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Abstract— This paper presents a novel solution for the
discrete time dynamic average consensus problem. Given a set
of time-varying input signals over the nodes of an undirected
graph, the proposed algorithm tracks, at each node, the average
of the input signals. Recently, a discrete time multi-stage
consensus algorithm has been proposed, where the average is
computed through a sequence of consensus stages such that
no global knowledge, k-th order differences of the inputs nor
conservation of the network state average is needed to achieve
convergence. The counterpart is a slow convergence and a
significant steady-state error, specially at the initial consensus
stages. To overcome these issues, we present a second order
diffusive protocol based on the multi-stage consensus filter that,
by only storing an additional value at each node, accelerates the
convergence speed and improves the steady-state error in orders
of magnitude. The protocol is extended to an asynchronous
and randomized version that follows a gossiping scheme. We
analytically study the convergence properties of the algorithms,
validating the proposal through simulated experiments.

I. INTRODUCTION

The problem of consensus in control theory [1] consists of
finding a protocol such that a set of nodes in a network agree
on the value of a certain quantity of interest. The consensus
problem has a long history due to its relevance in applications
such as smart grids [2] or tracking by sensor networks [3].

In particular, the discrete time dynamic average consensus
[4] is interesting because the tracked signals usually evolve
with time, and protocols are implemented in computing units
that work in discrete steps. Several solutions have been
proposed to improve the capabilities of discrete time dynamic
average consensus algorithms. For instance, some works
achieve an arbitrarily small steady-state error by exploiting
the k-th differences of the input signal [5], [6]. This is
problematic when the inputs are noisy since noise breaks the
boundedness of the input signal. An alternative is to rely only
on the input signal, achieving an arbitrarily small steady-state
error by concatenating a cascade of consensus filters [7]–[9],
as we do in this work. The counterpart is a slow convergence
in both the continuous and discrete time consensus.
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The issue of slow convergence has been addressed from
two main perspectives. Ghosh et al. [10] present second order
diffusion methods. By storing xi(k − 1), the convergence
speed can be significantly improved. This is formally studied
by Liu and Morse [11], providing the optimal parameters
and the corresponding fastest convergence rate. Since then,
other authors have proposed variants of the same protocol
[12], all of them achieving a similar performance [13]. These
works address the static consensus problem, where the input
signals do not vary with time. In contrast, our work deals
with the more challenging problem of dynamic consensus.
Polynomial filters [14] are the second relevant research
line to accelerate consensus. Polynomial filters consider a
sequence of p consensus iterations as the evaluation of a
polynomial of order p − 1. Montijano et al. [15] analyze
Chebyshev polynomials and prove that they reduce to a
second order difference equation for an arbitrary p, while the
convergence speed is significantly increased. The robust and
dynamic version of the protocol is also studied [6]. However,
some mild knowledge on topology is required, and the k-
th order differences of the input signal are exploited. This
work opts for a second order method instead of a polynomial
method to speed up convergence. Closely related to our
paper, Van Scoy et al. [16] present a fast and robust discrete
time dynamic average consensus estimator. Compared to
them, our proposal does not need bounded inputs nor a
known bound on the signal values, while achieving the
same robustness against initialization errors and accelerated
convergence.

From a different perspective, many applications deal with
time-varying networks, where nodes connect and disconnect
depending on events exogenous to the consensus protocol.
Examples can be found in, e.g., robotics [17] or smart
grids control [18]. To account for this, gossip algorithms
study consensus when the protocols are computed at random
instants of time with random neighbors. There also exist
deterministic gossip algorithms [19] where the intermittent
communication is decided by a deterministic rule [20],
in an event-triggered fashion. This motivates our second
proposed algorithm, which is an accelerated version of a
discrete time dynamic average consensus protocol that runs
asynchronously and with randomized communication links.

This paper builds from the works by Franceschelli and
Gasparri [8], [9]. They present a multi-stage discrete time
dynamic average consensus filter that is fully distributed,
does not use the k-th order differences of the inputs sig-
nals, and is robust again non-averaged nodes’ initialization.
Besides, the steady-state error can be arbitrarily reduced
by increasing the number of stages. The main limitation
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is the slow convergence, specially in the last stages of the
filter, so there is a trade-off between accuracy and speed.
To mitigate this issue, we propose a second order method to
accelerate the convergence, which permits to either increase
the number of stages (and reduce the steady-state error) with
the same convergence speed of the original filter, or speed
up the convergence for the same number of stages while
maintaining the steady-state error. Our main contributions
are two algorithms: the accelerated multi-stage discrete time
dynamic average consensus, and an asynchronous and ran-
domized version of the former with their associated formal
convergence guarantees.

II. PRELIMINARIES

The system1 under study is a network composed by N > 1
nodes. The network is described by an undirected graph
G = {V, E}, where V = {1, . . . , i, . . . , N} is the set of
nodes and E is the set of edges. Nodes i and j can exchange
information if and only if (i, j) ∈ E , which implies that
(j, i) ∈ E . The neighborhood of node i is Ni = {j|(j, i) ∈
E}. The adjacency matrix A ∈ RN×N associated to G is
such that Aij = 1 if (i, j) ∈ E and 0 otherwise. Aii = 0
always because we do not allow self-loops. The degree
matrix D associated to G is such that Dij = car(Ni)
∀i = j and 0 otherwise. The Laplacian matrix associated
to G is L = D − A. For undirected graphs, it holds that
L is symmetric and has real eigenvalues. Besides, denote
the sorted eigenvalues of L as λ1(L) < λ2(L) ≤ . . . ≤
λN (L) ≤ 2Dmax, where Dmax = max({Dii}Ni=1). For a
connected graph, λ1(L) = 0 with associated eigenvector
v1(L) = 1. The second smallest eigenvalue, λ2(L), is called
algebraic connectivity. We denote vr,i(L),vl,i(L) the right
and left eigenvectors of L associated to the i-th eigenvalue.

A. Second Order Diffusion Methods

The linear (first-order) discrete time static average con-
sensus algorithm ([21]) is

xi(k + 1) = Wiixi(k) +
∑
j∈Ni

Wijxj(k), (1)

with xi(0) the initial condition and W ∈ RN×N a weighted
matrix. In matrix form, (1) leads to

x(k + 1) = Wx(k). (2)

If W is doubly stochastic, i.e., 1TW = 1T and W1 = 1,
then it is known that the protocol in Eq. (2) converges to the
average of the initial states x̄i(0) = (1/N)

∑N
i=1 xi(0).

Without loss of generality, we consider W = I− ϵL. The
convergence speed can be too slow, specially in networks

1Notation: we use lower-case for scalars, bold lower-case for vectors,
bold capital for matrices, and calligraphic capital for sets. We use ≥
for greater than or equal, ⪰ for positive semidefiniteness, σ( ) for the
eigenvalues of a matrix, T for the transpose, car( ) for the cardinality of
a set, E[ ] for the expectancy operator, | | the absolute value, and || || for
the 2-norm of a vector/matrix. Pij (resp. pi) denotes the ij-th (resp. i-th)
element of matrix P (resp. vector p). I is the identity matrix of appropriate
dimensions, 0 is the zero matrix of appropriate dimension, and 1 is a column
vector of ones.

with a small algebraic connectivity (λ2(W) = 1− ϵλ2(L)).
To accelerate convergence, Ghosh et al. ([10]) proposed a
second-order modification:

x(k + 1) = γWx(k) + (1− γ)x(k − 1). (3)

The properties of the protocol in Eq. (3) are well-studied
(e.g., [10] or [22]). Protocol (3) improves the convergence
speed of (2) if γ ∈ (1, 2), with the fastest convergence being
γ = 2

1+
√

1−λ2
2(W)

.

B. Multi-stage Discrete Time Dynamic Averaged Consensus

The concepts in Subsection II-A apply to the static consen-
sus problem, but this work deals with a dynamic consensus
problem. Node i has an input ri(k) ∈ R and an estimate
xi(k) ∈ R associated to a quantity of interest r(k) ∈ R.
The joint estimate and input of the network are x(k) =
[x1(k), . . . , xN (k)]T and r(k) = [r1(k), . . . , rN (k)]T re-
spectively. Nodes, by means of x(k), cooperate to track the
average r̄(k) = 1

N

∑N
i=1 ri(k) by exchanging information

with their neighbors j ∈ Ni.
The multi-stage discrete time dynamic average consensus

algorithms presented by Franceschelli and Gasparri ([8], [9])
solve the problem for two cases: the synchronous and time-
invariant topology, and the asynchronous and randomized
topology. The former is solved by the following protocol:

x1(k + 1) =(I− ϵL)x1(k) + α(r(k)− x1(k)),

xs(k + 1) =(I− ϵL)xs(k) + α(xs−1(k)− xs(k)).
(4)

Here, s = {1, . . . ,m} denotes the stages of the filter, ϵ <
1

2Dmax
to ensure stability, and α ∈ (0, 1) is a parameter

that trades-off steady-state accuracy and convergence speed.
From (4) it is seen that the filter is a chain of linear discrete
time dynamic average consensus protocols. The higher the
stage, the lower the steady-state error and speed convergence.

The asynchronous and randomized algorithm follows the
same multi-stage architecture. In this case, each node selects
randomly and at each instant a single node j ∈ Ni to
communicate. For a given edge (i, j), the algorithm is:

x1(k + 1) =Pijx
1(k) +

α

Dii
pip

T
i r(k),

xs(k + 1) =Pijx
s(k) +

α

Dii
pip

T
i x

s−1(k),
(5)

with Pij = I+
pip

T
j

2 − (1+2/Dii)pip
T
i

2 and pi ∈ RN a vector
of zeros except for the i−th element, which is equal to 1.

III. PROPOSED CONSENSUS ALGORITHM

In this section, we present two algorithms. The first solves
the problem of discrete time dynamic average consensus
by means of a second order recurrence and the multi-
stage architecture inspired by [8], [9]. The second solves
the same problem but under asynchronous and randomized
restrictions, where the nodes randomly communicate in a
gossip-like style [19].

CONFIDENTIAL. Limited circulation. For review only
IEEE L-CSS submission 23-0229.1 (Submission for L-CSS and CDC)

.
Preprint Received March 16, 2023 05:53:03 Pacific Time



A. Accelerated Multi-Stage Filter
The first proposed consensus protocol is based on two

steps. Given the current input ri(k) and estimates from
neighbors {xs

j(k)}ms=0 ∀j ∈ Ni ∪ {i}, node i updates
{xs

i (k)}ms=0 following the multi-stage filter in Eq. (4), ob-
taining {x̃s

i (k)}ms=0, where x̃s
i (k) ∈ R for s = 1, . . . ,m

is a temporal estimate used in the second step of the
protocol. The updated estimate is then corrected using the
second order method in Eq. (3), leading to the next estimate
{xs

i (k+1)}ms=0. Algorithm 1 details the protocol. We remark
that the division in two steps is to ease the intuition and the
understanding of the protocol. Nevertheless, the two steps
can be fused in a single one, as it is done in some of the
following proofs.

Algorithm 1 Accelerated Multi-Stage Dynamic Consensus
Protocol at node i

1: State of agent: xs
i (−1) and xs

i (0), for s = 1, . . . ,m
2: Parameters: γ ∈ (1, 2), ϵ ∈ (0, 1

2Dmax
), α ∈ (0, 1

γ )
3: while True do
4: Measure ri(k)
5: Gather xs

j(k) for s = 1, . . . ,m and j ∈ Ni

6: Update xs
i (k) for s = 1, . . . ,m as follows:

x̃1
i (k)=x1

i (k)−
∑

j∈Ni

ϵ(x1
i (k)−x1

j (k))+α(ri(k)−x1
i (k))

x̃s
i (k)=xs

i (k)−
∑

j∈Ni

ϵ(xs
i (k)−xs

j(k))+α(xs−1
i (k)−xs

i (k))

xs
i (k+1) = γ(x̃s

i (k))+ (1− γ)xs
i (k− 1) for s = 1, . . . ,m

7: end while

Note that Algorithm 1 is equal to (4) for γ = 1. First, for
space convenience, in the following we use the sub-index k to
abbreviate (k). We now prove the convergence properties of
the proposed protocol. The next result shows that the second
order method does not alter the steady-state properties of the
original multi-stage filter in [8], [9].

Proposition 1. Assume that rk = r is constant, G connected,
α ∈ (0, 1), and ϵ ∈ (0, 1

2Dmax
). Then, the steady-state

equilibrium xm,∗
k at time k of the protocol in (4) and

Algorithm 1 is

xm,∗
k = r̄1+

N∑
i=2

(
1

1 + ϵλ2(L)/α

)m

vr,i(L)v
T
l,i(L)r (6)

Proof. From Algorithm 1 and using the matrix form, the
operations at stage s = 1 and steady-state can be written in
a single equation

x1,∗
k = γ(I− ϵL)x1,∗

k + γαr− γαx1,∗
k + (1− γ)x1,∗

k . (7)

This leads to

((1 + γα− 1 + γ − γ)I+ γϵL)x1,∗
k = γαr. (8)

Dividing both sides of Eq. (8) by γ, and concatenating the
m stages,

xm,∗
k = (αI+ ϵL)−1αmr, (9)

which is the steady-state equilibrium in the proof of Theorem
3.1 in [9]. The rest of the proof follows from there.

Corollary 1. Assume that rk = r is constant and G
connected. Then, the 2-norm of the error at equilibrium of
a network under Algorithm 1 is

||r̄1−xm,∗
k || ≤ (N−1)

(
1

1 + ϵλ2(L)/α

)m

||r̄1−r||. (10)

The statement is a direct consequence of Proposition 1
and Theorem 3.2 in [8].

Proposition 2. Let ys
k = xs

k − xs,∗
k be the error at the s-th

stage of the filter in Algorithm 1. Then, the error dynamics
can be expressed as(

ys
k+1

ys
k

)
= Q̂

(
ys
k

ys
k−1

)
+ αR̂

(
∆us

k

∆us
k−1

)
, (11)

where Q̂ =

(
γQ (1−γ)I
I 0

)
, R̂ =

(
R R(1−γ)
0 0

)
, Q =

(1−α)I−ϵL, R = (αI+ϵL)−1, ∆us
k = us

k−us
k+1, u1

k = rk
and us

k = xs−1
k for s = 2, . . . ,m.

Proof. Using the steps in Algorithm 1 in a single operation
and matrix form,

ys
k+1 =γQys

k+γx
s,∗
k −xs,∗

k+1+(1−γ)x
s
k−1 =

γQys
k+γx

s,∗
k −xs,∗

k+1+(1−γ)y
s
k−1+(1−γ)x

s,∗
k−1

(12)

Eq. (12) can be rewritten using Eq. (9):

ys
k+1 = γQys

k+(1−γ)ys
k−1+αR∆us

k+(1−γ)αR∆us
k−1. (13)

Eq. (11) follows from Eq.(13), concluding the proof.

Theorem 1. Consider a network that executes Algorithm 1
with rk = r constant, with α ∈ (0, 1

γ ), γ ∈ (1, 2) and
ϵ ∈ (0, 1

2Dmax
). Then, the convergence rate for the s-th stage

is βs = 1− αγ.

Proof. Let us consider the following Lyapunov function:

V s
k =

(
ys,T
k ys,T

k−1

)(
ys,T
k ys,T

k−1

)T
= ŷs

kŷ
s,T
k , (14)

with ŷs
k=
(
ys,T
k ys,T

k−1

)
. Then, the Lyapunov difference is

∆V s
k = V s

k+1 − V s
k = ŷs

k+1ŷ
s,T
k+1 − ŷs

kŷ
s,T
k . (15)

Exploiting Eq. (11) and the fact that rk is constant, Eq. (15)
leads to

∆V s
k = ŷs

k(Q̂Q̂T − I)ŷs,T
k . (16)

Now, since γ ∈ (1, 2) and the spectral radius of Q is less
than 1 by construction, it can be shown that Eq. (16) is
upper-bounded by the following inequality:

∆V s
k ≤ −ŷs

k

(
γ2I− γ2Q2 0

0 I

)
ŷs,T
k = −ŷs

kFŷ
s,T
k . (17)

The eigenvalues of matrix F are the eigenvalues of γ2I −
γ2Q2 and I. If α < 1

γ , then γ2I − γ2Q2 ⪰ γI − γQ and
σ(γI− γQ) > 0. Therefore, F is positive definite, and

V s
k+1 − V s

k ≤ −λ̄ŷs
kŷ

s,T
k = −λ̄V s

k . (18)

CONFIDENTIAL. Limited circulation. For review only
IEEE L-CSS submission 23-0229.1 (Submission for L-CSS and CDC)

.
Preprint Received March 16, 2023 05:53:03 Pacific Time



λ̄ = minλi∈σ(γI−γQ)∪σ(I){λi} = αγ. Thus, V s
k+1 ≤ (1 −

αγ)V s
k .

Proposition 3. Algorithm 1 always converges faster than the
protocol in Eq. (4) if γ ∈ (1, 2).

Proof. The convergence rate of the protocol in Eq. (4) (γ =
1) is βs = 1−α, which coincides with the convergence rate
obtained by Franceschelli and Gasparri ([8]). It turns out that
1−α > 1−αγ for γ ∈ (1, 2). Thus, the bound in Eq. (18) is
smaller, and the decrease in the Lyapunov function defined
in Eq. (14) is greater, which implies a faster convergence of
Algorithm 1 than the protocol in Eq. (4).

Corollary 2. The convergence rate is maximized for γ =
2

1+
√

1−λ2
2(W)

.

The corollary follows directly from the literature on ac-
celerated consensus methods (Theorem 11.5 in [23]).

All the previous results address the case where the input
is constant, i.e., the consensus is static. The following result
considers a dynamic input.

Proposition 4. Consider a time-varying input rk and a
network under Algorithm 1, with α ∈ (0, 1

γ ). Besides, define
∆us

∞ = sup
k=0,...,∞

∆us
k. Then, the next ISS property holds:

||ys
k|| ≤ (1− γα)k||ys

0||+
1

αγ
∆us

∞. (19)

Proof. The result follows from Input-to-State Stability re-
sults for linear systems. From Eq. (13) we have that

||ys
k|| ≤ ||Kk|| · ||ys

0||+ α

(
k∑

h=0

||Kh||||R||

)
∆us

∞, (20)

with K = (γQ + (1 − γ)I). First, note that ||R|| ≤ 1
α .

Second, ||K|| ≤ (1− γ) + γ(1− α) = 1− γα. Then,

||ys
k|| ≤ (1−γα)k||ys

0||+α

(
k∑

h=0

(1− γα)h

α

)
∆us

∞. (21)

Eq. (21) directly yields to Eq. (19).

Therefore, under dynamic inputs the system still con-
verges. Moreover, the convergence rate only depends on the
variations of the signal.

Corollary 3. The convergence rate of Algorithm 1 is faster
than the convergence rate of the original filter in (4) under
time-varying input signals rk, α ∈ (0, 1

γ ) and γ ∈ (1, 2).

Proof. In Proposition 3.5 from ([8]) it is shown that

||ys
k|| ≤ (1− α)k||ys

0||+
1

α
∆us

∞. (22)

Comparing Eqs. (21) and (22), the first term experiences a
faster decay in (21) since 1− γα < 1−α. The second term
is lower in (21) since 1

αγ < 1
α .

In summary, the proposed algorithm proves to enhance the
convergence speed towards the dynamic average consensus
without modifying the steady-state error at any of the stages

of the filter. This is achieved by using an additional memory
slot for the estimate at the previous instant of time. Therefore,
the practitioner can either: (i) increase m to improve the
steady-state error and maintain the settling time; (ii) decrease
α to improve steady-state error, and maintain m (so maintain-
ing the message size) and the settling time; (iii) or improve
the convergence speed for the same m and α.

B. Accelerated Asynchronous Randomized Protocol

The second contribution is the asynchronous and random-
ized version of Algorithm 1. Now, instead of using all the
estimates from the neighborhood, node i selects one of its
neighbors j ∈ Ni according to an independent and identical
distribution (i.i.d.) with uniform probability. The rest of the
protocol follows the same reasoning, detailed in Algorithm 2.

Algorithm 2 Accelerated Asynchronous Randomized Multi-
Stage Dynamic Consensus Protocol at node i

1: State of agent: xs
i (−1) and xs

i (0), for s = 1, . . . ,m
2: Parameters: γ∈ (1, 2), α ∈ (0, 1

γ ), Di = Lii

3: while True do
4: Measure ri(k)
5: Select at random one neighbor j ∈ Ni and gather

xs
j(k)

6: Update xs
i (k) for s = 1, . . . ,m as follows:

x̃1
i (k) =

x1
i (k) + x1

j (k)

2
+

α

Di
(ri(k)− x1

i (k))

x̃s
i (k) =

xs
i (k) + xs

j(k)

2
+

α

Di
(xs−1

i (k)− xs
i (k))

xs
i (k+1) = γ(x̃s

i (k))+ (1− γ)xs
i (k− 1) for s = 1, . . . ,m

7: end while

Note that Algorithm 2 is equal to (5) for γ = 1. The main
result in this section consists in showing the equivalence in
expectation from Algorithm 2 and Algorithm 1. Then, the
results provided in subsection III-A can be extrapolated to
the asynchronous and randomized setting.

Theorem 2. Consider a network under Algorithm 2 with G
connected, r(k) = r constant, α ∈ (0, 1

γ ), and γ ∈ (1, 2).
If the sequence of selected edges is i.i.d. with uniform
probability, then Algorithm 2 preserves the steady-state error
properties of the original filter in (5), i.e,:

• xm(k) converges in distribution to a random variable
xm
∞, and this distribution is unique.

• limk→∞ E[xm(k)] = E[xm
∞] = xm,∗.

Proof. The first statement of the proof is a direct extrapola-
tion of the proof of Theorem 6 in [9], which is based on the
results obtained by Ravazzi et al. ([24]). Algorithm 2 fulfills
all the requirements that hold in the proof of Theorem 6 in
[9]: discrete time, Schur stability, affine dynamics and the
sequence of edges is i.i.d. with uniform probability.
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Regarding the second statement, Theorem 4.1 presented
in [8] proves that

E[x̄1(k+1)] = (I− ϵ′L)E[x1(k)]+α′(r−E[x1(k)]), (23)

with ϵ′ = 1
2car(E) and α′ = α

car(E) . Accordingly, the protocol
in Algorithm 2 is

E[x1(k + 1)] =γ(I− ϵ′L)E[x1(k)] + γα′(r− E[x1(k)])+

(1− γ)E[x1(k − 1)]).
(24)

The rest of the proof follows from the fact that, if we replace
E[x1(k)] = E[x1(k+1)] = E[x1(k− 1)] = E[xm,∗(k)], then
the dynamics in Eq. (24) are the same that appear in Eq. (7),
so the same procedure can be followed to prove the second
statement.

Therefore, Algorithms 1 and 2 are equivalent in expec-
tation, so the (expected) steady-state error is the same for
both algorithms and it is achieved with the same convergence
speed. Interestingly, another advantage of our accelerated
proposal compared to the original filter is that, now, α can be
tuned to have lower values while preserving the convergence
speed. This is important because lower values of α yield
to lower noise associated to the random selection of nodes,
so for the same speed convergence, the noise level can be
decreased.

IV. ILLUSTRATIVE EXAMPLES

In this section we evaluate Algorithms 1 and 2 with nu-
merical simulations, assessing the theoretical improvements
of the accelerated version of the filters with respect to the
original versions developed in [8], [9].

We consider the network of N = 8 nodes in
Fig. 1. The parameters are α = 0.04, ϵ = 0.01,
and m = 5. The signals ri(k) evolve according to
a uniform random process, such that, every 2000 steps,
ri(k) ∼ U(0, 1) ∀i ∈ V . Besides, xs(−1) = xs(0) =
[0.99, 0.27, 0.02, 0.48, 0.18, 0.24, 0.65, 0.50]T ∀s. The value
of γ can be computed by means of distributed algorithms
that estimate the algebraic connectivity of the graph (see,
e.g., [25], [26]).

The evolution of the estimates for the synchronous and
non-randomized algorithms is shown in Fig. 2. The suc-
cession of stages reduces significantly the steady-state error
for both the original and accelerated algorithms. However,
for the same protocol, the convergence time increases with
the number of stages, specially in the original multi-stage
filter (Fig. 2 (left)). With the additional memory slot, the
convergence time has been substantially improved by the

Fig. 1: Graph considered in the simulations.

original ours

st
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Fig. 2: Simulation results for (left) the original multi-stage
and (right) the accelerated multi-stage algorithm (ours).

Fig. 3: Evolution of the absolute error between the average
estimate across the network and the average of the input
signals. The accelerated multi-stage filter is in solid lines,
whereas the original multi-stage filter is in dashed lines.

accelerated multi-stage filter in Algorithm 1 (Fig. 2 (right)).
This is more evident in the final stages (e.g., s = m = 5).
To better compare the steady-state error and convergence
speed, Fig. 3 draws the absolute error between the average
estimate across the network and the average of the input
signals es(k) = 1

N

∑N
i=1 |xs

i (k) − ri(k)| and e(k) =
[e1(k), . . . , em(k)]T . For the same convergence speed, the
accelerated filter can be designed with more stages and
improve the steady-state error in various orders of magnitude.

In the randomized algorithms, we set α = 0.0005 to
highlight the improvements achieved by the second order
method. Besides, since the topology changes arbitrarily with
time, we cannot assume that the second largest eigenvalue
can be computed distributively, so we fix γ = 1.7. Finally,
the signals ri(k) change every 20000 steps.

Fig. 4 represents the result of the experiments. With a low
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Fig. 4: Simulation results for (left) the randomized original
multi-stage and (right) the accelerated randomized multi-
stage algorithm (ours).

value of α, the noise due to the randomized links is filtered.
The accelerated filter can compensate the degradation in
convergence speed, while the original filter is too slow to
converge before the signals change.

V. CONCLUSIONS

This paper has presented two novel accelerated discrete
time dynamic average consensus protocols based on a multi-
stage sequence of filters and a second order recurrence.
The combination allows to alleviate the trade-off between
convergence speed and steady-state error. The multi-stage
scheme can reduce arbitrarily the steady-state error by in-
creasing the number of stages, but this implies a reduction
of the convergence speed that can impact the performance
depending on the application. Thanks to the second order
recurrence, the convergence is sped up, counteracting the
drawback of the multi-stage, specially at final stages of the
protocol. This conclusion, drawn for the synchronous and de-
terministic consensus protocol, is shared by its asynchronous
and randomized version. In the latter, parameter α manifests
a trade-off between convergence speed, noise and average
steady-state error that the acceleration due to the second
order method compensates.
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