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A new space of generalised functions
with bounded variation motivated
by fracture mechanics
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Abstract. We introduce a new space of generalised functions with bounded
variation to prove the existence of a solution to a minimum problem that
arises in the variational approach to fracture mechanics in elastoplastic
materials. We study the fine properties of the functions belonging to this
space and prove a compactness result. In order to use the Direct Method
of the Calculus of Variations we prove a lower semicontinuity result for
the functional occurring in this minimum problem. Moreover, we adapt a
nontrivial argument introduced by Friedrich to show that every minimiz-
ing sequence can be modified to obtain a new minimizing sequence that
satisfies the hypotheses of our compactness result.
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1. Introduction

The variational approach to rate-independent evolution problems developed
in [10] and [11] is based on a time discretization scheme, where the approxi-
mate solution at a given time is obtained by solving an incremental minimum
problem which involves the solution at the previous time. The same approach
was introduced independently in fracture mechanics in [8] (we refer also to [3]
for further developments in this field).

In this framework, the study of crack growth in linearly elastic-perfectly
plastic materials in the small strain regime leads to incremental minimization
problems that involve the crack Γ as well as the elastic part e and the plastic
part p of the strain. In the (generalised) antiplane case, the reference configu-
ration is a bounded Lipschitz domain Ω ⊂ R

d, the crack is a Borel set Γ ⊂ Ω,
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with Hd−1(Γ) < +∞, and the displacement is a function u : Ω \Γ → R, whose
gradient is additively decomposed as Du = e + p, where e, the elastic part, is
an L2-function defined in Ω \ Γ and p, the plastic part, is a bounded Radon
measure defined on Ω \ Γ.

Given a Borel set Γ0 ⊂ Ω (the crack at the previous time), with Hd−1(Γ0)
< +∞, and a bounded Radon measure p0 in Ω \ Γ0 (the plastic strain at the
previous time), the incremental minimum problem takes the form

min
{1

2

∫

Ω

|e|2dx + |p − p0|(Ω \ Γ) + Hd−1(Γ \ Γ0)
}

, (1.1)

where the minimum is taken over all competing cracks Γ ⊃ Γ0 (irreversibility
condition) and all pairs (e, p) such that e is an L2- function, p is a Radon
measure, and e+p = Du in Ω\Γ for some displacement u satisfying prescribed
boundary conditions (see Sect. 4 for a precise formulation).

The purpose of this paper is to prove the existence of a solution to prob-
lem (1.1). In [6] we considered the same problem only in the case d = 2, with
the additional constraint that Γ and Γ0 are compact and satisfy an a priori
bound on the number of their connected components. In this case, given a min-
imizing sequence (Γk, ek, pk)k, we can extract a subsequence (not relabelled)
such that Γk → Γ in the Hausdorff metric, ek ⇀ e weakly in L2, and pk

∗
⇀ p

locally weakly∗ as measures on Ω \ Γ. Therefore the existence of a solution to
(1.1) follows from the Direct Method of the Calculus of Variations, since all
terms in (1.1) are lower semicontinuous.

This simplified approach cannot be applied when d > 2, nor when d = 2
without bounds on the number of connected components of Γ. For this reason
we prefer to rewrite the minimum problem (1.1) in terms of the displacement
u, considered as a function defined Ld-a.e. in Ω.

Let u0 be the displacement at the previous time, let e0 be its elastic
strain, so that Du0 = e0 + p0, and let f : Rd → R be defined by f(ξ) = 1

2 |ξ|2,
if |ξ| ≤ 1, and f(ξ) = |ξ| − 1

2 , if |ξ| ≥ 1. Setting v = u − u0, if v ∈ BV (Ω),
the space of functions with bounded variation in Ω, then (Γ, u) is a solution
to (1.1) if and only if v is a solution of

min
{ ∫

Ω

f(∇v + e0)dx + |Dcv|(Ω) +
∫

Jv\Γ0

|[v]| ∧ 1dHd−1
}

(1.2)

with suitable boundary conditions, and Γ = Γ0 ∪ {x ∈ Jv : |[v](x)| ≥ 1}, see
Lemmas 4.1 and 4.2. Here and in the rest of the paper ∇v is the approximate
gradient of v (see (2.6)), Jv and [v] are the jump set and the jump of v (see
Sect. 2), Dcv is the Cantor part of the distributional gradient Dv of v (see
(2.5)), and a ∧ b := min{a, b} for every a, b ∈ R.

Unfortunately, there are boundary conditions for which the minimum
problem (1.2) has no solution in the space of functions of bounded variation,
as shown by the example provided in Proposition 6.5. The reason is that, while
the first term in (1.2) controls ∇v and the second one controls Dcv, the third
term does not control the whole jump part of Dv, which is given by the integral
of |[v]| on Jv.
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Therefore, in order to prove the existence of a solution to the minimum
problem (1.2), and hence (1.1), we consider a larger functional space for the
admissible displacements, which we denote by GBV�(Ω). This is a subset of
the space GBV (Ω) of generalised functions of bounded variation introduced in
[1, Sect. 1] (see also [2, Definition 4.26]). In Sect. 3 we study the fine properties
of functions in GBV�(Ω), as well as some structure properties of this space. In
particular, we prove in Theorem 3.11 that, if (vk)k is a minimizing sequence
of (1.2) in GBV�(Ω) and

sup
k

∫

Ω

ψ(|vk|)dx < +∞ , (1.3)

for some continuous function ψ with ψ(t) → +∞ as t → +∞, then a subse-
quence of (vk)k converges pointwise Ld-a.e. to a function v ∈ GBV�(Ω).

In Sect. 5 we prove that every minimizing sequence of problem (1.2) can
be modified in order to obtain a new minimizing sequence which satisfies (1.3)
for a suitable function ψ, depending on the sequence. The construction of ψ is
not trivial and is achieved by adapting to GBV�(Ω) the arguments introduced
in [9] for GSBV p(Ω).

To use the Direct Method of the Calculus of Variations we prove in The-
orem 6.1 that the functional considered in (1.2) is lower semicontinuous. If e0

is constant we can easily reduce the problem to the case e0 = 0, which was
studied in [4]. The result can be easily extended to the piecewise constant case
by a localization argument. The general case is obtained by approximation.

The existence of a minimizing sequence satisfying (1.3) and the semi-
continuity result imply that there exists a solution to (1.2) in GBV�(Ω), see
Theorem 6.2. Since problem (1.1) is equivalent to problem (1.2) in GBV�(Ω),
see Lemmas 4.1 and 4.2, we conclude that problem (1.1) has a solution, see
Corollary 6.3.

2. Preliminaries on BV -spaces

In this section we fix the general notation used in the paper and we recall the
fine properties of BV and GBV functions that will be used in the sequel.

For every topological space X, for every Borel set Y ⊂ X, and for ev-
ery finite-dimensional Hilbert space Ξ, the space of Ξ-valued bounded Borel
measures on Y is denoted by Mb(Y ; Ξ).

Throughout this section U is an open set in R
d. For every set E ⊂ U

the characteristic function χE : U → R is defined by χE(x) = 1 if x ∈ E and
χE(x) = 0 if x /∈ E. For every Borel measure μ on U and every Borel set
E ⊂ U the Borel measure μ E on U is defined by μ E(B) = μ(B ∩ E) for
every Borel set B ⊂ U . If f ∈ L1(U ;μ) the Borel measure fμ on U is defined
by (fμ)(B) :=

∫
B

fdμ for every Borel set B ⊂ U .
The Lebesgue measure is denoted by Ld and the (d − 1)-dimensional

Haussdorff measure by Hd−1. For every Ld-measurable set E ⊂ U and every
α ∈ [0, 1] the set E(α) of points in U of Ld-density α for E is defined by
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E(α) :=
{

x ∈ U : lim
ρ→0+

Ld(E ∩ Bρ(x))
Ld(Bρ(x))

= α

}
,

where Bρ(x) is the ball in R
d of radius ρ and centre x.

Given an Ld-measurable set E ⊂ U and an Ld-measurable function
u : E → R, we say that a ∈ R is the approximate limit of u(y) as y tends
to a point x ∈ E(α) for some α > 0, in symbols

ap lim
y→x

u(y) = a ,

if for every neighbourhood A of a in R we have

lim
ρ→0+

ρ−dLd({y ∈ E ∩ Bρ(x) : u(y) /∈ A}) = 0 . (2.1)

It follows from the definition that if f : R → R is a continuous function and
ap lim
y→x

u(y) exists, then

ap lim
y→x

f(u(y)) = f(ap lim
y→x

u(y)) . (2.2)

Moreover, if u, v : E → R are Ld-measurable functions, F is an Ld-measurable
subset of E, u = v in F , and x ∈ F (1), then ap lim

y→x
u(y) exists if and only if

ap lim
y→x

v(y) exists, and in this case

ap lim
y→x

v(y) = ap lim
y→x

u(y) . (2.3)

Let u : U → R be an Ld-measurable function. We define the jump set Ju

as the set of all points x ∈ U such that there exist u+(x), u−(x) ∈ R with
u+(x) = u−(x) and a unit vector νu(x) ∈ R

d such that, setting

U+ := {y ∈ U : (y − x) · νu(x) > 0} and U− := {y ∈ U : (y − x) · νu(x) < 0} ,

we have

u+(x) = ap lim
y→x

u|U+(y) and u−(x) = ap lim
y→x

u|U−(y) .

It is easy to see that the triple (u+(x), u−(x), νu(x)) is uniquely defined up to
a swap of the first two terms and a change of sign in the third one. For every
x ∈ Ju we set [u](x) := u+(x) − u−(x). It can be proved that Ju is a Borel set
and [u] : Ju → R is a Borel function.

For the general properties of the space BV (U) of functions of bounded
variation on U we refer to [7, Chapter 5] and [2, Chapter 3]. Let us fix u ∈
BV (U). As a consequence of [2, Theorem 3.78], we have that for Hd−1-a.e.
x ∈ U \ Ju there exists

ũ(x) := ap lim
y→x

u(y) .

Moreover, the function ũ defined by this formula is finite for Hd−1-a.e. x ∈
U \ Ju. For every m ∈ R+ we set

{|ũ| ≤ m} := {x ∈ U \ Ju : ũ(x) exists and |ũ(x)| ≤ m} . (2.4)
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The set {|ũ| > m} is defined in a similar way.
By the definition of BV (U) the distributional gradient of u, denoted by

Du, belongs to Mb(U ;Rd). It can be decomposed as

Du = ∇uLd + Dcu + Dju , (2.5)

where ∇u ∈ L1(U ;Rd), Dju := Du Ju is the jump part of Du, while Dcu,
called the Cantor part of Du, is a bounded Radon measure with values in
R

d, singular with respect to Ld and such that Dcu(B) = 0 on every Borel set
B ⊂ U with Hd−1(B) < +∞. Moreover, for Ld- a.e. x ∈ U the vector ∇u(x)
is the approximate gradient of u at x, i.e.,

ap lim
y→x

u(y) − ũ(x) − ∇u(x) · (y − x)
|y − x| = 0 . (2.6)

Finally, we have
Dju = [u]νuHd−1 Ju. (2.7)

For every t ∈ R and m ∈ R+ we set t(m) := (t∧m)∨ (−m) and note that
the function t �→ t(m) is Lipschitz continuous with constant 1. If u is an R-
valued function defined in U , u(m) is the function defined by u(m)(x) = u(x)(m)

for every x ∈ U .
The following theorem gives a formula for the distributional gradient of

the truncation of a BV function.

Theorem 2.1. Let u ∈ BV (U) and let m ∈ R+. Then u(m) ∈ BV (U) and

Du(m) = χ{|u|≤m}∇uLd + χ{|ũ|≤m}Dcu + [u(m)]νuHd−1 Ju .

Proof. It is enough to apply [2, Theorem 3.99] to f(t) = t(m). �

Remark 2.2. Let u ∈ BV (U) and let m ∈ R+. It follows from Theorem 2.1
that

∇u(m) = 0 Ld-a.e. in {|u| > m} , (2.8)

Dcu(m)(B) = 0 for every Borel set B ⊂ {|ũ| > m} . (2.9)

The following lemma provides a strong localization property for Du.

Lemma 2.3. Let u, v ∈ BV (U) and let E be a Borel set contained in U \ (Ju ∪
Jv). Suppose that ũ = ṽ Hd−1-a.e. in E. Then ∇u = ∇v Ld-a.e. in E and
Dcu(B) = Dcv(B) for every Borel set B ⊂ E.

Proof. It is enough to apply [2, Proposition 3.92 and Remark 3.93]. �

We refer to [2, Chapter 3] for the definition and the main properties of
the sets of finite perimeter. If E ⊂ U is a Ld-measurable set, its perimeter in
U is denoted by P (E,U). When P (E,U) < +∞, the reduced boundary of E
in U is denoted by ∂∗E and for every x ∈ ∂∗E the approximate inner unit
normal vector is denoted by νE(x).

The following lemma provides a precise formula for the gradient of the
product between a bounded BV function and the characteristic function of a
set with finite perimeter.
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Lemma 2.4. Let u ∈ BV (U) ∩ L∞(U) and let E ⊂ U be a Ld-measurable set
with P (E,U) < +∞. Then there exists γEu ∈ L∞(∂∗E,Hd−1) such that for
Hd−1-a.e. x ∈ ∂∗E we have

lim
ρ→0+

1
ρd

∫

B+
ρ (x)

|u(y) − (γEu)(x)|dy = 0 ,

where B+
ρ (x) = {y ∈ Bρ(x) : (y − x) · νE(x) > 0}. Moreover, setting v := uχE

we have v ∈ BV (U) ∩ L∞(U) and

∇v = χE∇u (2.10)
Dcv = χE(1)Dcu (2.11)

Djv = χE(1)Dju + (γEu)νEHd−1 ∂∗E . (2.12)

Proof. The statement about γEu is proved in [2, Theorem 3.77]. The properties
concerning v can be easily deduced from [2, Theorem 3.84]. �

We shall use the space GBV (U) of generalised functions of bounded
variation introduced in [1, Sect. 1] (see also [2, Definition 4.26]).

Remark 2.5. Since u(m) = (u(n))(m) for 0 < m < n, Remark 2.2 implies that
(2.8) and (2.9) hold also for every u ∈ GBV (U) and every m ∈ R+.

In the following proposition we summarize the fine properties of functions
in GBV (U).

Proposition 2.6. Let u ∈ GBV (U). Then the following properties hold:
(a) (precise values) for Hd−1-a.e. x ∈ U \ Ju there exists

ũ(x) := ap lim
y→x

u(y) ∈ R ; (2.13)

moreover, if x ∈ {|u| ≤ m}(1) \ Ju for some m ∈ R+ and ũ(x) exists,
then ũ(x) = ũ(m)(x) ∈ R; in particular, ũ = ũ(m) Hd−1-a.e. on {|u| ≤
m}(1) \ Ju;

(b) (approximate differentiability) there exists a Borel function, denoted by
∇u : U → R

d, such that for Ld-a.e. x ∈ U we have ũ(x) ∈ R and (2.6)
holds; moreover, for every m ∈ R+ we have

∇u(x) = ∇u(m)(x) forLd-a.e. x ∈ {|u| ≤ m} ; (2.14)

(c) (jumps) the set Ju is countably Hd−1-rectifiable and for Hd−1-a.e. x ∈ Ju

the vector νu(x) is orthogonal to the approximate tangent space to Ju at
x (according to [2, Definition 2.86]); moreover, for every m ∈ R+ we have
Ju(m) ⊂ Ju up to a set of Hd−1-measure zero and |[u(m)]| ≤ |[u]| Hd−1-
a.e. on Ju(m) ∩Ju; finally, for Hd−1-a.e. x ∈ Ju, there exists mx ∈ N such
that x ∈ Ju(m) for every m ∈ N with m ≥ mx and [u(m)](x) → [u](x) as
m → ∞ with m ∈ N;

(d) (Cantor part) for every m,n ∈ R+, with m ≤ n, we have Dcu(m)(B) =
Dcu(n)(B) for every Borel set B ⊂ {|ũ| ≤ m} and |Dcu(m)|(E) ≤
|Dcu(n)|(E) for every Borel set E ⊂ U .
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Proof. Properties (a), (b), and (c) can be deduced from [2, Theorem 4.34].
Equality ũ(x) = ũ(m)(x) in (a) follows from (2.3).

Let us prove (d). For every x ∈ {|ũ| ≤ m} we have ũ(x)(m) = ũ(x), there-
fore the Lipschitz continuity of t �→ t(m) implies that |u(m)(y)−ũ(x)| ≤ |u(y)−
ũ(x)| for every y ∈ U . The definition of ap lim then gives that ap lim

y→x
u(m)(y) =

ũ(x). Hence ũ(m)(x) = ũ(x), and the same result holds for u(n). The conclusion
follows from Lemma 2.3 and Remark 2.5. �

In the following theorem we show that, if u ∈ GBV (U) satisfies condition
(2.15) below, then we can define an R

d-valued Radon measure that plays the
role of the Cantor part of Du, even if the measure Du cannot be defined.

Theorem 2.7. Let u ∈ GBV (U) be such that

sup
m>0

|Dcu(m)|(U) < +∞ . (2.15)

Then there exists a unique measure μ ∈ Mb(U ;Rd) such that for every m ∈ R+

μ(B) = Dcu(m)(B) for every Borel set B ⊂ {|ũ| ≤ m} , (2.16)

and
μ(B) = 0 for every Borel set B ⊂ {|ũ| = +∞} ∪ Ju . (2.17)

Proof. Let E0 := ∅ and for every k ∈ N let Ek := {|ũ| ≤ k}. By Proposi-
tion 2.6(d) for every n ∈ N we have

n∑
k=1

|Dcu(k)|(Ek \ Ek−1) =
n∑

k=1

|Dcu(n)|(Ek \ Ek−1) ≤ |Dcu(n)|(U) , (2.18)

hence, by (2.15),
+∞∑
k=1

|Dcu(k)|(Ek \ Ek−1) < +∞ . (2.19)

If B ⊂ U is a Borel set we define

μ(B) :=
+∞∑
k=1

Dcu(k)(B ∩ Ek \ Ek−1) . (2.20)

Recalling (2.4) it follows immediately from the definition that (2.17) holds.
By (2.19) the series converges absolutely and its sum is finitely additive with
respect to B. To prove the countable additivity of μ it is enough to show that

μ(Bj) → 0 (2.21)

whenever (Bj)j is a decreasing sequence of Borel sets with empty intersection.
In this case by definition we have

μ(Bj) =
+∞∑
k=1

Dcu(k)(Bj ∩ Ek \ Ek−1) ,
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and for every k ∈ N we have Dcu(k)(Bj ∩ Ek \ Ek−1) → 0 as j → ∞. This
implies (2.21) by the dominated convergence theorem for series, which can be
applied thanks to (2.19).

To prove (2.16) we fix m ∈ R+ and a Borel set B ⊂ {|ũ| ≤ m}. Let n be
the smallest integer larger than or equal to m. Since {|ũ| ≤ m} ⊂ En, we have
B ⊂ ⋃n

k=1(Ek \ Ek−1) and B ∩ Ek \ Ek−1 = ∅ for k > n. Therefore (2.20) and
Proposition 2.6(d) give

μ(B) =
n∑

k=1

Dcu(k)(B ∩ Ek \ Ek−1) =
n∑

k=1

Dcu(n)(B ∩ Ek \ Ek−1)

= Dcu(n)(B) = Dcu(m)(B) .

This concludes the proof. �

Definition 2.8. Assume that u ∈ GBV (U) satisfies (2.15). The measure μ in-
troduced in Theorem 2.7 is denoted by Dcu.

Lemma 2.3 ensures that this definition is consistent with (2.5) whenever
u ∈ BV (U). The following proposition shows that the total variation |Dcu| of
Dcu coincides with the measure introduced in [2, Definition 4.33].

Proposition 2.9. Assume that u ∈ GBV (U) satisfies (2.15). Then

Dcu(m)(B) → Dcu(B) as m → +∞ , (2.22)

lim
m→+∞ |Dcu(m)|(B) = sup

m>0
|Dcu(m)|(B) = |Dcu|(B) , (2.23)

for every Borel set B ⊂ U .

Proof. Using the notation in the proof of Theorem 2.7, by (2.16) and (2.17)
we have

Dcu(m)(B ∩ {|ũ| ≤ m}) = Dcu(B ∩ {|ũ| ≤ m}) → Dcu(B) . (2.24)

From Remark 2.5 it follows that Dcu(m)(B \ ({|ũ| ≤ m} ∪ Ju)) = 0. Since
Dcu(m)(Ju) = 0, we conclude that Dcu(m)(B) = Dcu(m)(B ∩ {|ũ| ≤ m}).
Together with (2.24) this implies (2.22).

The first equality in (2.23) follows from Proposition 2.6(d). To prove the
other equality, for every Borel set B ⊂ U we define

ν(B) := lim
m→+∞ |Dcu(m)|(B) = sup

m>0
|Dcu(m)|(B) . (2.25)

Using the monotonicity with respect to m stated in Proposition 2.6(d) we can
prove that ν is a Borel measure. Therefore, it is enough to prove (2.23) for every
Borel set B ⊂ {|ũ| ≤ m} and for every Borel set B ⊂ {|ũ| = +∞} ∪ Ju. The
former follows from (2.16), while the latter follows from (2.17) and Remark 2.5,
taking into account the fact that |Dcu(m)|(Ju) = 0 by the general properties
of the Cantor part of the gradient of a BV function. �
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3. The function space used in our problem

We now introduce the function space that will be used to formulate and solve
problem (1.1). Throughout this section U is a bounded open set in R

d.

Definition 3.1. The space GBV�(U) is defined as the space of functions u : U →
R such that u(m) ∈ BV (U) for every m ∈ R+ and

sup
m∈R+

(∫

U

|∇u(m)|dx+ |Dcu(m)|(U)+
∫

J
u(m)

|[u(m)]|∧1dHd−1
)

< +∞ . (3.1)

It follows from the definition of GBV (U) that GBV�(U) ⊂ GBV (U).
Moreover, using Remark 2.5 and Proposition 2.6 it is easy to see that the
supremum in (3.1) can be taken over m ∈ N.

Remark 3.2. If d = 1 and u ∈ GBV�(U), then (3.1) implies that there exist at
most a finite number of jump points x of u with |[u](x)| ≥ 1. From this property
and from (3.1) we can deduce that u ∈ BV (U). Hence GBV�(U) = BV (U) if
d = 1.

On the contrary, when d ≥ 2 we have GBV�(U) = BV (U). Indeed,
let x0 ∈ U and let R > 0 be such that BR(x0) ⊂ U . For every k ∈ N

let Rk := 2−kR and let u : U → R be defined by u(x) := 1/Rd−1
k , if x ∈

BRk
(x0) \ BRk+1(x0) for k ∈ N, and u(x) := 0, if x ∈ U \ BR(x0). For every

m ∈ R+ we have ∇u(m) = 0, Dcu(m) = 0, and
∫

J
u(m)

|[u(m)]| ∧ 1dHd−1 ≤ σd−1

∑
k

Rd−1
k < +∞ ,

where σd−1 := Hd−1(B1(0)). This shows that u ∈ GBV�(U). Since
∫

Ju

|[u]|dHd−1 = σd−1

∞∑
k=1

( 1
Rd−1

k

− 1
Rd−1

k−1

)
Rd−1

k = σd−1

∞∑
k=1

(
1 − 1

2d−1

)
= +∞ ,

we conclude that u /∈ BV (U).

For every u ∈ GBV (U) we define

J1
u := {x ∈ Ju : |[u](x)| ≥ 1} . (3.2)

Proposition 3.3. The space GBV�(U) coincides with the set of functions u ∈
GBV (U) such that

∇u ∈ L1(U ;Rd) , (3.3)

sup
m∈R+

|Dcu(m)|(U) < +∞ , (3.4)

∫

Ju

|[u]| ∧ 1dHd−1 < +∞ . (3.5)
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Remark 3.4. Inequality (3.5) is equivalent to
∫

Ju\J1
u

|[u]|dHd−1 < +∞ and Hd−1(J1
u) < +∞ . (3.6)

Therefore, every u ∈ GBV�(U) satisfies (3.6).

Proof of Proposition 3.3. Assume u ∈ GBV�(U). Since U is the union of the
sets {|u| ≤ m} for m ∈ N (recall that u is finite valued), from (2.14) and (3.1)
we deduce (3.3). Inequality (3.4) follows from (3.1), while (3.5) can be deduced
from (3.1) and Proposition 2.6(c).

Conversely, assume u ∈ GBV (U) and that (3.3)–(3.5) are satisfied. From
the definition of GBV (U), see [2, Definition 4.26], for every m ∈ R+ we have
u(m) ∈ BVloc(U). To prove that u(m) ∈ BV (U) it is enough to show that
|Du(m)|(U) < +∞. By the extension of (2.5) to BVloc(U) we have

Du(m) = ∇u(m)Ld + Dcu(m) + [u(m)]νu(m)Hd−1 Ju(m) . (3.7)

By (2.14) we have that ∇u(m) = ∇u Ld-a.e. in {|u| ≤ m}, while by
Remark 2.5 ∇u(m) = 0 Ld-a.e. in {|u| > m}. Therefore (3.3) ensures that
∇u(m) ∈ L1(U ;Rd) and

sup
m∈R+

∫

U

|∇u(m)|dx < +∞ . (3.8)

By Proposition 2.6(c) we have Ju(m) ⊂ Ju up to a set of Hd−1 measure
zero and |[u(m)]| ≤ |[u]| Hd−1-a.e. on Ju(m) . Therefore

∫

J
u(m)

|[u(m)]|dHd−1 ≤
∫

J
u(m)\J1

u

|[u(m)]|dHd−1 + 2mHd−1(J1
u)

≤
∫

Ju\J1
u

|[u]|dHd−1 + 2mHd−1(J1
u) < +∞ , (3.9)

where the last inequality follows from (3.6). By (3.4), (3.7), (3.8), and (3.9)
we conclude that |Du(m)|(U) < +∞, which implies u(m) ∈ BV (U).

Finally, recalling again Proposition 2.6(c), by (3.5) we have
∫

J
u(m)

|[u(m)]| ∧ 1dHd−1 ≤
∫

Ju

|[u]| ∧ 1dHd−1 < +∞ . (3.10)

Together with (3.4) and (3.8), this implies (3.1), hence u ∈ GBV�(U). �

Remark 3.5. Let λ > 0 and u ∈ GBV (U). Then
∫

Ju

|[u]| ∧ 1dHd−1 < +∞ ⇐⇒
∫

Ju

|[u]| ∧ λdHd−1 < +∞ .

Indeed, if
∫

Ju
|[u]| ∧ 1dHd−1 < +∞ and λ ≤ 1 we have

∫
Ju

|[u]| ∧ λdHd−1 ≤∫
Ju

|[u]| ∧ 1dHd−1 < +∞. If
∫

Ju
|[u]| ∧ 1dHd−1 < +∞ and λ > 1 we have∫

Ju
|[u]| ∧ λdHd−1 ≤ ∫

Ju\J1
u

|[u]|dHd−1 + λHd−1(J1
u) ≤ λ

∫
Ju

|[u]| ∧ 1dHd−1 <

+∞. The converse implication can be proved in the same way.
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Given a function u ∈ GBV�(U), by Theorem 2.7 and Proposition 3.3 the
measures ∇uLd and Dcu are well-defined and belong to Mb(U ;Rd). Since in
general |[u]| /∈ L1(Ju,Hd−1), we cannot use (2.5) and (2.7) to define a measure
which plays the role of Du. However, this is possible on a suitable subset of U
and leads to a measure which will be crucial in the sequel.

Definition 3.6. Let u ∈ GBV�(U) and let Γ ⊂ U be a Borel set with∫

Ju\Γ

|[u]|dHd−1 < +∞ . (3.11)

The measure DΓu ∈ Mb(U \ Γ;Rd) is defined by

DΓu := ∇uLd + Dcu + [u]νuHd−1 (Ju \ Γ) . (3.12)

Remark 3.7. If u ∈ BV (U), using (2.5) and (2.7) we see that DΓu coincides
with the restriction of Du to U \ Γ.

It is known that, if u ∈ BV (U), then the approximate limit ũ(x) is finite
for Hd−1-a.e. x ∈ U \ Ju, while u+(x) and u−(x) are finite for Hd−1-a.e.
x ∈ Ju (see [7, Theorem 5.9.3]). These properties do not hold for an arbitrary
function in GBV (U). The following theorem shows that they hold for functions
in GBV�(U).

Theorem 3.8. Let u ∈ GBV�(U). Then ũ(x) is finite for Hd−1-a.e. x ∈ U \Ju,
while u+(x) and u−(x) are finite for Hd−1-a.e. x ∈ Ju.

Proof. It is enough to repeat the proof of [2, Theorem 4.40], replacing the
hypothesis Hd−1(S∗

u) < +∞ with (3.5). �

It is well-known that GBV (U) is not a vector space (see [2, Remark
4.27]). The additional properties considered in the definition of GBV�(U) lead
to the following result.

Theorem 3.9. GBV�(U) is a vector space.

Proof. It is obvious that, if u ∈ GBV�(U) and λ ∈ R, then λu ∈ GBV�(U).
Given u, v ∈ GBV�(U) we want to prove that u + v ∈ GBV�(U). The first
step is to show that, given m ∈ R+, we have (u + v)(m) ∈ BV (U) . For every
r ∈ R+, by the definition of GBV�(U) the functions u(r) and v(r) belong to
BV (U) hence

wm
r := (u(r) + v(r))(m) ∈ BV (U) . (3.13)

By Theorem 2.1 we have

∇wm
r = χ{|u(r)+v(r)|≤m}(∇u(r) + ∇v(r)) , (3.14)

Dcwm
r = χ{|ũ(r)+ṽ(r)|≤m}(D

cu(r) + Dcv(r)) . (3.15)

To estimate |Dwm
r |(U) we write

|Dwm
r |(U) =

∫

U

|∇wm
r |dx + |Dcwm

r |(U) +
∫

Jwm
r

|[wm
r ]|dHd−1 .
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Taking into account the definition of GBV�(U), by (3.14), (3.15) there exists
a constant C > 0, independent of m, such that∫

U

|∇wm
r |dx ≤

∫

U

|∇u(r)|dx +
∫

U

|∇v(r)|dx ≤ C , (3.16)

|Dcwm
r |(U) ≤ |Dcu(r)|(U) + |Dcv(r)|(U) ≤ C , (3.17)

for every r ∈ R+. Since by (3.13), |[wm
r ]| ≤ |[u(r)]| + |[v(r)]| Hd−1-a.e. on Jwm

r

and Jwm
r

⊂ Ju(r) ∪ Jv(r) up to a set of Hd−1-measure zero, recalling also that
|wm

r | ≤ m, we have∫

Jwm
r

|[wm
r ]|dHd−1 ≤

∫

J
u(r)\J1

u(r)

|[u(r)]|dHd−1 +
∫

J
v(r)\J1

v(r)

|[v(r)]|dHd−1

+2mHd−1(J1
u(r)) + 2mHd−1(J1

v(r))

≤ (2m + 1)
∫

J
u(r)

|[u(r)]| ∧ 1dHd−1 + (2m + 1)
∫

J
v(r)

|[v(r)]| ∧ 1dHd−1 .

Using the definition of GBV�(U) we see that there exists a constant Cm > 0
such that ∫

Jwm
r

|[wm
r ]|dHd−1 ≤ Cm (3.18)

for every r ∈ R+. Since wm
r → (u + v)(m) ∈ L1(U) as r → ∞, by (2.5) and

(3.16)–(3.18) we deduce that (u + v)(m) ∈ BV (U).
To conclude the proof we have to show that

sup
m∈R+

∫

U

|∇(u + v)(m)|dx < +∞ , (3.19)

sup
m∈R+

|Dc(u + v)(m)|(U) < +∞ , (3.20)

sup
m∈R+

∫

J
(u+v)(m)

|[(u + v)(m)]| ∧ 1dHd−1 < +∞ . (3.21)

To prove (3.19) for every r ≥ 0 we set Ar := {|u| ≤ r} ∩ {|v| ≤ r}. Since
(u(r) + v(r))(m) = (u+ v)(m) in Ar, by Lemma 2.3 we have ∇(u(r) + v(r))(m) =
∇(u + v)(m) Ld-a.e. in Ar. Recalling (3.16) we obtain∫

Ar

|∇(u + v)(m)|dx =
∫

Ar

|∇(u(r) + v(r))(m)|dx

≤
∫

U

|∇(u(r) + v(r))(m)|dx ≤ C ,

and since Ar ↗ U as r → +∞ (recall that u and v have finite values) we
get (3.19).

To prove (3.20) for every r ≥ 0 we set, according to (2.4),

Ãr := {|ũ| ≤ r)} ∩ {|ṽ| ≤ r} . (3.22)

By (2.2) applied to f(t) := t(m) we have ũ(x) = ap lim
y→x

u(r)(y) for every x ∈ Ãr.

Hence (ũ(r) + ṽ(r))(m) = (ũ + ṽ)(m) in Ãr. By Lemma 2.3 we have Dc(u(r) +
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v(r))(m) = Dc(u + v)(m) as measures on Ãr and from (3.17) we get

|Dc(u + v)(m)|(Ãr) = |Dc(u(r) + v(r))(m)|(Ãr) ≤ |Dc(u(r) + v(r))(m)|(U) ≤ C .

Recalling that Ãr ↗ U \ ({|ũ| = +∞} ∪ {|ṽ| = +∞}) and that Hd−1({|ũ| =
+∞}∪{|ṽ| = +∞}) = 0 by Theorem 3.8, we can pass to the limit as r → +∞
and we obtain that (3.20) holds.

It remains to prove (3.21). To this end we observe that by Proposition 3.3
there exists a constant C > 0 such that∫

Ju

|[u]| ∧ 1dHd−1 ≤ C and
∫

Jv

|[v]| ∧ 1dHd−1 ≤ C .

Since |[(u + v)(m)]| ∧ 1 ≤ |[u + v]| ∧ 1 ≤ |[u]| ∧ 1 + |[v]| ∧ 1, we have that∫

J
(u+v)(m)

|[(u + v)(m)]| ∧ 1dHd−1 ≤ 2C

for every m. This concludes the proof. �

Proposition 3.10. Let u, v ∈ GBV�(U), λ ∈ R, and let Γ ⊂ U be a Borel set.
Then

∇(u + v) = ∇u + ∇v and ∇(λu) = λ∇u Ld-a.e. inU , (3.23)
Dc(u + v) = Dcu + Dcv and Dc(λu) = λDcu onU , (3.24)

DΓ(u + v) = DΓu + DΓv and DΓ(λu) = λDΓu onU \ Γ . (3.25)

Proof. Equalities (3.23) follow immediately from the definition of the approxi-
mate limit. The second equality in (3.24) follows from the definition of Dcu. To
prove the first equality, we set w := u+v and we fix m and s with 0 ≤ 2s ≤ m.
For every r ≥ s we have w̃(m) = w̃ = ũ + ṽ = ũ(r) + ṽ(r) Hd−1-a.e. in Ãs,
where Ãs, is defined in (3.22). Since w(m) ∈ BV (U) by Theorem 3.9 and u(r),
v(r) ∈ BV (U) by the definition of GBV�(U), using (2.2) and Lemma 2.3 for
every Borel set B in U we obtain

Dcw(m)(B ∩ Ãs) = Dc(u(r) + v(r))(B ∩ Ãs) = Dcu(r)(B ∩ Ãs) + Dcv(r)(B ∩ Ãs) .

By Proposition 2.9 we can pass to the limit as r → +∞ and we get

Dc(u + v)(m)(B ∩ Ãs) = Dcu(B ∩ Ãs) + Dcv(B ∩ Ãs) .

Taking the limit as m → +∞ and using Proposition 2.9 again we obtain

Dc(u + v)(B ∩ Ãs) = Dcu(B ∩ Ãs) + Dcv(B ∩ Ãs) .

Finally, arguing as in the proof of Theorem 3.9 we can pass to the limit as
s → +∞ and obtain the first equality in (3.24).

By (3.23) and (3.24) to prove the first equality in (3.25) it is enough to
show that∫

Ju+v∩B

[u + v]νu+vdHd−1 =
∫

Ju∩B

[u]νudHd−1 +
∫

Jv∩B

[v]νvdHd−1

for every Borel set B ⊂ U \Γ. This follows easily from the linearity of the jump
and the locality property of approximate tangent spaces (see, e.g., [2, (2.65)]),
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which gives (up to a sign) νu+v = νu Hd−1-a.e. on Ju+v ∩ Ju and νu+v = νv

Hd−1-a.e. on Ju+v ∩ Jv. The second equality in (3.25) is trivial.

Theorem 3.11. (Compactness) Let (uk)k be a sequence in GBV�(U). Assume
that there exist a constant M > 0 and a continuous function ψ : R+ → R+

with ψ(t) → +∞ as t → +∞, such that∫

U

|∇uk|dx + |Dcuk|(U) +
∫

Juk

|[uk]| ∧ 1dHd−1 ≤ M , (3.26)

sup
k

∫

U

ψ(|uk|)dx < +∞ . (3.27)

Then there exist a subsequence, not relabelled, and a function u ∈ GBV�(U)
such that uk → u Ld-a.e. in U .

Proof. We claim that for every m ∈ N the truncated functions u
(m)
k are bound-

ed in BV (U). Indeed, by Proposition 2.6(b) we have that ∇u
(m)
k = ∇uk Ld-a.e.

on {|uk| ≤ m}, while by Remark 2.5 we have ∇u
(m)
k = 0 Ld-a.e. on {|uk| > m}.

By (3.26) this implies that∫

U

|∇u
(m)
k |dx ≤

∫

U

|∇uk|dx ≤ M . (3.28)

By (2.23) we have also

|Dcu
(m)
k |(U) ≤ |Dcuk|(U) ≤ M . (3.29)

As for the estimate on the jump part, we observe that, by Proposi-
tion 2.6(c), we have that J

u
(m)
k

⊂ Juk
up to a set of Hd−1-measure zero,

and |[u(m)
k ]| ≤ |[uk]| Hd−1-a.e. on J

u
(m)
k

∩ Juk
. Then

∫

J
u
(m)
k

|[u(m)
k ]| ∧ 1dHd−1 ≤

∫

Juk

|[uk]| ∧ 1dHd−1 , (3.30)

∫

J
u
(m)
k

|[u(m)
k ]|dHd−1 ≤

∫

J
u
(m)
k

\J1

u
(m)
k

|[u(m)
k ]|dHd−1 + 2mHd−1(J1

u
(m)
k

)

≤ (1 + 2m)
∫

Juk

|[uk]| ∧ 1dHd−1 ≤ (1 + 2m)M . (3.31)

Therefore, by (2.5), (3.28), (3.29), and (3.31), the functions u
(m)
k are bounded

in BV (U) uniformly with respect to k.
By the compactness of the embedding of BV (U) into L1

loc(U), using a
diagonal argument we can extract a subsequence of (uk)k, not relabelled, such
that for every m ∈ N, the sequence (u(m)

k )k converges Ld-a.e. in U to a function
vm ∈ L∞(U). Since the BV -norm is lower semicontinuous with respect to L1-
convergence, we obtain that vm ∈ BV (U).

We observe that

m < n =⇒ (vn)(m) = vm . (3.32)
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This is an obvious consequence of the fact that (u(n)
k )(m) = u

(m)
k . From (3.32)

we have that

m < n =⇒ {|vn| = n} ⊂ {|vm| = m} .

Let E∞ be the intersection of the sets {|vm| = m} for m ∈ N. We claim
that

Ld(E∞) = 0 . (3.33)

To prove this property we observe that it is not restrictive to assume that the
function ψ in (3.27) is increasing. For every m ∈ N by the Fatou Lemma we
have

ψ(m)Ld(E∞) =
∫

E∞
ψ(|vm|)dx≤ lim inf

k

∫

E∞
ψ(|u(m)

k |)dx≤sup
k

∫

U

ψ(|uk|)dx ,

where in the last inequality we used the monotonicity of ψ. Since, by assump-
tion, ψ(m) → +∞ as m → +∞, from (3.27) we obtain (3.33).

If x ∈ U \ E∞ there exists m ∈ N such that |vm(x)| < m. We set

u(x) := vm(x)

and we observe that, by (3.32), the function u is well-defined on U \ E∞ and
u(m) = vm in U \E∞ for every m ∈ N. We also set u(x) = 0 for x ∈ E∞. Since
u(m) = vm Ld-a.e. on U we conclude that u(m) ∈ BV (U) for every m ∈ N

and u
(m)
k → u(m) strongly in L1(U) as k → +∞. By (3.26), (3.28), (3.29), and

(3.30) we obtain that∫

U

|∇u
(m)
k |dx + |Dcu

(m)
k |(U) +

∫

J
u
(m)
k

|[u(m)
k ]| ∧ 1dHd−1 ≤ M . (3.34)

By [4, Theorem 2.1] we deduce that∫

U

|∇u(m)|dx + |Dcu(m)|(U) +
∫

J
u(m)

|[u(m)]| ∧ 1dHd−1 ≤ M , (3.35)

hence u ∈ GBV�(U). �

4. The incremental minimum problem

In this section we present a precise formulation of the incremental minimum
problem (1.1), which appears in the variational approach to the quasistatic
crack growth in elastic–perfectly plastic materials. The reference configuration
is a bounded open set Ω ⊂ R

d with Lipschitz boundary. The crack in the
reference configuration is represented by a Borel set Γ ⊂ Ω, with Hd−1(Γ) <
+∞. The set Ω \ Γ represents the elasto-plastic part of the body.

Since we are dealing with the antiplane case, the displacement of each
material point is described by a function u : Ω \ Γ → R. Regarding u as a
function defined Ld-a.e. in Ω, we assume that

u ∈ GBV�(Ω) ,

∫

Ju\Γ

|[u]|dHd−1 < +∞ , and
∫

∂Ω\Γ

|u|dHd−1 < +∞ . (4.1)
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Here and in the rest of the paper the trace on ∂Ω of a function v ∈ GBV (Ω)
is still denoted by v. The strain corresponding to the displacement u is given
by the measure DΓu ∈ Mb(Ω \ Γ;Rd) introduced in Definition 3.6 with U
replaced by Ω and Γ replaced by Γ ∩ Ω.

The Dirichlet boundary condition is assigned using the trace on ∂Ω of a
function w ∈ H1(Ω). The elastic part of the strain is denoted by e and the
plastic part by p. We assume that

e ∈ L2(Ω;Rd) and p ∈ Mb(Ω \ Γ;Rd) , (4.2)

DΓu = e + p as measures on Ω \ Γ , (4.3)

p = (w − u)νΩHd−1 as measures on ∂Ω \ Γ , (4.4)

where νΩ is the outer unit normal to ∂Ω. Here and in the rest of the paper we
identify an L1-function ϕ and the measure ϕLd. To simplify the exposition,
for every Borel set Γ ⊂ Ω and every w ∈ H1(Ω), it is convenient to introduce
the set A(Γ, w) of all triples (u, e, p) which satisfy (4.1)–(4.4).

From the definition of DΓu it follows that if Hd−1(Γ) < +∞, the abso-
lutely continuous part pa of p with respect to Ld satisfies

∇u = e + pa Ld-a.e. in Ω , (4.5)

while the singular part ps of p with respect to Ld satisfies

ps(B) = Dcu(B) +
∫

Ju∩B

[u]νudHd−1 for every Borel set B ⊂ Ω \ Γ, (4.6)

ps(B) = p(B) =
∫

B

(w − u)νΩdHd−1 for every Borel set B ⊂ ∂Ω \ Γ. (4.7)

In our incremental minimum problem the data at the previous time are

a Borel set Γ0 ⊂ Ω with Hd−1(Γ0) < +∞ , (4.8)
w0 ∈ H1(Ω) and (u0, e0, p0) ∈ A(Γ0, w0) . (4.9)

Given
w ∈ H1(Ω) (4.10)

the precise formulation of the incremental minimum problem (1.1) is

min
Γ Borel, Γ0⊂Γ⊂Ω
(u,e,p)∈A(Γ,w)

{1
2

∫

Ω

|e|2dx + |p − p0|(Ω \ Γ) + Hd−1(Γ \ Γ0)
}

. (4.11)

To solve this problem we introduce the function f : Rd → R defined by

f(ξ) := min
η∈Rd

{
1
2 |η|2 + |ξ − η|

}
=

{
1
2 |ξ|2 if |ξ| ≤ 1 ,

|ξ| − 1
2 if |ξ| ≥ 1 .

(4.12)

The minimum in the definition of f(ξ) is attained for η =

{
ξ if |ξ| ≤ 1 ,

ξ/|ξ| if |ξ| ≥ 1 .

It is convenient to introduce the maps π1, π2 : Rd → R
d defined by

π1(ξ) =

{
ξ if |ξ| ≤ 1
ξ/|ξ| if |ξ| ≥ 1

π2(ξ) =

{
0 if |ξ| ≤ 1
ξ − ξ/|ξ| if |ξ| ≥ 1 .
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We note that

ξ = π1(ξ) + π2(ξ) , |π1(ξ)| ≤ 1 , and f(ξ) = 1
2 |π1(ξ)|2 + |π2(ξ)| . (4.13)

For later use we observe that the definition (4.12) of f implies

|ξ| − 1
2 ≤ f(ξ) ≤ |ξ| for every ξ ∈ R

d . (4.14)

To deal with the boundary condition (4.4) in (4.11) it is convenient to
introduce a bounded open set Ω′ with

Ω ⊂ Ω′ (4.15)

and to extend w,w0, e0 in such a way that

w,w0 ∈ H1(Ω′) and e0 ∈ L2(Ω′;Rd) . (4.16)

We now prove that problem (4.11) is equivalent to the following minimum
problem

min
Γ Borel, Γ0⊂Γ⊂Ω

v∈GBV�(Ω′)
v=w−w0 a.e. in Ω′\Ω

{∫

Ω′
f(∇v+e0)dx+ |Dcv|(Ω′)+

∫

Jv\Γ

|[v]|dHd−1 +Hd−1(Γ)
}

.

(4.17)

Lemma 4.1. Assume (4.8), (4.9), (4.15), and (4.16). Let Γ and (u, e, p) be a
solution of (4.11) and let v := u − u0 in Ω and v := w − w0 in Ω′ \ Ω. Then
Γ and v solve (4.17).

Conversely, assume that Γ and v solve (4.17) and let u := v|Ω + u0,
e := π1(∇v|Ω + e0|Ω), p := DΓu − e in Ω \ Γ, and p := (w − u)νΩHd−1 on
∂Ω \ Γ. Then Γ and (u, e, p) solve (4.11).

Proof. Let Γ and (u, e, p) be a solution of (4.11). It is clear that Hd−1(Γ\Γ0) <
+∞, hence (4.8) implies that Hd−1(Γ) < +∞. Let v be as in the statement
of the lemma. To prove that Γ and v solve (4.17) we fix a Borel set Γ̂, with
Γ0 ⊂ Γ̂ ⊂ Ω, and v̂ ∈ GBV�(Ω′), with

v̂ = w − w0 Ld-a.e. in Ω′ \ Ω . (4.18)

We want to show that∫

Ω′
f(∇v + e0)dx + |Dcv|(Ω′) +

∫

Jv\Γ

|[v]|dHd−1 + Hd−1(Γ)

≤
∫

Ω′
f(∇v̂ + e0)dx + |Dcv̂|(Ω′) +

∫

Jv̂\Γ̂

|[v̂]|dHd−1 + Hd−1(Γ̂).

(4.19)

It is not restrictive to assume that∫

Jv̂\Γ̂

|[v̂]|dHd−1 < +∞ and Hd−1(Γ̂) < +∞ . (4.20)

We set

ê := π1(∇v̂|Ω +e0|Ω) and ĝ := ∇v̂|Ω +∇u0 − ê = ∇v̂|Ω +e0|Ω +pa
0 − ê , (4.21)
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where the last equality follows from (4.5) and (4.9). Then ê ∈ L2(Ω;Rd) and
ĝ ∈ L1(Ω;Rd). We now define û := v̂|Ω + u0 and note that û ∈ GBV�(Ω) by
Theorem 3.9. Moreover we define p̂ ∈ Mb(Ω \ Γ̂;Rd) by

p̂ := ĝ + Dcû + [û]νûHd−1 (Jû \ Γ̂) + (w − û)νΩHd−1 (∂Ω \ Γ̂) .

We remark that
∫

Jû\Γ̂
|[û]|dHd−1 < +∞ and

∫
∂Ω\Γ̂

|û|dHd−1 < +∞ by (4.1),
(4.9), (4.18), and (4.20). This shows that the definition of p̂ makes sense. We
note that DΓ̂û = ê + p̂ in Ω \ Γ̂ and p̂ = (w − û)νΩHd−1 on ∂Ω \ Γ̂, hence
(û, ê, p̂) ∈ A(Γ̂, w). Consequently, the minimality of Γ and (u, e, p) gives

1
2

∫

Ω

|e|2dx + |p − p0|(Ω \ Γ) + Hd−1(Γ \ Γ0)

≤ 1
2

∫

Ω

|ê|2dx + |p̂ − p0|(Ω \ Γ̂) + Hd−1(Γ̂ \ Γ0) . (4.22)

Since v̂ = w − w0 Ld-a.e. in Ω′ \ Ω and û = v̂|Ω + u0 we have that
∫

Jv̂\Γ̂

|[v̂]|dHd−1 =
∫

Jû−u0\Γ̂

|[û − u0]|dHd−1 +
∫

∂Ω\Γ̂

|w − û − w0 + u0|dHd−1 .

On the other hand by the definition of p̂ we have

|p̂ − p0|(Ω \ Γ̂) =
∫

Ω

|ĝ − pa
0 |dx + |Dc(û − u0)|(Ω)

+
∫

Jû−u0\Γ̂

|[û − u0]|dHd−1 +
∫

∂Ω\Γ̂

|w − û − w0 + u0|dHd−1

=
∫

Ω

|ĝ − pa
0 |dx + |Dcv̂|(Ω) +

∫

Jv̂\Γ̂

|[v̂]|dHd−1 ,

hence, by (4.13) and (4.21),
∫

Ω′
f(∇v̂ + e0)dx + |Dcv̂|(Ω′) +

∫

Jv̂\Γ̂

|[v̂]|dHd−1 + Hd−1(Γ̂)

= γ +
1
2

∫

Ω

|ê|2dx + |p̂ − p0|(Ω \ Γ̂) + Hd−1(Γ̂) , (4.23)

where

γ :=
∫

Ω′\Ω

f(∇w − ∇w0 + e0)dx . (4.24)

Similarly, using the definition (4.12) of f instead of (4.13), we obtain
∫

Ω′
f(∇v + e0)dx + |Dcv|(Ω′) +

∫

Jv\Γ

|[v]|dHd−1 + Hd−1(Γ)

≤ γ +
1
2

∫

Ω

|e|2dx + |p − p0|(Ω \ Γ) + Hd−1(Γ) . (4.25)
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Then from (4.22), (4.23), and (4.25) we obtain
∫

Ω′
f(∇v + e0)dx + |Dcv|(Ω′) +

∫

Jv\Γ

|[v]|dHd−1 + Hd−1(Γ)

≤
∫

Ω′
f(∇v̂ + e0)dx + |Dcv̂|(Ω′) +

∫

Jv̂\Γ̂

|[v̂]|dHd−1 + Hd−1(Γ̂),

(4.26)

which shows that Γ and v solve (4.17).
Conversely, assume that Γ and v solve (4.17). By (4.8) it is clear that

Hd−1(Γ) < +∞. We observe that the triple (u, e, p) defined in the second part
of the statement of the lemma belongs to A(Γ, w) and that p = pa + Dcu +
[u]νuHd−1 (Ju \ Γ) in Ω \ Γ while p = (w − u)νΩHd−1 on ∂Ω \ Γ. To prove
that Γ and (u, e, p) solve (4.11) we fix a Borel set Γ̂ with Γ0 ⊂ Γ̂ ⊂ Ω and a
triple (û, ê, p̂) ∈ A(Γ̂, w). We want to show that

1
2

∫

Ω

|e|2dx + |p − p0|(Ω \ Γ) + Hd−1(Γ \ Γ0)

≤ 1
2

∫

Ω

|ê|2dx + |p̂ − p0|(Ω \ Γ̂) + Hd−1(Γ̂ \ Γ0) . (4.27)

Let v̂ := û − u0 in Ω and v̂ := w − w0 in Ω′ \ Ω. Then, arguing as in the
first part of the proof we obtain in this case (4.25) with an equality and (4.23)
with the inequality ≤ . Then (4.27) follows from (4.22) and (4.26), which is an
obvious consequence of (4.17). �

We now prove that (4.17) is equivalent to the minimum problem

min
v∈GBV�(Ω′)

v=w−w0 a.e. in Ω′\Ω

{∫

Ω′
f(∇v + e0)dx + |Dcv|(Ω′) +

∫

Jv\Γ0

|[v]| ∧ 1dHd−1
}

.

(4.28)
We recall that in (3.2) we defined J1

v := {x ∈ Jv : |[v](x)| ≥ 1}.

Lemma 4.2. If Γ and v solve (4.17), then v is a solution of (4.28). Conversely,
if v is a solution of (4.28) and Γ := (J1

v ∪ Γ0) ∩ Ω, then Γ and v solve (4.17).

Proof. Assume that Γ and v solve (4.17). Let v̂ ∈ GBV�(Ω′) be such that
v̂ = w − w0 Ld-a.e. in Ω′ \ Ω and let Γ̂ = (J1

v̂ ∪ Γ0) ∩ Ω. Then
∫

Jv\Γ0

|[v]| ∧ 1dHd−1 ≤
∫

Jv\Γ

|[v]|dHd−1 + Hd−1(Γ \ Γ0)

and ∫

Jv̂\Γ̂

|[v̂]|dHd−1 + Hd−1(Γ̂ \ Γ0) =
∫

Jv̂\Γ0

|[v̂]| ∧ 1dHd−1 ,

where we used the fact that Hd−1(Jv̂ \Ω) = 0 since v̂ ∈ H1(Ω′ \Ω). Therefore,
by the minimality of Γ and v we have
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∫

Ω′
f(∇v + e0)dx + |Dcv|(Ω′) +

∫

Jv\Γ0

|[v]| ∧ 1dHd−1

≤
∫

Ω′
f(∇v + e0)dx + |Dcv|(Ω′) +

∫

Jv\Γ

|[v]|dHd−1 + Hd−1(Γ \ Γ0)

≤
∫

Ω′
f(∇v̂ + e0)dx + |Dcv̂|(Ω′) +

∫

Jv̂\Γ̂

|[v̂]|dHd−1 + Hd−1(Γ̂ \ Γ0)

=
∫

Ω′
f(∇v̂ + e0)dx + |Dcv̂|(Ω′) +

∫

Jv̂\Γ0

|[v̂]| ∧ 1dHd−1 ,

which proves that v solves (4.28).
Conversely, assume now that v solves (4.28) and let Γ := (J1

v ∪ Γ0) ∩ Ω.
Let Γ̂ be a Borel set with Γ0 ⊂ Γ̂ ⊂ Ω, let v̂ ∈ GBV�(Ω′) with v̂ = w − w0

Ld-a.e. in Ω′ \ Ω, and let Γ̂1 := J1
v̂ ∪ Γ0. By the minimality of v we have

∫

Ω′
f(∇v + e0)dx + |Dcv|(Ω′) +

∫

Jv\Γ

|[v]|dHd−1 + Hd−1(Γ \ Γ0)

=
∫

Ω′
f(∇v + e0)dx + |Dcv|(Ω′) +

∫

Jv\Γ0

|[v]| ∧ 1dHd−1

≤
∫

Ω′
f(∇v̂ + e0)dx + |Dcv̂|(Ω′) +

∫

Jv̂\Γ0

|[v̂]| ∧ 1dHd−1 .

Since∫

Jv̂\Γ0

|[v̂]| ∧ 1dHd−1 =
∫

Jv̂\Γ̂1

|[v̂]|dHd−1 + Hd−1(Γ̂1 \ Γ0)

=
∫

(Jv̂\Γ̂1)\Γ̂

|[v̂]|dHd−1 +
∫

(Jv̂\Γ̂1)∩Γ̂

|[v̂]|dHd−1 + Hd−1(Γ̂1 \ Γ0)

≤
∫

(Jv̂\Γ̂1)\Γ̂

|[v̂]|dHd−1 + Hd−1(Γ̂ \ Γ̂1) + Hd−1(Γ̂1 \ Γ0)

≤
∫

Jv̂\Γ̂

|[v̂]|dHd−1 + Hd−1(Γ̂ \ Γ0) ,

we obtain that∫

Ω′
f(∇v + e0)dx + |Dcv|(Ω′) +

∫

Jv\Γ

|[v]|dHd−1 + Hd−1(Γ \ Γ0)

≤
∫

Ω′
f(∇v̂ + e0)dx + |Dcv̂|(Ω′) +

∫

Jv̂\Γ̂

|[v̂]|dHd−1 + Hd−1(Γ̂ \ Γ0) ,

which shows that Γ and v solve (4.17). �

The results of this section show that the existence of a solution to the
minimum problem (4.11) can be obtained by proving that the minimum prob-
lem (4.28) has a solution. To this aim we shall use the Direct Method of the
Calculus of Variations. Unfortunately, not every energy-bounded sequence for
(4.28) is relatively compact. For instance, if w = w0 = 0, Γ0 = ∅, e0 = 0, and
vk = kχE , where E is a set of finite perimeter with Ld(E) > 0, then (vk)k is
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energy-bounded for (4.28), but it has no subsequence which converges Ld-a.e.
to a finite-valued function.

The origin of this problem is the fact that, in general, an energy-bounded
sequence does not satisfy (3.27). In the next section we shall construct a rel-
atively compact minimizing sequence for problem (4.28), while in Sect. 6 we
shall prove a lower semicontinuity result, which will allow us to obtain the
existence of a minimizer.

5. Construction of a relatively compact minimizing sequence

In this section Ω is a bounded open subset of Rd with Lipschitz boundary, c1, c2

are constants with 0 < c1 ≤ c2, and a1, a2 ∈ L1(Ω). Given a Borel set Γ0 ⊂ Ω,
with Hd−1(Γ0) < +∞, and a Borel measurable function g : Ω×R

d → R, with

c1|ξ| − a1(x) ≤ g(x, ξ) ≤ c2|ξ| + a2(x) (5.1)

for Ld-a.e. x ∈ Ω and every ξ ∈ R
d, we consider the functional Gg

Γ0
defined by

Gg
Γ0

(u) :=
∫

Ω

g(x,∇u)dx + |Dcu|(Ω) +
∫

Ju\Γ0

|[u]| ∧ 1dHd−1 (5.2)

for every u ∈ GBV�(Ω). The aim of this section is to show that, if (uk)k is
a minimizing sequence for Gg

Γ0
, then we can modify it by means of piecewise

constant translations obtaining a new minimizing sequence which satisfies the
hypotheses of the compactness Theorem 3.11. The construction of the modi-
fied sequence follows the lines of [9] and requires several steps. We begin by
constructing a suitable Caccioppoli partition (see [2, Definition 4.16]).

Lemma 5.1. (L∞-approximation with piecewise constant functions) For every
M > 0 and for every u ∈ GBV�(Ω), with

‖∇u‖L1(Ω;Rd) + |Dcu|(Ω) +
∫

Ju

|[u]| ∧ 1dHd−1 ≤ M , (5.3)

there exist a Caccioppoli partition (Pj)j of Ω and corresponding translations
(bj)j ⊂ R such that the function

v := u −
∞∑

j=1

bjχPj

belongs to BV (Ω) ∩ L∞(Ω) and the following estimates hold:
∞∑

j=1

Hd−1(∂∗Pj) ≤ 2 + 2M + Hd−1(∂Ω) (5.4)

‖v‖L∞(Ω) ≤ 2M . (5.5)

Proof. We may assume that

A :=
∫

Ω

|∇u|dx + |Dcu|(Ω) +
∫

Ju\J1
u

|[u]|dHd−1 > 0 .
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Indeed, if this is not the case, by (3.1) for every m we can apply [2, Theorem
4.23] to the truncated function u(m), obtaining that u(m) is piecewise constant
(see [2, Definition 4.21]). This implies that the function u itself is piecewise
constant and there is nothing to prove.

By the coarea formula in GBV (Ω) (see [2, Theorem 4.34(d)] applied with
B = Ω \ J1

u) for a.e. t ∈ R the set {u > t} has finite perimeter in Ω and
∫ +∞

−∞
Hd−1(Ω ∩ ∂∗{u > t} \ J1

u)dt = A .

For every i ∈ Z there exists ti ∈ (iA, (i + 1)A) such that the set {u > ti} has
finite perimeter in Ω and

Hd−1(Ω ∩ ∂∗{u > ti} \ J1
u) ≤ 1

A

∫ (i+1)A

iA

Hd−1(Ω ∩ ∂∗{u > t} \ J1
u)dt . (5.6)

For every i ∈ Z let Ei := {u > ti} \ {u > ti+1}. It is clear that (Ei)i is
a partition of Ω, that each Ei has finite perimeter in R

d (recall that Ω has
Lipschitz boundary, hence we can apply [2, Remark 4.20]), and that

∑
i∈Z

Hd−1(Ω ∩ ∂∗Ei \ J1
u) ≤ 2

A

∫ +∞

−∞
Hd−1(Ω ∩ ∂∗{u > t} \ J1

u)dt = 2 .

(5.7)

Let us prove now that
∑
i∈Z

Hd−1(∂∗Ei) ≤ 2 + 2M + Hd−1(∂Ω) . (5.8)

First of all, we claim that every x ∈ J1
u belongs at most to two sets ∂∗Ei.

Indeed, it is known (see, e.g., [2, Theorem 3.61]) that for every x ∈ ∂∗Ei

we have limρ→0 Ld(Ei ∩ Bρ(x))/Ld(Bρ(x)) = 1
2 . Therefore, if x ∈ ∂∗Ei ∩

∂∗Ej ∩ ∂∗Ek for some i < j < k, we would have limρ→0 Ld((Ei ∪ Ej ∪ Ek) ∩
Bρ(x))/Ld(Bρ(x)) = 3

2 , which is clearly impossible. This proves our claim,
which implies that

∑
i∈Z

Hd−1(∂∗Ei ∩ J1
u) ≤ 2Hd−1(J1

u) ≤ 2M . (5.9)

A similar argument shows that every x ∈ ∂Ω belongs to at most one set
∂∗Ei, hence ∑

i∈Z

Hd−1(∂∗Ei ∩ ∂Ω) ≤ Hd−1(∂Ω) . (5.10)

Therefore (5.7), (5.9), and (5.10) give (5.8), which shows that (Ei)i is a
Caccioppoli partition of Ω.

Let us define v := u − ∑
i∈Z

tiχEi
. For every x ∈ Ei we have

0 ≤ v(x) = u(x) − ti ≤ ti+1 − ti ≤ 2A ≤ 2M , (5.11)

which shows that
‖v‖L∞(Ω) ≤ 2M . (5.12)
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We show that v ∈ BV (Ω). To this end let us consider vk :=
∑

|i|≤k zi,
with zi := (u−ti)χEi

. By (5.11) we have zi = (u(mi)−ti)χEi
, with mi = 2M +

|ti|. Since both u(mi)−ti and χEi
belong to BV (Ω)∩L∞(Ω), by Lemma 2.4 we

have zi ∈ BV (Ω). Recalling (5.11) we have [u(mi)] = [u] and 0 ≤ [u(mi) − ti] ≤
2M on E

(1)
i ∩Ju by the definition of E(1), while the trace operator γEi

defined in
Lemma 2.4 satisfies |γEi

(umi −ti)| ≤ 2M Hd−1-a.e. on ∂∗Ei. Using Lemma 2.4
again, from these properties we obtain

|Dzi|(Ω) =
∫

Ω

|∇zi|dx + |Dczi|(Ω) + |Djzi|(Ω)

≤
∫

Ei

|∇u(mi)| dx + |Dcu(mi)|(E(1)
i )

+
∫

E
(1)
i ∩J

u(mi)

|[u(mi)]|dHd−1 + 2MHd−1(∂∗Ei)

≤
∫

Ei

|∇u| dx + |Dcu|(E(1)
i ) +

∫

E
(1)
i ∩(Ju\J1

u)

|[u]|dHd−1

+2MHd−1(E(1)
i ∩ J1

u) + 2MHd−1(∂∗Ei) ,

where the last inequality follows from Proposition 2.6(c) and (2.23). Since the
sets E

(1)
i are pairwise disjoint, by (5.8)

|Dvk|(Ω) ≤
∫

Ω

|∇u|dx + |Dcu|(Ω) +
∫

Ju\J1
u

|[u]|dHd−1 + M̂ ,

where M̂ := 2M
(
2 + 3M + Hd−1(∂Ω)

)
. Since the right-hand side is finite, we

obtain that |Dvk|(Ω) is bounded uniformly with respect to k. On the other
hand, since (Ei)i is a partition, inequality (5.12) implies that the sequence
(vk)k is bounded in L∞(Ω) and that vk → v strongly in L1(Ω). Therefore
v ∈ BV (Ω).

To conclude the proof it is enough to take Pj = Eσ(j) and bj = tσ(j)

where σ : N → Z is bijective. �

In the following lemma the Caccioppoli partition is finite and we provide
a precise estimate on the translations.

Lemma 5.2. (Piecewise Poincaré inequality) Let α ≥ 1 and let 0 < θ < 1. Then
there exist positive constants CΩ and Cθ,α,d such that for every u ∈ GBV�(Ω)
there exist a finite Caccioppoli partition Ω =

⋃J
j=1 Pj ∪R1 ∪R2, a finite family

of translations (bj)J
j=1 ⊂ R, and a constant λ ∈ [1, Cθ,α,d], depending on u,

satisfying the following estimates:

Ld(R1 ∪ R2) ≤ θCΩHd−1(J1
u ∪ ∂Ω) , (5.13)

Hd−1(∂∗R1) ≤ θCΩHd−1(J1
u ∪ ∂Ω) , (5.14)

J∑
j=1

Hd−1(∂∗Pj) + Hd−1(∂∗R2) ≤ CΩHd−1(J1
u ∪ ∂Ω) , (5.15)
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max
1≤j≤J

‖u − bj‖L∞(Pj) ≤ λ
(∫

Ω

|∇u|dx + |Dcu|(Ω) +

∫

Ju\J1
u

|[u]|dHd−1
)
,

(5.16)

min
1≤j≤J

ess inf
R2

|u − bj | ≥ αλ
(∫

Ω

|∇u|dx + |Dcu|(Ω) +

∫

Ju\J1
u

|[u]|dHd−1
)
,

(5.17)

min
1≤i<j≤J

|bi − bj | ≥ αλ
(∫

Ω

|∇u|dx + |Dcu|(Ω) +

∫

Ju\J1
u

|[u]|dHd−1
)
. (5.18)

Proof. It is enough to repeat the proof of [9, Lemma 3.5] replacing the space
GSBV p(Ω;Rm) by GBV�(Ω), Hd−1(Ju∪∂Ω) by Hd−1(J1

u ∪∂Ω), ‖∇u‖L1(Ω) by
‖∇u‖L1(Ω;Rd)+|Dcu|(Ω)+

∫
Ju\J1

u
|[u]|dHd−1, and [9, Theorem 2.5] by Corollary

5.1. �

The following theorem shows that we can modify a function u by means
of piecewise constant translations, with a precise control on the value taken
by the functional Gg

Γ0
defined in (5.2) on the modified function.

Theorem 5.3. (Piecewise translated functions) Let M > 0 and 0 < θ < 1.
Then there exist positive constants CM,Ω and CM,θ,Ω with the following prop-
erty: for every u ∈ GBV�(Ω) with

‖∇u‖L1(Ω;Rd) + |Dcu|(Ω) +
∫

Ju

|[u]| ∧ 1dHd−1 ≤ M (5.19)

there exist a finite Caccioppoli partition Ω =
⋃J

j=1 Pj ∪ R and a finite family
of translations (tj)J

j=1 ⊂ R such that the function

v :=
J∑

j=1

(u − tj)χPj
, (5.20)

belongs to BV (Ω) ∩ L∞(Ω) and the following estimates hold:

Ld(R) ≤ θCM,Ω , (5.21)
J∑

j=1

Hd−1(∂∗Pj) + Hd−1(∂∗R) ≤ CM,Ω , (5.22)

‖v‖L∞(Ω) ≤ CM,θ,Ω , (5.23)

Gg
Γ0

(v) ≤ Gg
Γ0

(u) + θCM,Ω + ‖a‖L1(R) , (5.24)

for every g satisfying (5.1) and for every Borel set Γ0 ⊂ Ω with Hd−1(Γ0) <
+∞, where a := |a1| + |a2|. Moreover, {v = 0} ⊃ {u = 0} (up to a set of
negligible Ld measure). Finally, we can choose (Pj)J

j=1 and (tj)J
j=1 so that the

following additional property holds: for every collection (t′j)
J
j=1, with |tj −t′j | ≤

θ−1‖v‖L∞(Ω), the function v′ :=
∑J

j=1(u − t′j)χPj
belongs to BV (Ω) ∩ L∞(Ω)

and satisfies (5.24).
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Proof. It is enough to repeat the proof of [9, Theorem 3.2] replacing c3 by 1,
GSBV p

M (Ω;Rm) by {u ∈ GBV�(Ω) : (5.19) holds}, Hd−1(Ju) by Hd−1(J1
u),

Hd−1(Ju ∪ ∂Ω) by Hd−1(J1
u ∪ ∂Ω), ‖∇u‖L1(Ω) by ‖∇u‖L1(Ω;Rd) + |Dcu|(Ω) +∫

Ju\J1
u

|[u]|dHd−1, and [9, Lemma 3.5] by Lemma 5.2 above, obtaining that
(5.21)–(5.23) hold.

To prove that v ∈ BV (Ω) it is enough to show that (u− tj)χPj
∈ BV (Ω).

We observe that for m ≥ CM,θ,Ω + |tj | we have (u− tj)χPj
= (u(m) − tj)χPj

by
(5.23). Since u(m) − tj and χPj

belong to BV (Ω) ∩ L∞(Ω), we conclude that
(u − tj)χPj

∈ BV (Ω).
It remains to prove (5.24). More precisely, we shall prove that∫

Ω

g(x,∇v)dx ≤
∫

Ω

g(x,∇u)dx +
∫

R

adx , (5.25)

|Dcv|(Ω) ≤ |Dcu|(Ω) , (5.26)∫

Jv\Γ0

|[v]| ∧ 1dHd−1 ≤
∫

Ju\Γ0

|[u]| ∧ 1dHd−1 + θCM,Ω , (5.27)

which gives (5.24). Inequality (5.25) can be proved as in the proof of [9, formula
(14)], while (5.27) can be proved as in the last part of [9, Theorem 3.2]. As
for (5.26) we begin by observing that by (5.23) there exists a constant m > 0
such that v =

∑J
j=1(u

(m) − tj)χPj
. By (2.11) and (2.23) we obtain

|Dcv|(Ω) =
J∑

j=1

|Dc(u(m) − tj)|(P (1)
j ) ≤

J∑
j=1

|Dcu|(P (1)
j ) ≤ |Dcu|(Ω) ,

which gives (5.26). �

The previous result can be extended to the case of functions satisfying
prescribed boundary conditions in the usual BV sense considered in (4.17) and
(4.28). To this aim we introduce a bounded open set Ω′ ⊂ R

d with Lipschitz
boundary and containing Ω.

Corollary 5.4. (The case of boundary conditions) Let M > 0 and 0 < θ < 1.
Then there exist positive constants CM,Ω′ and CM,θ,Ω′ with the following prop-
erty: for each h ∈ W 1,1(Ω′) with ‖∇h‖L1(Ω′;Rd) ≤ M and each u ∈ GBV�(Ω′)
with u = h Ld-a.e. on Ω′ \ Ω and∫

Ω′
|∇u|dx + |Dcu|(Ω′) +

∫

Ju

|[u]| ∧ 1dHd−1 ≤ M (5.28)

there exist a finite Caccioppoli partition Ω′ =
⋃J

j=1 Pj ∪ R and a finite family
of translations (tj)J

j=1 such that the function

v := hχR +
J∑

j=1

(u − tj)χPj
(5.29)

satisfies

v ∈ BV (Ω′) , v = h Ld-a.e. on Ω′ \ Ω , v − h ∈ BV (Ω′) ∩ L∞(Ω′) , (5.30)
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and the following estimates hold:

‖v − h‖L∞(Ω′) ≤ CM,θ,Ω′ , (5.31)

Ld(R) ≤ θCM,Ω′ , (5.32)
J∑

j=1

Hd−1(∂∗Pj) + Hd−1(∂∗R) ≤ CM,Ω′ , (5.33)

Ld(Pj ∩ (Ω′ \ Ω)) > 0 for at most one index j , (5.34)
Gg

Γ0
(v,Ω′) ≤ Gg

Γ0
(u,Ω′) + θCM,Ω′ + ‖a‖L1(R) + c2‖∇h‖L1(R;Rd), (5.35)

for every Borel measurable g : Ω′ × R
d → R satisfying (5.1) on Ω′ × R

d, and
for every Borel set Γ0 ⊂ Ω′, with Hd−1(Γ0) < +∞, where Gg

Γ0
(u,Ω′) is defined

as in (5.2), with Ω replaced by Ω′, and a = |a1| + |a2|. Moreover, we can
choose (Pj)J

j=1 and (tj)J
j=1 so that the following additional property holds:

for every collection (t′j)
J
j=1, with |tj − t′j | ≤ θ−1‖v − h‖L∞(Ω′), the function

v′ := hχR +
∑J

j=1(u − t′j)χPj
belongs to BV (Ω′) and satisfies (5.35).

Proof. We apply Theorem 5.3 to the function u − h on Ω′, which belongs to
GBV�(Ω′) by Theorem 3.9. Arguing as in the proof of [9, Corollary 3.3] we
obtain a finite Caccioppoli partition Ω′ =

⋃J
j=1 Pj ∪ R and a finite family of

translations (tj)J
j=1 ⊂ R such that (5.32)–(5.34) hold, the function

z :=
J∑

j=1

(u − h − tj)χPj
, (5.36)

belongs to BV (Ω′) ∩ L∞(Ω′), and

‖z‖L∞(Ω′) ≤ CM,θ,Ω′ . (5.37)

Moreover, by (5.26) and (5.27), z satisfies

|Dcz|(Ω′) ≤ |Dc(u − h)|(Ω′) = |Dcu|(Ω′) , (5.38)∫

Jz\Γ0

|[z]| ∧ 1dHd−1 ≤
∫

Ju−h\Γ0

|[u − h]| ∧ 1dHd−1 + θCM,Ω′

=
∫

Ju\Γ0

|[u]| ∧ 1dHd−1 + θCM,Ω′ . (5.39)

Let v := z + h. Then v ∈ BV (Ω′) and satisfies (5.29), (5.30), and (5.31).
It remains to prove (5.35). More precisely, we shall prove that∫

Ω′
g(x,∇v)dx ≤

∫

Ω′
g(x,∇u)dx +

∫

R

adx + c2

∫

R

|∇h|dx , (5.40)

|Dcv|(Ω′) ≤ |Dcu|(Ω′) , (5.41)∫

Jv\Γ0

|[v]| ∧ 1dHd−1 ≤
∫

Ju\Γ0

|[u]| ∧ 1dHd−1 + θCM,Ω′ , (5.42)

which gives (5.35).
Inequalities (5.41) and (5.42) follow from (5.38) and (5.39), respectively,

since Dcv = Dcz, Jv = Jz, and [z] = [v] (recall that h ∈ W 1,1(Ω′)).
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To prove (5.40) we observe that ∇v = ∇u Ld-a.e. on Ω′ \ R, while ∇v =
∇h Ld-a.e. on R, so that∫

Ω′
g(x,∇v)dx =

∫

Ω′\R

g(x,∇u)dx +
∫

R

g(x,∇h)dx

≤
∫

Ω′
g(x,∇u)dx +

∫

R

adx + c2

∫

R

|∇h|dx ,

which concludes the proof. �
We are now in a position to prove the main result of this section.

Theorem 5.5. (Existence of modifications satisfying (3.27)) Let h ∈ W 1,1(Ω′),
let g : Ω′ ×R

d → R be a Borel measurable function satisfying (5.1) on Ω′ ×R
d,

and let Γ0 ⊂ Ω′ be a Borel set with Hd−1(Γ0) < +∞.
Let (uk)k be a sequence in GBV�(Ω′) with uk = h on Ω′ \Ω. Assume that

there exists C > 0 such that

Gg
Γ0

(uk,Ω′) ≤ C for every k. (5.43)

Then there exist a subsequence of (uk)k, not relabelled, modifications yk ∈
GBV�(Ω′) of uk, with yk = h on Ω′ \ Ω, and a continuous function ψ : R+ →
R+ with ψ(t) → +∞ as t → ∞ such that

Gg
Γ0

(yk,Ω′) ≤ Gg
Γ0

(uk,Ω′) + 1
k , (5.44)

sup
k

∫

Ω′
ψ(|yk|)dx < +∞ . (5.45)

Remark 5.6. By (5.44), if (uk)k is a minimizing sequence for the functional
Gg

Γ0
with uk = h Ld-a.e. in Ω′ \ Ω, then the same is true for (yk)k. Inequalities

(5.43) and (5.44), together with (5.1), imply that (yk)k satisfies (3.26), while
(5.45) guarantees that (3.27) also holds. Hence, by Theorem 3.11 there exists
a subsequence of (yk)k, not relabelled, and a function u ∈ GBV�(Ω′) such that
yk → u Ld-a.e. in Ω′.

Proof of Theorem 5.5. We repeat the proof of [9, Theorem 3.8] with some
modifications. By (5.43) we have

c1

∫

Ω′
|∇uk|dx + |Dcuk|(Ω′) +

∫

Juk

|[uk]| ∧ 1dHd−1 ≤ M1 (5.46)

with M1 := C+‖a‖L1(Ω′)+Hd−1(Γ0), where a = |a1|+|a2|. We define θ	 := 2−	

and apply Corollary 5.4. Let us remark that, since we will pass to subsequences
(not relabelled), we will eventually have only the inequality

θ	 ≤ 2−	 . (5.47)

Step 1 (Application of Corollary 5.4) We apply Corollary 5.4 to the func-
tions uk and the boundary data h with parameters θ	 and M := M1

min{c1,1} . We

find finite Caccioppoli partitions Ω′ = ∪j≥1P
k,	
j ∪R	

k and piecewise translated
functions v	

k ∈ BV (Ω′) defined by

v	
k := h +

∑
j≥1

(uk − tk,	
j − h)χP k,�

j
= hχR�

k
+

∑
j≥1

(uk − tk,	
j )χP k,�

j
, (5.48)
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where (tk,	
j )j≥1 are suitable finite families of translations. For notational conve-

nience we shall also use the notation P k,	
0 = R	

k so that (P k,	
j )j≥0 is a partition

of Ω′. By Corollary 5.4 we have

v	
k ∈ BV (Ω′) , v	

k = h Ld-a.e. on Ω′ \ Ω , v	
k − h ∈ L∞(Ω′) , (5.49)

‖v	
k − h‖L∞(Ω′) ≤ CM,θ�,Ω′ , (5.50)

Ld(R	
k) ≤ θ	CM,Ω′ , (5.51)∑

j≥0

Hd−1(∂∗P k,	
j ) ≤ CM,Ω′ , (5.52)

for every k, � there is at most one j with Ld(P k,	
j ∩ Ω′ \ Ω) > 0,

(5.53)

Gg
Γ0

(v	
k,Ω′) ≤ Gg

Γ0
(uk,Ω′) + θ	CM,Ω′ + ‖a‖L1(R�

k) + c2‖∇h‖L1(R�
k;Rd).

(5.54)

By (5.51) there exists a decreasing sequence η	 converging to zero such that

‖a‖L1(R�
k) + c2‖∇h‖L1(R�

k;Rd) ≤ η	CM,Ω′ ,

which together with (5.54) gives

Gg
Γ0

(v	
k,Ω′) ≤ Gg

Γ0
(uk,Ω′) + (θ	 + η	)CM,Ω′ for every k and �. (5.55)

For later use we recall that for every family (t̂k,	
j )j≥1, with |tk,	

j − t̂k,	
j | ≤

θ−1
	 ‖v	

k − h‖L∞(Ω′), we have that the functions v̂	
k := hχR�

k
+

∑
j≥1(uk −

t̂k,	
j )χP k,�

j
belong to BV (Ω′) and satisfy

Gg
Γ0

(v̂	
k,Ω′) ≤ Gg

Γ0
(uk,Ω) + (θ	 + η	)CM,Ω′ , (5.56)

see (5.35).
Step 2 (Limiting objects for each �) By (5.43), (5.50), and (5.55) we obtain

that for every � the sequence (v	
k)k is bounded in BV (Ω′). Indeed, arguing as

in the proof of (5.46), by (5.43) and (5.55) we have that

c1

∫

Ω′
|∇v	

k|dx + |Dcv	
k|(Ω′) +

∫

J
v�

k

|[v	
k]| ∧ 1dHd−1 ≤ M1 + (θ	 + η	)CM,Ω′ .

This implies that ‖∇v	
k‖L1(Ω′;Rd), |Dcv	

k|(Ω′), and Hd−1(J1
v�

k
) are bounded.

Since [h] = 0 we have
∫

J
v�

k

|[v	
k]|dHd−1 =

∫
J

v�
k

\J1
v�

k

|[v	
k]| ∧ 1dHd−1 +

∫
J1

v�
k

|[v	
k −

h]|dHd−1 ≤ M1 + (θ	 + η	)CM,Ω′ + 2Hd−1(J1
v�

k
)‖v	

k − h‖L∞(Ω′). By (5.50) we

obtain that
∫

J
v�

k

|[v	
k]|dHd−1 is bounded with respect to k. Together with the

previous bounds this implies that |Dv	
k|(Ω′) is bounded uniformly with respect

to k. Since v	
k = h on Ω′ \ Ω, by the Poincaré inequality we deduce that (v	

k)k

is bounded in BV (Ω′).
Using a diagonal argument we obtain a subsequence of (k)k (not rela-

belled) such that for every � there exist a function v	 ∈ BV (Ω′) and a constant
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L	 ∈ [0, CM,θ�,Ω′ ] (see (5.50)) such that

v	
k → v	 in L1(Ω′) and ‖v	

k − h‖L∞(Ω′) → L	 . (5.57)

By the semicontinuity of the L∞-norm we obtain

‖v	 − h‖L∞(Ω′) ≤ L	 . (5.58)

Arguing as in Step 2 of the proof of [9, Theorem 3.8] we find Cacciop-
poli partitions (P 	

j )j≥0 and (Pj)j≥0 such that after extracting (not relabelled)
subsequences in � and k, we get

∑
j≥0

Ld(P 	
j �Pj) ≤ 2−	 and

∑
j≥0

Ld(P k,	
j �P k

j ) ≤ 2−	 for all k ≥ � . (5.59)

Step 3 (Conclusion of the proof) If (L	)	 does not tend to +∞ as � → +∞,
by (5.58) there exists a subsequence, not relabelled, such that (v	 − h)	 is
bounded in L∞(Ω′). Then (v	)	 is bounded in L1(Ω′) and we can take ψ(t) = t
to obtain

sup
	

∫

Ω′
ψ(|v	|)dx < +∞ . (5.60)

The conclusion can now be obtained by repeating Step 5 of the proof of [9,
Theorem 3.8] replacing v̂	, v̂	

k, and Ek by v	, v	
k, and Gg

Γ0
(·,Ω′), respectively.

If L	 → +∞, passing to a subsequence, not relabelled, we may assume
that L	 < L	+1. By the definition of L	, for every � we can find an increasing
sequence (k	)	 such that ‖v	

k − h‖L∞(Ω′) < ‖v	+1
k − h‖L∞(Ω′) for every � and

for every k ≥ k	. This allows us to follow the lines of Step 3 of the proof of
[9, Theorem 3.8]. Namely we replace the translations tk,	

j by the translations
t̂k,	
j introduced in that paper and we consider the corresponding functions v̂	

k

defined as in (5.48) with tk,	
j replaced by t̂k,	

j . This construction leads to the
fact that v̂	

k satisfies (5.56) and

‖v̂	
k − h‖L∞(Ω′) ≤ 2

	∑
m=1

CM,θm,Ω′ for every k ≥ k	 . (5.61)

Hence we can repeat the argument leading to (5.57) and we obtain a subse-
quence of (k)k (not relabelled) and, for every �, a function v̂	 ∈ BV (Ω′) such
that

v̂	
k → v̂	 in L1(Ω′) . (5.62)

The conclusion can now be obtained by repeating Steps 4 and 5 in the proof
of [9, Theorem 3.8] with Ek replaced by Gg

Γ0
(·,Ω′). �

6. Existence result

In this section we shall prove that the minimum problem (4.28) has a solution.
As observed at the end of Sect. 4, this will lead to the proof of the existence
of a solution to problem (4.11).
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Let Ω and Ω′ be bounded open sets in R
d with Lipschitz boundary and

with Ω ⊂ Ω′, and let f : Rd → R be the function defined by (4.12). We begin
by proving a lower semicontinuity result.

Theorem 6.1. Let Φ ∈ L1(Ω′;Rd) and let Γ0 ⊂ Ω′ be a Borel set with Hd−1(Γ0)
< +∞. Then the functional FΦ

Γ0
: GBV�(Ω′) → [0,+∞] defined by

FΦ
Γ0

(v) :=
∫

Ω′
f(∇v + Φ)dx + |Dcv|(Ω′) +

∫

Jv\Γ0

|[v]| ∧ 1dHd−1

is lower semicontinuous with respect to the convergence in measure on Ω′.

Proof. Let us fix a bounded open set U ⊂ R
d. The first step in the proof is to

show that the functional

F0,U (v) :=
∫

U

f(∇v)dx + |Dcv|(U) +
∫

Jv∩U

|[v]| ∧ 1dHd−1

is lower semicontinuous on GBV�(U) with respect to the convergence in mea-
sure on U . Let (uk)k ⊂ GBV�(U) be a sequence converging in measure to
some u ∈ GBV�(U) such that (F0,U (uk))k is bounded. For every m > 0
the sequence of truncations (u(m)

k )k converges to u(m) in measure on U and
F0,U (u(m)

k ) ≤ F0,U (uk) by Proposition 2.6.
Let us show that (u(m)

k )k is bounded in BV (U) by a constant depending
on m. The first inequality in (4.14) implies that∫

U

|∇u
(m)
k |dx + |Dcu

(m)
k |(U) +

∫

J
u
(m)
k

|[u(m)
k ]|dHd−1 ≤ cmF0,U (uk) + 1

2Ld(U) ,

where cm := 1+2m, hence the boundedness of (u(m)
k )k in BV (U) follows from

(2.5).
By [4, Theorem 2.1] we have

F0,U (u(m)) ≤ lim inf
k→∞

F0,U (u(m)
k ) ≤ lim inf

k→∞
F0,U (uk) . (6.1)

Passing to the limit as m → +∞ and using Propositions 2.6 and 2.9 we obtain

F0,U (u) ≤ lim inf
k→∞

F0,U (uk) ,

which concludes the proof of the lower semicontinuity of F0,U on GBV�(U)
with respect to the convergence in measure on U .

Given ξ ∈ R
d, for every v ∈ GBV�(U) let

Fξ,U (v) :=
∫

U

f(∇v + ξ)dx + |Dcv|(U) +
∫

Jv

|[v]| ∧ 1dHd−1 .

Since Fξ,U (v) = F0,U (v + �ξ), where �ξ(x) := ξ · x, we deduce that Fξ,U is
lower semicontinuous on GBV�(U) with respect to the convergence in measure
on U .

To prove a similar result for FΦ
Γ0

we fix a sequence (vk)k ⊂ GBV�(Ω′)
which converges in measure on Ω′ to a function v ∈ GBV�(Ω′), and an increas-
ing sequence (Kj)j of compact subsets of Γ0 such that Hd−1(Γ0\Kj) → 0. It is
easy to construct a sequence (Φj)j of piecewise constant functions converging
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to Φ in L1(Ω′;Rd) such that for every j there exists a partition U1
j , . . . , U

ij

j , Nj

of Ω′ \ Kj , with U i
j open and Hd−1(Nj) < +∞, such that Φj = ξi

j in U i
j for

suitable constant vectors ξi
j ∈ R

d. It is not restrictive to assume also that
Hd−1(Jv ∩ Nj) = 0. By the previous step of the proof, for every j we have

FΦj

Kj
(v) =

ij∑
i=1

Fξi
j ,Ui

j
(v) ≤

ij∑
i=1

lim inf
k→∞

Fξi
j ,Ui

j
(vk) ≤ lim inf

k→∞
FΦj

Kj
(vk) . (6.2)

Since f is Lipschitz continuous with constant 1, for every u ∈ GBV�(Ω′)
we have

|FΦj

Kj
(u) − FΦ

Γ0
(u)| ≤ ‖Φj − Φ‖L1(Ω′;Rd) + Hd−1(Γ0 \ Kj) ,

hence

FΦ
Γ0

(v) ≤ lim inf
k→∞

FΦ
Γ0

(vk) + 2
(‖Φj − Φ‖L1(Ω′;Rd) + Hd−1(Γ0 \ Kj)

)
.

Passing to the limit as j → ∞ we obtain the lower semicontinuity inequality
along the sequence (vk)k. �

We are now ready to prove the existence of a solution to the minimum
problem (4.28).

Theorem 6.2. Let w ∈ H1(Ω′), let Φ ∈ L1(Ω′;Rd), and let Γ0 ⊂ Ω′ be a Borel
set with Hd−1(Γ0) < +∞. Then the minimum problem

min
v∈GBV�(Ω′)

v=w a.e. in Ω′\Ω

{∫

Ω′
f(∇v + Φ)dx + |Dcv|(Ω′) +

∫

Jv\Γ0

|[v]| ∧ 1dHd−1
}

(6.3)

has a solution.

Proof. Since FΦ
Γ0

coincides with the functional Gg
Γ0

introduced in (5.2), with
g(x, ξ) := f(ξ+Φ(x)), and by (4.14) g satisfies (5.1), we can apply Theorem 5.5
and obtain that there exist a minimizing sequence (uk)k ⊂ GBV�(Ω′), with
uk = w Ld-a.e. in Ω′ \ Ω, and a continuous function ψ : R+ → R+, with
ψ(t) → +∞ as t → +∞, such that (3.26) and (3.27) hold. Then by the
Compactness Theorem 3.11 there exist a subsequence, not relabelled, and a
function u ∈ GBV�(Ω′) such that uk → u Ld-a.e. in Ω′. By the Semicontinuity
Theorem 6.1 we obtain that∫

Ω′
f(∇u + Φ)dx + |Dcu|(Ω′) +

∫

Ju\Γ0

|[u]| ∧ 1dHd−1

≤ lim inf
k

( ∫

Ω′
f(∇uk + Φ)dx + |Dcuk|(Ω′) +

∫

Juk
\Γ0

|[uk]| ∧ 1dHd−1
)

.

Since (uk)k is a minimizing sequence and u = w Ld- a.e. in Ω′ \Ω we conclude
that u is a solution of the minimum problem (6.3). �

We now show that the minimum problem (4.11) has a solution.
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Corollary 6.3. Let Γ0 ⊂ Ω be a Borel set with Hd−1(Γ0) < +∞, let w0, w ∈
H1(Ω), and let (u0, e0, p0) ∈ A(Γ0, w0). Then the minimum problem

min
Γ Borel, Γ0⊂Γ⊂Ω
(u,e,p)∈A(Γ,w)

{1
2

∫

Ω

|e|2dx + |p − p0|(Ω \ Γ) + Hd−1(Γ \ Γ0)
}

(6.4)

has a solution.

Proof. By the equivalence results proved in Lemmas 4.1 and 4.2, the conclusion
follows from Theorem 6.2. �

We conclude the paper with two results which show that in general we
cannot find a solution v to the minimum problem (6.3) with v ∈ BV (Ω′). In
the following proposition we show that this may happen even if w = 0.

Proposition 6.4. Assume that d ≥ 2. Then there exist a function Φ ∈ L1(Ω′;Rd)
and a Borel set Γ0 ⊂ Ω, with Hd−1(Γ0) < +∞, such that the solution of the
minimum problem (6.3) with w = 0 is unique, belongs to L1(Ω′), but does not
belong to BV (Ω′).

Proof. It is not restrictive to assume that 0 ∈ Ω and that Ω′ is connected. Let
0 < R < 1 be such that [−R,R]d ⊂ Ω, let ψ, h : (0, R] → [0,+∞) be defined
by

ψ(r) :=
1
r

− 1
R

and h(r) := r2 for every r ∈ (0, R] , (6.5)

and let ΩR,h := {(x1, . . . , xd) ∈ (−R,R)d : 0 < x1 < R , |x2| < h(x1)} .
For every x = (x1, . . . , xd) ∈ Ω′ we define

v0(x) :=

{
ψ(x1) if x ∈ ΩR,h ,

0 otherwise .

By (6.5) it is easy to see that v0 ∈ GBV�(Ω′)∩L1(Ω′), v0 = 0 in Ω′\Ω, Dcv0 =
0, Hd−1(Jv0) < +∞, and Jv0 ⊃ {x ∈ (−R,R)d : 0 < x1 < R , x2 = ±h(x1)}.
Since on this set |[v0](x)| = ψ(x1), from (6.5) we deduce∫

Jv0

|[v0]|dHd−1 = +∞ ,

which shows that v0 /∈ BV (Ω′).
Let us define Φ := −∇v0 and Γ0 := Jv0 . Then it is clear that v0 is a

solution of (6.3) since the value of the functional in v0 is equal to zero. If v is
another solution we must have∫

Ω′
f(∇v − ∇v0)dx + |Dcv|(Ω′) +

∫

Jv\Jv0

|[v]| ∧ 1dHd−1 = 0 .

This implies ∇v = ∇v0 Ld-a.e. in Ω′, Dcv = 0 in Ω′, and Hd−1(Jv \ Jv0) = 0.
Therefore v − v0 ∈ W 1,1(Ω′ \ Jv0), ∇(v − v0) = 0 Ld-a.e. in Ω′, and v − v0 = 0
Ld-a.e. in Ω′ \ Ω. Since Ω′ \ Jv0 is connected, we conclude that v = v0 Ld-a.e.
in Ω′. �

In the following proposition we consider the case Φ = 0.
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Proposition 6.5. Assume d ≥ 2. Then there exist a function w ∈ H1(Ω′) and
a Borel set Γ0 ⊂ Ω, with Hd−1(Γ0) < +∞, such that the solution of the
minimum problem (6.3) with Φ = 0 is unique, belongs to L1(Ω′), but does not
belong to BV (Ω′).

Proof. It is not restrictive to assume that Ω′ is connected. Since Ω has Lipschitz
boundary, up to a change in the coordinate system, we may assume that there
exist an open set A ⊂ R

d−1, an interval I ⊂ R, and a Lipschitz function
g : A → I such that Ω ∩ (A × I) = {(y, z) ∈ A × I : z < g(y)}. It is not
restrictive to assume that A × I ⊂ Ω′. We fix a nonempty open set A′ ⊂⊂ A
and a sequence (yk)k≥k0 ⊂ A′ such that the balls in R

d−1 of centre yk and
radius 1/k2 are pairwise disjoint and contained in A′.

For every y0 ∈ R
d−1, h > 0, and r > 0 let

Ch
r (y0) := {(y, z) ∈ R

d−1 × R : |y − y0| < r , |z − g(y0)| < h}
be the cylinder of centre (y0, g(y0)), height 2h, and radius r. For every pair of
open sets U and V , with U ⊂ V ⊂ R

d, let

cap(U, V ) = min{
∫

V

|Du|2dx : u ∈ H1
0 (V ), u = 1 Ld-a.e. in U} (6.6)

be the relative capacity of U in V .
Let L > 0 be the Lipschitz constant of g. We may assume that C

L/k2

1/k2 (yk)

⊂ A′ × I for every k ≥ k0. Since we have cap(CLr
r (yk), CL/k2

1/k2 (yk)) → 0+ as
r → 0+, there exists rk such that

0 < rk < 1/k2 and cap(CLrk
rk

(yk), CL/k2

1/k2 (yk)) <
1

k4d−2
. (6.7)

Let wk be the solution of the minimum problem (6.6) with U = CLrk
rk

(yk) and

V = C
L/k2

1/k2 (yk), extended to zero out of C
L/k2

1/k2 (yk), and let

w :=
∞∑

k=k0

k2d−3wk .

By (6.7) the series converges in H1
0 (Ω′), hence w ∈ H1

0 (Ω′). Moreover

w = k2d−3 Ld-a.e. in CLrk
rk

(yk) , (6.8)

w = 0 Ld-a.e. in Ω′ \ (A′ × I) . (6.9)

Let Γ1 := ∂Ω ∩ (Ā′ × I) \ ⋃
k CLrk

rk
(yk), Γ2 :=

⋃
k ∂C

L/k2

1/k2 (yk) ∩ Ω, and Γ0 :=
Γ1 ∪ Γ2. Then

Hd−1(Γ0) ≤ Hd−1(∂Ω) +
∑

k

Hd−1(∂C
L/k2

1/k2 (yk))

≤ Hd−1(∂Ω) +
∑

k

ωd−11/k2(d−1) + 2
∑

k

σd−2L/k2(d−2)+2 < +∞ ,

where ωd−1 is the (d − 1)-measure of the unit ball in R
d−1 and σd−2 is the

(d − 2)-measure of its boundary.
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Let v0 : Ω′ → R be defined by v0 := w in Ω′\Ω, v0 := k2d−3 in C
L/k2

1/k2 (yk)∩
Ω and v0 := 0 in Ω \ ⋃

k C
L/k2

1/k2 (yk). Since ∇v0 = 0 Ld-a.e. in Ω, ∇v0 = ∇w

Ld-a.e. in Ω′ \ Ω, Dcv0 = 0 in Ω′, Jv0 ⊂ Γ0, and Hd−1(Γ0) < +∞, we have
that v0 ∈ GBV�(Ω′). We observe that the functional in the minimum problem
(6.3) with Φ = 0 attains the value

∫
Ω′\Ω

f(∇w)dx at v0, hence v0 is a solution
to this problem.

If v is another solution of (6.3) we must have v = w in Ω′ \ Ω and
∫

Ω

f(∇v)dx + |Dcv|(Ω′) +
∫

Jv\Γ0

|[v]| ∧ 1dHd−1 = 0 .

This implies ∇v = 0 Ld-a.e. in Ω, Dcv = 0 in Ω′, and Hd−1(Jv \ Γ0) = 0.
Hence v ∈ W 1,1(Ω′ \ Γ0). Since ∇v = ∇v0 Ld-a.e. in Ω′ \ Γ0 and Ω′ \ Γ0 is
connected, from the equality v = v0 Ld-a.e. in Ω′ \ Ω we conclude that v = v0

Ld-a.e. in Ω′.
Since

∫

Ω′
|v0|dx ≤

∫

Ω′\Ω

|w|dx +
∞∑

k=k0

k2d−3Ld(CL/k2

1/k2 (yk))

≤
∫

Ω′\Ω

|w|dx + 2ωd−1L

∞∑
k=k0

( 1
k2

)d−1 1
k2

k2d−3 < +∞ ,

we have that v0 ∈ L1(Ω′).
To prove that v0 /∈ BV (Ω) we estimate the integral of the jump of v0.

Since |[v0]| = k2d−3 Hd−1-a.e. on ∂C
L/k2

1/k2 (yk)∩Ω, and the base of this cylinder
is contained in Ω, we have

∫

Jv0

|[v0]|dHd−1 ≥ ωd−1

∞∑
k=k0

( 1
k2

)d−1
k2d−3 = +∞ .

This shows that v0 /∈ BV (Ω′), since for every v ∈ BV (Ω′) we have [v] ∈
L1(Jv,Hd−1). �

Remark 6.6. By the equivalence results proved in Lemmas 4.1 and 4.2, if Γ0

and w are as in Proposition 6.5, then the minimum problem (6.4) correspond-
ing to w0 = 0 and (u0, e0, p0) = (0, 0, 0) has a unique solution (u, e, p) with
u /∈ BV (Ω).
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