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Abstract: This paper investigates the effects on the material microstructure of varying the Inter-Layer
Cooling Time (ILCT) during the printing process in laser powder bed fusion (L-PBF) multi-laser
machines. Despite these machines allowing higher productivity rates compared to single laser
machines, they are affected by lower ILCT values, which could be critical for material printability
and microstructure. The ILCT values depend both on the process parameter sets and design choices
for the parts and play an important role in the Design for Additive Manufacturing approach in L-PBF
process. In order to identify the critical range of ILCT for this working condition, an experimental
campaign is presented on the nickel-based superalloy Inconel 718, which is widely used for the
printing of turbomachinery components. The effect of ILCT on the microstructure of the material is
evaluated in terms of porosity and melt pool analysis on printed cylinder specimens, considering
ILCT decreasing and increasing in the range of 22 to 2 s. The experimental campaign shows that an
ILCT of less than 6 s introduces criticality in the material microstructure. In particular, at an ILCT
value of 2 s, widespread keyhole porosity (close to 1‰) and critical and deeper melt pool (about
200 microns depth) are measured. This variation in melt pool shape indicates a change in the powder
melting regime and, consequently, modifications of the printability window promoting the expansion
of the keyhole region. In addition, specimens with geometry obstructing the heat flow have been
studied using the critical ILCT value (2 s) to evaluate the effect of the surface-to-volume ratio. The
results show an enhancement of the porosity value (about 3‰), while this effect is limited for the
depth of the melt pool.

Keywords: laser powder bed fusion; inter-layer cooling time; melt pool morphology; nickel-based
superalloys; Inconel 718; design for additive manufacturing

1. Introduction

Additive manufacturing (AM), contrary to the conventional machining methods in
which the product is manufactured by removing the unwanted material from the blank [1],
allows structure and component fabrications in a layer-by-layer material deposition directly
from a sliced CAD model [1–7].

Laser powder bed fusion (L-PBF), according to ISO/ASTM 52900 standard, is an AM
process in which thermal energy selectively fuses regions of a powder bed. This technol-
ogy is revolutionizing the manufacturing approach to obtain near-net-shape components,
especially for products with high geometric complexity [8–10]. The main competitive
advantages of L-PBF compared to other metal AM technologies are the low heat generation
and resulting lower distortion and, consequently, the high accuracy of the finished part,
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which can be produced at a relatively high production speed and low material cost. Overall,
this technique can be considered as probably the most widespread, versatile and promising
among the metal AM techniques [11]. Due to these advantages, the L-PBF process can be
used to produce geometrically complex, near-net-shape parts with good surface integrity
and superlative mechanical behavior [12]. In addition, L-PBF can process many metal
alloys, such as nickel-based superalloys, which are extremely important for high-value
engineering products. The use of L-PBF can solve some of the manufacturing problems of
these materials, which are difficult to manufacture using conventional machining methods
due to their high hardness and low thermal conductivity.

Despite all these advantages compared to the conventional machining methods, this
process is affected by low efficiency in terms of material handling, high maintenance costs
and low production volume [13]. The build rate of L-PBF is roughly estimated to be around
40 cm3/h, lower than that estimated for electron beam melting (EBM) and direct energy
deposition (DED) of 70–100 and 140 cm3/h, respectively [14].

As a result, the need to make this process more productive and competitive with other
technologies is becoming the most crucial goal in this field.

Increasing productivity [15,16] means raising the amount of volume deposed and
melted in the unit of time; this goal is achievable through the implementation of the
following solutions:

- Process parameters optimization [17,18] using high layer thickness [15], fast scanning
speed and increasing hatch distance [19].

- New printing strategy as Hull-Core [16].
- Increasing the number of heat sources using multi-laser machines [20].

Among all the proposed solutions, using multi-laser machines is the best, allowing
print volumes for the job to be doubled or even tripled.

Although these machines allow sharp increases in print volumes, they suffer from
very low Inter-Layer Cooling Time (ILCT) [21–23].

The ILCT is calculated as the time between the exposure of one layer and the next,
so it is different from the Inter-Layer Time (ILT) [22] constant during the printing when
no laser exposure is activated, which is also calculated considering the time required for
powder recoating. The length of this time between successive laser scans of a point on the
cross-section varies from layer to layer, so this time is not constant across all layers due to
geometry variations in the cross-sectional areas per layer (see Figure 1). This parameter
influences the average input rate into the part and changes the temperature of the substrate.
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Since the process is essentially thermally driven, the difference in thermal history
between layer parts or from layer to layer could affect the mechanical properties and
microstructure [24–38]. According to Williams et al. [21], this phenomenon has not been
extensively studied in the literature for the L-PBF process; only a few studies have been
performed for the Ti-6Al-4V alloy [39,40]. On the contrary, some effects of ILCT in DED
have been reported [41–43] and the correlation between these parameters and porosity,
Vickers hardness and compressive strength is identified. Moreover, it is pointed out in [44]
that ILCT is a less important parameter in L-PBF due to the different thermal and temporal
conditions between the two processes, which is mainly due to the shorter ILCT in L-PBF.

As previously mentioned, the variation of this parameter becomes predominantly
critical on multi-laser machines where the exposure times for each layer are consider-
ably shorter than in single laser printers as multiple lasers work in parallel on the same
printing platform.

In multi-laser printers, a value of ILCT equal to a few seconds can be reached, hy-
pothetically increasing the substrate temperature. So, what is theoretically expected is
a variation of the material’s printability window (Figure 2 [18,45–47]) working in these
particular thermal conditions.
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Figure 2. Printability window in laser power and scanning speed space, the red line separates the
conductive region from the keyhole one.

In previous literature studies [46,48,49], it has been observed that the change in the
melting regime of the powder, due to an increase in substrate temperature, promotes the
transition of the melting regime from conductive mode to keyhole mode. In this condition,
the heat transfer and melt pool formation are completely governed by convection; the melt
pool tends to be deeper and deeper, assuming the typical keyhole shape. Moreover, the
keyhole mode melting regime can promote the formation of gas bubbles entrapped inside
the melt pool due to the vaporization of low melting point elements within the alloy [50,51].

This results in the widespread formation of spherical porosity that can affect the
density of the material.

This phenomenon turns out to be of considerable importance during the development
of set process parameters [52] that will have to take into account the possible variation
in component temperature and be sufficiently robust against it, so the identification of
printability has to be a function of the consolidated substrate’s temperature. On the other
hand, this represents an important constraint during the design of a component in order
to avoid reaching the component’s temperatures far from the conditions of stability of the
melt pool.
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In [21,23], it has been assessed for 316L stainless steel how the variation of ILCT affects
the substrate temperature, material density, microstructure and hardness; despite this, the
use of a single laser machine during testing does not allow the investigation of ILCT levels
in the order of units of seconds.

In addition, the literature lacks studies on the effect of ILCT on nickel-based superal-
loys, widely used for printing components in the oil and gas industry and on melt pool
shape in terms of width and depth. It is also important to underline that nickel-based
superalloys show some similarity in printability properties in the L-PBF process [53].

This paper investigates the effects of ILCT variations on the microstructure of IN718
superalloys processed by a multi-laser machine to obtain an ILCT value of a few seconds.
The material microstructure will be evaluated through porosity and melt pool analysis by
printing single tracks on powder bed, as suggested in the literature [11,52–57].

The paper has the following structure: Section 2 describes the experimental procedure
with a specific focus on the specimen’s geometry, ILCT levels and process parameter
set. Section 3 presents the porosity and melt pool analysis results obtained from the
experimental tests on Inconel 718 alloy specimens. Section 4 discusses the effect of ILCT
variation on the material microstructure. Finally, the Conclusions summarizes the results
and provides concluding remarks.

2. Materials and Methods

The specimens used in this case study were made in Inconel 718, one of the most com-
mon nickel-based superalloys with which to build components in additive manufacturing.

The main characteristics of Inconel 718 are shown in Table 1 (chemical composition)
and Table 2 (mechanical and thermal characteristics) [52,58].

Table 1. Chemical composition of Inconel 718.

Element % Weight

C 0.040
Mn 0.08
Si 0.08
P <0.015
S 0.002

Cr 18.37
Ni 55.37
Co 0.23
Mo 3.04

Nb + Ta 5.34
Ti 0.98
Al 0.5
B 0.004
Ta 0.005
Cu 0.04
Fe 17.80
Ca <0.01
Mg <0.01
Pb 0.0001
Bi 0.0001
Se <0.001
Nb 5.33

Table 2. Main properties of Inconel 718 considering mechanical and thermal behaviors.

Elastic Modulus
(Gpa)

Yield Strength
(Mpa)

Tensile Stress
(Mpa)

Strain
(%)

Density
(kg/m3)

Thermal Conductivity
(W/mK)

206 1100 1310 23.3 8470 11.2
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The layer thickness used to build the specimens was 60 microns, with a particle size of
powder between 20 and 63 microns, obtained through a gas atomization process.

The Renishaw AM500Q machine was provided with 4 ytterbium fiber lasers charac-
terized by a beam wavelength of 1070 nm and a minimum spot size for the laser beam
of 82 µm. A laser power of 500 W was the maximum value available for each laser. The
building platform temperature was kept constant during all the printing at a temperature
of 170 ◦C, while an argon gas flow was used to maintain oxygen content inside the building
chamber under 100 ppm.

All available lasers provided in the machine were used during the printing to repro-
duce the printing conditions of components properly.

All the tested specimens were printed using a set of medium-high volumetric en-
ergy density (VED) process parameters chosen according to the results reported in the
literature [59], as shown in Table 3.

Table 3. Process parameters set used during the test.

Laser Power (W) 390
Scanning Speed (mm/s) 1100

Hatch Distance (mm) 0.09

The experiments were carried out in a high volumetric energy zone to study the effect
of ILCT variation in the area close to the keyhole melting regime, where defect formation
is promoted. This choice was made to understand whether a short ILCT could increase
the tendency of defect formation or not. In addition, working in this VED region was
interesting to avoid high residual stresses in the component as the remelting of several
previous layers was obtainable.

The presented analysis of ILCT’s variation effect on material microstructure consisted
of two main phases:

1. Investigation of ILCT’s variation effect on the material microstructure.
2. Evaluation of obstructing heat flux geometries on critical ILCT values.

2.1. Study of ILCT’s Variation Effect on Material Microstructure

This phase investigates if a critical level of ILCT negatively affects the material mi-
crostructure. The effect on the material microstructure was evaluated as a modification on
porosity level and melt pool characteristic dimensions and shape ratio.

ILCT has been studied, considering the increasing and decreasing order, to reproduce
the heating and cooling effect on a component due to geometry section variations. The
range of ILCT investigated was from 22 s to 2 s in steps of 4 s.

A cylinder specimen was printed for each ILCT level tested, and each ILCT level
was kept constant for ten millimeters in height. Thus, 11 specimens were made that
were exposed to the ILCTs shown in Table 4. Consequently, the specimens had different
heights, as shown in Figure 3. A second set of the same samples were printed for
repeatability assessment.

Single tracks and single laser exposition on the powder bed were also made on the
top surface of each specimen (Figure 3) in order to investigate the variation in melt pool
shape and calculate the melting regime at different ILCT levels in relation to the melt pool
dimensions ratio [46].

Figure 4 shows the variation of ILCT as a function of the total number of layers, during
the printing, for specimen 11 (sample code 22 C).
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Table 4. Sample dimensions and ILCT levels. The sample code considers the ILCT level of each
specimen’s top section, and the letter H or C indicates the heating and cooling phases.

Sample Sample
Code

Radius
(mm)

Height
(mm) ILCT Levels (s)

1 22H 10 10 22
2 18H 10 20 22–18
3 14H 10 30 22–18–14
4 10H 10 40 22–18–14–10
5 6H 10 50 22–18–14–10–6
6 2H 10 60 22–18–14–10–6–2
7 6C 10 70 22–18–14–10–6–2–6
8 10C 10 80 22–18–14–10–6–2–6–10
9 14C 10 90 22–18–14–10–6–2–6–10–14
10 18C 10 100 22–18–14–10–6–2–6–10–14–18
11 22C 10 110 22–18–14–10–6–2–6–10–14–18–22
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Figure 3. Overview of ILCT levels tested in each specimen, the red box indicates the analyzed section
for each specimen. Image copyright (2023) Baker Hughes Company—All rights reserved. Used
with permission.

The planned ILCT for the specimens was obtained using customized ghost parts
characterized by zero laser power exposition.

Considering the process parameters and laser assignment, the build file was created
using Renishaw Quantam Software Version 5.3.0.7105. The specimens were placed on the
building platform, as shown in Figure 5.
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Baker Hughes Company—All rights reserved. Used with permission.

The printed specimens were detached from the building platform using a wire EDM
machine (ECUT EU MS Genesi) and machined to obtain a mockup with a height of ten
millimeters, starting from the top base. Then, the mockup was sectioned along an axial
plane, as shown in Figure 6.
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The specimens were then etched with oxalic acid to highlight the melt pool shape. The
microstructural analyses were then carried out as follows:

- A porosity analysis was performed to estimate the densification level and the presence
of defects in the material. This analysis was performed using a Leica Leitz DMRME
(Leica Microsystems GmbH, Wetzlar, Germany) optical microscope, and the percent
porosity was evaluated by analyzing six fields for each specimen. Then, the acquired
images were post-processed using ImageJ 1.53 (National Institute of Health, Bethesda,
MD, USA) software. In order to measure the porosity percentage, a thresholding
image processing was applied to the acquired images.

- A melt pool analysis was performed on the specimens using the Leica Leitz DMRME
(Leica Microsystems GmbH, Wetzlar, Germany), and then a chemical etching with
oxalic acid was carried out to highlight the melt pool boundaries. For each analyzed
configuration, five random single tracks were measured in terms of melt pool width
and depth [52].

2.2. Effect of Obstructing Heat Flux Geometries on Material Microstructure for Critical ILCT

This phase aims to investigate whether a geometry that obstructs the heat flux criticality
affects microstructure for the critical value of ILCT identified in the previous phase [23].
This analysis could be interesting because this condition can hypothetically promote the
overheating of the component, resulting in increased keyhole porosity and a deeper melt pool.

The specimens were modelled as cylinders and inverted truncated cones in function
of the area to be evaluated, as shown in Figure 7.
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The usage of inverted truncated cone specimens was set to reproduce very hostile
heat transfer conditions. This geometry could help the element to overheat progressively
as each layer has a larger area to be exposed compared to the one below (assuming that the
heat transfer along the component is predominantly governed by conduction through the
below layer surface [60]). This effect will be higher as the height of the sample increases.

The dimensions and the investigated area for each specimen are listed in Table 5. A
second set of the same samples was printed for repeatability assessment.

Table 5. Specimens’ dimensions (Rmin is 1.5 mm in all specimens). Sample 1 is a cylinder specimen
used as a reference.

Sample Rmax
(mm)

Rmax − Rmin
(mm)

Exposed Area Range
(mm2) Height (mm)

1 1.5 0.0 7.07–7.07 10
2 2.0 0.5 7.07–12.56 20
3 2.5 1.0 7.07–19.63 30
4 3.0 1.5 7.07–28.26 40
5 3.5 10 7.07–38.46 50

In order to assess and calculate the melting regime for each tested configuration,
several single tracks were printed on the top surface of each specimen (Figure 7).

As in Section 2.1, the ILCT value was kept constant along the specimen’s height using
customized ghost parts [18].

The build file was created following the procedure described in Section 2.1. The
specimens were placed on the building platform, as shown in Figure 8. The preparation of
the samples and the micrographic analysis followed the procedure described in Section 2.1.
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3. Results
3.1. ILCT’s Variation Effect on Material Microstructure

Figure 9 shows the specimens in the as-built condition after the detachment from the
building platform and Figure 10 shows them after cutting, embedding in conductive resin
and polishing.
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The porosity results in terms of average and standard deviation for each specimen are
summarized in Table 6 and plotted in Figure 11.

Table 6. Porosity analysis results.

Sample
Porosity [%]

Avg. SD

1 0.021 0.019
2 0.023 0.018
3 0.022 0.008
4 0.025 0.011
5 0.059 0.022
6 0.096 0.038
7 0.067 0.024
8 0.028 0.015
9 0.022 0.011
10 0.021 0.009
11 0.021 0.016
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Figure 12 shows the most representative images for the specimens identified as most
porous, specimens 5, 6 and 7, respectively, while Table 7 tracks the maximum defect
diameter measured for each specimen.
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Figure 12. Evidence of Keyhole porosity in specimen number 5, 6 and 7. Image copyright (2023)
Baker Hughes Company—All rights reserved. Used with permission.

Table 7. Measures of the maximum defect diameter found in each specimen.

Sample Maximum Defect Diameter (µm)

2 0.023
3 0.022
4 0.025
5 0.059
6 0.096
7 0.067
8 0.028
9 0.022
10 0.021
11 0.021

Table 8 shows the dimension of the melt pool in terms of width and depth and the
width/depth ratio generally used to calculate whether or not the keyhole melting regime is
present during the printing of specimens.
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Table 8. Melt pool analysis results.

Sample
Depth (µm) Width (µm)

Width/Depth Ratio
Avg. SD Avg. SD

1 138.2 11.4 164.6 8.0 1.20
2 142.1 9.9 165.6 7.2 1.20
3 146.5 20.5 167.4 7.9 1.16
4 151.2 11.1 177.1 13.6 1.17
5 153.9 5.0 172.3 11.2 1.12
6 201.7 6.1 172.2 10.4 0.88
7 156.0 7.9 172.6 11.3 1.11
8 152.4 12.3 171.9 9.4 1.13
9 153.1 9.4 166.2 9.3 1.09
10 145.8 13.6 164.0 8.7 1.08
11 146.0 10.3 160.0 15.6 1.10

Figures 13–15 show melt pool depth, melt pool width and width/depth ratio, respectively,
for each specimen. Figure 16 shows the melt pool shape for configurations 1, 6 and 11.
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3.2. Effect of Geometries Obstructing Heat Flux on Material Microstructure

Figure 17 shows the specimens in the as-built condition after the detachment from the
building platform.
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The porosity average and standard deviation results for each specimen are tracked in
Table 9 and plotted in Figure 18.

Table 9. Specimens’ dimensions and results of the porosity analysis.

Sample Rmax
(mm)

Rmax − Rmin
(mm)

Exposed Area Range
(mm2)

Porosity (%)

Avg. SD

1 1.5 0.0 7.07–7.07 0.029 0.011
2 2.0 1.5 7.07–12.56 0.054 0.016
3 2.5 1.0 7.07–19.63 0.113 0.044
4 3.0 1.5 7.07–28.26 0.153 0.076
5 3.5 2.0 7.07–38.46 0.284 0.128
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In order to evaluate the size of defects that affect the specimens’ microstructure,
Figure 19 shows some images for the diameter of the maximum detected defect for each
specimen, and the corresponding values are summarized in Table 10.

Table 10. Maximum defect diameter for each specimen.

Sample Maximum Defect Diameter (µm)

1 21.78
2 34.30
3 58.58
4 71.87
5 96.58

The results of the melt pool analysis are summarized in Table 11 and plotted in
Figures 20–22. Figure 23 shows the images of the melt pool shape in each configura-
tion tested.
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Figure 19. Maximum defect diameter detected in each specimen during porosity analysis, defect
diameter increases as function of analyzed specimen. The number in the gray box indicates the
specimen as defined in Table 9. Image copyright (2023) Baker Hughes Company—All rights reserved.
Used with permission.

Table 11. Melt pool analysis results.

Sample
Depth (µm) Width (µm)

Width/Depth Ratio
Avg. SD Avg. SD

1 120.0 3.8 153.3 5.0 1.27
2 133.6 7.4 159.5 6.1 1.20
3 155.1 6.5 156.3 7.3 1.01
4 190.1 6.2 167.3 8.2 0.86
5 208.4 16.6 166.5 7.7 0.77
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4. Discussion
4.1. Effect of ILCT Variation on Material Microstructure

Upon visual inspection of the specimens after printing, it is possible to state that
the sections of the specimens exposed with two seconds of ILCT show a different visual
chromatic appearance than the others (Figure 9). The different coloring is probably an
indication of the oxidation of the material due to excessive heat and rises in substrate
temperature. From this initial assessment, it appears that exposure to two seconds of ILCT
could present a criticality on the material having insufficient time to cool down.

The porosity analysis confirms this first indication. The results (Table 6 and Figure 11)
show that specimen number six, characterized by an ILCT of two seconds, has the highest
porosity value (near 0.1%) with the highest standard deviation (0.038%). Moreover, even
from the analysis of Figure 12, tracks of keyhole porosity, commonly related in this process
to the excessive amount of heat during printing and heat transfer governed by convection,
can be found on that specimen. On the other hand, keyhole defects already begin to appear
when the ILCT value reaches six seconds. However, in this case, the defectology present
does not cause a macroscopically detectable effect on the specimens, probably due to their
small defect dimensions (the maximum defect diameter measured is 58 µm).

By virtue of these results, it is possible to state that, consistent with the material and
machine type used to carry out the tests, the ILCT range from 6 to 2 s presents a criticality
in terms of densification level.

It is important to note that these ILCT values are difficult to achieve with a single laser
printer but easy to achieve with a multi-laser one.

The melt pool analysis confirms this range of ILCT values’ criticality (Table 8,
Figures 13–15). In fact, a decrease in ILCT leads to an increase in the depth of the melt
pool when values lower than six seconds are reached (Table 8). In particular, the melt
pool reaches a depth of over 200 microns for the configuration exposed with two seconds
of ILCT, causing a remelt of more than three layers on the specimen. This effect is
evident by the analysis of Figure 16, in which it is possible to observe the melt pool
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shape variation due to an ILCT variation from 22 to 2 s (samples 1 and 6) and from 2
to 22 s (samples 6 and 11). It is important to highlight how the melting regime and,
consequently, the melt pool shape change as a function of ILCT variation. In particular,
samples 1 and 11 are characterized by an almost semi-elliptical shape that indicates that
the conductive regime is still present in melt pool formation. On the contrary, the melt
pool shape of specimen number 6 is characterized by a very elongated shape peculiar to
the keyhole regime.

Relative to the analysis of the effect of overheating and cooling on the specimen by
decreasing and increasing the value of ILCT, there are no significant differences in terms
of porosity and melt pool shape. For example, specimens 5 and 7, exposed with the same
ILCT value, have a similar average melt pool depth (153.9 µm and 156.0 µm, respectively).
Similarly, the effect of ILCT on the melt pool width is not significant.

By the evaluation of the width/depth ratio (Table 8), it is observed that for specimen
number 6, a very low ratio is reached (0.88). In fact, in this case, the melt pool formation
is completely governed by convection, while a conduction contribution is still present for
the other specimens. So, it is possible to state that very low ILCT values could promote
changing the melting regime of the melt pool and the expansion of the keyhole region, as
shown in Figure 24.
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Moreover, the width/depth ratio results suggest a possible review of the criteria
provided by Johnson et al. [46] to calculate the keyhole melting regime as a function of melt
pool dimensions.

4.2. Effect of Geometries Obstructing Heat Flux on Material Microstructure

The visual inspection of the specimens indicates a different coloring for samples
number 4 and 5 (Figure 17). This indication shows the presence of superficial burnishes,
probably due to substrate overtemperature. As shown in Table 9 and Figure 18, the results
about porosity confirmed the indication of visual inspection with an increasing porosity
value and variability for higher range area variation. In particular, specimen number 5 is
characterized by the highest porosity value (Avg. = 0.284% and SD = 0.128). These values
are about ten times those measured for the reference configuration (specimen number 1).
In addition, the evaluation of maximum defect diameter (Table 10 and Figure 19) confirms
the significant difference between these configurations.
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The melt pool analysis (Table 11) indicated that the exposed area range used for
specimens 4 and 5 results is critical. In fact, the melt pool depth value passes from an
average value of 153.3 microns for specimen number 1 to 192.8 microns for specimen
number 4 and 208.4 microns for specimen 5.

From the analysis of Table 11 and Figure 21, the effect of the exposed area variation on
melt pool width is limited.

By analyzing the melt pool shape (Figure 23), it is possible to observe how the melt
pool of specimens 1 and 2 has an almost semi-elliptical shape. This means that melt pool
formation is not entirely governed by keyhole mode, but the conduction mode is still
partially present. On the contrary, the shape of the melt pool for specimens 3, 4 and 5, with
a very elongated shape, indicates that the formation of the melt pool is completely governed
by keyhole mode. The effect of these phenomena is evident in the progressive reduction of
the width/depth ratio as the exposed area range increases (Table 11 and Figure 22).

Under these results, two observations can be pointed out:

- An effect of mitigation of porosity level and reduction of melt pool depth is observed as
the surface-to-volume ratio decreases, keeping the printed area for low ILCTs constant.
This is evident when comparing the porosity level and melt pool depth measured for
specimen number 6 (Tables 6 and 8) and specimen number 1 (Tables 9 and 11).

- An effect of amplifying porosity level as the exposed area range increases is registered
for an ILCT of 2 s (Table 9). This effect is less pronounced regarding the melt pool
depth and width/depth ratio, as can be seen by comparing the results plotted in
Tables 8 and 11.

5. Conclusions

The research investigates the effect of ILCT variation during printing on the material’s
microstructure (porosity and melt pool analysis) on specimens of nickel-based superalloy
Inconel 718. Moreover, the effect of customized geometries that obstruct the heat flux
combined with critical ILCT values is investigated.

Considering the obtained results, it is possible to state that extremely low ILCT values
can affect the material microstructure regarding densification level and melt pool shape. In
particular, an ILCT of less than 6 s introduces criticality in the material microstructure, and
a value of 2 s is characterized by widespread keyhole porosity (close to 1‰) and critical
melt pool depth (about 200 microns). This effect promotes the expansion of the keyhole
region in the printability map.

Moreover, considering geometry obstructing heat flow (low surface-to-volume ratio),
exposed with a lower ILCT value (2 s), this effect is strongly amplified, and a very high
porosity is measured (about 3‰).

Various processes or design changes can avoid critical ILCT values. In fact, ILCT can
be increased by changing geometry, introducing ghost parts during the printing process
or using different part orientations. It is important to emphasize that the first solution is
often not feasible due to design constraints on component function (dimensions, assembly
constraints, et cetera); the second results in an evident loss of productivity; and the last
could lead to difficulties in the printing process.

A different approach is used to develop a specific process parameter set for the com-
ponent sections with critical values for ILCT. In developing this process parameter set, the
amplification effect of the keyhole region for short ILCT values must be considered. This
approach might be easier to implement and might not have a negative impact on productivity.

An experimental campaign using different materials and boundary conditions, such
as L-PBF machines, building platform temperature and process parameter sets, could
be interesting to fully characterize this phenomenon and optimize the thermal design
of a component in the L-PBF process. Similar results could probably be obtained using
other nickel-based superalloys because of their similar printability properties in the L-
PBF process.
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Moreover, another important aspect to be investigated in future works is the possibility
of measuring temperature substrate variation as a function of ILCT values to evaluate the
modification of the printability map. This information will be necessary to develop process
parameter sets that will be robust to substrate temperature variation.
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