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a b s t r a c t 

Partial evaluation (PE) is a branch of computer science that achieves code optimization via specialization. 

This article describes a PE methodology for optimizing rewrite theories that encode concurrent as well as 

nondeterministic systems by means of the Maude language. The main advantages of the proposed methodology 

can be summarized as follows: 

• An automatic program optimization technique for rewrite theories featuring several PE criteria that support the 

specialization of a broad class of rewrite theories. 
• An incremental partial evaluation modality that allows the key specialization components to be encapsulated 

at the desired granularity level to facilitate progressive refinements of the specialization. 
• All executability theory requirements are preserved by the PE transformation. Also the transformation ensures 

the semantic equivalence between the original rewrite theory and the specialized theory under rather mild 

conditions. 
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Resource availability: The iPresto system, available at: http://safe-tools.dsic.upv.es/ipresto/ 

Short introduction 

Partial evaluation is a source-to-source program transformation technique for specializing 

programs with respect to parts of their input that are known statically [7] . Partial evaluation is

accomplished by detecting program fragments depending exclusively on specialized variables whose 

values are fixed, and by symbolically precomputing these fragments. The residual or specialized 

program runs faster (and yields the same result as running the original program on all of its input

data) because the aforementioned fragments have been removed or compressed. As a classic simple 

example consider the power function that calculates x n for natural numbers: 

power(0,x) = 1 
power(n,x) = if n is even then square(power(n/2,x)) 

else x ∗ power(n −1,x) 
Assuming that n is set to 5, PE is able to reduce this program to the following one 

power5(x) = x ∗ square(square(x)) 
which is far more efficient, since the time-expensive call in the else branch of the original if-

statement has been completely removed. 

In the literature there exist few attempts to apply partial evaluation to concurrent languages (see,

e.g., [8] ). This paper presents a methodology, which is based on the partial evaluation framework

originally presented in the companion paper [2] , for specializing concurrent software systems modeled

as Maude rewrite theories. The methodology is fully automatic and has been implemented in the

iPresto system that can be remotely used via a user-friendly interface at http://safe-tools.dsic.upv.es/

ipresto . Fig. 1 shows iPresto ’s basic workflow. Once the user has loaded the program into iPresto , some

checks and transformations are automatically performed to ensure the applicability of the method, 

then the partial evaluation process starts and automatically produces a specialized Maude rewrite 

theory according to a chosen specialization strategy. 
Fig. 1. iPresto workflow 

http://safe-tools.dsic.upv.es/ipresto


M. Alpuente, D. Ballis and S. Escobar et al. / MethodsX 9 (2022) 101802 3 

O

 

w  

r

•
 

•
 

 

g  

r  

t  

a

 

k  

a  

t

•
 

•
 

 

t  

r  

l  

c

 

n  

(  

c  

c  

m  

i  

r

 

n  

m  

r  

t  

e  

a

 

m  

w  

n  

t  

e

 

w  

a

t

n Maude rewrite theories 

Maude is a high-performance language and system that efficiently implements Rewriting Logic [9] ,

hich is a logic of change that seamlessly unifies a wide variety of models of concurrency. A Maude

ewrite theory R is essentially made up of two components, E and R, where 

E is a canonical equational theory that models system states as terms of an algebraic data type by

means of equations defining the system’s deterministic functionality, and 

R is a set of rewrite rules that specify transitions between states and which are assumed to be

coherent w.r.t. the equations in the set E. 

Canonicity of E and coherence between R and E are fundamental executability properties that

uarantee the soundness and completeness of Maude’s evaluation mechanism [5] . Note that the

ewrite rules in R may be non-confluent as well as non-terminating; hence, a Maude rewrite

heory provides an adequate computation model for the specification of non-deterministic as well

s concurrent software systems exhibiting infinite behaviors. 

Algebraic structures often involve axioms like associativity, commutativity, and/or identity (also

nown as unity) of function symbols, which cannot be handled by ordinary term rewriting but instead

re handled implicitly by working with congruence classes of terms. More precisely, the equational

heory E is decomposed into a disjoint union E = D ∪ Ax, where 

the set D consists of equations that are implicitly oriented from left to right as rewrite rules (and

operationally used as simplification rules), and 

Ax is a set of algebraic axioms that are implicitly expressed as function attributes and are mainly

used for Ax-matching. 

Rewrite theories are executed by rewriting states using equational rewriting, i.e., rewriting with

he rewrite rules in R modulo the equations D and axioms Ax in E. We consider topmost Maude

ewrite theories, that is, Maude rewrite theories in which rewrites can only happen at the state top-

evel position. This implies that no local state changes are allowed: in other words, each rewrite step

ompletely replaces a state s 1 with a new term representing the derived state s 2 . 

The symbolic engine of Maude’s equational theories is based on narrowing. Roughly speaking,

arrowing can be viewed as a generalization of term rewriting that allows free variables in terms

as in logic programming) and that non-deterministically reduces these partially instantiated function

alls by using unification (instead of pattern-matching) at each reduction step. For instance, the input

all power(N,X) narrows to 1 with computed substitution {N - > 0} . Besides rewriting with rules

odulo equations and axioms, Maude has provided full native support for narrowing computations

n rewrite theories since Maude version 3.0 (2020). Narrowing computations can be systematically

epresented by a (possibly infinite) finitely branching tree, which we call narrowing tree . 

A rewrite theory R = (E, R ), with E = D ∪ Ax, can be symbolically executed in Maude by using

arrowing at two levels : (i) narrowing with the equations D (explicitly oriented as rewrite rules)

odulo the axioms Ax; and (ii) narrowing with the (typically non-confluent and non-terminating)

ules of R modulo the equational theory E. Completeness of level (ii) narrowing in Maude requires

opmost rewrite theories. Nevertheless, iPresto implements a novel transformation called topmost

xtension that automatically achieves in one shot the coherence of rules with respect to equations

nd axioms and the topmost requirement on rules [1] . 

Our PE scheme is based on level (i) narrowing, which is efficiently implemented in Maude by

eans of the folding variant narrowing (FVN) strategy [6] . Completeness of FVN is only guaranteed

hen the equational theory satisfies the finite variant property (FVP), that is, every term t has a finite

umber of most general variants so that the folding variant narrowing tree for t is finite. Equational

heories that satisfy (resp., do not satisfy) the FVP are called finite variant (resp., non-finite variant )

quational theories. 

The FVP property is semi-decidable. A semi-decision procedure for the FVP is given in [10] that

orks by computing the variants of all flat terms f(X1,...,Xn) for any n-ary operator f in the theory

nd pairwise-distinct variables X1,...,Xn (of the corresponding sort); the theory does have the FVP iff

here is a finite number of most general variants for every such term. 
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Fig. 2. Kripke structure of an industrial oven 

 

 

 

 

 

 

 

 

 

 

 

An example of a Maude rewrite theory: a CTL model-checker 

We consider a Maude rewrite theory R for model-checking systems against CTL formulas. The 

systems to be verified are formally represented as Kripke structures, that is, transition graphs

equipped with a labeling function that maps each node in the graph to a set of atomic formulas

that hold in the corresponding node. Edges in the graph define system transitions. 

For instance, Fig. 2 shows the Kripke structure of an industrial oven that contains 5 nodes and

whose atomic formulas, representing some properties of the oven in a given state, are open,
working , and hot . Arrows represent edges, i.e., system transitions. 

In our setting, a Kripke structure is modeled as a term of the form < transitions ; labels
> where transitions is a list of system transitions, and labels is a list that represents the

labeling function. The Kripke structure of Fig. 1 can thus be encoded by means of the following Maude

term: 

< 1 - > 2, 2 - > 1, 2 - > 3, 3 - > 4, 4 - > 2, 4 - > 5, 5 - > 4, 5 - > 1 ; 

[1 : open], [3 : working], [4 : hot], [5 : open], [5 : hot] > 

CTL formulas are also represented as Maude terms that may include propositional logic operators

as well as CTL modal operators such as AG (from now on) and EX (in a successor state). For example

the following term: 

AG (Not (open And (open Implies (EX working)))) 
defines a CTL formula that specifies that “the oven cannot work if it was open in the previous state.”

The rewrite theory R includes 

i) an equational theory E which consists of about 60 equations that specify the CTL semantics as well

the satisfaction predicate ( M , S ) | = F that checks whether a CTL formula F holds w.r.t. a Kripke

structure M and an initial node S of M; 

ii) a singleton R that only includes the following rewrite rule 

rl [check] : { M | S | F } = > if (( M , S ) | = F) then 
ok 

else 
fail 
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Fig. 3. Specialization of the CTL model checker for an industrial oven 
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fi. 
hich takes a state of the form { M | S | F } , where M is a Kripke structure, S is an initial node,

nd F is the CTL formula to be checked on M , and rewrites it to either ok or fail according to the

esult of the model-checking predicate ( M , S ) | = F . 
The full Maude specification of our CTL model-checker is available in iPresto as a preloaded

xample that can be fully inspected and partially evaluated, as illustrated in Fig. 3 . 

pecializing Maude equational theories: the EqNPE algorithm 

Traditional uses of partial evaluation have focused on the specialization of entire programs.

his includes EqNPE (a partial evaluation algorithm, based on folding variant narrowing), which

llows a Maude equational theory E to be specialized w.r.t. a given set of input function calls

. Similarly to the partial evaluation of pure logic programs (also called partial deduction (PD)),

qNPE not only allows inputs to be instantiated with constant values, but it also deals with terms

i.e., function calls) that may contain logic variables, thus providing extra capabilities for program

pecialization. 

The EqNPE algorithm (fully described in [2] ) follows the classic control strategy of logic specializers

ith two separate components: 

1. local control (managed by an unfolding operator), which avoids infinite evaluations and is

responsible for the construction of the residual function definitions (equations) for each call in

Q; 

2. global control or control of polyvariance (managed by an abstraction operator), which avoids infinite

iterations of the partial evaluation algorithm and decides which specialized functions appear in the

partially evaluated rewrite theory. Abstraction guarantees that only finitely many expressions are

evaluated, thus ensuring global termination. 

More specifically, partial evaluation of E w.r.t. Q is achieved by iterating two steps: 

i) Symbolic execution (Unfolding ). A finite, possibly partial folding variant narrowing tree for each

input call in Q is generated. To handle both finite-variant and non-finite variant equational

theories, two unfolding strategies are available. More specifically, for theories that satisfy the Finite

Variant Property (FVP), every term t has a finite folding variant narrowing tree. Hence, for every

input call in Q, the whole narrowing tree can be unfolded. For theories that do not satisfy the

FVP, any branch in the folding variant narrowing tree is stopped whenever a term is reached

that embeds (modulo Ax) any unfolded ancestor occurring in the same branch. In both cases, the
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algorithm terminates delivering a sound and complete partial evaluation of the input equational 

theory provided that the correct unfolding strategy is selected. 

ii) Search for regularities (Abstraction ). In order to ensure that all calls that may occur at runtime

are covered by the specialization, it must be guaranteed that every (sub-)term in any leaf of

the narrowing tree is equationally closed w.r.t. Q. Equational closedness extends the classical PD 

closedness (i.e., being a subsumption instance) by: 1) considering Ax-equivalence of terms; and 2) 

recursing over the term structure (in order to handle nested function calls). Equational closedness 

ensures that leaves in the narrowing tree are subsumed by some calls in Q. 

To properly add the non-closed (sub-)terms to the set of already partially evaluated calls, an

abstraction operator A is applied that yields a new set of terms which may need further

evaluation. 

Steps (i) and (ii) are iterated as long as new terms are generated until a fixpoint is reached, and the

augmented, final set Q 

′ of closed specialized calls is yielded. The specialization of E is finally derived

from Q’ by computing the partially evaluated equations t σ = t ′ associated with the derivations in the

narrowing tree from the root t ∈ Q 

′ to the leaf t ′ with computed substitution σ . 

Specializing Maude rewrite theories: the extended NPER algorithm 

The EqNPE algorithm can be effectively extended to the specialization of Maude rewrite theories 

by means of our novel specialization methodology which consists of a two-phase algorithm called 

NPER. Let R be a Maude rewrite theory that is made up of a set of rewrite rules R and an equational

theory E. NPER sequentially executes the following two phases: 

i) Partial Evaluation . The key idea for this phase is to apply EqNPE to the underlying equational theory

E. This is done by partially evaluating E with respect to the maximal (or outermost) function calls

that occur in the rules of R in such a way that E gets rid of any possible over-generality. Indeed, E

is transformed into a specialized theory E’ that aims at optimizing the performance of the maximal

function calls that appear in R. 

ii) Compression. On top of that, the narrowing-driven partial evaluation algorithm compacts the 

functional computations of E’ occurring in R, while keeping every system state in the concurrent

computations of R as reduced as possible, yet semantically equivalent to the original system. This

is achieved by first renaming common expressions in E and R via suitable renaming functions.

Next, a refactoring transformation is applied to remove redundant conditions from the rewrite 

rules in R. Indeed, the partial evaluation process may produce specialized function calls included

in rule conditions that can be safely removed without changing the original program semantics.

Finally, the computed specialized theory is cleaned up by deleting any function symbols (and their

corresponding axioms) that do not occur in the transformed equations and rules. 

The NPER algorithm comes with two modalities of execution: monolithic and incremental. The 

former takes as input the rewrite theory R and executes the NPER algorithm until a complete

specialization of R is achieved. 

The latter allows the user to stop or pause the partial evaluation process so that they can inspect

any intermediate specialization results, making it easier to correct, on-the-fly, any faulty optimizations 

that might result from a violation of the specialization requirements or from fixing inadequate

specialization criteria. 

It is worth pointing out that the program transformation performed by the NPER algorithm

preserves the executability conditions of the input rewrite theory R. Furthermore, when R is topmost 

and strongly normalizing, R and its partially evaluated version are semantically equivalent (as proven 

in [2] ). Since not all theories are topmost, a topmost extension is implemented by iPresto that

automatically transforms a rewrite theory into an equivalent, topmost one. The extension works for 

several classes of relevant and well-studied theories. 
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The rewrite theory R of Section 2.1 allows a Maude user to model-check an arbitrary Kripke

tructure M w.r.t. an initial state S and a CTL formula F . In this section, we show how NPER can

e used to generate an optimized specialization of R for some fixed inputs. Roughly speaking, the

dea is to automatically produce a specialized model-checker for the oven Kripke structure of Section

.1 that is optimized for the verification of a restricted class of CTL properties. 

Specifically, we fixed the following inputs: 

Note that AG (Not (open And (open Implies (EX P:Proposition)))) is a pattern

hat represents an infinite numbers of CTL formulas, since it contains the variable P of sort

roposition that can be instantiated by any possible well-formed CTL formula. 

We then execute the NPER algorithm on R 

′ , which is a slight mutation of R in which the check
ewrite rule has been replaced by the following rule where M, S, and F have been instantiated by

sing the terms above. 

The execution of NPER on R 

′ first partially evaluates R 

′ yielding the following equations: 

and the following rewrite rule: 
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After the partial evaluation phase, NPER proceeds with the compression phase to deliver an even

more compact specialized theory: 

Note that two auxiliary functions f0 and f1 have been automatically introduced to define the

following renaming: 

It is worth noting that the resulting specialization has been greatly optimized. Indeed, the 

specialized rule check'-c , which is obtained after the compression phase, completely removes the 

need for evaluating the time-expensive modal operators AG and EX originally included in the formula

F to be model-checked, thereby providing a more efficient specialized model-checker that reduces the 

problem of model-checking the CTL formula F to model-checking the simpler formula P. 

A thorough experimental evaluation of the methodology has been conducted by using the iPresto 

system with the aim of measuring the degree of optimization that our partial evaluation method

can achieve on several software systems of different technical nature (e.g., model-checkers, network 

protocols, client-server applications). Our example set also includes a Maude implementation for 

the controller of an unmanned space probe orbiting Earth. This model results from several effort s

conducted by the European Space Agency to improve mission planning and scheduling of several

operations, including the Mars Express mission. 

Our figures show that the specialized systems achieve a significant improvement in execution time 

when compared to the original systems, with an average speedup of 53,74, that is, the specialized

theory runs 53,74 times faster than the original one on average. 

Full details of our experiments can be found at the url: http://safe-tools.dsic.upv.es/ipresto/ 

benchmarks.html . iPresto implements both the EqNPE algorithm and the NPER algorithm. The former 

allows one to partially evaluate equational theories w.r.t. a set of external, user-defined function calls;

the latter partially evaluates rewrite theories w.r.t. function calls that occur in the rewrite rules. A

quick start guide of iPresto is available at http://safe-tools.dsic.upv.es/ipresto/quickstart.pdf . 

Further applications 

The methodology described in this article can be particularly useful for specializing and debugging 

a complex, overly general equational theory E when being plugged into a host rewrite theory R as

happens, for instance, in protocol analysis, where sophisticated equational theories for cryptography 

are used [3] . 

Another interesting application domain for our methodology lays in the optimization of biological 

systems. Biological systems have been represented in rewriting logic and Maude using different 

approaches. As shown in [4] , a rewriting logic framework for operational semantics of membrane

systems can be easily formulated where cells are seen as parallel and distributed processing units that

communicate by passing objects through their membranes like chemicals traverse those of biological 

cells. The membrane system is modeled as a collection of cells, objects playing the role of chemicals,

and evolution rules describing their reactions and communication. All of them are assumed to be

contained inside a topmost skin. Cells can be populated by a multiset of other nested cells so that

multisets of objects and the nested structure of membranes are naturally represented in Maude by

terms with associative-commutative constructor operators. Like any other Maude theory, biological 

http://safe-tools.dsic.upv.es/ipresto/benchmarks.html
http://safe-tools.dsic.upv.es/ipresto/quickstart.pdf
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Fig. 4. Specializing metabolic pathways of a mammal cell with iPresto. 
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ystems can be analyzed and model-checked in Maude, but moreover, the models themselves as

ell as their formal verification can be easily optimized in iPresto by straightforwardly using the

ethodology described in this paper. An example is provided in http://safe-tools.dsic.upv.es/iPresto/

here we use iPresto to optimize a system that models biological pathways for a mammal cell (see

ig. 4 ). 
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