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We study algorithmic learning of algebraic structures. In our framework, a learner receives 
larger and larger pieces of an arbitrary copy of a computable structure and, at each stage, 
is required to output a conjecture about the isomorphism type of such a structure. The 
learning is successful if the conjectures eventually stabilize to a correct guess. We prove 
that a family of structures is learnable if and only if its learning domain is continuously 
reducible to the relation E0 of eventual agreement on reals. This motivates a novel research 
program, that is, using descriptive set theoretic tools to calibrate the (learning) complexity 
of nonlearnable families. Here, we focus on the learning power of well-known benchmark 
Borel equivalence relations (i.e., E1, E2, E3, Z0, and Eset ).

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
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1. Introduction

This paper wishes to connect two seemingly distant areas of research: algorithmic learning theory and the theory of 
Borel equivalence relations.

Algorithmic learning theory dates back to the work of Gold [16] and Putnam [30] in the 1960s and it encompasses 
several formal frameworks for the inductive inference. Broadly construed, this research program models the ways in which 
a learner can achieve systematic knowledge about a given environment, by access to more and more data about it. Although 
in classical paradigms the objects to be inferred are either formal languages or recursive functions (see, e.g., [33,23]), in 
recent times there has been a growing interest in the learning of data embodied with a structural content, with special 
attention paid to familiar classes of algebraic structures, such as vector spaces, rings, trees, and matroids [20,32,28,17].

In previous works [12,3], relying on ideas and technology from computable structure theory, we introduced and explored 
our own framework. Intuitively (formal details will be given below), an agent receives larger and larger pieces of an arbitrary 
copy of a computable structure and, at each stage, is required to output a conjecture about the isomorphism type of such a 
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structure. Then, the learning is successful if the conjectures eventually stabilize to a correct guess. See also [15,27] for other 
frameworks which can be similarly applied to arbitrary structures.

As single countable structures can always be learned, the emphasis of our research is on the learnability (or lack thereof) 
of families of structures. In [3], by adopting infinitary logic, we obtained a complete model theoretic characterization of 
which families of algebraic structures are learnable. From such a characterization, it immediately follows that some seem-
ingly innocent learning problems are out of reach: e.g., no agent can learn whether the observed structure is a copy of the 
isomorphism type of the natural numbers or of the integers, that is, the pair of linear orders {ω, ζ } is nonlearnable. We 
have also addressed the question of how much computational power is needed to handle a given learning problem: in [5], 
we constructed a pair of structures which is learnable, but no Turing machine can learn it.

A defect of our framework has been that, until this day, we had no way of calibrating the complexity of nonlearnable 
families. The present paper aims at rectifying this situation, by offering a new hierarchy to classify the complexity of learning 
problems for algebraic structures. To this end, we borrow several ideas from topology and descriptive set theory. This is 
readily justified. On the one hand, it is known that there are many connections between topology and inductive inference 
(see, e.g., [29,10,9]). On the other hand, a primary theme of modern descriptive set theory is the study of the complexity of 
equivalence relations defined on suitable topological spaces, with a special focus on the so-called Borel equivalence relations, 
to be defined below (see, e.g., [14,21,18]). A popular way of evaluating the complexity of Borel equivalence relations is by 
defining an appropriate reducibility: in general, a reduction from an equivalence relation E on X to an equivalence relation 
F on Y is a (nice) function f : X → Y which induces an embedding on the equivalence classes, X/E → Y/F .

A large body of literature, within the theory of Borel equivalence relations, concerns equivalence relations associated to 
classification problems, i.e., problems which ask to scaffold a given family of mathematical structures up to a certain notion 
of “similarity”. Crucially to our interests, isomorphism problems form an important subclass of classification problems, and 
descriptive set theorists have put serious effort in ranking the complexity of isomorphism problems for various familiar 
classes of countable structures (such as groups, trees, linear orderings, and Boolean algebras [13,25,7]).

The above description, albeit necessarily brief and oversimplified, may resound with our learning framework. Indeed, in 
our paradigm the learner is required to guess the isomorphism type for each structure from the family to be learned. Hence, 
the nonlearnability of a certain family K of algebraic structures is, in a sense, rooted in the complexity of the isomorphism 
relation associated with K. Yet, two aspects shall be stressed:

(1) The isomorphism relations customarily studied in descriptive set theory refer to large collections of countable struc-
tures (e.g., all graphs, abelian groups, or metric spaces). On the contrary, here we focus on learning small families (i.e., 
countable families, and in fact often finite ones as in [5]);

(2) At any finite stage, the learner sees only a finite fragment of the structure to be learned, and each conjecture must 
be formulated without knowing how the observed structure will be extended. In topological terms, this coincides with 
asking that the learning must be a continuous process.

These observations are clearly informal. But, in Section 3, we’ll be able to make them precise, while offering a new 
characterization of learnability, this time from a descriptive set theoretic point of view. Namely, we’ll show that a family 
of structures K is learnable if and only if the isomorphism relation associated with K is continuously reducible to the relation E0 of 
eventual agreement on reals (Theorem 3.1). As the relation E0 is a fundamental benchmark in the theory of Borel equivalence 
relations (e.g., the celebrated Glimm-Effros dichotomy states that E0 is the successor of the identity on reals within the 
Borel hierarchy [19]), such a new characterization of learnability for structures may serve as a piece of evidence that our 
paradigm is a natural one.

Furthermore, by replacing E0 with Borel equivalence relations of higher complexity, one immediately unlocks the 
promised hierarchy of learning problems. That is, we’ll say that a family of structures K is E-learnable, for a Borel equiva-
lence relation E , if there is a continuous reduction from the isomorphism relation associated with K to E . Then, Sections 4–6
are dedicated to an investigation of the learning power of several benchmark Borel equivalence relations, offering both ex-
amples of relations which do not enlarge the scope of E0-learnability (Theorems 4.1 and 4.3) and equivalence relations 
which do so (Theorem 5.2 and 5.4). Interestingly, we’ll show that the learning power of some equivalence relations is af-
fected by whether we restrict the attention to families containing only finitely many isomorphism types, or we rather allow 
countably infinite families. The final section contains a brief description of our intended future research in this area.

2. Preliminaries

As this paper is at the crossroad of a number of areas – namely, computable structure theory, algorithmic learning 
theory, and descriptive set theory – it will be convenient to break down these preliminaries in multiples subsections. We 
assume that the reader has some basic knowledge of topology and computability, as it can be found in [31]. In particular, 
by (ϕe)e∈ω , (We)e∈ω , and (�X

e )e∈ω we denote a uniformly computable list of, respectively, all partial computable functions, 
all computably enumerable (c.e.) sets, and all Turing operators with oracle X .

Reals. We adopt the common habit of calling infinite binary sequences reals. To distinguish them from the natural numbers, 
reals are denoted by lowercase Greek letters (e.g., α, β). Functions on reals are denoted by uppercase Greek letters (e.g., 
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�, 	). The m-th binary digit of a real α is denoted by α(m). By α[m] , we denote the real representing the m-th column 
α(〈m, ·〉) of α. The symmetric difference α�β of two reals is defined in the usual way:

(α�β)(i) = 1 ⇔ α(i) 	= β(i).

The Cantor space. In this paper, we focus on equivalence relations defined on the Cantor space. Such a space, written as 
2ω , can be represented as the collection of reals, equipped with the product topology of the discrete topology on {0, 1}. For 
a binary string σ , the cylinder [σ ] is defined as the collection of reals extending σ , i.e.,

[σ ] := {α ∈ 2ω : σ ⊆ α}.
These cylinders form a basis of 2ω . A subset X of Cantor space is Borel, if it can be constructed from open sets, taking 
countable unions, countable intersections, and complements. A function � : 2ω → 2ω is Borel, if the preimage of any Borel 
set is Borel; it is continuous, if the preimage � of any open set is open. A Turing operator � can be naturally regarded 
as a partial function � : 2ω → 2ω , where �(α) is defined if and only if �α is total. Note that this partial function is 
continuous, since converging oracle computations are always determined by a finite initial segment of the oracle. For a 
function � : 2ω → 2ω , a real α, and a number s ∈ ω, the notation �(α)(s) refers to the sth bit of �(α).

Throughout the paper, we will often rely on the following lemma which expresses that every continuous function is 
computable with respect to some powerful enough oracle.

Lemma 2.1 (folklore). If � : 2ω → 2ω is continuous, then there are an oracle X and Turing operator � so that

�(α) = �X⊕α,

for every real α.

Proof. The continuity of � guarantees that there is a function h : 2<ω → 2<ω which satisfies the following requirements:

(1) for σ , τ ∈ 2<ω , if σ ⊆ τ , then h(σ ) ⊆ h(τ );
(2) for all α ∈ 2ω , �(α) = ⋃

σ⊂α h(σ ).

Hence, it is straightforward to define the desired Turing operator by choosing an oracle X that computes h. �
In this paper, it is convenient to call every Turing operator of the form �X⊕α a Turing X-operator. Intuitively, Turing 

X-operators can be identified with a Turing machine which has three tapes: the working tape (that we can assume contains 
the input as well), the oracle tape and the output tape.

Benchmark Borel equivalence relations. To evaluate the complexity of equivalence relations on reals, one defines a suitable 
reducibility. Let E and F be equivalence relations on 2ω . A reduction from E to F is a function � : 2ω → 2ω such that

α E β ⇔ �(α) F �(β),

for all reals α, β . It is common to impose definability requirements on the functions inducing a reduction. Borel reductions, 
introduced in [13], are regarded as the most useful tools for calculating the relative complexity of equivalence relations. 
But in this paper, we’ll concentrate on the following stronger reducibility: E is continuously reducible to F , if there is a 
continuous function � : 2ω → 2ω which reduces E to F .

The following combinatorial equivalence relations on reals are widely considered in descriptive set theory as benchmarks 
to gauge the complexity of natural classification problems (see, e.g., [21]):

(a) α E0 β if and only if

(∃m)(∀n � m)(α(n) = β(n)).

(b) α E1 β if and only if

(∀∞m ∈ ω)(α[m] = β[m]).

(c) α E2 β if and only if

∞∑ (α�β)(k)

k + 1
< ∞.
k=0

3
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Fig. 1. Reductions up to continuous reducibility.

(d) α E3 β if and only if

(∀m)(α[m] E0 β[m]).
(e) α Eset β if and only if

{α[m] : m ∈ ω} = {β[m] : m ∈ ω}.
(f) α Z0 β if and only if α�β has (asymptotic) density zero, i.e.

lim
k→∞

card({i � k : α�β(i) = 1})
k + 1

= 0.

These benchmark equivalence relations lie at the base of the Borel hierarchy: Fig. 1, which is taken from [8], shows all 
continuous reducibilities between them (in fact, the diagram is the same even if we restrict to computable reductions). For 
more background about Borel, continuous, and computable reductions, see [14,18,26,4].

Computable structures. A signature L lists all function symbols and relation symbols which characterize an algebraic struc-
ture. All our structures have domain ω. We say that two structures are copies of each other if they are isomorphic.

In computable structure theory, one measures the complexity of an L-structure A by identifying A with its atomic 
diagram, i.e., the collection of atomic formulas which are true of A. Up to a suitable Gödel numbering of L-formulas, the 
atomic diagram of A may be regarded as a real: this provides a natural way of assigning to each structure a Turing degree 
d, representing its algorithmic complexity. Any computable structure A in a relational signature (i.e., with no function 
symbols) can be presented as an increasing union of its finite substructures

A �0 ⊆ A �1 ⊆ . . . ⊆ A �i ⊆ . . . ,

where A �n denotes the restriction of A to the domain {0, 1, . . . , n} and A= ⋃
A �i . For more background about computable 

structures, see [1,11].

Infinitary formulas. To assess the model theoretic complexity of countable structures, it is common to work in the infini-
tary logic Lω1ω , which allows to take the conjunctions or disjunctions of infinite sets of formulas. In particular, infinitary �n
formulas are defined as follows,

• �inf
0 and inf

0 formulas are quantifier-free first-order formulas.
• A �inf

n+1 formula ψ(x̄) is a countably infinite disjunction∨∨
i∈I

∃ ȳiξi(x̄, ȳi),

where each ξi is a inf
n formula.

• A inf
n+1 formula ψ(x̄) is a countably infinite conjunction∧∧

i∈I

∀ ȳiξi(x̄, ȳi),

where each ξi is a �inf
n formula.

Next, computable infinitary �n formulas (or �c
n formulas, for short) are defined in the same way as above, but requiring infinite 

conjunctions and disjunctions to range over c.e. sets of (computable) formulas. Finally, computable infinitary formulas can 
be relativized to an arbitrary oracle X : the class of X-computable infinitary �n formulas is denoted by �c

n(X). For more 
background about infinitary formulas, see [24].
4
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2.1. Our framework

We shall now revisit the learning framework presented in [3]. Our exposition closely follows [5]. In particular, we ignore 
how a given family is enumerated and we just assume that any structure A gives rise to a corresponding conjecture �A�, 
to be understood as conveying the piece of information “this is A”.

Definition 2.2. Suppose that P is the learning problem associated to a countable family K of nonisomorphic countable 
structures. The ingredients of our framework may be specified as follows. For P,

• The learning domain (LD) is the collection of all copies of the structures from K. That is,

LD(K) :=
⋃
A∈K

{S : S ∼= A}.

As we identify each countable structure with an element of Cantor space, we obtain that LD(K) ⊆ 2ω .
• The hypothesis space (HS) contains, for each A ∈ K, a formal symbol �A� and a question mark symbol. That is,

HS(K) := {�A� : A ∈ K} ∪ {?}.
• A learner M sees, by stages, all positive and negative data about any given structure in the learning domain and is 

required to output conjectures. This is formalized by saying that M is a function

from 2<ω to HS(K).

• The learning is successful if, for each structure S ∈ LD(K), the learner eventually stabilizes to a correct conjecture about 
its isomorphism type. That is,

lim
n→∞ M(S �n) = �A� if and only if S is a copy of A.

In case S /∈ LD(K) we make no assumption on M’s behavior, i.e., M either diverges or converges to some x ∈ HS(K).
We say that K is learnable, if some learner M successfully learns K.

Remark 2.3. In [5], the domain of a learner was limited to

X := {S �n : S ∈ LD(K)},
the collection of (finite) initial segments of structures from the learning domain. For our present purposes, it is more 
convenient to let M be defined on all binary strings. This change is not problematic. Indeed, any learner with domain 
X can be (non-effectively but continuously) transformed into a learner with domain 2<ω by simply let M(σ ) =?, for all 
σ ∈ 2<ω � X .

In [3, Theorem 3], we obtained the following model theoretic characterization of which families of structures are learna-
ble.

Theorem 2.4 (Bazhenov, Fokina, San Mauro). Let K := (Ai)i∈ω be a countable family of pairwise nonisomorphic structures. Then, K is 
learnable if and only if there are �inf

2 formulas ϕ0, . . . , ϕn, . . . such that

Ai � ϕ j ⇔ i = j.

The interested reader is referred to [3] for motivating examples and a detailed discussion about our framework (there 
named Inf Ex∼=-learning).

Definition 2.5. We say that a family of structures K is countable if it contains at most countably many isomorphism types. 
Similarly, K is finite, if it contains only finitely many isomorphism types. In this paper, we won’t consider uncountable 
families.

Turing computable embeddings. We conclude these preliminaries with a brief reminder about the technology of Turing 
computable embeddings, which was fundamental for proving Theorem 2.4 and will play a decisive role in Section 5.4.

Turing computable embeddings allow to compare the algorithmic complexity of different isomorphism problems.

Definition 2.6. ([6,22]). Let K0 and K1 be classes of structures. A Turing operator � is a Turing computable embedding of K0
into K1 (notation: K0 �tc K1) if it induces an embedding K0/∼= →K1/∼= , that is, if � satisfies the following:
5
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• For any A ∈ K0, the function �A is the characteristic function of the atomic diagram of a structure from K1. This 
structure is denoted by �(A).

• For any A, B ∈K0, we have

A ∼= B ⇔ �(A) ∼= �(B).

It is common to abbreviate the term “Turing computable embedding” as tc-embedding. One of the most powerful tool in 
the theory of tc-embeddings is the so-called Pullback Theorem [22]. In this paper, we’ll adopt a natural relativization of this 
result, already employed in [3].

Theorem 2.7 (Relativized Pullback Theorem). Suppose that X ⊆ ω and K0 �tc K1 via a Turing X-operator �. Then, for any X-
computable infinitary sentence ψ in the signature of K1, one can find, effectively with respect to X, an X-computable infinitary sentence 
ψ� in the signature of K0 such that, for all A ∈ K0 , we have

A � ψ� ⇔ �(A) � ψ.

Note that the Relativized Pullback Theorem can be applied to any continuous operator �. Indeed, if � is continuous, 
then, by Lemma 2.1, it is equivalent to a Turing X-operator for some suitable oracle X .

We have amassed enough formal ingredients. Let’s start.

3. A new characterization of learnability

In this section, we offer the promised descriptive set theoretic interpretation of our learning framework. Remember that 
E0 denotes the relation of eventual agreement of reals, i.e., α E0 β holds if and only if

(∃m)(∀n � m)(α(n) = β(n)).

Theorem 3.1. A family of structures K is learnable if and only if there is a continuous function � : 2ω → 2ω such that

A ∼= B ⇔ �(A) E0 �(B),

for all A, B ∈ LD(K).

Proof. For the sake of exposition, we’ll assume that K is infinite (the other case being easier) and it coincides with (Ai)i∈ω . 
Denote �(Ai) by βi .

(⇐): Let � be a function which induces a continuous reduction from LD(K)/∼= to E0. We need to show that K is 
learnable. Certainly, (βi ��E0 β j), for all i 	= j. Since � is continuous, by Lemma 2.1 there exists an oracle X ∈ 2ω and a Turing 
operator � so that

�(α) = �X⊕α, for every α ∈ 2ω.

Let α be a real and consider the uniform join

Y := X ⊕
⊕
i∈ω

βi .

We define a Y -computable auxiliary function f sim(α; i, s). Informally speaking, f sim(α; i, s) is a measure of similarity (at the 
stage s) between the reals �(α) and βi .

Let �[s] be the greatest number such that for every x � �[s], the value �(X⊕α)�s(x)[s] is defined. If there is no such �[s], 
then set f sim(α; i, s) := −1 for all i ∈ ω.

Otherwise, for an index i ∈ ω, we put

f sim(α; i, s) :=

⎧⎪⎨⎪⎩
max

{
k : � − k � i, and for every j � k, �(X⊕α)�s(� − j) = βi(� − j)

}
, if �(X⊕α)�s(�) = βi(�)

and �� i;
−1, otherwise.

Here by � we denote �[s]. Without loss of generality, we assume that �[s + 1] ∈ {�[s], �[s] + 1}.
It is not hard to show that the function f sim satisfies the following properties. Suppose that a real α encodes a copy of 

the structure Ai0 , for some i0 ∈ ω.
6
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(a) Note that there is an index m0 such that for all x � m0, we have �(α)(x) = βi0 (x). This implies that there exists a stage 
s0 such that every s � s0 satisfies f sim(α; i0, s + 1) � f sim(α; i0, s) > −1. In addition,

lim
s

f sim(α; i0, s) = ∞.

(b) Let i 	= i0. Since (�(α) ��E0 βi) and �[s +1] � �[s] +1 for all s, there are infinitely many stages s such that �(X⊕α)�s(�[s]) 	=
βi(�[s]) and f sim(α; i, s) = −1. Therefore,

lim inf
s

f sim(α; i, s) = −1.

Construction. We build our desired learner M. Put M(empty string) :=?.
Let α be a real, and let s be a non-zero natural number. If the set

Bs = { j � s : f sim(α; j, s) > −1}
is empty, then define M(α � s) := M(α � s − 1). Otherwise, take M(α � s) := �A j∗�, where

j∗ = min
{

j ∈ Bs : f sim(α; j, s) = max{ f sim(α;m, s) : m ∈ Bs}
}
. (1)

Verification. We show that M learns our family K. Suppose that α is a real, which encodes a copy S of some Ai0 .
Let s0 be a stage such that f sim(α; i0, s) 	= −1 for all s � s0. Set �∗ := �[s0]. Observe the following:

• By the definition of the function f sim , we have �∗ � i0. In addition, at each stage s � s0, the value M(α � s) is defined 
according to Eq. (1).

• Suppose that j > �∗ and s > s0. If j > �[s], then f sim(α; j, s) = −1. If j � �[s], then

f sim(α; j, s)� �[s] − j < �[s] − �∗ � (�[s] − �∗) + f sim(α; i0, s0) = f sim(α; i0, s)

Hence, Eq. (1) implies that M(α � s) 	= �A j�.

We deduce that for all s > s0, we have M(α � s) ∈ {�Ai� : 0 � i � �∗}. Choose a stage s1 > s0 such that for each j ∈
{0, 1, . . . , �∗} � {i0}, there is another stage t j satisfying max(s0, �∗) < t j < s1 and f sim(α; j, t j) = −1.

For every j ∈ {0, 1, . . . , �∗} � {i0} and s > s1, observe the following: if t j � �[s], then we have

f sim(α; j, s)� �[s] − t j < �[s] − �∗ � f sim(α; i0, s).

Choose s2 > s1 such that �[s2] � max t j . Then Eq. (1) implies that M(α � s) = �Ai0� for all s > s2. Therefore, in the limit, 
M says that “S is a copy of Ai0 ”, and the family K is learnable by M.

(⇒): For the converse direction, let M be a learner of K. We need to construct a continuous function � : 2ω → 2ω which 
induces a reduction from LD(K)/∼= to E0. To this end, it suffices to fix a countably infinite transversal (αi)i∈ω of E0 (i.e., a 
set intersecting countably many equivalence classes of E0 in exactly one point) and define � as follows,

�(β)(s) := αM(β�s)(s).

Here we use the following convention:

• if M(β �s) = �Ai�, then αM(β�s) = αi ;
• if M(β �s) =?, then αM(β�s) = 0∞ .

To verify that this � works, it is enough to observe the following: if a real β encodes a copy of some Ai from LD(K), 
then there must be a stage s0 such that, for all s � s0, M(β �s) outputs �Ai�, and thus �(β) is E0-equivalent to αi . So, since 
the αi ’s form a transversal for E0, we deduce that, if β0 and β1 encode copies of Ai and A j respectively, then

�(β0) E0 �(β1) ⇔ i = j.

This concludes the proof. �
The above theorem unlocks a natural way to stratify learning problems, by simply replacing E0 with Borel equivalence 

relations of higher and higher complexity.

Definition 3.2. A family of structures K is E-learnable if there is a function � : 2ω → 2ω which continuously reduce LD(K)/∼=
to E .
7
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Definition 3.3. Let E, F be Borel equivalence relations. E is Learnω-reducible to F , if every countable E-learnable family is 
also F -learnable. E is Learn<ω-reducible to F , if every finite E-learnable family is also F -learnable.

The rest of the paper is devoted to the study of the learning of power of some benchmark Borel equivalence relations.

4. When oracle equivalence relations don’t help

In this section, we analyze the learning power of E1 and E2. These equivalence relations are incomparable and strictly 
above E0 with respect to continuous reductions; in fact, the same is true if one requires computable reductions. But, as is 
proven in Theorems 4.1 and 4.3, E1 and E2 coincide and collapse to E0 with respect to their learning power.

4.1. E1-learning

Recall that the equivalence relation E1 is given by

(α E1 β) ⇔ (∀∞m ∈ ω)(α[m] = β[m]).

Theorem 4.1. A family K is E1-learnable if and only if K is E0-learnable. That is, E1 and E0 are Learnω-equivalent.

Proof. Since E0 is continuously reducible to E1 (see Fig. 1), every E0-learnable family is also E1-learnable.
On the other hand, let K := (Ai)i∈ω be an E1-learnable family. Let � : 2ω → 2ω induce a continuous reduction from 

LD(K)/∼= to E1. For each i ∈ ω, we choose a real βi such that � maps all copies of Ai into the class [βi]E1 . Fix a computable 
bijection ξ from the set {(i, j) ∈ ω2 : i 	= j} × ω onto ω.

We build a set X = {ms : s ∈ ω} as follows. Put m0 := 0. Suppose that s = ξ(i, j, t) and ms is already defined. Since 
(βi ��E1 β j), there exists the least q > ms such that β[q]

i 	= β
[q]
j . We choose the least � ∈ ω with β[q]

i (�) 	= β
[q]
j (�), and put 

ms+1 := 〈q, �〉. It is not hard to see that for every q ∈ ω, there is at most one � such that 〈q, �〉 belongs to X .
We define an operator 	 as follows: for every real α and s ∈ ω, set

	(α)(s) := α(ms).

It is clear that the operator 	 is X-computable — hence, 	 is continuous.
We show that the operator � := 	 ◦ � provides a continuous reduction from LD(K)/∼= to E0. Let α be a real which 

encodes a copy of some Ai0 . Since (�(α) E1 βi0 ), almost every s ∈ ω satisfies �(α)(ms) = βi0(ms). Thus, �(α) is E0-
equivalent to 	(βi0 ).

Suppose that i 	= i0. Then for almost all t ∈ ω, we have

�(α)(mξ(i,i0,t)) = βi0(mξ(i,i0,t)) 	= βi(mξ(i,i0,t)).

This implies that (�(α) ��E0 	(βi)). Therefore, we deduce that our family K is E0-learnable. The theorem is proved. �
Remark 4.2. The previous theorem can also be restated in purely descriptive set theoretic terms as follows. Let (βi)i∈ω be 
a sequence of reals such that βi E1β j iff i = j. Then, there is a continuous function � such that for every γ ∈ ⋃

i∈ω

[βi]E1 we 

have that γ E1βi if and only if �(γ )E0�(βi), i.e. E1, with domain restricted to (βi)i∈ω , continuously reduces to E0 via �. 
Theorems 4.3, 5.1 and 6.2 admit similar characterizations, but we will not make them explicit.

4.2. E2-learning

Recall that the equivalence relation E2 is given by

α E2 β ⇔
∞∑

k=0

(α�β)(k)

k + 1
< ∞.

Theorem 4.3. A countable family K is E2-learnable if and only if K is E0-learnable. That is, E2 and E0 are Learnω-equivalent.

Proof. Since E0 is continuously reducible to E2 (see Fig. 1), every E0-learnable family is E2-learnable.
Let K := (Ai)i∈ω be an E2-learnable family. Let � be an operator, which induces a continuous reduction from LD(K)/∼=

to E2. For i ∈ ω, we fix a real βi such that � maps all copies of Ai into [βi]E2 .
By Lemma 2.1, there exist an oracle X and a Turing operator � such that �(α) = �X⊕α for all α ∈ 2ω .
8
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Construction. We define a (X ⊕ ⊕
i∈ω βi)-computable operator 	. For a real α, we describe how to construct the real 

γα = 	(α). For s ∈ ω, by �[s] we denote the greatest number such that for every x � �[s], the value �(X⊕α)�s(x)[s] is 
defined. Without loss of generality, one may assume that �[s] is defined for every s.

For i, s ∈ ω, we consider the partial sum

p(i, s) :=
�[s]∑
k=0

(βi��X⊕α)(k)

k + 1
.

At a stage s, we define auxiliary values i[s], b[s] ∈ ω and c[s] ∈ {0, 1}. Similarly to the proof of Theorem 3.1, these 
parameters control the flow of the construction. Moreover, at each stage s, we set γα(s) := βi[s](s). Our construction will 
ensure that i[s] � b[s] for every s.

Stage 0. Set i[0] = 0, b[0] = 1, and c[0] = 0.

Stage s+1. We assume that the parameters b[s], c[s], and i[s] are already defined. Consider the following four cases:

Case 1. If p(i[s], s + 1) � b[s], then do not change anything.

Case 2. If p(i[s], s + 1) > b[s] and c[s] = 0, then put i[s + 1] := 0 and c[s] := 1.

Case 3. Suppose that p(i[s], s + 1) > b[s], c[s] = 1, and i[s] < b[s]. Define i[s + 1] := i[s] + 1.

Case 4. Suppose that p(i[s], s + 1) > b[s], c[s] = 1, and i[s] = b[s]. Find the least i0 � b[s] + 1 such that

p(i0, s + 1) = min{p( j, s + 1) : j � b[s] + 1}.
We put i[s + 1] := i0, c[s + 1] := 0, and

b[s + 1] := max(b[s] + 1, the integer part of p(i0, s + 1) + 1).

This concludes the description of the construction. It is clear that the operator 	 : α �→ γα is Y -computable.

Verification. Suppose that a real α encodes a copy of the structure Ai0 . We define:

N0 :=
∞∑

k=0

(βi0��(α))(k)

k + 1
.

Claim 4.1. There exists a finite limit b∗ = lims b[s]. In addition, b∗ � i0 .

Proof. We distinguish two cases. First, assume that b[s] < i0 for all s. Then we have i[s] < i0 for every s. Furthermore, since 
the sequence b[s] is non-decreasing, there exists b∗ = lims b[s] with b∗ < i0.

Since (�(α) ��E2 β j) for all j 	= i0, there exists a stage s0 such that p( j, s0) > i0 for all j < i0, and b[s] = b∗ for all 
s � s0. Then, our construction ensures that after the stage s0, there will be a stage s1 satisfying Case 4. This implies that 
b[s1] � b∗ + 1, which gives a contradiction. Thus, we deduce that there must exist a stage s′

0 such that b[s′
0] � i0.

Second, assume that lims b[s] = ∞. This implies that there are infinitely many stages s > s′
0 satisfying Case 4. Choose a 

stage s1 > s′
0 such that s1 satisfies Case 4 and b[s1] � N0 + 1. Consider the value i∗ := i[s1].

• If i∗ = i0, then for every s, we have p(i∗, s) < b[s1]. This implies that every stage s > s1 satisfies Case 1, which gives a 
contradiction.

• If i∗ 	= i0, then find the least stage s2 > s1 with p(i∗, s2) > b[s1]. Then the stage s2 satisfies Case 2, and we have c[s2] = 1. 
Therefore, Case 3 of the construction ensures that there is a sequence of stages

s2 = s′′
0 < s′′

1 < · · · < s′′
i0

such that i[s′′
k ] = k for every k � i0. Again, every stage s > s′′

i0
satisfies Case 1, which provides a contradiction.

Therefore, we proved that there is a finite limit b∗ = lims b[s], and b∗ � i0. �
Now choose a stage s∗ such that b[s∗] = b∗ . There exists a stage s1 � s∗ such that every i � b∗ satisfies the following: 

if i 	= i0, then p(i, s1) > b∗ . Since after the stage s∗ , there are no stages satisfying Case 4, it is not hard to deduce that for 
every s � s1 + b∗ + 2, we must have i[s] = i0.

This implies that the real 	(α) is E0-equivalent to βi0 . For all i 	= j, we have (βi ��E2 β j) — clearly, this implies (βi ��E0 β j). 
Hence, we conclude that our operator 	 provides a continuous reduction from LD(K)/∼= to E0. In other words, the family K
is E0-learnable, as desired. �
9
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5. Characterizing the learning power of E3

All equivalence relations considered so far (i.e., E0, E1, and E2) are inseparable with respect to their learning power. 
In fact, by Theorem 3.1, they don’t expand the boundaries of our original framework. The case of E3, to be discussed in 
this section, is different. Namely, E3 has strictly more learning power than E0—but this fact is only witnessed by infinite 
families. Recall that the equivalence relation E3 is given by

(α E3 β) ⇔ (∀m ∈ ω)(α[m] E0 β[m]).

Theorem 5.1. A finite family K is E3-learnable if and only if K is E0-learnable. That is, E3 and E0 are Learn<ω-equivalent.

Proof. One direction is again immediate: since E0 is continuously reducible to E3 (see Fig. 1), every E0-learnable family is 
E3-learnable.

For the other direction, let K := (Ai)i�n be a finite E3-learnable family and let � induce a continuous reduction from 
LD(K)/∼= to E3. For i � n, choose βi such that � maps all copies of Ai into [βi]E3 . For each pair of indices i 	= j, we choose 
a number q(i, j) such that

β
[q(i, j)]
i ��E0 β

[q(i, j)]
j .

Then, we define a Turing operator 	 : 2ω → 2ω as follows.

	(α) =
⊕

i 	= j�n

α[q(i, j)].

The operator � := 	 ◦ � provides a continuous reduction from LD(K)/∼= to E0. Indeed, let α be a real which encodes a copy 
of Ai0 . Then (�(α) E3 βi0 ) and (�(α) E0 	(βi0)). If i 	= i0, then we have

(α[q(i,i0)] E0 β
[q(i,i0)]
i0 ��E0 β

[q(i,i0)]
i ) and (�(α)��E0 	(βi)).

Therefore, the family K is E0-learnable. �
Our next result separates E3-learnability and E0-learnability, thus proving that E0 is strictly Learnω-reducible to E3

Theorem 5.2. There exists an infinite family K := (Ai)i∈ω which is E3-learnable, but not E0-learnable.

Proof. For the sake of exposition, first we give proof for the case when the signature of the class K is allowed to be infinite. 
After that, we provide comments on how to build the desired K as a family of directed graphs.

Consider signature L = {R j : j ∈ ω} ∪ {�}, where R j are unary predicates. Given a real α, we define an L-structure D(α)

as follows:

• Inside D(α), the relations R j , j ∈ ω, are pairwise disjoint. We say that the set RD(α)
j is the R j-box of D(α).

• The R j -box of D(α) contains a linear order L j such that

L j
∼=

{
ω, if α( j) = 0,

ω∗, if α( j) = 1,

where ω and ω∗ are respectively the order types of the positive and negative integers. For a finite string σ ∈ 2<ω , let Aσ

be the structure D(σ 1̂0∞). Our family K consists of all Aσ , σ ∈ 2<ω . Notice that the relation � in L provides an order 
between elements in L j and does not provide any order between elements in different R j-boxes.

Lemma 5.3. The family K is E3-learnable.

Proof. Recall that the family {ω, ω∗} is learnable, as they are distinguishable by �inf
2 formulas [3, Theorem 3]. By employing 

this fact, it is not hard to build a Turing operator �, which acts as follows. Given a real α, it treats α as a code for the 
atomic diagram of a countable partial order L. Then:

• If L is a copy of ω, then the output �(α) is E0-equivalent to 0∞ .
• If L ∼= ω∗ , then we have (�(α) E0 1∞).
10
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For each index j ∈ ω, we define a Turing operator 	 j . Given a real α, it treats α as a code of a countable L-structure A. 
The output 	 j(α) encodes the partial order, which is contained inside the R j-box of A.

Finally, we define an operator �. For α ∈ 2ω and for j, k ∈ ω, we set

�(α)(〈 j,k〉) := (� ◦ 	 j(α))(k).

Observe the following. Let β be a real. If a real α encodes a copy of the structure D(β), then for every j ∈ ω, we have:

• if β( j) = 0, then the j-th column (�(α))[ j] is E0-equivalent to 0∞;
• if β( j) = 1, then (�(α))[ j] E0 1∞ .

This observation implies that the operator � witnesses the E3-learnability of our family K. Lemma 5.3 is proved. �
Now, towards a contradiction, assume that the family K is E0-learnable. Then K is InfEx-learnable, and by Theorem 2.4, 

one can choose an infinitary �2 sentence θ such that A0 � θ and for every σ 	= 0, we have Aσ � θ .
Without loss of generality, one may assume that

θ = ∃x̄
∧∧
i∈I

∀ ȳiψi(x̄, ȳi),

where every ψi is a quantifier-free formula. Fix a tuple c̄ from the structure A0 such that

A0 �
∧∧
i∈I

∀ ȳiψi(c̄, ȳi).

Choose a natural number N such that for every j � N , the R j-box of A0 does not contain elements from c̄.
Consider a string τ := 010N and the corresponding structure Aτ = D(τ 1̂0∞). It is clear that for every j < N , the 

(contents of the) R j -boxes inside A0 and Aτ are isomorphic. Therefore, one can choose a tuple d̄ inside Aτ as isomorphic 
copies of c̄ (with respect to the isomorphism of the R j-boxes, j < N).

Claim 5.1. The structures (A0, ̄c) and (Aτ , ̄d) satisfy the same ∃-sentences.

Proof. It is sufficient to establish the following. Every quantifier-free formula ψ(x̄, ȳ) satisfies

A0 � ∃ ȳψ(c̄, ȳ) ⇒ Aτ � ∃ ȳψ(d̄, ȳ).

The other direction (⇐) can be obtained via a similar argument.
Choose a tuple b̄ from A0 such that A0 � ψ(c̄, ̄b). Suppose that b̄ = b0, b1, . . . , bm . We define a new tuple b̄′ =

b′
0, b

′
1, . . . , b

′
m from Aτ as follows:

• If bk lies in an R j-box, which contains elements from c̄, then b′
k is defined as the copy of bk with respect to the natural 

isomorphism of R j-boxes, j < N .
• Suppose that bk belongs to an R j -box, which does not contain elements from c̄. Then b′

k can be chosen as any element 
from the R j-box of Aτ , while preserving the ordering �. More formally, one needs to ensure the following: if bk 	= b�

both belong to this R j-box, then we have:

A0 � bk � b� ⇔ Aτ � b′
k � b′

�.

It is clear that the tuples c̄, ̄b and d̄, ̄b′ satisfy the same atomic formulas. Therefore, we deduce that the structure Aτ

satisfies ψ(d̄, ̄b′), and Aτ � ∃ ȳψ(d̄, ȳ). �
Claim 5.1 implies that

Aτ �
∧∧
i∈I

∀ ȳiψi(d̄, ȳi),

and hence, Aτ � θ , which contradicts the choice of θ . We deduce that the family K is not E0-learnable.
In order to obtain a family of directed graphs Kgr , which has the same properties as the family K, one can proceed as 

follows. Instead of distinguishing an R j -box via the predicate R j , one attaches to every element a of L j of the corresponding 
R j-box a cycle of length ( j + 3). Indeed, for each a ∈ L j use fresh elements ca,1, ca,2 . . . , ca, j+3 and put the edges

(1) (ca,i, ca,i+1) for i � j + 2,
(2) (ca, j+3, ca,1),
11
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(3) and (a, ca,1).

After that, the proof for the family Kgr is essentially the same as the one provided above. Theorem 5.2 is proved. �
5.1. A syntactic characterization of E3-learnability

As aforementioned, in the previous work we obtained a full syntactic characterization of which families of structures 
are learnable, by means of �inf

2 formulas (see Theorem 2.4). The next theorem offers an analogous characterization for 
E3-learning.

Theorem 5.4. Let K := (Ai)i∈ω be a countable family. The family K is E3-learnable if and only if there exists a countable family of �inf
2

sentences � with the following properties:

(a) if θ is a formula from �, then there is a formula ψ ∈ � such that for every A ∈ K,

A � θ ⇔ A � ¬ψ;
(b) if A � B are structures from K, then there is a sentence θ ∈ � such that

A � θ and B � ¬θ.

Proof. The proof of the theorem is inspired by ideas from [3]. In particular, we will adopt the technology of tc-embeddings 
and the Relativized Pullback Theorem reminded in the preliminaries.

Consider a signature Lst = {�} ∪{Pi : i ∈ ω}, where Pi are unary predicates. For an index i ∈ ω, an L-structure Si satisfies 
the following properties:

• Inside Si , the relations P j are pairwise disjoint. In addition, if x ∈ P j and y ∈ Pk for some j 	= k, then x and y are 
�-incomparable. Let η be the order type of the rational numbers.

• The predicate Pi contains an isomorphic copy of 1 + η.
• Every P j , for j 	= i, contains a copy of η.

The class Kst consists of all structures Si with i ∈ ω.
In [3], it is shown Kst is an archetypical E0-learnable family, in the sense that a countable family C is learnable if and 

only if there is a continuous embedding from the class C into Kst .
For dealing with E3-learnability, we have to introduce a new, and more complicated, class Cst . But the informal idea 

behind Cst is pretty simple: roughly speaking, this class contains all countable disjoint sums of the structures from Kst .
Consider a new signature L1 = Lst ∪ {Q k : k ∈ ω}, where Q k are unary predicates. The class Cst contains all L-structures 

M, which satisfy the following properties:

• Their relations Q k , k ∈ ω, are pairwise disjoint. We say that the Lst -substructure with domain M � Q k is the Q k-box of 
M.

• Every Q k-box of M is isomorphic to a structure from the class Kst .

Note that our class Cst has cardinality 2ℵ0 .

Lemma 5.5. The class Cst has a computable family of �inf
2 sentences �, which satisfies properties (a) and (b) from the formulation of 

Theorem 5.4.

Proof. The desired family � contains the following �inf
2 sentences:

(1) For each i and j, we add a finitary �2 sentence θi, j , which states the following: “the P j-predicate inside the Q i -box 
has a �-least element”.

(2) For each i and j, we add a �inf
2 sentence ψi, j , which is equivalent to the following formula:∨∨

k 	= j

θi,k.

In other words, there is some k 	= j such that the Pk-predicate inside the Q i -box possesses the least element.

Let M be an arbitrary structure from Cst . Since the Q i -box of M is a structure from Kst , it is not hard to show that

M � θi, j ⇔ M � ¬ψi, j.
12
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Hence, we deduce that the class Cst satisfies property (a) of Theorem 5.4.
Suppose that M �N are structures from Cst . Then there exist indices i and j such that for the structures M and N , 

their P j-predicates inside Q i -boxes are not isomorphic. Without loss of generality, one may assume that in this P j-place, 
M has order-type 1 + η, and N has order-type η. Then, it is clear that

M � θi, j&¬ψi, j and N � ¬θi, j&ψi, j.

Therefore, Cst satisfies property (b) of the theorem. �
The rest of the proof for the direction (⇒) is devoted to building a continuous embedding from the given class K to Cst . 

This embedding allows us to apply the Relativized Pullback Theorem (Theorem 2.7) for finishing our argument.
Consider a countable sequence of reals �γ = (γi)i∈ω . We define an auxiliary continuous operator 	 �γ as follows. Given a 

real α, our operator 	 �γ produces a new real δα , which encodes the atomic diagram of an L-structure S(α).
We always assume that inside S(α):

• all predicates Pi are disjoint;
• every predicate Pi contains at least one element;
• the domain of S(α) equals ω.

Construction. The construction of S(α) proceeds in stages. At a stage s, for each i ∈ ω, we define the following auxiliary 
value:

v(i, s) =
{

min{t � s : (∀x)[t � x � s → α(x) = βi(x)]}, if α(s) = βi(s),

∞, otherwise.

We also define two parameters p(s) and b(s). Roughly speaking, at a stage s, our current “guess” is that the input real α is 
E0-equivalent to βp(s) , where p(s) � b(s) � s.

Stage 0. Put p(0) = 0 and b(s) = 0.

Stage s + 1. Consider the following two cases:

Case 1. Suppose that there is an index i � s + 1 such that α(s + 1) = βi(s + 1).
If v(p(s), s + 1) 	= ∞, then set i0 := p(s). Otherwise, i0 is defined as follows.

• If p(s) < b(s), then p(s + 1) := p(s) + 1 and i0 := p(s) + 1;
• If p(s) = b(s), then we define i0 as the least index such that i0 � s + 1 and

v(i0, s + 1) = min{v( j, s + 1) : j � s + 1}.
We set b(s + 1) := s + 1 and p(s + 1) := i0.

Suppose that the relation Pi0 (at this particular moment) contains the following linear order: a0 < a1 < · · · < ak . We 
choose fresh elements b0, b1, . . . , bk , add them into Pi0 , and set:

a0 < b0 < a1 < b1 < · · · < ak < bk.

Consider an index j 	= i0, and suppose that the relation P j contains the ordering c0 < c1 < · · · < c� . Choose fresh elements 
d−1, d0, d1, . . . , d� , put them into P j , and define:

d−1 < c0 < d0 < c1 < d1 < · · · < c� < d�.

Case 2. If α(s) 	= βi(s) for all i � s + 1, then for every j ∈ ω, the relation P j is arranged in the same way as described in 
Case 1.

This concludes the description of the operator 	 �γ .

Verification. Similarly to the previous proofs, it is not hard to verify the following properties of 	 �γ :

(1) The operator 	 �γ is 
(⊕

i∈ω γi
)
-computable.

(2) If (α E0 γi) for some i ∈ ω, then the structure S(α) is isomorphic to Si .

Now, let � be a continuous operator which induces a reduction from LD(K)/∼= to E3. For a structure Ai from K, fix a 
real βi such that � maps all copies of Ai into the class [βi]E3 .

We define a continuous operator � as follows. Let α be a real.
13
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(1) First, we produce the real �(α).
(2) Second, for each j ∈ ω, we consider the sequence �β[ j] := (β

[ j]
i )i∈ω . We compute the reals

δα, j := 	 �β[ j]((�(α))[ j]).

(3) Finally, by using the reals δα, j , j ∈ ω, we recover a new real δ, which encodes the atomic diagram of an L1-structure 
M. This structure M is defined as follows. For each j, the Q j-box of M is an isomorphic copy of the Lst -structure 
encoded by δα, j , and this copy has domain {〈 j, k〉 : k ∈ ω}. We set �(α) := δ.

It is straightforward to establish the following: the operator � is a continuous embedding from the class K into a 
countable subclass of Cst . So, by applying the Relativized Pullback Theorem (Theorem 2.7) to the continuous embedding �, 
we recover a countable family of formulas with the desired properties. Indeed, the following holds:

• by Lemma 5.5, Cst has a family of �inf
2 sentences �, which satisfies properties (a) and (b) of Theorem 5.4;

• by Lemma 2.1, � is equivalent to a Turing X-operator, for a suitable oracle X .

Hence, we can apply Theorem 2.7, and deduce that K has a family �� of �inf
2 sentences �, which satisfies (a) and (b) of 

Theorem 5.4, as desired.

(⇐). This direction essentially follows from previous results. Assume that K := (Ai)i∈ω has a family � of �inf
2 formulas 

which satisfies the properties (a) and (b) of the theorem. Then it’s easy to check that the formulas of � can be arranged to 
satisfy the following lemma:

Lemma 5.6. There is a collection of pairs of formulas (ρi0 , ρi1)i∈ω so that, for all structures A and B from K,

(1)
⋃

i∈ω{ρi0 , ρi1 } = �;
(2) for all i ∈ ω, A satisfies exactly one formula between ρi0 and ρi1 ;
(3) if A� B, then, for some j ∈ ω,

A � ρ j0 ⇔ B � ρ j1 .

The next lemma combines (a limited case of) Theorem 2.4 with Theorem 3.1.

Lemma 5.7. For all i, there is a continuous operator �i : 2ω → 2ω such that, for all structures S ∈ LD(K),

• if S � ρi0 , then �i(S) E0 0∞;
• if S � ρi1 , then �i(S) E0 1∞ .

Proof. The proof is similar to that of the direction (2) ⇒ (1) of [3, Theorem 3]. Let i ∈ ω. For k ∈ {0, 1}, without loss of 
generality assume that

ρik := (∃x̄)
∧∧

j∈ J ik

∀ ȳϕik, j(x̄, ȳ).

For a finite structure F , say that ϕik is F -compatible via tuple ā if within the domain of F there is no pair ( j, ̄b) with 
j ∈ J ik such that F �¬ϕik, j(ā, ̄b).

Construction. Now, let α be a real. Denote by Fα�s the finite structure (in the signature of K) encoded by the initial 
segment α �s of α. The continuous operator �i is defined by stages.

Stage 0. Let �i(α)(0) := 0 and �i(α)(1) := 1.

Stage s+1. At this stage, we define �i(α)(2s) and �i(α)(2s + 1). To this end, we distinguish three cases:

(1) There is a tuple c̄ so that ϕi0 is Fα�s -compatible via c̄, and ϕi1 is not Fα�s -compatible for all tuples < c̄. If so, let 
�i(α)(2s) = �i(α)(2s + 1) := 0;

(2) There is a tuple c̄ so that ϕi1 is Fα�s -compatible via c̄, and ϕi0 is not Fα�s -compatible for all tuples � c̄. If so, let 
�i(α)(2s) = �i(α)(2s + 1) := 1;

(3) If neither of the above cases hold, then let �i(α)(2s) := 0 and �i(α)(2s + 1) := 1.

Verification. The continuity of �i immediately follows from the construction. Next, suppose that β ∈ 2ω encodes a copy of 
a structure S ∈ K. By Lemma 5.6, S satisfies exactly one formula between ϕi0 and ϕi1 ; without loss of generality, assume 
14
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that S � ϕi1 . This means that there is a tuple c̄ and a stage t0 so that ϕi1 is Fβ�t -compatible via c̄, for all t � t0. On the 
other hand, since S � ϕi0 , it must be the case that for all tuples d̄ (and, in particular, all tuples � c̄), there must be a stage 
t1 so that, for all t � t1, ϕi0 is not Fβ�t -compatible. So, for all sufficiently large x, �i(β)(x) is defined by performing action 
(2) above. Thus, �i(β) is E0-equivalent to 1∞ , as desired. �

We can now construct a continuous reduction from LD(K)/∼= to E3 by merging the operators �i ’s as follows:

�(α)(〈i, x〉) := �i(α)(x).

It is an easy consequence of Lemma 5.7 that, if β0 and β1 are copies of the same structure S ∈ K, then �(β0) E3 �(β1). To 
deduce that � is the desired reduction, suppose that β0 and β1 are copies of nonisomorphic structures A and B from K. 
By Lemma 5.6, there are j ∈ ω and k ∈ {0, 1} so that A � ϕik and B � ϕi1−k . But then, by Lemma 5.7, it follows that �(β0)

and �(β1) differ on the jth column, that is,

�(β0)
[ j] E0 k∞ but �(β1)

[ j] E0 (1 − k)∞.

Thus, �(β0) ��E3 �(β1).
This concludes the proof of Theorem 5.4. �

6. Learning with the help of Z0 and Eset

We conclude our examination of the learning power of combinatorial Borel equivalence relations by briefly focusing on 
two further examples: Z0 and Eset . Here, the main goal is to finally individuate a Borel equivalence relation which is able 
to learn a finite family beyond the reach of our original framework.

6.1. Z0-learning

Before proceeding to a new result, we give a simple useful fact. Let α and β be reals, and let s ∈ ω. We use the following 
notation:

dn(α,β; s) = card({i � s : α�β(i) = 1})
s + 1

.

Recall that the equivalence relation Z0 is given by

(α Z0 β) ⇔ lim
k→∞

dn(α,β;k) = 0

Lemma 6.1. Suppose that (α Z0 β). Then

lim sups dn(α,γ ; s) = lim sups dn(β,γ ; s).

Proof. Let r := lim sups dn(β, γ ; s). It is sufficient to show that for any ε such that 0 < ε < r, we have

lim sups dn(α,γ ; s) � r − ε.

Define q := r − ε.
Let N be a non-zero natural number. Fix a number s0 such that dn(α, β; s) < q

N for all s � s0.
There exists a sequence (s j) j∈ω , where s0 < s1 < s2 < . . . , such that dn(β, γ ; s j) > q for all j.
Note that every s satisfies the following:

card({i � s : α�γ (i) = 1})� card({i � s : β�γ (i) = 1}) − card({i � s : β�α(i) = 1}).
Hence, we have:

dn(α,γ ; s j) � dn(β,γ ; s j) − dn(α,β; s j) > q − q

N
= q · N − 1

N
.

Since N was chosen as an arbitrary natural number, we deduce that for any δ > 0, we have lim sups dn(α, γ ; s) > q − δ. 
This implies

lim sups dn(α,γ ; s) � q.

Lemma 6.1 is proved. �
We show that learnability by finite families cannot distinguish between E0 and Z0:
15
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Theorem 6.2. A finite family K is Z0-learnable if and only if K is E0-learnable. That is, Z0 and E0 are Learn<ω-equivalent.

Proof. Since E0 is computably reducible to Z0 (see Fig. 1), every E0-learnable family is also Z0-learnable.
Suppose that K = (Ai)i∈ω is a Z0-learnable family. Let � be an operator which induces a continuous reduction from 

LD(K) to Z0. For i � n, we fix βi such that � maps all copies of Ai into [βi]Z0 . Notice that the reals βi are pairwise not 
E0-equivalent.

We fix a positive rational q0 such that

q0 < min{lim sups dn(βi, β j; s) : i < j � n}.
There exist an oracle X and a Turing operator � such that �(α) = �X⊕α for all α ∈ 2ω .
We define an (X ⊕ ⊕

i�n βi)-computable operator 	. Let α be a real. For s ∈ ω, by �[s] we denote the greatest number 
such that for every x � �[s], the value �(X⊕α)�s(x)[s] is defined.

At a stage s, for each i � n, we compute the value

mi[s] := card({t � �[s] : dn(�X⊕α,βi; t) > q0}).
We find the least j � n such that

m j[s] = min{mi[s] : i � n},
and set 	(α)(s) := β j(s). This concludes the description of the operator 	.

Suppose that a real α encodes a copy of a structure Ai0 for some i0 � n. Then by Lemma 6.1, we have:

lims dn(�(α),βi0 ; s) = 0 and lim sups dn(�(α),βi; s) > q0

for all i 	= i0.
Choose a number t0 such that for all t � t0, we have dn(�X⊕α, βi0 ; t) � q0. Fix a stage s0 with t0 � �[s0]. Then for all 

s � s0, we have mi0 [s] = mi0 [s0].
On the other hand, it is not hard to show that for every i 	= i0, we have lims mi[s] = ∞. This implies that the real 	(α)

is E0-equivalent to βi0 .
We deduce that the operator 	 provides a continuous reduction from LD(K) to E0. Theorem 6.2 is proved. �
It is known that E3 is continuously reducible to Z0 (see Fig. 1). So, E3 is Learnω reducible to Z0. The next question, 

which is left open, asks if the converse hold.

Question 1. Is there a countable Z0-learnable family, which is not Eset-learnable?

6.2. Eset -learning

A distinctive feature of our learning framework is that there are finite families of structures which are not learnable. 
This is the case, most notably, of the pair of linear orders {ω, ζ }, where ζ is the order type of the integers. Such a feature 
is in sharp contrast with classical paradigms, since, e.g., any finite collection of recursive functions is Inf Ex-learnable. Yet, 
we have observed that all Borel equivalence relations so far considered are Learn<ω-equivalent to E0. So, a question comes 
naturally: how high in the Borel hierarchy one needs to climb to reach an equivalence relation E which is able to learn a 
nonlearnable finite family? The next proposition shows that Eset suffices.

Proposition 6.3. The family {ω, ζ } is Eset -learnable.

Proof. Given a real α, which encodes a linear order with infinite domain A ⊆ ω, one can effectively recover a list (ai)i∈ω , 
which enumerates the set A without repetitions. In addition, the recovery procedure is uniform in α.

We define a Turing operator 	. For a real α, the output 	(α) is constructed as follows. For all i and s, we put

	(α)(〈2i, s〉) :=
{

0, if s < i,

1, if s � i.

Let Bs be the finite linear order, which is encoded by the finite string α � s (note that Bs can be empty). For i ∈ ω, 
consider the element ai (from the list discussed above). If ai /∈ Bs or ai is the �Bs -least element inside Bs , then we set 
	(α)(〈2i + 1, s〉) := 0. Otherwise, set 	(α)(〈2i + 1, s〉) := 1.

Suppose that a real α encodes a copy of A ∈ {ω, ζ }. If A is isomorphic to ζ , then it is clear that

{(	(α))[m] : m ∈ ω} = {0i1∞ : i ∈ ω}.
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Fig. 2. Reductions up to Learn<ω-reducibility.

Fig. 3. Reductions up to Learnω-reducibility.

If A ∼= ω, then there is an element ai0 , which is �A-least. This implies

{(	(α))[m] : m ∈ ω} = {0i1∞ : i ∈ ω} ∪ {0∞}.
Therefore, we deduce that the family {ω, ζ } is Eset -learnable. �
7. Conclusions

The investigation conducted in this paper has been fueled by the discovery of a connection between algorithmic learning 
theory and descriptive set theory. Namely, we proved that the task of learning a given family of algebraic structures (up to 
isomorphism) is equivalent to the task of constructing a suitable continuous reduction to E0. Then, we carefully analyzed 
the learning power of a number of well-known benchmark Borel equivalence relations. Our results are collected in Figs. 2
and 3.

We wish to conclude by mentioning three research directions that originate from the above results and which look 
promising:

(1) First, it seems natural to discuss the learning power of other Borel equivalence relations. There is a wide choice—even 
if one restricts to a small fragment of the Borel hierarchy, such as the �0

3 equivalence relations (see [14]);
(2) Secondly, it would be nice to obtain learning theoretic or purely syntactic characterizations for Eset - and Z0-learnabilities 

of countable families, along the lines of Theorems 5.4 and 2.4.
(3) Thirdly, observe that our original framework was inherently limited to the countable case, since the learner had to 

provide a conjecture (i.e., a finite object) for each isomorphism type of the observed family. But now the concept of 
E-learnability can be naturally applied to families of continuum size. This offers a new research opportunity, probably 
worth considering.

(4) Finally, as suggested by an anonymous reviewer, in a future work we plan to locate analogues of classic learning criteria 
(such as partial learning or non-U-shape learning) in the learning hierarchy introduced in this paper. See [2] for a similar 
discussion about Fin-learning of structures and learning with a bounded number of mistakes.
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