
Published online: 4 May 2023
© The Author(s) 2023

 Andrea Stocco
stocco@fortiss.org; andrea.stocco@tum.de

Onn Shehory
onn.shehory@biu.ac.il

Gunel Jahangirova
gunel.jahangirova@kcl.ac.uk

Vincenzo Riccio
vincenzo.riccio@uniud.it

Guy Barash
guy.barash@wdc.com

Eitan Farchi
farchi@il.ibm.com

Diptikalyan Saha
diptsaha@in.ibm.com

1 fortiss GmbH, Guerickestraße 25, 80805 Munich, Germany
2 Technical University of Munich, Boltzmannstraße 3, 85748 Garching near Munich, Germany
3 Bar Ilan University, Ramat Gan 5290002, Israel
4 King’s College London, Bush House 30 Aldwych, London WC2B 4BG, UK
5 University of Udine, via delle Scienze 206, Udine 33100, Italy
6 Quai.MD, Tel Aviv, Israel
7 IBM Research, Israel, University of Haifa Campus, Mount Carmel, Haifa 3498825, Israel
8 IBM Research, India, Pvt. Ltd. G2, 8th Floor, Manyata Tech Park, Bangalore 560045, India

Software testing in the machine learning era
Special issue of the empirical Software Engineering (EMSE) journal

Andrea Stocco1,2 · Onn Shehory3 · Gunel Jahangirova4 · Vincenzo Riccio5 ·
Guy Barash6 · Eitan Farchi7 · Diptikalyan Saha8

Empirical Software Engineering (2023) 28:74
https://doi.org/10.1007/s10664-023-10326-7

Preface Machine Learning (ML) and Deep Learning (DL) have become ubiquitous in mod-
ern software systems, including safety-critical domains such as autonomous cars, medical
diagnosis, and aircraft collision avoidance systems. Thus, it is crucial to rigorously test
such learning-based applications to ensure high reliability and dependability. However,
traditional notions of software quality and reliability become obsolete when dealing with
learning-based systems, due to their non-deterministic nature and the lack of a transparent
comprehension of the models’ semantics. The impact of ML and DL extends beyond offer-

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10326-7&domain=pdf&date_stamp=2023-5-4

Empirical Software Engineering (2023) 28:74

ing new applications and case studies for testing techniques. In fact, they are revolutionizing
the way software is developed and tested. ML and DL are increasingly being utilized to
devise novel program analysis and software testing techniques for malware detection, fuzz
testing, bug-finding, and type-checking.

1 The special issue

The aim of this special issue is to provide an introduction to the burgeoning field of software
testing in the machine learning era. Machine Learning (ML) and Deep Learning (DL) have
been widely adopted in modern software systems, including safety-critical domains such as
autonomous cars, medical diagnosis, and aircraft collision avoidance systems. It is therefore
crucial to rigorously test such learning-based applications to ensure high reliability and
dependability. While traditional notions of software quality and reliability become inappli-
cable, the need for a more transparent comprehension of these models’ semantics demands
further research investigation in the domain of testing ML/DL software systems.

This issue of the Empirical Software Engineering (EMSE) journal is devoted to the inter-
section of Software Engineering (SE) and ML/DL. Following an open call for papers, the
four accepted articles cover various areas within this theme, ranging from novel techniques
to ensure the quality of learning-based applications to novel techniques that employ ML or
DL to support software engineering tasks. The special issue was preceded by an interna-
tional workshop on Testing for Deep Learning and Deep Learning for Testing (DeepTest),
held virtually on June 1st, 2021.

The articles have undergone rigorous peer review, in accordance with the journal’s high
standards. In total, six submissions were received and each submission went through a rig-
orous reviewing process where they received three reviews by different guest editors and
were carefully discussed until a consensus was reached. All decisions were based solely on
the quality of the submissions, with no specific number of papers targeted for acceptance.
Ultimately, four papers were accepted by the guest editors and are briefly discussed below:

In one paper, the authors present DiverGet, a search-based testing framework for quan-
tization assessment. Quantization is one of the most applied Deep Neural Network (DNN)
compression strategies, for deploying a DNN model on a resource-constrained system and
traditional testing methods are inadequate for quantized DNNs. DiverGet uses metamorphic
relations to detect disagreements among DNNs of different arithmetic precision. Particu-
larly notable, DiverGet targets behavioural divergence maximization through the explora-
tion of the vector space. DiverGet outperforms the existing DiffChaser technique when
testing test DNNs for hyperspectral remote sensing images, used in critical domains like
climate change research and astronomy. In this domain, the searching strategy based on
population-based metaheuristics outperforms random search with Particle Swarm Optimi-
zation showing higher effectiveness than a Genetic Algorithm.

In another paper, the authors explore the increasing demand for reliable Machine Learn-
ing (ML)-based systems in safety-critical fields. To evaluate the reliability of these systems,
a benchmark of bugs in ML-based systems, known as a fault load benchmark, is crucial.
The study reviewed 1777 ML-related bugs from GitHub and 1296 from Stack Overflow that
pertained to ML-based systems utilizing the two most popular ML frameworks, TensorFlow

1 3

74 Page 2 of 4

Empirical Software Engineering (2023) 28:74

and Keras. The study found that only 3.48% of GitHub bugs and 2.93% of reported bugs in
Stack Overflow are reproducible. In response to these findings, the article proposes a fault
load benchmark of ML-based systems that consists of 100 bugs extracted from software
systems that use TensorFlow and/or Keras, of which 62 were from Github and 38 from
Stack Overflow. This benchmark, named defect4ML, meets all standardized benchmark cri-
teria and addresses the primary challenges of Software Reliability Engineering challenges
in ML-based systems by offering bugs in various ML frameworks with different versions,
comprehensive information on dependencies, and required data to trigger the bug, detailed
information about the type of bugs, and link to the origin of the bug.

The third article focuses on using generative Deep Learning models trained on source
code for supporting program repair tasks. In particular, the authors investigate the impact
of different code representations on learning-based program repair. Such a study is par-
ticularly relevant and timely, as there is no clear understanding of the best source code
representation for learning-based tasks among the various alternatives. The authors present
a controlled experiment considering 21 different generative models to evaluate whether the
automatically generated fixes consist of valid code ready to be used as a patch. Moreover,
this work also evaluates the quality of the proposed fixes by involving developers, whose
point of view is often neglected in similar studies. Interestingly, the authors find that a
higher abstraction level increases accuracy, but is detrimental in terms of usefulness as per-
ceived by developers. The results of this experiment indicate that there is no single best code
representation applicable to all bug types, which could have practical implications, e.g., in
program repair techniques using multiple code representations.

Finally, the last article of the special issue focuses on a large-scale empirical study
that investigates the effect different types of attacks and faults have on Federated Learn-
ing aggregators. The authors have applied eight attacks and mutators (aiming to simulate
faults) against four mainly used aggregation techniques focusing on image classification
subject systems. The results demonstrate that there is no aggregator that outperforms the
others in terms of robustness, as the federated learning aggregator’s robustness depends on
various parameters such as the dataset, the attack, and the data distribution. Therefore, the
authors propose using an ensemble approach that combines different aggregation techniques
together. The evaluation reveals that the ensemble approach benefits from the individual
strengths of the aggregators to improve the quality of FL learning under attack and outper-
forms them in 75% of the cases.

Collectively, these four papers provide a detailed compilation of the diverse range of
issues and solutions currently being investigated in the intersection between the ML/DL and
Software Engineering fields.

Andrea Stocco, Onn Shehory, Gunel Jahangirova,
Vincenzo Riccio, Eitan Farchi, Guy Barash, Diptikalyan Saha

Guest Editors

Acknowledgements We thank the authors for their excellent manuscripts. We are deeply grateful to the
reviewers of this special issue for their time and constructive feedback, which helped to shape the articles. We
are also thankful to the Empirical Software Engineering journal and the Editors-in-Chief, Robert Feldt and
Thomas Zimmermann, for their support throughout the process of preparing this special issue.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which

1 3

Page 3 of 4 74

Empirical Software Engineering (2023) 28:74

permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

1 3

74 Page 4 of 4

http://creativecommons.org/licenses/by/4.0/

	Software testing in the machine learning era
	1 The special issue

