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Abstract

Classical aniridia is a congenital and progressive panocular disorder almost exclusively

caused by heterozygous loss-of-function variants at the PAX6 locus. We report nine individ-

uals from five families with severe aniridia and/or microphthalmia (with no detectable PAX6

mutation) with ultrarare monoallelic missense variants altering the Arg51 codon of

MAB21L1. These mutations occurred de novo in 3/5 families, with the remaining families

being compatible with autosomal dominant inheritance. Mice engineered to carry the p.

Arg51Leu change showed a highly-penetrant optic disc anomaly in heterozygous animals

with severe microphthalmia in homozygotes. Substitutions of the same codon (Arg51) in

MAB21L2, a close homolog of MAB21L1, cause severe ocular and skeletal malformations

in humans and mice. The predicted nucleotidyltransferase function of MAB21L1 could not

be demonstrated using purified protein with a variety of nucleotide substrates and oligonu-

cleotide activators. Induced expression of GFP-tagged wildtype and mutant MAB21L1 in

human cells caused only modest transcriptional changes. Mass spectrometry of immuno-

precipitated protein revealed that both mutant and wildtype MAB21L1 associate with tran-

scription factors that are known regulators of PAX6 (MEIS1, MEIS2 and PBX1) and with

poly(A) RNA binding proteins. Arg51 substitutions reduce the association of wild-type

MAB21L1 with TBL1XR1, a component of the NCoR complex. We found limited evidence

for mutation-specific interactions with MSI2/Musashi-2, an RNA-binding proteins with
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effects on many different developmental pathways. Given that biallelic loss-of-function vari-

ants in MAB21L1 result in a milder eye phenotype we suggest that Arg51-altering monoalle-

lic variants most plausibly perturb eye development via a gain-of-function mechanism.

Introduction

The gene mab-21 was identified through its ability to rescue the Caenorhabditis elegans male

abnormal 21 mutants, characterised by a homeotic transformation of the male-specific periph-

eral sense organs [1]. 11 human paralogs of mab-21 have been identified each with a nucleoti-

dyltransferase domain [2]. The best studied, CGAS [MIM 613973], functions in the innate

immune system as a sensor of aberrant cytosolic DNA. The binding of short dsDNA induces a

conformation change that activates enzymatic production of a cyclic dinucleotide which then

functions as a second messenger in the interferon response cascade [3].

The mab-21 paralog, MAB21L1 [MIM 601280], is a single exon gene located in an intron of

NBEA [MIM 604889] which is transcribed on the opposite strand. Biallelic loss-of-function muta-

tions inMAB21L1 cause a developmental disorder characterized by corneal dystrophy, micro-

cephaly, cerebellar hypoplasia and genital anomalies [MIM 618479] [4,5]. The carrier parents of

affected individuals were reported to be normal.Mab21l1 null mice are viable but show severe

bilateral microphthalmia with a small malformed lens and absence of the iris and ciliary body

[PMID 12642482]. Null mice also show delayed calvarial development and male infertility with

hypoplasia of the preputial glands [6,7]. Heterozygous mice apparently normal. Homozygosity for

an early frameshift mutation in zebrafish mab21l1 resulted in a late embryonic degeneration of

the cornea and subsequently the lens [PMID 33570754]. The crystal structure of MAB21L1 indi-

cates a cGAS-like capacity for catalytic activation via ligand binding although both the oligonucle-

otide activator and the nucleotide product are currently unknown [8].

We and others have previously reported heterozygous de novo missense mutations in

MAB21L2 [MIM 604357], the closest human homolog of MAB21L1, associated with severe

bilateral eye malformations and skeletal anomalies [MIM 615877] [9–11]. These variants

altered Arg51 with the most severe phenotype associated with Arg51Cys substitutions. A

mouse model of this genotype resulted in a phenotype that recapitulated the human disease

[12]. Mab21l2 null mice have severe eye malformations and body wall defects with heterozy-

gous null mice being normal [13].

Here we report monoallelic missense variants that are absent for gnomAD and result in sub-

stitution of Arg51 or, in a single case, Phe52 residues of MAB21L1 in families with severe aniri-

dia [MIM 106210], a phenotype associated with monoallelic mutations in PAX6 [MIM 607108],

and/or microphthalmia. An apparently unrelated family has been recently reported with a het-

erozygous missense variant in MAB21L1 identical to one that we have identified (c.152G>T p.

(Arg51Leu)) associated with microphthalmia and aniridia [14] which provides strong support

for the genotype-phenotype association. We present a mouse model of one of these mutations

and study the effect of the mutant proteins on the transcriptome and protein interactome using

inducible expression of tagged protein in human cells. The results are most consistent with a

gain-of-function effect in Arg51-substituted MAB21L1 during embryogenesis.

Materials and methods

Recruitment, consent and mutation analysis

This project used clinical information and biological samples from individuals referred to the

Medical Research Council (MRC) Human Genetics Unit Eye Malformation Study. Informed
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written consent for research was obtained from all families. This cohort was collected and

maintained using protocols approved by the Scotland A UK Multicentre Research Ethics

Committee, references 06/MRE00/76 and 16/SS/0201. The causative variants were identified

using a combination of sequencing approaches: whole exome analysis and candidate gene

panel sequencing in the Wellcome Sanger Institute as part of the rare disease component of

the UK10K project as described [15] and Sanger sequencing (for details see Results and S1

Table in S7 File). Samples from two families were referred following discussions with the cor-

responding author for clinical testing in the NHS South East Scotland Regional Genetics Ser-

vices using MiSeq sequencing of a targeted gene panel which included MAB21L1. All variants

were validated using Sanger sequencing of PCR products amplified directly from genomic

DNA and were nomenclature-confirmed (https://variantvalidator.org/) (S2 Table in S7 File).

All variant numbering is based on the human reference sequences GRCh38 NC_000013.11

(genomic, chr13). For each of the missense variants SIFT [16], PolyPhen [17], CADD [18] and

REVEL [19] scores were generated using the DECIPHER web tool [20].

Structural analysis of mutations

The effects of missense mutations were modelled using the crystal structure of MAB21L1

(PDB ID: 5EOM) using FoldX 5.0 [21], which was recently shown to be the top-performing

method for the identification of pathogenic missense mutations that affect protein stability

[22], using all default parameters and averaging over 10 replicates.

Cloning, protein purification and enzymatic assay

Wild-type human MAB21L1 and the substitution p.(Arg51Leu) were amplified from control

and patient DNA respectively and cloned in frame into the pGEX 6P1 vector (GE Life-

Sciences). Purified protein was isolated from induced E. coli strain BL21 cultures as outlined in

Supplemental Materials and Methods. Human OAS1 protein was used as a positive control

in the enzymatic assay. A colorimetric method was used to quantitate the amount of pyrophos-

phate (PPi) product released upon completion of the enzymatic reaction as described [23] and

detailed in Supplemental Materials and Methods. The resulting chromophore molybdenum

blue produced was quantified by spectrophotometry at A580 nm.

Generation and RNA-based analysis of inducible human cell lines

Full-length human MAB21L1 and Arg51Leu and Arg51Gln substituted forms were amplified

from the control and patient DNA and cloned downstream of green fluorescence protein

(GFP) in the Gateway pcDNA-DEST53 vector according to the manufacturer’s protocol,

resulting in an N-terminal fusion protein. Stable cell lines were generated, selected and main-

tained using Human Embryonic Kidney (HEK)-293 cells with the Flp-In T-REx system (Ther-

moFisher) according to the manufacturer’s guidelines. Details of the subcellular fractionation

and Western blotting procedures are provided in Supplemental Materials and Methods.

RNA sequencing used total RNA extracted from two biological replicates of each cell line after

12 hrs of 1 μg/ml tetracycline treatment using the RNeasy kit (QIAGEN). Random primed

cDNA from poly(A) selected RNA was converted into an Illumina sequencing library using

RNA Library Prep Kit from Illumina (E7420, NEB, USA) in conjunction with NEBNext1

Multiplex Oligos for Illumina (E7335/E7500, NEB, USA). and single-end 50-base pair (bp)

reads were generated using a NextSeq 500 (Illumina Inc, SY-415-1002). Transcript-level quan-

titation was performed using Salmon (v0.8.2) against the GRCh38 Ensembl reference tran-

scriptome (release-89). Transcript-level counts were summarized to gene level using the
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Bioconductor package tximport (v1.4.0). Differential expression analysis was performed with

the Bioconductor package DESeq2 (v1.30.0) using the Wald significance tests.

Immunoprecipitation-mass spectrometry

Three biological replicates of HEK-293-Flp-In T-Rex cells tagged with EGFP, EGFP-MAB21L1

or mutant EGFP-MAB21L1 were seeded in T-75 flask in culturing media supplemented with

1 μg/ml tetracycline. Cells were harvested by trypsin-EDTA, washed by PBS after 12 hrs of tet-

racycline treatment. Cell lysis and GFP pulldown was perform using GFP Tag Immunomag-

netic Beads (Sino Biologicals) according to manufacturer instructions. The pull-down beads

were subjected to mass spectrometric analysis and raw data was analysed by the MaxQuant

and Andromeda software package as described [24], using the pre-selected conditions for anal-

ysis (specific proteases, 2 missed cleavages, 7 amino acids minimum length). Detailed Mass

Spectrometry analysis is provided in Supplemental Materials and Methods.

Immunoprecipitation-western blotting

HEK-293-Flp-In T-Rex cells tagged with EGFP, EGFP-MAB21L1 or mutant EGFP-MAB21L1

were seeded in T-25 flask in culturing media supplemented with 1 μg/ml tetracycline. Cells

were harvested by trypsin-EDTA, washed by PBS after 12 hrs of tetracycline treatment and

lysed with Nonidet P-40 lysis buffer (50mM Tris, pH 8.0, 150mM NaCl, 1.0% Nonidet P-40) in

the presence of protease inhibitor(Roche Applied Science) For each immunoprecipitation,

400 μl of cell lysate were incubated with anti-TBL1XR1 antibody (ab24550,Abcam) and anti-

MSI2 antibody(ab76148,Abcam) for 5 h at 4˚C. Then 20 μl of Dynabeads protein A (Thermo

Fischer) were added and rotated for 2 h at 4˚C. Bound immune complexes were washed three

times with phosphate-buffered saline. For immunoprecipitation of GFP-tagged proteins, Cell

lysis and GFP pulldown was perform using GFP Tag Immunomagnetic Beads (Sino Biologi-

cals) according to manufacturer instructions. The immune-complexes were analysed by West-

ern blotting.

Generation and phenotyping of mouse model

All mouse work complied with United Kingdom Home Office regulations, with study proto-

cols approved under Home Office project licences (60/4424, P1914806F). CRISPR-Cas9 gene

editing methodology was used to introduce a targeted mutation of the Arg51 residue of

Mab21l1 in C57BL/6JCrl zygotes. The CRIPSR design and breeding strategy for the colony are

detailed further in Supplemental Materials and Methods and S1 Fig. Adult mutant and con-

trol mice were examined at 2–3 months of age unless otherwise stated, using; slit lamp bio

microscopy, indirect ophthalmoscopy, Icare tonometry (intraocular pressure measurement)

and endoscopic fundus imaging, all as described [25]. On fundus images, 2D optic disc size

was measured semi-automatically using the Vampire Annotation Tool [26]. Optical coherence

tomography (OCT) using Spectralis (Heidelberg Engineering) was performed as described

[27]. For histology mice were culled and enucleated eyes were preserved in Davidson’s fixative

and then wax embedded, sectioned and stained with Heamatoxylin and Eosin as previously

described [28].

Results

Identification of MAB21L1 monoallelic missense variants altering Arg51

As part of the rare disease component of the UK10K Study [15] 384 mostly unrelated individu-

als with bilateral eye malformations were batch sequenced using a targeted pull-down of 1000
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candidate genes, 100 of which had been chosen on the basis of their involvement in eye devel-

opment. Filtering for rare variants within these 100 genes identified a heterozygous plausible

deleterious variant c.152G>A p.(Arg51Gln) in MAB21L1 (ENST00000379919.6:c.152G>A,

ENSP00000369251.4:p.Arg51Gln: Sift; Deleterious (0), PolyPhen; Probably damaging (0.999),

CADD 30, REVEL 0.542) in a single individual (Family 511: II:1, Fig 1A and 1B) with bilateral

profound aniridia and microphthalmia (Table 1, Fig 1C). In this family the eye malformations

were inherited as an autosomal dominant disorder and the MAB21L1 variant segregated with

the phenotype (Fig 1A and 1C). The same c.152G>A p.(Arg51Gln) variant was identified in

an individual referred from south-east Asian (Family 96571: II:1, Fig 1A) for clinical investiga-

tion of bilateral, severe microphthalmia (Table 1). This variant was subsequently also identi-

fied in an affected brother (Fig 1A). The affected offspring had inherited the variant from their

unaffected mosaic father (Fig 1A, Table 1).

Subsequence sequencing of DNA from unrelated affected individuals referred to the MRC

Human Genetics Unit Eye Malformations Study identified an individual with sporadic partial

aniridia and microphthalmia (Family 1434: II:1, Fig 1A and 1C) associated with de novo
occurrence of MAB21L1 c.152G>T p.(Arg51Leu) (ENST00000379919.6:c.152G>T,

ENSP00000369251.4:p.Arg51Leu: Sift; Deleterious (0), PolyPhen; Probably damaging (0.999),

CADD 29.6, REVEL 0.682). The same allele was identified in an individual referred with famil-

ial aniridia (Family 3413: I:1, Fig 1A) however samples from other affected members of this

family were not available for testing. A further de novo missense variant c.152G>C p.(Arg51-

Pro) (ENST00000379919.6:c.152G>C, ENSP00000369251.4:p.Arg51Pro: Sift; Deleterious (0),

PolyPhen; Probably damaging (1), CADD 31, REVEL 0.694) was identified in an individual

with a sporadic milder aniridia-spectrum eye malformation (Family 592). Finally, a variant

affecting the adjacent codon, c.155T>G p.(Phe52Cys) (ENST00000379919.6:c.155T>G,

ENSP00000369251.4:p.Phe52Cys: Sift; Deleterious (0), PolyPhen; Probably damaging (0.969),

CADD 32, REVEL 0.745), was identified in an individual with sporadic microphthalmia and

aniridia (Family 5531: I:1, Fig 1A, Table 1). Parental samples were not available for testing in

Family 5531. Sequencing chromatograms are provided (S2 Fig). None of these variants have

been observed in publicly available variant databases.

Clinical phenotype. Pedigrees and clinical images are provided (Fig 1A and 1C), as well

as detailed clinical descriptions (Supplemental Clinical Descriptions). The phenotypic fea-

tures (Table 1) are summarised here. All 6 families had aniridia and/or microphthalmia. Anir-

idia was present in 4/6 families, microphthalmia in 4/6; and both in 3/6.

Aniridia. The aniridia was partial (moderate loss of iris tissue) in 2/6, unspecified in 1/6,

and profound in 1/6. None of the families had a documented normal iris: 1/6 had a milder iris

phenotype consisting of an irregular pupillary margin, and the remaining 1/6 had severe

microphthalmia.

Microphthalmia/MAC spectrum. Of the MAC spectrum features seen in 4/6: 1/6 had a

family member with bilateral severe microphthalmia, no view of the internal ocular structures

and no perception of light. 1/6 had a microphthalmia with a chorioretinal colobomata and

microcornea (in all 3 family members).

Other ocular features. 4/6 had nystagmus, 3/6 with confirmed foveal hypoplasia; in the

remaining 2/6 only limited phenotypic data was available. 3/6 families had cataract, 2/6 with

lens instability or subluxation. None had aphakia. 1/6 had glaucoma. 2/6 were described as

having keratopathy or an opaque cornea, but as both individuals had microphthalmia and one

had phthisis this is difficult to interpret. 2/6 had optic disc anomalies, including congenitally

excavated and hypoplastic nerves.

Non-ocular features. There were no non-ocular phenotypic features of note. In particu-

lar, none of the affected individuals were reported to have genital anomalies.
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Fig 1. MAB21L1 Arg51 and Phe52 substitution causes microphthalmia and aniridia. A. Pedigrees are shown for

the six families with MAB21L1 variants and bilateral microphthalmia and/or aniridia. The pedigrees are ordered by

variant: c.152G>A p.(Arg51Gln) (orange shaded box), c.152G>T p.(Arg51Leu) (green shaded box), c.152G>C p.

(Arg51Pro) (yellow shaded box) and c.155T>G p.(Arg52Cys) (pink shaded box). A key to the pedigree symbols is

shown to the left (grey shaded box). B. A schematic of MAB21L1 represented as a linear bar and with the first and last

amino acid residue numbered. The linear positions of all pathogenic variants are shown: The monoallelic variants in

this study are detailed above (red text) and the published biallelic variants are detailed below (bracketed black text). C.

Clinical images of individuals with MAB21L1 Arg51-related eye malformations. R, right eye; L, left eye. Family 511 all

have profound aniridia, microcornea, choroidal coloboma (just visible in II:1’s L fundus photo) and optic disc

anomalies. The progression of disease in II:1 over one decade is shown between with the upper and lower photos, with
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Enzymatic function of MAB21L1

Wild-type and mutant (p.Arg51Leu) MAB21L1 was purified from E. coli in order to determine

whether its predicted enzymatic function could be detected. Using an assay for colorimetric

detection of pyrophosphate release [23] we could detect strong activity with 2’-5’-oligoadeny-

late synthase (OAS) purified by the same methods with ATP as substrate and RNA as activator

molecule (Fig 2A). However, no MAB21L1-associated nucleotidyltransferase activity was

detected using various nucleoside triphosphates as a substrate along with DNA or RNA as acti-

vator molecules (Fig 2A).

Structural analysis of MAB21L1 residue substitutions

We analysed the protein structural context of MAB21L1 substitutions reported above and the

single reported biallelic missense variant [4] (Fig 3B) incorporating previously reported

MAB21L2 residue substitutions associated with monoallelic or biallelic genotypes [10] (S3

Fig). There is a clear clustering of heterozygous variants, centred at Arg51. All the mutations

are predicted to be destabilizing to protein structure (S4 Table in S7 File), except the recessive

MAB21L2 substitution Arg247Gln; however, previous experimental work has conclusively

demonstrated the destabilizing nature of this variant [8]. The pathogenicity of the recessive

variants can almost certainly be explained by a simple loss of function caused by protein desta-

bilization. However, while the heterozygous variants are all predicted to be somewhat disrup-

tive, their clustering suggests a specific effect that involves this region. Thus, it seems plausible

that the Arg51 substitutions are altering an interaction with another protein. It is also interest-

ing that Arg51Pro has the mildest protein structural effect and appears to cause a milder phe-

notype than the other MAB21L1 heterozygous missense variants (Fig 1A, Table 1). Moreover,

FoldX predicts a strong destabilizing effect of the Phe52Cys substitution, thus further indicat-

ing the structural relevance of this region.

Creation and Analysis of stable cell lines with inducible expression of wild-

type and mutant MAB21L1

We created multiple independent tetracycline-inducible cell lines expressing wild-type

MAB21L1 and Arg51leu and Arg51Gln variants as full-length GFP-tagged fusion proteins.

Analysis of nuclear and cytoplasmic fractions revealed that MAB21L1 was present in both frac-

tion with no evidence of mislocalisation of mutant forms (Fig 2B). RNAseq was used to assess

the effect of MAB21L1 mutant variants on gene expression. Relatively few genes showed con-

sistent differences between mutant and wild-type MAB21L1 (Fig 2C). Of these only SPARC
(secreted protein acidic and rich in cysteine [MIM 182120]) had any link to eye disease

[29,30]. SPARC was significantly upregulated in mutant cell lines compared to wild-type.

SPARC has been reported as a PAX6 interactor [31] so we used transient transfection to over-

express exogenous PAX6 in the wild-type and mutant MAB21L1 cells to see if this had any

effect on the mutant-specific SPARC upregulation. Interestingly PAX6 had no effect on

SPARC expression in mutant cells but induced significant downregulation in cells expressing

wild-type GFP-MAB21L1 (Fig 2D). This would be consistent with wild-type MAB21L1 having

a role in PAX6 mediated repression of SPARC and that function being lost with Arg51

substitution.

worsening of phthisis in the right and pannus in the left. An enlarged retroilluminated image of III:1’s L eye is shown

highlighting near-total aniridia. Individual 1434 II:1, showing bilateral partial aniridia and microphthalmia, worse on

the L. Abbreviations: dn, de novo. Nucleotide and amino acid numbering are based on GenBank NM_005584.5 and

GenPept NP_005575.1, respectively.

https://doi.org/10.1371/journal.pone.0268149.g001
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Table 1. Clinical and molecular features of individuals with MAB21L1 heterozygous variants.

Family ID 96571 511 1434 3413 592 5531

Case II:1 II:2 II:1 III:1 III:2 II:1 I:1 II:1 I:1

Sex male male male male female female ND female male

GRCh38:

NC_000013.11

g.35475987C>T g.35475987C>T g.35475987C>A g.35475987C>A g.35475987C>G g.35475984A>C

GenBank:

NM_005584.5

c.152G>A c.152G>A c.152G>T c.152G>T c.152G>C c.155T>G

GenPept:

NP_005575.1

p.(Arg51Gln) p.(Arg51Gln) p.(Arg51Leu) p.(Arg51Leu) p.(Arg51Pro) p.(Phe52Cys)

Inheritance paternala paternala NDb paternal paternal de novo ND de novo NDc

Growth

Birth Weight z

score

2.9 3.05

Age at last

assessment,

years

7.5 2 48 13 11 23 ND 11 ND

Height z score 2.08 1.2

Weight z score 1.31 0.76

OFC, cm 51 49.5

Ocular features

Microphthalmia BL severe BL BL BL BL BL

Coloboma LE small,

inferior to

disc

RE infero-

temporal

choroidal;

LE small,

temporal to

disc

LE nasal

choroidal

Aniridia BL BL BL BL BL BL

Irregular pupil

margin

BL

Microcornea,

mm

BL BL: 6 BL: 6

Keratopathy LE opaque

vascularised

cornea

RE

opaque

cornea

BL

progressive

Glaucoma BL with surgery

LE

Cataract no view LE previous

lensectomy

BL with RE

lenticonus,

LE lens

instability

BL with

progressive

subluxation

BL

Nystagmus LE BL BL BL BL BL

Foveal

hypoplasia

LE insufficient

view

BL BL

Optic disc

anomaly

LE RE no view;

LE

congenitally

excavated

appearance,

normal

colour

BL gray

hypoplastic

BL gray

hypoplastic

Myopia BL high BL

(Continued)
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Detection of wild-type and mutant-specific protein interactions

To identify MAB21L1 interactors that are specific either to wild-type or mutant protein we

performed immunoprecipitation followed by mass spectrometry (IP-MS) on biological tripli-

cates derived from independent clones of the inducible cell lines expressing GFP alone, wild-

type MAB21L1, Arg51Leu MAB21L1 and Arg51Gln MAB21L1. More than 1000 proteins were

identified using IP-MS but most were non-specific or inconsistently associated with the geno-

types (Fig 3A). The levels of MAB21L1 were similar in wild-type and mutant pull-down sam-

ples suggesting uniform pulldown (Fig 3B). 72 proteins showed consistent association with all

forms of MAB21L1 with no association with GFP alone. Pathway analysis of these proteins

revealed a significant over-representation of RNA-binding proteins and TALE-like homeodo-

main containing proteins (Table 2). Indeed, four of the five most abundant proteins were tran-

scription factors of this latter class (MEIS1, MEIS2, PBX1 and PBX3) (Fig 3D). A component

of the NCor co-repressor complex, TBL1XR1, was the only wild-type MAB21L1-specific pro-

tein identified (Fig 3E). Western blot of the GFP IP using an antibody raised against TBL1XR1

showed differential, but not exclusive, binding to wild-type MAB21L1 (Fig 3F). Reciprocal

immunoprecipitation using anti- TBL1XR1 antibody was not able to detect either mutant or

wild-type forms of MAB21L1 using western blot (S4 Fig). MSI2/Musashi-2 was one of only

three proteins showing apparently exclusively association with the mutant forms of MAB21L1

(Fig 3G, the other proteins being LRRFIP1 and GALNT2, S5 Fig). Although we were unable

to confirm this interaction using reciprocal IP with a MSI2 antibody on western blot (Fig 3H),

the reciprocal IP-MS using this antibody identified MAB21L1 derived peptides in each repli-

cate of the mutant forms of MAB21L1 but only one of the wild-type replicates. This can be

considered only limited evidence of a gain of function interactions since the GFP-only MS-IP

showed peptides in two of the replicates, presumably derived from endogenous MAB21L1 in

HEK293 cells.

Table 1. (Continued)

Family ID 96571 511 1434 3413 592 5531

Case II:1 II:2 II:1 III:1 III:2 II:1 I:1 II:1 I:1

Sex male male male male female female ND female male

Additional

details

BL no view of

internal

structures

RE no

view of

internal

structures

RE phthisis

of unknown

cause

limited

phenotypic data

limited

phenotypic data

Visual acuity BL NPL BL PL BL HM

Non-ocular

features

hyperthyroidism

(also in mother);

normal MRI

brain scan,

echocardiogram

and renal

ultrasound

BL mild

sensorineural

hearing loss,

normal MRI

brain scan

a, the unaffected father was gonosomal mosaic (at a level of approximately 27 percent) for the variant.
b, his deceased father had microphthalmia and aniridia.
c, sporadic case of aniridia.

Abbreviations are BL, bilateral; HM, hand movements; LE, left eye; MRI, magnetic resonance imaging; ND, not determined; NPL, no perception of light; PL, perception

of light; RE, right eye.

https://doi.org/10.1371/journal.pone.0268149.t001
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Fig 2. A. Nucleotidyltransferase activity: Graph showing the absence of nucleotidyltransferase activity in MAB21L1 and its mutant form Arg51Leu purified

protein. OAS1 protein purified in the same way is a positive control and when incubated with ATP and double-stranded RNA (dsRNA), significant

pyrophosphate release is detected indicating nucleotidyl transferase activity. MAB21L1 and Arg51Leu showed no activity with either ATP, CTP, GTP, UTP

used as substrate separately or as an equal mixture of NTPs using DNA or RNA as an activator. The error bars represent standard errors.B: Cellular

fractionation: Western blot analysis of cytoplasmic (C) and nuclear(N) extracts from HEK293-Flp-In cells with Tetracyclin (TET) inducible expression of

GFP-tagged wild-type and mutant MAB21L1(Arg51Leu and Arg51Gln).Wild type and mutant proteins were present in cytoplasm(C) as well as nuclear

fraction(N) as detected by anti-GFP antibody. Representative Coomassie stain gel image is shown.C: Differential Gene Expression: Gene expression analysis

by RNA Sequencing performed on GFP-tagged wild-type and mutant MAB21L1 (Arg51Leu and Arg51Gln) cells. Heatmap showing top 20 differentially

expressed genes in the datasets (padj< .05 and Log2F>1). The RNA sequencing data is available under the GSE166078 series at the NCBI Gene Expression

Omnibus (https://www.ncbi.nlm.nih.gov/geo/). D: Effect of PAX6 overexpression on SPARC transcripts levels: SPARC transcripts levels were quantified

using quantitative RT-PCR using cells expressing GFP tagged Wild type and mutant MAB21L1 with or without overexpressing PAX6. GAPDH transcripts

levels were used as normalization control. The levels of SPARC transcripts were significantly reduced in GFP tagged Wild type MAB21L1 cells in presence of

overexpressed PAX6. There was no significant difference in the mutant cells in presence or absence of overexpressed PAX6.

https://doi.org/10.1371/journal.pone.0268149.g002
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Fig 3. The Effect of disease associated missense variants on protein structure and interactions. A. A heatmap of the log-transformed quantitative mass

spectroscopy (MS) results of biological triplicates of anti-GFP immunoprecipitates (IP) of control (GFP), tagged wild-type (WT) and mutant MAB21L1 (R51L

and R51Q) from HEK293 cells. B. Representation of the structure of MAB21L1 with the position of the amino acid substitutions seen in MAB21L1 (L1) and

MAB21L2 (L2) annotated. C-E Graphs showing the levels of the following classes of proteins in the GFP IP-MS from biological triplicates: C. MAB21L1. D.

The five most abundant proteins interacting with WT, R51L and R51Q forms of MAB21L1 (MEIS1, PBX1, SUGT1, PBX3 & MEIS2), the dotted line

box indicates the position of this class of protein on the heatmap. E. Wild-type specific interactor (TBL1XR1) and other components of the NCor complex

(NCOR & HDAC3), the position in the heatmap is indicated by the closed arrowhead. F. Western blot analysis of the anti-GFP IP using the anti-TBL1XR1

antibody showing differential but not exclusive binding of the wild-type MAB21L1 compared to the mutant forms G. Mutant specific interactor MSI2/

Musashi-2), the position in the heatmap is indicated by the open arrowhead. H. Western blot analysis of the anti-GFP IP using the anti-MSI2 antibody was

unable to detect interaction with wild-type or mutant forms of MAB21L1 I-J. anti-MSI2 IP-MS analysis I. MSI2-derived peptides were present in all replicates

and cell-lines in the anti-MSI2 IP J. MAB21L1-derived peptides were detectable in all replicates of the mutant forms of MAB21L1 but in only one replicate for

the wild-type. Surprisingly peptides derived from endogenous MAB21L1 were detectable in two of the three GFP-only biological replicates.

https://doi.org/10.1371/journal.pone.0268149.g003
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Generation and phenotyping of mice with Mab21l1 p.Arg51Leu

substitution

We used zygotic genome editing to create a mouse line harbouring Mab21l1 p.Arg51Leu sub-

stitution (Mab21l1R51L/+) (S1 Fig). The line was maintained as a co-isogenic strain on this

C57BL/6JCrl background. Heterozygous mice were intercrossed to produce viable and fertile

homozygotes (Mab21l1R51L/R51L). The ratios of offspring were consistent with Mendelian

genetics (S3 Table in S7 File). Mab21l1R51L/+ heterozygote mice showed anomalous, excavated

optic discs (Fig 4A and 4B) in 13/13 heterozygotes, confirmed as bilateral in 9/13 (all fundus

images are shown in S6 Fig). Quantitative analysis of fundal images show the discs were

enlarged compared to wild type (n = 8 Mab21l1R51L/+, n = 4 WT, p = 0.00004,). The excavated

optic disc anomaly was observed on Optical Coherence Tomography and histological section-

ing (Fig 4C and 4D). Intraocular pressure tested in a subset of mice (n = 2 WT, n = 5

Mab21l1R51L/+, n = 3 Mab21l1R51L/R51L) was within the normal range, consistent with the optic

nerve phenotype being a developmental defect rather than glaucomatous phenomenon. Slit

lamp examination of the iris and anterior segment appeared normal and the mice displayed no

other apparent abnormalities. All homozygous Mab21l1R51L/R51L mice had a severe bilateral

panocular eye malformation (Fig 4A and 4B). These included microphthalmia with disorga-

nised anterior and posterior segments. There was marked hyperplasia of pigmented uveal tis-

sue that obscured any possibility of a fundal view on examination. Histological sectioning

revealed abnormalities of the cornea, iris, ciliary body, lens, retina and optic nerve (Fig 4C).

The most severely affected eyes had only a rudimentary lens and retina, and optic nerve

aplasia.

Discussion

Classical aniridia is a highly distinctive autosomal dominant disorder diagnosed in infancy by

the combination of absence of the iris and foveal hypoplasia [32,33]. In adult life a progressive

opacification of the cornea results in the relentless loss of their vision; this is currently untrea-

table and represented a particularly challenging aspect of the disorder for both affected

Table 2. Significantly enriched terms relating to MAB21L1-interacting proteins using DAVID Functional Annotation Chart.

Category Term Genes Fold

Enrich

Bonferroni

GO:0044822 poly(A) RNA binding RBM26, NCBP1, POP1, SPATS2, MRPS21, ERAL1, MRPL37, NPM3, DIAPH1,

SARS2, ZC3H7A, RBMX2, NUSAP1, FASTKD5, FLNB, METTL16, SNTB2

3.68 1.07E-03

UP_KEYWORDS Phosphoprotein RBM26, PDXDC1, POP1, FLII, GPS1, RNF219, STK4, PFAS, SMG5, TOR1AIP1,

STK3, DNAJB1, ATXN3, IPO8, ZC3H7A, SALL2, RBMX2, PHKG2, NUSAP1, FLNB,

METTL16, SKP2, MARK3, CEP55, EIF2A, JAGN1, NCBP1, HMGCS1, RIOK3,

ZNF281, GLMN, SPATS2, RECQL, PYCR2, CDC7, ERAL1, HAUS5, NPM3, GTF2F2,

GPN1, DIAPH1, FASTKD5, RLIM, UBA2, CDC42EP1, GARS, SUGT1, SNTB2

1.66 1.12E-03

UP_KEYWORDS Acetylation RBM26, FLII, STK4, SMG5, STK3, NUSAP1, FLNB, SKP2, EIF2A, NCBP1, HMGCS1,

GLMN, RECQL, PYCR2, HAUS5, NPM3, GTF2F2, GPN1, DIAPH1, PRPF4, PPP5C,

SARS2, GGCX, FASTKD5, RLIM, UBA2, GARS, SUGT1

2.34 1.89E-03

UP_SEQ_FEATURE DNA-binding region:

Homeobox; TALE-type

MEIS1, PBX3, MEIS2, PBX1 56.51 1.25E-02

UP_KEYWORDS Nucleus POP1, FLII, GPS1, MRFAP1, STK4, SMG5, TOR1AIP1, STK3, DNAJB1, ATXN3,

IPO8, ZC3H7A, SALL2, NUSAP1, SKP2, ZSCAN18, ZNF460, NCBP1, ZNF281,

RECQL, PBX3, CDC7, NPM3, GTF2F2, MEIS2, GPN1, PBX1, PRPF4, PPP5C, MEIS1,

RLIM, UBA2, SUGT1, INTS9

1.85 0.015

Fold Enrich, fold enrichment over homo sapiens background list; Bonferroni, p value corrected for multiple testing using the Bonferroni method.

https://doi.org/10.1371/journal.pone.0268149.t002
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Fig 4. Mab21l1R51L mouse phenotype. Left hand column shows wild type (WT) mice, middle column Mab21l1R51L/+

heterozygous mice and right hand column homozygous Mab21l1R51L/R51L mice. All mice were examined as young adults,

at 2–3 months of age. (A) External photographs, showing normal external appearance of heterozygous and severe

microphthalmia in homozygous mice. (B) Representative retinal photographs showing the anomalous, excavated optic

disc phenotype (arrow) present in all the 13 heterozygous mice examined, and none of the WT (further images in S6 Fig).
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individuals and ophthalmologists. More than 90% of individuals with aniridia have heterozy-

gous mutations detectable at the PAX6 locus that appear to result in loss-of-function [34–36].

Rare monoallelic missense variants at specific residues within the PAIRED domain of PAX6
cause a significantly more severe form of classical aniridia with microphthalmia [37] with Fig

1 of that paper demonstrating the striking similarity to the individuals with MAB21L1 muta-

tions reported here. The phenotypic similarity includes the nature of the iris phenotype (with a

spectrum including moderate and profound absence of iris, with the loss not limited to one

specific part of the iris such as in Gillespie syndrome), the severity of microphthalmia and the

other associated ocular features including cataract, lens instability and foveal hypoplasia. The

molecular basis of this worse-than-null phenotypic effect in the PAX6 missense cases is

unknown but is assumed to be the consequence of altered PAX6 interaction with DNA and/or

co-binding partners such as SOX2 [38–40].

Given the phenotypic similarity of monoallelic missense variants resulting in PAX6 and

Arg51 MAB21L1 substitutions we hypothesize that the developmental function of the wild-

type PAX6 and MAB21L1 proteins are interdependent. In this regard, it is interesting to con-

sider similarity between the male-specific sensory rays mis-specification that characterizes the

mab-21 mutant class in C. elegans [1] and that seen in mab-18 mutants caused by a mutation

at the vab-3 (PAX6) locus [41]. It is also striking that four of the five most abundant proteins

recovered by immunoprecipitating MAB21L1 were the transcription factors MEIS1, MEIS2,

PBX1 and PBX3. These transcription factors act as both activators [42–45] and co-binding

partners [46,47] of each other and PAX6. Although these interactions are probably relevant to

the developmental role of MAB21L1 it is difficult to link them to disease as they were not sig-

nificantly altered by either of the Arg51 substitutions we studied.

Using IP-MS we could identify only one protein, TBL1XR1 that interacted with wild-type

MAB21L1 but not at all with either mutant form. TBL1XR1 mediates proteasomal degradation

of NCor corepressor complex [48]. Western blotting suggested that this interaction with

mutant protein was reduced rather than completely ablated (Fig 3F). Although disruption of

such an interaction is a reasonable candidate for perturbing a developmental transcriptional

cascade it should be noted that this interaction would be completely ablated in the individuals

with homozygous loss-of-function mutations in MAB21L1 but these individuals have signifi-

cantly milder anterior segment anomalies than the individuals carrying Arg51 heterozygous

missense variants. We do not therefore consider this loss of protein-protein interaction to be

the likely mechanism of disease in the affected individuals we present here.

Three proteins, GALNT2, MSI2 and LRRFIP1, showed apparent mutation-specific interac-

tions suggesting a possible gain of function effect (S5 Fig). GALNT2 is a N-acetyl-d-galactos-

amine-transferase 2 which localizes to the Golgi which has not previously been implicated in

PAX6 function or eye development. Biallelic loss of function mutations in GALNT2 [MIM

602274] cause a neurodevelopmental disorder of O-linked glycosylation [MIM: 618885] [49].

LRRFIP1 [MIM: 603256] is an RNA binding protein that binds double stranded RNA [50].

LRRFIP1 has roles both as a viral sensor in innate immunity [51] and as a regulator of

No retinal view (or OCT) was possible in homozygous animals as all eyes were microphthalmic, often with uveal tissue

obscuring the cornea. (C) H&E-stained wax sections of the mouse eyes, with the abnormal features for each genotype

labelled. The excavated optic nerve anomaly of the heterozygous mice is clearly seen. Note these mice had recently-

administered dilating drops for fundal examination, but the iris appeared normal on slit lamp examination. Homozygous

mice had a severe panocular eye malformation including microphthalmia, severely disorganised retina and uveal tissue,

along with hypoplasia or aplasia of both the optic nerve and lens. Eyes from two different age-matched homozygous mice

are shown to illustrate the spectrum of microphthalmia. Scale bars = 1 mm. (D) Optical coherence tomography (OCT) of

WT and heterozygous mice, showing the enlarged, excavated optic nerve, with some persistent fetal vasculature seen

above the optic nerve head.

https://doi.org/10.1371/journal.pone.0268149.g004
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canonical WNT signalling in development [50,52]. There is no direct evidence that LRRFIP1

is involved in eye development or PAX6 function.

MSI/Musashi-2 [MIM 607897] is also an RNA binding protein that regulates the translation

of gene products through binding their 3’UTR regions. Its role in both cancer [53] and devel-

opmental systems [54–56] has been widely studied and it has been shown to form a complex

with SOX2 [57]. This seemed a good candidate as a gain-of-function interaction but we could

identify only limited evidence for this using reciprocal IP-MS and the interaction was not

detectable using western blot analysis following IP. Musashi-1 was also identified as a

MAB21L1 interactor but did not show any difference between mutant and wild-type proteins

(S5 Fig). Musashi-1 and -2 are required for normal photoreceptor development [58].

The identification of RNA binding proteins as an overrepresented class in the list of muta-

tion agnostic MAB21L1 interactors may be of significant functional relevance. The crystal

structure of MAB21L1 suggested that activation of the nucleotidyltransferase activity required

a conformational change similar to that of the mab-21 paralog cGAS (S7 Fig). The authors

could demonstrate that MAB21L1 bound double stranded RNA but with significantly lower

affinity than cGAS [8]. Our work would support their conclusion that any generic oligonucleo-

tides are unlikely to function as MAB21L1 inducers. They go on to suggest that specific

mRNA-RNA-binding protein complexes species may bind to MAB21L1 to induce the enzy-

matic activity. The fact the LRRFIP1 has cGAS like functions in sensing viral dsRNA in the

cytoplasm is interesting but given that this interaction is only seen with Arg51 substitutions

make this an unlikely endogenous activator. Our favoured hypothesis is that RNA-bound

Musashi-2 functions as the in vivo activator, and a competitive antagonistic effect of Musashi-

2 binding in the mutant is an important gain-of-function interaction. All the above protein-

protein interaction experiments must be treated with caution given that they were performed

using GFP-tagged peptides that were very highly and inducibly expressed in HEK293 cells. We

suggest that future work should focus on identifying wildtype and mutant MAB21L1-specific

interactions under more physiologically and developmentally relevant tissues to identify the

molecular basis of the disorder.

There are several notable features regarding the phenotypes associated with monoallelic

and biallelic mutation of Mab21l1 in mice. The phenotype in Mab21l1R51L/+ mice is milder

than in humans, but the optic disc anomaly is both seen in human cases and consistent with

PAX6-associated disease [59]. In the process of this work Seese and colleagues [14] reported

the identification of c.152G>T p.(Arg51Leu) variant in MAB21L1 in two affected members of

a family which co-segregated with microphthalmia and aniridia. This family appear to be phe-

notypically very similar to those we have identified and this is further support for the causative

nature of substitutions affecting MAB21L1 Arg51. It is interesting that the severe eye malfor-

mations in Mab21l1R51L/R51L animals resemble those reported in Mab21l1 null animals [6]. In

contradistinction the eye phenotype in null humans is significantly milder than that seen in

mice or indeed heterozygous Arg51 substitutions in humans. Together this suggests that there

may be significant differences in MAB21L1/Mab21l1 dosage sensitivity and disease mechanism

between mice and humans.

Supporting information

S1 Fig. Mab21l1 CRIPSR design. (A) Schematic to illustrate the CRISPR-Cas9 sgRNA guide

sequences and their relative locations to the Arginine 51 encoding region of the Mab21l1
locus.(B) Sanger sequencing chromatogram of PCR performed using genomic DNA prepared

from a gene edited mouse. The Mab21l1 p.Arg51Leu mutation was introduced (highlighted

region), along with the silent substitutions in the flanking regions (red asterisks), which were
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specific to the repair template.

(DOCX)

S2 Fig. Sequences of highly specific MAB21L1 heterozygous variants associated with

microphthalmia and/or aniridia. An allelic series of MAB21L1 heterozygous variants at posi-

tion c.152G was identified in a total of five probands: two familial cases with c.152G>A (p.

(Arg51Gln), chromatograms in orange shaded box), two sporadic cases with de novo inheri-

tance of either the recurrent variant c.152G>T (p.(Arg51Leu), upper chromatogram in green

shaded box) or the novel variant c.152G>C (p.(Arg51Pro), chromatogram in yellow shaded

box), and one familial case with unknown genotypic inheritance of the recurrent variant

c.152G>T (p.(Arg51Leu), lower chromatogram in green shaded box). Additionally, a sporadic

case with unknown genotypic inheritance was heterozygous for the novel variant c.155T>G

(p.(Phe52Cys), chromatogram in pink shaded box) in the adjacent 3’ codon. The chromato-

gram for each proband is shown, with the Family ID and pedigree case ID detailed to the right.

Sanger sequencing was used to screen for and/or validate the variant in each proband, and to

test all of the available relatives (data not shown), which established segregation with the phe-

notype. The schematic (upper right) illustrates the highly specific positioning of the four vari-

ants identified. Nucleotide and amino acid numbering is based on GenBank: NM_005584.5

and GenPept: NP_005575.1, respectively.

(DOCX)

S3 Fig. Dominant and recessive variants of MAB21L1 and MAB21L2. Schematic representa-

tions of the linear form of MAB21L1 (blue filled bar) and MAB21L2 (purple filled bar) are

shown, with the first and final amino acids numbered for each protein. For both MAB21L1

and MAB21L2 the linear positions of all published pathogenic variants are detailed on each

cognate protein schematic, with the dominant heterozygous variants shown above and the

recessive biallelic variants shown below. The MAB21L1 variants identified in this study are all

dominantly inherited and are shown in red text. Abbreviations: dn, de novo. Nucleotide and

amino acid numbering are based on GenBank NM_005584.5 and GenPept NP_005575.1,

respectively.

(DOCX)

S4 Fig. Reciprocal IP using TBL1XR1 antibody. Western blot analysis of the anti-TBL1XR1

IP using the anti-GFP antibody was unable to detect interaction with wild-type or mutant

forms of MAB21L1.TBL1XR1 was detected in all the pull down used as control for pull down

experiment.

(DOCX)

S5 Fig. Mutant and WT-specific protein-protein interactions from IP-MS. A. Graphs of the

log-transformed quantitative mass spectroscopy results of biological triplicates of immunopre-

cipitates of control (GFP), tagged wild-type (WT) and mutant MAB21L1 (R51L and R51Q)

from HEK293 cells which identified as single wild-type specific interactor (TBL1XR1) which is

a component of the NCor complex. Two other subunits of the NCor complex (NCOR &

HDAC3) are shown for comparison. B. Graphs of the three mutant specific interactors

(GALNT2, LRRFIP1, MSI2/Musashi-2) and /Musashi-1, a close homolog of MSI2, which

shows interaction with all forms of MAB21L1.

(DOCX)

S6 Fig. Fundus images showing the optic nerve anomaly of Mab21l1 R51L heterozygous

mice. Retinal photographs of additional Mab21l1 R51L heterozygous and wild type mice, sup-

plementing the representative, annotated images shown in Fig 4. (A) Photographs from 8
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heterozygous Mab21l1 R51L/+ mice, left and right eyes, showing eniarged, excavated anoma-
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