising and spin-
lowering operators. For more details we refer to reader to [376]. Given a spin-s function sf(θ, φ)

defined on the 2D sphere, the spin-raising ( ′∂ ) and spin-lowering ( ′∂ ) operators act on sf(θ, φ)
as

′∂ sf(θ, φ) = −(sin θ)s
[
∂

∂θ
+ i csc θ

∂

∂φ

]
(sin θ)−s sf(θ, φ) , (A.1)

′∂ sf(θ, φ) = −(sin θ)−s
[
∂

∂θ
− i csc θ

∂

∂φ

]
(sin θ)s sf(θ, φ) . (A.2)

The new functions ′∂ sf(θ, φ) and ′∂ sf(θ, φ) have spin s + 1 and s − 1, respectively. In the
context of CMB polarization, we usually have to deal with spin-2 quantities, ±2f(θ, φ). Since
spin-0 quantities are easier to be handled, we can act twice on ±2f with the spin-raising and
lowering operators, so that we get

′∂ 2
−2f(µ, φ) =

(
−∂µ −

m

1− µ2

)2 [
(1− µ2)−2f(µ, φ)

]
, (A.3)

′∂ 2
+2f(µ, φ) =

(
−∂µ +

m

1− µ2

)2 [
(1− µ2) 2f(µ, φ)

]
, (A.4)

with µ ≡ cos θ and m is defined by the condition ∂φ sf(µ, φ) = im sf(µ, φ).

As a scalar field can be expanded on the sphere in a basis of spherical harmonics Y`m(θ, φ),
spin-weighted functions with spin s 6= 0 can be expanded on the sphere in terms of the spin-
s spherical harmonics, sY`m(θ, φ). These satisfy the following orthogonality and completeness
relations: ∫ 2π

0
dφ

∫ 1

−1
d cos θsY

∗
`′m′(θ, φ)sY`m(θ, φ) = δ``′δmm′ , (A.5)∑

`m

sY
∗
`m(θ, φ)sY`m(θ′, φ′) = δ(φ− φ′)δ(cos θ − cos θ′) . (A.6)

Using Eqs. (A.1)-(A.2), we can express the spin-weighted spherical harmonics sY`m(θ, φ) in terms
of the common spin-0 spherical harmonics Y`m(θ, φ) as

sY`m(θ, φ) =

[
(`+ s)!

(`− s)!

]−1/2
′∂ sY`m(θ, φ) (0 ≤ s ≤ `) , (A.7)
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sY`m(θ, φ) =

[
(`+ s)!

(`− s)!

]1/2

(−1)s ′∂ −sY`m(θ, φ) (−` ≤ s ≤) . (A.8)

Finally, it is possible that spin-weighted spherical harmonics satisfy the following relations:

sY
∗
`m(θ, φ) = (−1)s −sY`−m(θ, φ) , (A.9)

′∂ sY`m(θ, φ) = [(`− s)(`+ s+ 1)]1/2 s+1Y`m(θ, φ) , (A.10)

′∂ sY`m(θ, φ) = − [(`+ s)(`− s+ 1)]1/2 s−1Y`m(θ, φ) , (A.11)

′∂ ′∂ sY
∗
`m(θ, φ) = −(`− s)(`+ s+ 1)sY

∗
`m(θ, φ) . (A.12)
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Appendix B

Interaction Hamiltonians of chiral
scalar-tensor theories at cubic order
in tensor perturbations

B.1 PV1 interaction Hamiltonian

By expanding γij up to third order, the operators present in (6.14) at cubic order in tensor
perturbations take the following forms
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B.2. PV2 interaction Hamiltonian
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From these, we can then compute the interaction Hamiltonian. In Fourier space, this reads
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(B.6)

where the prime denotes a derivative with respect to conformal time.

B.2 PV2 interaction Hamiltonian

At cubic order in tensor perturbations, the operators in the Lagrangian (6.15) read

εijlKmiDlK
m
j =

1

4
a2 εijl

[
(∂lγ̇

m
j )γ̇mrγ

r
i + (∂rγ

m
l )γ̇ rj γ̇mi

]
, (B.7)
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B.2. PV2 interaction Hamiltonian

εijlKmiK
n
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m
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ȧa (∂j γ̇

m
l )γ̇mrγ

r
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]
. (B.8)

The interaction Hamiltonian in Fourier space is thus given by

HPV2
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(B.9)
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Appendix C

Explicit expressions of
C
s1s2s3
i (k1,k2,k3) and T

s1s2s3
i (k1,k2,k3)

We report here the complete expressions of the contributions that appear in the PV1 bispec-
trum (6.70):

Cs1s2s31 (k1,k2,k3) = Cs1s2s32 (k1,k2,k3) = λs1k1ε
mi
(s1)(k1)ε(s2)

mr (k2)εr(s3)i(k3) , (C.1)
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1ε
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]
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j (k1)εkr(s2)(k2)ε(s3)j

m (k3) , (C.2)
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ε
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(C.5)

Cs1s2s37 (k1,k2,k3) = Cs1s2s39 (k1,k2,k3) = iεijlk1r ε
(s1)m
l (k1)ε
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Cs1s2s38 (k1,k2,k3) = ik2
1ε
ijl
[
k3l ε
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mi (k1)ε

(s2)
jk (k2)εkm(s3)(k3) + k2k ε
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. (C.7)

The T s1s2s3i (k1,k2,k3) that enter in the final expression of the PV1 bispectrum (6.99) with
time-dependent couplings can be written in terms of the Cs1s2s3i (k1,k2,k3) as

T s1s2s31 (k1,k2,k3) = Cs1s2s32 (k1,k2,k3)− Cs1s2s37 (k1,k2,k3) , (C.8)

T s1s2s32 (k1,k2,k3) = Cs1s2s34 (k1,k2,k3) , (C.9)

T s1s2s33 (k1,k2,k3) = Cs1s2s35 (k1,k2,k3)− Cs1s2s36 (k1,k2,k3) . (C.10)
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Appendix D

Polarization tensors

In this section we set our conventions for the polarization tensors of PGWs by fixing an explicit
representation for them. We can first use the momentum conservation, k1 + k1 + k3 = 0, and
the invariance under rotations to make the three wave vectors lying on the same plane, that we
choose to be the (x, y) plane:

k1 = k1(1, 0, 0) , k2 = k2(cos θ, sin θ, 0) , k3 = k3(cosϕ, sinϕ, 0) , (D.1)

where θ and ϕ are the angles that k1 forms with k2 and k3 respectively. Without loss of
generality, we can choose 0 ≤ θ ≤ π and π ≤ ϕ ≤ 2π, such that

cos θ =
k2

3 − k2
1 − k2

2

2k1k2
, sin θ =

λ

2k1k2
, cosϕ =

k2
2 − k2

3 − k2
1

2k3k1
, sinϕ = − λ

2k3k1
, (D.2)

with

λ =
√

2k2
1k

2
2 + 2k2

2k
2
3 + 2k2

3k
2
1 − k4

1 − k4
2 − k4

3 . (D.3)

With this representation of the wave vectors we can then write explicitly the polarization tensors
as [323,377]

ε(s)(k1) =
1√
2

0 0 0
0 1 iλs
0 iλs −1

 , (D.4)

ε(s)(k2) =
1√
2

 sin2 θ − sin θ cos θ −iλs sin θ
− sin θ cos θ cos2 θ iλs cos θ
−iλs sin θ iλs cos θ −1

 , (D.5)

ε(s)(k3) =
1√
2

 sin2 ϕ − sinϕ cosϕ −iλs sinϕ
− sinϕ cosϕ cos2 ϕ iλs cosϕ
−iλs sinϕ iλs cosϕ −1

 , (D.6)

where λs = ±1 for s = R and s = L, respectively.
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