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Abstract
We consider the problem of assessing the sensitivity of uncertain biochemical systems
in the presence of input perturbations (either constant or periodic) around a stable
steady state. In particular, we propose approaches for the robust sensitivity analysis
of systems with uncertain parameters assumed to take values in a hyper-rectangle. We
highlight vertex results, which allow us to check whether a property is satisfied for
all parameter choices in the hyper-rectangle by simply checking whether it is satisfied
for all parameter choices at the vertices of the hyper-rectangle. We show that, for
a vast class of systems, including (bio)chemical reaction networks with mass-action
kinetics, the system Jacobian has a totally multiaffine structure (namely, all minors of
the Jacobianmatrix aremultiaffine functions of the uncertain parameters),which canbe
exploited to obtain several vertex results. We consider different problems: robust non-
singularity; robust stability of the steady-state; robust steady-state sensitivity analysis,
in the case of constant perturbations; robust frequency-response sensitivity analysis, in
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the presence of periodic perturbations; and robust adaptation analysis. The developed
theory is then applied to gain insight into some examples of uncertain biochemical
systems, including the incoherent feed-forward loop, the coherent feed-forward loop,
the Brusselator oscillator and the Goldbeter oscillator.

Keywords Biochemical systems · Robustness · Steady-state sensitivity · Vertex
algorithm

Mathematics Subject Classification 34A34 · 92C40 · 92C42 · 92E20 · 93B35 · 93D09

1 Introduction

In spite of inherent variations and fluctuations in the environment where they operate,
leading to huge uncertainties in the parameter values of the associated models, living
systems robustly preserve some crucial properties and keep reliably performing their
specific task. The extraordinary robustness of biological processes has been observed
in remarkable case studies, such as bacterial chemotaxis (Alon et al. 1999; Barkai
and Leibler 1997) and circadian rhythms (Stelling et al. 2004). The pioneering study
by Barkai and Leibler (1997), later confirmed experimentally by Alon et al. (1999),
showed that the tumbling frequency that characterises the chemotaxis of Escherichia
coli is robustly regulated: although it can rapidly change due to a variation in the
concentration of a chemical stimulant, it then gradually adapts back precisely to its
pre-stimulus value; this perfect adaptation property is shown to be insensitive to the
precise values of the biochemical parameters, because it is a direct consequence of the
network’s architecture.

The general principles underlying biological robustness have been discussed from
various perspectives: Kitano (2004), Stelling et al. (2004) and Streif et al. (2016) high-
light the importance of redundancy, feedback control, decoupling and modularity of
cellular networks so as to ensure their robust functioning; Lesne (2008) surveys possi-
ble mechanisms that enable robust behaviours, focusing on the different meanings of
robustness in the physical sciences and in the life sciences, and on the specificities of
biological systems; Whitacre (2012) provides an overview of paradigms and system
principles that enable biological robustness, pointing to their similarities across vari-
ous levels and scales; Khammash (2016) adopts an engineering viewpoint to propose
the notion of robustness as a unifying principle behind the complexity in both bio-
logical and engineered systems, and emphasises the importance of perfect adaptation
(Khammash 2021) to guarantee robustness.

A variety of quantitative and numeric approaches have been used to robustly assess
various properties of interest for different types of biological models with uncertain
parameters. A widely investigated property is stability: Chesi (2011) has proposed
methods based on optimisation and linear matrix inequalities to assess the robust sta-
bility of genetic regulatory networks including mRNAs and proteins; Waldherr and
Allgöwer (2011) have leveraged polynomial programming to robustly assess stability
and instability of biochemical networks; Hara et al. (2019) have applied transfer-
function methods for the robust stability analysis of linear systems with generalised
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frequency variables to the case of cyclic gene regulatory networks. The property of
concentration robustness in chemical reaction networks has been assessed by pro-
viding network-imposed sensitivity bounds to evaluate the robustness of equilibrium
species concentrations against fluctuations in reactant supply (Shinar et al. 2009) and
by identifying topological principles that help robustly keep the concentration of active
signalling compounds within tightly defined bounds in spite of perturbations (Steuer
et al. 2011), while Shinar et al. (2007) have identified a network mechanism that guar-
antees robust input-output relation regardless of changes in the concentration of the
system components. Kim et al. (2006) and Ma and Iglesias (2002) have integrated
bifurcation analysis, structural-singular-value μ-analysis and hybrid optimisation to
assess the robust stability of limit cycles in a model of the molecular network under-
lying cAMP oscillations in fields of chemotactic Dictyostelium discoideum cells. All
these works very efficiently solve specific problems with dedicated tools.

This paper is different in spirit. Motivated by a significant class of biochemical
systems and several relevant problems, we propose a framework for the robustness
analysis of dynamical systems with a special uncertainty structure: multiaffine, i.e.,
affine in each uncertain parameter, while the other parameters are kept constant. Our
methodologies build upon a consolidated approach to parametric robustness intro-
duced by Barmish (1994): the main aim of the paper is to build a bridge between a
class of relevant problems in mathematical biology and a class of powerful vertex
results for robustness analysis developed within the realm of control theory, which
offer valuable tools to assess the robustness of biological systems.

In particular, we deal with a vast class of uncertain nonlinear dynamical systems,
including the interesting case of generic biochemical reaction networks, for which the
uncertain parameters are assumed to take values in a hyper-rectangle and the system
Jacobian is a totally multiaffine matrix with respect to the uncertain parameters, i.e.,
each minor of the Jacobian is a multiaffine function of the uncertain parameters.

Systems with totally multiaffine uncertainties include, as a special case, BDC-
decomposable systems (Blanchini and Giordano 2014, 2017, 2019; Giordano et al.
2016), whose Jacobian matrix can be written as a linear combination of the uncertain
parameters,

J (δ) =
∑

k

δk Jk,

where Jk are rank-one matrices: then, the Jacobian matrix can be decomposed as
J = BDC , where D is a diagonal matrix carrying the uncertain parameters δk on
the diagonal, while B and C are constant matrices such that Jk = BkC�

k , where Bk

denotes the kth column of B and C�
k the kth row of C . This class of models embraces

biochemical systems with generic monotonic reaction rates, as well as general flow
systems in engineering. Not only BDC-decomposable systems represent a proper sub-
set of systems with totally multiaffine uncertainties: here we show that also chemical
reaction networks with mass-action kinetics have a totally multiaffine Jacobian.

As a first main contribution, we provide a characterisation of totally multiaffine
matrices, which allows us to simply check whether a matrix is totally multiaffine just
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by inspecting its entries and thematrix derivatives with respect to each of the uncertain
parameters.

We then consider the steady-state sensitivity analysis for systems with totally
multiaffine uncertainties. As is known, this type of analysis can be approached by
considering the linearised system and computing the input-output steady-state char-
acteristic. For systems with parametric uncertainties, the problem can be faced via
robustness analysis (Barmish 1994) and solved through the solution of nonlinear sys-
tems with parametric rank-one uncertainties (Mohsenizadeh et al. 2014; Polyak and
Nazin 2004). These approaches have been recently exploited to deal with the struc-
tural steady-state sensitivity analysis of BDC-decomposable systems affected by a
persistent input perturbation, providing vertex results to assess the structural sign of
steady-state influences (Blanchini and Giordano 2019; Giordano et al. 2016).

A vertex property is a property that holds for all parameter choices in the hyper-
rectangle if and only if it holds for all parameter choices at the vertices of the hyper-
rectangle. Vertex properties are therefore extremely convenient from a computational
standpoint, since they can be checked for a whole continuum space (all possible
realisations of the uncertain system) just by checking them at a finite set of points (the
realisations associated with the vertices of the parameter space).

Here, we consider the broader class of systemswith totallymultiaffine uncertainties
and we provide vertex results to perform their sensitivity analysis when the parameters
are bounded in a hyper-rectangle.

In particular, given the totally multiaffine Jacobian J (δ), where δ is the vector
stacking the uncertain parameters, each bounded in a given interval, as well as the
input matrix E and the output matrix H , we present the following main results.

– Important classes of systems, including not only BDC-decomposable systems but
also chemical reaction networks with mass-action kinetics, have a totally multi-
affine uncertainty structure.

– Robust non-singularity of J (δ) can be checked by assessing its determinant at the
vertices of the parameter space.

– When the system is affected by a constant perturbation, robust lower and upper
bounds for the input-output sensitivity Σ(δ) = −H J (δ)−1E (where H is the
output matrix and E is the input matrix) can be computed just by assessing Σ(δ)

at the vertices of the parameter space; the obtained bounds are tight.
– Robust stability can be assessed resorting to the Zero Exclusion Theorem by
Barmish (1994), once stability has been shown to hold for a nominal value of
the parameters. To assess the stability of the nominal system, a vertex type of test
(well known for systems with affine uncertainties: see the work by Garofalo et al.
(1993)) can be adopted to check whether a given positive definite function, either
smooth or convex, is a Lyapunov function.

– When the system is affected by a periodic perturbation, robust lower and upper
bounds for the magnitude and the phase of the system transfer functionW (s, δ) =
H(s I − J (δ))−1E can be computed, by leveraging vertex results.

– Potential oscillatory frequencies for the uncertain system can be robustly deter-
mined through a vertex result, which holds also in the presence of explicit delays.
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– Vertex results can be obtained also to robustly assess adaptation for uncertain sys-
tems, as preliminarily reported in the conference work by Blanchini et al. (2020).
When a positive persistent perturbation is applied, the output is adaptive if it ini-
tially increases and then, after a transient, it decreases so as to asymptotically
recover a value that is closer to its pre-perturbation steady state. We provide a
formal definition and we show that the property can be checked robustly through
vertex tests.

Finally, we illustrate the proposed methodologies by applying them to chemical
reaction networks, as well as biological systems taken from the literature.

2 Systems with totally multiaffine uncertainties

Consider the generic nonlinear continuous-time system

{
ẋ(t) = f (x(t), u(t)),

y(t) = h(x(t)),

where f : Rn × R → R
n and h : Rn → R are continuously differentiable functions,

the system state is x(t) ∈ R
n , u(t) ∈ R is a scalar, which can be either an external

input signal or a system parameter, and y(t) ∈ R is a scalar output. Assume that, given
a constant input ū, the system reaches the asymptotically stable steady-state x̄ such
that f (x̄, ū) = 0, which corresponds to the output steady-state value ȳ = h(x̄), where
x̄ = x̄(ū).

We wish to assess how the steady-state output ȳ = h(x̄) changes due to variations
in the constant input ū. More precisely, let v be the perturbation affecting the input,
or parameter, and denote by w the corresponding perturbation affecting the output.
We aim to infer (or provide bounds on) the output value ȳ + w corresponding to the
perturbed input (or parameter) ū + v.

We consider input perturbations that are small enough to ensure that the stability
of the steady state x̄(u) is preserved (recall that the eigenvalues of the Jacobian matrix
are continuous functions of its entries, which are in turn continuous functions of u).
Then, we consider the linearisation of the system at the stable equilibrium x̄ . Upon

defining the column vector E = ∂ f
∂u

∣∣∣
(x̄,ū)

and the row vector H = ∂h
∂x

∣∣
x̄ , as well as

the shifted state z = x − x̄ , input v = u − ū and output w = y − ȳ, this boils down
to considering the linearised system

{
ż(t) = J (δ)z(t) + Ev(t),

w(t) = Hz(t),
(1)

where J (δ) = ∂ f
∂x

∣∣∣
(x̄,ū)

is the Jacobian evaluated at the equilibrium (x̄, ū) and depends

on the vector of uncertain parameters δ = (δ1, . . . , δm). The input-output sensitivity
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(Giordano et al. 2016) is then defined as:

Σ = ∂w

∂v
= −H J (δ)−1E . (2)

Although here we neglect the possible dependency of E and H on δ, uncertain
input and output matrices E = E(δ) and H = H(δ) can be considered under suitable
assumptions; see Remark 6 in the following.

Henceforth, we consider totally multiaffine uncertainties: we steadily assume that
the system Jacobian matrix J (δ) is totally multiaffine, a special structure that encom-
passes a large class of biological models.

We recall that a polynomial is multiaffine if it is affine in each variable (while
the other variables are kept constant). For instance, the polynomial p1(δ1, δ2, δ3) =
2δ1δ2 + 3δ2δ3 − δ3 + 4δ2 + 2 is multiaffine, while p2(δ1, δ2) = δ21 + δ2 + 3 is not
multiaffine.

We assume that the Jacobian J (δ) is a polynomial matrix in δ = (δ1, . . . , δm) with
all entries Ji j (δ) being multiaffine functions of δ = (δ1, . . . , δm). Then, we say that
system (1) has totally multiaffine uncertainties if J (δ) is a totally multiaffine matrix,
as now defined.

Definition 1 (Totallymultiaffinematrix.)Matrix J (δ) is totallymultiaffine if anyminor
(i.e., the determinant of any square submatrix of J (δ)) is a multiaffine function of
δ = (δ1, . . . , δm). �

2.1 Motivation for totally multiaffine uncertainties: BDC-decomposable systems

A vast class of systems endowed with the property that the Jacobian matrix is totally
multiaffine is represented by generic flow systems of the form

{
ẋ(t) = Sg(x(t)) + Eu(t),

y(t) = Hx(t),
(3)

where S captures the topology of the flow network and the vector function g stacks
components that are monotonic in each argument and represent flow rates. The class
of systems in (3) is general enough to embrace (bio)chemical reaction networks, gene
networks and metabolic networks, ecological networks and food webs, as well as
compartmental systems and flow systems in engineering. In the case of a chemical
reaction network (CRN), S is the stoichiometric matrix representing the structure of
the interactions among chemical species, while the components of the vector function
g represent reaction rates. For all systems within this class, the Jacobian matrix admits
the BDC-decomposition introduced by Blanchini and Giordano (2014) and Giordano
et al. (2016), namely it can be written as

J (x) = BD(x)C,

where matrices B ∈ R
n×m , D(x) ∈ R

m×m and C ∈ R
m×n are constructed as follows:
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i) D(x) is a diagonal matrix whose m diagonal entries are the absolute values of all
the (nonzero) partial derivatives ordered as δk = |∂gi/∂x j |, k = 1, . . . ,m;

i i) the kth column of B, Bk , is the i th column of S;
i i i) the kth row of C , Ck , has sign(∂gi/∂x j ) in the j th position and zero elsewhere,

namely, it is either the j th row vector of the canonical basis or its opposite, ±e�
j .

Equivalently, J (x) can be written as the positive linear combination of rank-onematri-
ces BkC�

k , i.e.,

J (x) =
m∑

k=1

BkC
�
k δk(x). (4)

In general, the components of the vector function g can be considered as unknown
monotonic functions, hence the diagonal entries δk of matrix D are uncertain param-
eters and we can see the Jacobian matrix computed at the equilibrium, J (δ), as a
function of δ = (δ1, . . . , δm). Then, the input-output sensitivity Σ is the ratio of two
multivariate polynomials that are both multiaffine in δ = (δ1, . . . , δm) (Blanchini and
Giordano 2019).

Remark 1 For a BDC-decomposable system, all the entries of the Jacobian matrix
J (x) = BD(x)C are linear functions of the diagonal elements δ1, . . . , δm of D(x),
and hence BDC-decomposable systems have a totally multiaffine Jacobian in view of
the rank-one property, as we will see from Proposition 2. The implication is one-sided,
since there exist totally multiaffine matrices that are not BDC-decomposable. �

As we will see, the multiaffinity property is key to enable the efficient compu-
tation of the sensitivity Σ ; this motivates us to consider a more general class of
parameter-dependent matrices, totally multiaffine matrices, of which the class of
BDC-decomposable matrices represents a proper subset.

Example 1 As an example of BDC-decomposable system, consider the chemical reac-
tion network

∅ g1−⇀ X1, ∅ g2−⇀ X2, X1 + X2
g12−⇀ X3, X1 + X3

g13−⇀ ∅, X3
g3−⇀ ∅,

corresponding to the system of ordinary differential equations

⎧
⎪⎨

⎪⎩

ẋ1 = g1 − g12(x1, x2) − g13(x1, x3)

ẋ2 = g2 − g12(x1, x2)

ẋ3 = g12(x1, x2) − g13(x1, x3) − g3(x3)

Its Jacobian matrix can be decomposed as

J =
⎡

⎣
−(δ1 + δ3) −δ2 −δ4

−δ1 −δ2 0
δ1 − δ3 δ2 −(δ4 + δ5)

⎤

⎦ =
⎡

⎣
−1 −1 −1 −1 0
−1 −1 0 0 0
1 1 −1 −1 −1

⎤

⎦

︸ ︷︷ ︸
=B

⎡

⎢⎢⎢⎢⎣

δ1 0 0 0 0
0 δ2 0 0 0
0 0 δ3 0 0
0 0 0 δ4 0
0 0 0 0 δ5

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=D(x)

⎡

⎢⎢⎢⎢⎣

1 0 0
0 1 0
1 0 0
0 0 1
0 0 1

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=C

,

123



35 Page 8 of 43 F. Blanchini et al.

where

δ1 := ∂g12
∂x1

, δ2 := ∂g12
∂x2

, δ3 := ∂g13
∂x1

, δ4 := ∂g13
∂x3

, δ5 := ∂g3
∂x3

,

and is totally multiaffine in δ1, δ2, δ3, δ4, δ5. �

2.2 Motivation for totally multiaffine uncertainties: mass-action-kinetics systems

Another important class of systems that have a totally multiaffine Jacobian is
represented by chemical reaction networks (CRNs)withmass-action kinetics. Amass-
action CRN involving ns species and nr reactions is described by a system of the form

{
ẋ(t) =∑nr

j=1 S jκ j
∏ns

h=1 x
ν jh
h + Eu(t),

y(t) = Hx(t),
(5)

where S j is the j th column of the stoichiometric matrix, κ j ≥ 0 is the rate of the j th
reaction, and ν jh ∈ Z is the stoichiometric coefficient of the hth species in the j th
reaction. Let us define the reaction rates as

φ j = κ j

ns∏

h=1

x
ν jh
h , j = 1, . . . , nr

and the reciprocal variables, defined for xh �= 0, as

ξh = 1

xh
, h = 1, . . . , ns .

We can prove that a mass-action CRN has a totally multiaffine Jacobian in the reaction
rates and the reciprocal variables.

Proposition 1 (Total multiaffinity of mass-action CRNs.) The Jacobian matrix of a
mass-action CRN of the form (5) is totally multiaffine in the reaction rates and the
reciprocal variables. �

Proof For simplicity, let us consider exclusively reactions with two reagents; the gen-
eralisation to the case of an arbitrary number of reagents is straightforward. Consider

a reaction pXi + qX


κ j x
p
i xq


−−−−⇀ Xr , and let S j be the column of S associated with this
reaction. Denote as φ j = κ j x

p
i x

q

 the reaction rate associated with the j th reaction.

If, for the moment being, we do not consider the other reactions of the network, the
only non-zero columns of the Jacobian J are the i th and 
th ones, i.e.,

J =
[
0ns×(i−1) pS jκ j x

p−1
i xq
 0ns×(
−i−1) qS jκ j x

p
i x

q−1

 0ns×(ns−
)

]

=
[
0ns×(i−1) pS j

φ j
xi

0ns×(
−i−1) qS j
φ j
x


0ns×(ns−
)

]
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= [0ns×(i−1) pS jφ jξi 0ns×(
−i−1) qS jφ jξ
 0ns×(ns−
)

]

= φ j
[
0ns×(i−1) pS j 0ns×(
−i−1) qS j 0ns×(ns−
)

]
diag(ξ1, . . . , ξns )

.= φ jS jΞ

where Ξ = diag(ξ1, . . . , ξns ) is the diagonal matrix whose diagonal entries are the
reciprocal variables, and S j is a matrix computed from the stoichiometric matrix S and
the stoichiometric coefficients p, q. Notice that multiplication by Ξ is effective only
on the i th and 
th columns of S j , since all other columns of S j are null. Repeating the
argument for all reactions in the network, the Jacobian can be written as

J =
nr∑

j=1

φ jS jΞ =
⎛

⎝
nr∑

j=1

φ jS j

⎞

⎠Ξ.

Wefirst show that the determinant of J is amultiaffine function ofφ1, . . . , φnr , ξ1, . . . ,

ξns . For every j = 1, . . . , nr , matrix S j has rank equal to 1, because all of its columns
are proportional to the column vector S j , i.e., S j = S j s�j , for some row vector s�j .
Then, we can resort to thematrix determinant lemma: given a square matrix A, column
vectors b and c, and a scalar α, det(A+αbc�) = det(A)+αc� adj(A)b, where adj(A)

is the transpose of the cofactor matrix of A. Exploiting the lemma, the determinant

of
(∑nr

j=1 φ jS j

)
can be computed as

det

⎛

⎝
nr∑

j=1

φ jS j

⎞

⎠ = det

⎛

⎜⎜⎝φkSk +
nr∑

j=1
j �=k

φ jS j

⎞

⎟⎟⎠ = det

⎛

⎜⎜⎝
nr∑

j=1
j �=k

φ jS j

⎞

⎟⎟⎠+ φks�k adj

⎛

⎜⎜⎝
nr∑

j=1
j �=k

φ jS j

⎞

⎟⎟⎠ Sk

and hence it is multiaffine in φ1, . . . , φnr . The determinant of J is then given by

det(J ) = det

⎛

⎝
nr∑

j=1

φ jS j

⎞

⎠ det(Ξ) = det

⎛

⎝
nr∑

j=1

φ jS j

⎞

⎠
ns∏

h=1

ξh,

which is multiaffine in ξ1, . . . , ξns too. Finally, to show that J is totally multiaffine,
just note that any of its square submatrices has the form

Ĵ =
⎛

⎝
nr∑

j=1

φ j Ŝ j

⎞

⎠ Ξ̂

where Ξ̂ is a diagonal matrix of appropriate size and Ŝ j is a submatrix of S j hav-
ing appropriate size, and hence its determinant is multiaffine in reaction rates and
reciprocal variables. 	
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Example 2 Consider again the CRN in Example 1, where now the reaction rate func-
tions are assumed to follow mass-action kinetics. Define the flow variables

φ1 := g12(x1, x2) = k12x1x2, φ2 := g13(x1, x3) = k13x1x3, φ3 := g3(x3) = k3x3,

and the reciprocal variables

ξ1 := 1

x1
, ξ2 := 1

x2
, ξ3 := 1

x3
.

Then, the Jacobian matrix

J =
⎡

⎣
−(φ1 + φ2)ξ1 −φ1ξ2 −φ2ξ3

−φ1ξ1 −φ1ξ2 0
(φ1 − φ2)ξ1 φ1ξ2 −(φ2 + φ3)ξ3

⎤

⎦

is totally multiaffine in φ1, φ2, φ3, ξ1, ξ2, ξ3. �
Remark 2 Assuming uncertainty bounds on the elements of the Jacobian, rather than
on the original reaction rate parameters and species concentrations, may introduce
some conservatism. Consider for instance a reaction rate described by the law of
mass-action as κab, with bounds κ− ≤ κ ≤ κ+ on the reaction rate constant, and
bounds a− ≤ a ≤ a+ and b− ≤ b ≤ b+ on the species concentrations. The partial
derivatives, i.e. the entries of the Jacobian, are bounded within the set

B : = {(κa, κb) : κ−a− ≤ κa ≤ κ+a+ and κ−b− ≤ κb ≤ κ+b+} ,

and all the values in this hyper-rectangle are possible. However, since the Jacobian is
evaluated at an equilibrium point, the parameters and the species concentrations are
subject to the equilibrium conditions. This means that, in general, the actual set of
values that the parameters and the species concentrations can take is a subset of B.
This is a well-known issue in parametric robustness analysis.
Conversely, no conservatism is introduced when taking the reciprocal concentrations,
namely 1/a instead of a, since the former is confined exactly in 1/a+ < 1/a < 1/a−.
Also, no conservatism is introduced when considering generic monotonic reaction
rate functions, as in Example 1. Indeed, if we only know that g(a, b) is an increasing
function of both its arguments, and we assume that, in a suitable domain, the partial
derivatives are bounded as δ−

a ≤ ∂g/∂a ≤ δ+
a and δ−

b ≤ ∂g/∂b ≤ δ+
b , then the

equilibrium condition g(ā, b̄) = r̄ does not introduce any restriction: any value of the
derivatives within the given intervals is still possible. Even if r̄ is subject to constraints,
the Jacobian is not affected.

2.3 Total multiaffinity: a general characterisation

We can provide the following characterisation of totally multiaffine matrices.
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Proposition 2 (Characterisation of totally multiaffine matrices.)Matrix J (δ) is totally
multiaffine in δ = (δ1, . . . , δm) if and only if each entry Ji j (δ) is multiaffine in δ and

rank

(
∂ J (δ)

∂δk

)
= 1, ∀ k = 1, . . . ,m.

�

Proof Sufficiency. Let M(δ) be any square submatrix of J (δ). If all the entries of J (δ)

are multiaffine in δ, then for each δk , k = 1, . . . ,m, matrix M(δ) can be written as

M(δ) = ∂M(δ)

∂δk
δk + M̃k, (6)

where neither ∂M(δ)/∂δk nor M̃k depend on δk . Since ∂M(δ)/∂δk has rank at most
1 by assumption, column vectors m, n exist such that ∂M(δ)/∂δk = mn�. Then, by
applying the matrix determinant lemma, the determinant of M(δ) can be computed as

det(M(δ)) = det(M̃k) + δkn� adj(M̃k)m

and hence it is affine in δk . Repeating the argument for all k = 1, . . . ,m shows that
det(M(δ)) is multiaffine in δ.

Necessity. Clearly, a necessary condition for J (δ) being multiaffine in δ is mul-
tiaffinity of all its entries Ji j (δ). Assume by contradiction that ∂ J (δ)/∂δk has rank
greater than 1 for some k. This implies that there exists a minor M(δ) of size k̄ > 1
for which ∂M(δ)/∂δk is invertible (and hence has non-zero determinant). Then, con-
sidering again (6), we have

det(M(δ)) = det

(
∂M(δ)

∂δk

)
det

[
δk Ik̄ +

(
∂M(δ)

∂δk

)−1

M̃k

]
= det

(
∂M(δ)

∂δk

)
p(δk),

where p(δk) = det[δk Ik̄ + (∂M(δ)/∂δk)
−1 M̃k] is the characteristic polynomial, eval-

uated at s = δk , of matrix − (∂M(δ)/∂δk)
−1 M̃k , which has dimension greater than

1. Hence, p(δk) cannot be affine in δk . 	

Proposition 2 allows us to test very simply whether a given matrix is multiaffine

or not. Consider for instance the Jacobian of Example 2, whose entries are clearly
multiaffine in the parameters, and compute its component-wise derivative with respect
to φ1:

∂ J

∂φ1
=
⎡

⎣
−ξ1 −ξ2 0
−ξ1 −ξ2 0
ξ1 ξ2 0

⎤

⎦ .

It is immediate to verify that ∂ J
∂φ1

has rank 1.
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3 Sensitivity analysis for totally multiaffine uncertain systems

In the following, we assume that each of the uncertain parameters δk , k = 1, . . . ,m,
is lower and upper bounded by δ−

k and δ+
k respectively, i.e., δ−

k ≤ δk ≤ δ+
k . Then, the

uncertain parameter vector δ = (δ1, . . . , δm) belongs to the hyper-rectangleD, which
we define as:

D = {δ ∈ R
m : δk ∈ [δ−

k , δ+
k ], k = 1, . . . ,m

}
. (7)

We denote by D̂ the set of vertices of the hyper-rectangle D:

D̂ =
{
δ̂ ∈ R

m : δ̂k ∈ {δ−
k , δ+

k

}
, k = 1, . . . ,m

}
. (8)

The number of vertices of D, i.e., cardinality of the set D̂, is 2m : |D̂| = 2m .
Is it possible to check whether a property holds for all possible parameters in D,

just by checking whether the property holds for all choices of the parameters in D̂?We
denote as vertex property a property that is satisfied for all parameter choices in the
hyper-rectangle if, and only if, it is satisfied for all parameter choices at the vertices
of the hyper-rectangle: from a computational standpoint, checking a vertex property
requires looking just at a finite set of parameter choices among all possible (infinite)
choices.

Our first result concerns the robust non-singularity of multiaffine systems.

Theorem 1 (Robust non-singularity.)Assume that J (δ) is totallymultiaffine in δ. Then,
J (δ) is non-singular for all δ ∈ D if and only if det (−J (δ)) has the same sign (either
positive or negative) for all δ̂ ∈ D̂, namely on all the vertices of D. �

Proof Sufficiency. Since J (δ) is totally multiaffine, det(−J (δ)) is a multiaffine func-
tion of δ aswell. Sufficiency follows from the fact that amultiaffine function defined on
a hyper-rectangle takes its maximum and minimum values at the vertices of the hyper-
rectangle (see, e.g., Lemma 14.5.5 by Barmish (1994)): if the function det(−J (δ)) is
positive (or negative) at all the vertices in D̂, then it must be non-zero inside the whole
hyper-rectangle D.

Necessity. By contradiction, assume that the function det(−J (δ)) takes values of
opposite sign on two different vertices: det(−J (δ̂(1))) > 0 and det(−J (δ̂(2))) < 0,
with δ̂(1), δ̂(2) ∈ D̂. Then, being the determinant a continuous function of the matrix
entries, there must exist some δ(3) ∈ D such that det(−J (δ(3))) = 0. 	


Theorem 1 provides a vertex result that allows to easily check whether a system
with totally multiaffine uncertainties is robustly non-singular. When this is the case,
tight bounds on the input-output sensitivity of the system can be derived, again just
by looking at the vertices of the parameter hyper-rectangle.

Theorem 2 (Robust sensitivity bounds.) Given the linearised system (1), assume that
J (δ) is totally multiaffine in δ and robustly non-singular for all δ ∈ D. Then, the
input-output sensitivity Σ(δ) = −H J (δ)−1E is lower and upper bounded as

Σ− ≤ Σ(δ) ≤ Σ+, ∀ δ ∈ D,
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where

Σ− = min
δ∈D̂

Σ(δ) and Σ+ = max
δ∈D̂

Σ(δ),

and the bounds are tight (i.e., they are the actual minimum and maximum of Σ(δ)). �

Proof In view of the robust non-singularity assumption, we can write the input-output
sensitivity Σ(δ) as

Σ(δ) = −H J (δ)−1E =
det

[−J (δ) −E
H 0

]

det (−J (δ))
= q(δ)

p(δ)

and notice that, since J (δ) is totally multiaffine in δ, both the numerator q(δ) and the
denominator p(δ) are multiaffine polynomials of the parameters δ1, . . . , δm . We prove
the result for the lower boundΣ−; the proof for the upper boundΣ+ follows the same
steps.

Assume without restriction that p(δ) > 0 for all δ (if this is not the case, we can
change sign to both q and p). Define the function ρ(δ) = q(δ) − kp(δ), where k ∈ R

is fixed. Then, q(δ)/p(δ) ≥ k for all δ ∈ D if and only if ρ(δ) ≥ 0 for all δ ∈ D. In
view of the multiaffinity of q(δ) and p(δ), the function ρ(δ) is multiaffine in δ, too.
Therefore, ρ(δ) ≥ 0 for all δ ∈ D if and only if ρ(δ) ≥ 0 for all δ ∈ D̂, which is in
turn equivalent to the vertex condition q(δ)/p(δ) ≥ k for all δ ∈ D̂. Moreover, the
condition holds when k equals the smallest value that the function q(δ)/p(δ) takes at
the vertices δ ∈ D̂, i.e., k = Σ−, and hence the bound is tight. 	


Remark 3 Assuming robust non-singularity of the system Jacobian matrix is not
restrictive. In fact, since the equilibrium around which we assess the sensitivity needs
to be asymptotically stable, det[−J (δ)] > 0 must hold for all δ, which implies robust
non-singularity. Also, robust non-singularity of J (δ) is necessary for the sensitivity
to be well-defined and for the result in Theorem 2 to hold: for instance, in the scalar
case with J (δ) = δ1 − δ2, E = H = 1 and bounds 0.1 ≤ δ1, δ2 ≤ 1, the resulting
sensitivity Σ(δ) = (δ2 − δ1)

−1 is unbounded and not even defined for δ1 = δ2. Actu-
ally, the stability requirement could be relaxed to just requiring the non-singularity
of the Jacobian at the equilibrium. Provided that the Jacobian is non-singular, we can
well estimate the magnitude of the equilibrium shift under constant perturbations (by
defining a steady-state map and computing its derivative) and thus perform sensitivity
analysis even in the case of a possibly unstable equilibrium. �

3.1 Some remarks about stability analysis

Our sensitivity analysis relies on the assumption that the steady state is stable. Vertex-
type approaches are available to robustly checkwhether such an assumption is actually
satisfied.
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In fact, for systems of the form (1), we can write the characteristic polynomial as

p(s, δ) = det[s I − J (δ)]

and check the stability of the system, for a given value δ∗, by ensuring that all the roots
of p(s, δ∗) have negative real part. Then, the Zero Exclusion Theorem by Barmish
(1994) (Sect. 7.3) ensures that robust stability holds if and only if the set

V(iω) = {s = p(iω, δ), δ ∈ D}

does not include the origin, for all frequencies ω ≥ 0.
Drawing this set in the complex plane is hard. However, the Mapping Theorem

by Barmish (1994) (Sect. 14.6) ensures that V(iω) is in the convex hull of the vertex
points p(iω, δ̂), namely,

V(iω) ⊂ conv
{
s = p(iω, δ), δ ∈ D̂

}
. (9)

This provides a sufficient criterion for robust stability, which can therefore be
checked via the following procedure:

1. check stability for an arbitrary value δ∗ ∈ D
2. check the exclusion for the convex hull: 0 /∈ conv

{
s = p(iω, δ), δ ∈ D̂

}
.

The stability analysis at step 1 can be based, for instance, on Lyapunov functions:
we have the following vertex result.

Theorem 3 (Lyapunov-based stability analysis.) Let V (z) be a positive definite radi-
ally unbounded function, which is either smooth or convex. Denote by D+V (z) the
generalised Dini derivative of V (z). Then, V (z) is a Lyapunov function for system (1),
in the sense that

D+V (z, δ) ≤ −βV (z), for all δ ∈ D,

if and only if

D+V (z, δ) ≤ −βV (z), for all δ ∈ D̂.

Proof Necessity follows from the fact that D̂ is a subset ofD.Wenowprove sufficiency.
If V (z) is smooth, the proof is simple, because for any z

ψ(z, δ) := ∇V (z)J (δ)z

is a multilinear function of δ1, . . . , δq , hence it takes its maximum value at the vertices
of D̂. Therefore, denoting byψ+(z) = max

δ∈D̂ ψ(z, δ), we have that, if D+V (z, δ) ≤
−βV (z) for all δ ∈ D̂, then

D+V (z, δ) = ∇V (z)J (δ)z + ∇V (z)Ev
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≤ ψ+(z) + ∇V (z)Ev ≤ −βV (z) for all δ ∈ D.

For quadratic functions the result was shown by Garofalo et al. (1993). For non-
smooth but convex functions, including polyhedral Lyapunov functions (Blanchini
and Giordano 2014, 2017) and piecewise-linear in rates Lyapunov functions (Al-
Radawi and Angeli 1999), the proof can be carried out along the same lines, but it is
more involved because one must resort to the subgradient. 	


4 Complex sensitivity and frequency response for totally multiaffine
uncertain systems

In this section, we consider the case when the perturbation acting on the input ū is
a periodic signal of the form v(t) = μ cos(ωt). Standard notions from dynamical
systems theory tell us that, under robust stability assumptions (i.e., stability for all
δ ∈ D), the steady-state output is

y(t) = Aωμ cos(ωt + φω),

where the magnitude amplification factor Aω and the phase shift φω are the magnitude
and phase, respectively, of the system transfer function evaluated at the perturbation
frequency ω.

Denote by W (s, δ) the parameter-dependent transfer function of the system:

W (s, δ) = H (s I − J (δ))−1 E = H adj (s I − J (δ)) E

det (s I − J (δ))
:= q(s, δ)

p(s, δ)
,

where q(s, δ) is the numerator polynomial and p(s, δ) is the denominator polyno-
mial corresponding to the characteristic polynomial of the system. The magnitude
amplification factor Aω = Aω(δ) and the phase shift φω = φω(δ) are then given by

Aω(δ) =
∣∣∣H (iωI − J (δ))−1 E

∣∣∣ , (10)

φω(δ) = ∠
(
H (iωI − J (δ))−1 E

)
. (11)

Clearly, when the perturbation signal is constant (i.e., ω̃ = 0), the phase shift φω̃(δ)

is 0 for every δ ∈ D, and the amplification factor Aω̃(δ) reduces to the input-output
sensitivity (i.e., Aω̃(δ) = Σ(δ)), for which tight bounds are provided in Theorem 2.

We now aim to generalise the analysis of Sect. 3 (which is focused on constant
input perturbations) so as to investigate how periodic input perturbations affect the
system output.

Given a complex number s ∈ C, we define Q(s) as the convex hull of the 2m

(complex) vertex points q(s, δ), i.e.,

Q(s) = conv
{
q(s, δ), δ ∈ D̂

}
. (12)
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Similarly, for the 2m vertex points p(s, δ) we denote by P(s) their convex hull, i.e.,

P(s) = conv
{
p(s, δ), δ ∈ D̂

}
. (13)

Definition 2 (Numerator/denominator critical values.) A complex number s ∈ C

is numerator critical (resp. denominator critical) if the convex polygon Q(s) (resp.
P(s)) includes the origin; otherwise it is numerator non-critical (resp. denominator
non-critical). �
Proposition 3 (Numerator/denominator non-critical values and total multiaffinity.)
Assume that J (δ) is totally multiaffine in δ, and let s̄ ∈ C be a numerator (resp.
denominator) non-critical value. Then, for any δ ∈ D, s̄ cannot be a root of q(s, δ)
(resp. p(s, δ)). �

Proof Since the convex polygon Q(s̄) does not include the origin, there is a vector[
α β
]�, with α, β > 0, that defines on the complex planeC = {s : s = x + iy, x, y ∈

R} a separation line αx + β y = γ > 0 such that

αx + β y > γ, ∀ s = x + iy ∈ Q(s̄).

Now let q(s̄, δ) = �[q(s̄, δ)] + i�[q(s̄, δ)], with δ ∈ D, where �[·] denotes the real
part and �[·] denotes the imaginary part of a complex number. A key observation is
that both �[q(s̄, δ)] and �[q(s̄, δ)] are multiaffine functions of δ. Then, consider the
optimisation problem

min
δ∈D

α�[q(s̄, δ)] + β�[q(s̄, δ)] = min
δ∈D̂

α�[q(s̄, δ)] + β�[q(s̄, δ)] > γ, (14)

where the equality holds because the objective function is multiaffine in δ, and hence
takes its minimum in the vertex set D̂, while the inequality is due to the fact that all
points q(s̄, δ) belong toQ(s̄). Since γ > 0, q(s̄, δ) �= 0 for all δ ∈ D, namely q(s, δ)
cannot have a root at s̄. The proof for p(s, δ) is identical. 	

Remark 4 Proposition 3 restates well-known results about value-set analysis: the proof
is reported for completeness, yet a different proof could be given in terms of the
Mapping Theorem by Barmish (1994) (Section 14.6). �

We separately consider the numerator and denominator polynomials, q(s, δ) and
p(s, δ), and provide bounds on their magnitude and phase by exploiting the fact that
they are multiaffine functions of δ. Again, we can exploit vertex results.

Theorem 4 (Magnitude and phase of numerator/denominator polynomials.) Assume
that J (δ) is totally multiaffine in δ and let s̄ ∈ C be a numerator non-critical value.
Then, for every δ ∈ D, the following inequalities hold:

∠q(s̄, δ) ≤ θ+
q

.= max
δ∈D̂

∠q(s̄, δ),
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Fig. 1 Example of a set
{q(s̄, δ), δ ∈ D} (drawn with a
thick black boundary and filled
with diagonal lines) and its
convex hullQ(s̄) =
conv

{
q(s, δ), δ ∈ D̂ = {δ1, δ2, δ3, δ4}

}

(represented as a blue square),
where δ1, δ2, δ3,δ4 are the
vertices of the hyper-rectangle
D. Note that the minimum
modulus of q(s̄, δ) for δ ∈ D is
smaller than the modulus at the
vertices: this justifies the lower
bound in Theorem 4, which is
possibly conservative, as in this
case. Indeed, minσ∈Q(s̄) ‖σ‖ ≤
minδ∈D |q(s̄, δ)| ≤
min

δ∈D̂ |q(s̄, δ)| (color figure
online)

∠q(s̄, δ) ≥ θ−
q

.= min
δ∈D̂

∠q(s̄, δ),

|q(s̄, δ)| ≤ μ+
q

.= max
δ∈D̂

|q(s̄, δ)|,

|q(s̄, δ)| ≥ μ−
q

.= min
σ∈Q(s̄)

‖σ‖.

The first three bounds are tight, while the last, computed as the minimum Euclidean
norm of the points in Q(s̄), is conservative in general. If s̄ ∈ C is a denominator
non-critical value, then analogous bounds hold for p(s, δ). �

Proof Recall that, since J (δ) is totally multiaffine in δ, the numerator q(s, δ) of the
transfer function is multiaffine in δ too (and the same holds true for the denominator
p(s, δ)). The thesis then follows as an application of theMappingTheorembyBarmish
(1994) (Section 14.6),which guarantees that the convexhull of the set ofq(s̄, δ), δ ∈ D,
is the convex hull of the vertex points q(s̄, δ), δ ∈ D̂, i.e.,

conv {q(s̄, δ), δ ∈ D} = conv
{
q(s̄, δ), δ ∈ D̂

}
= Q(s̄).

In particular, the minimum and maximum values of the phase of q(s̄, δ), for δ ∈ D,
are obtained at the vertices, for some δ ∈ D̂. The same holds true for the maximum
value of the modulus of q(s̄, δ). The minimum value of the modulus of q(s̄, δ), for
δ ∈ D, is lower bounded by the minimum value in the convex hull, minσ∈Q(s̄) ‖σ‖,
which is in general smaller or equal to min

δ∈D̂ |q(s̄, δ)|; see, for instance, the example
in Fig. 1. However, this fourth bound is not tight: as shown in the example in Fig. 1,
the true minimum minδ∈D |q(s̄, δ)| is between these two values: minσ∈Q(s̄) ‖σ‖ ≤
minδ∈D |q(s̄, δ)| ≤ min

δ∈D̂ |q(s̄, δ)|. 	

We are now ready to evaluate magnitude and phase of the transfer function, as an

immediate consequence of Theorem 4.
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Theorem 5 (Bounds on magnitude and phase of the transfer function.) Assume that
J (δ) is totally multiaffine in δ and let iω be both numerator non-critical and denomi-
nator non-critical. Then, for every δ ∈ D, the following inequalities hold:

μ−
q

μ+
p

≤ Aω(δ) ≤ μ+
q

μ−
p

, (15)

θ−
q − θ+

p ≤ φω(δ) ≤ θ+
q − θ−

p . (16)

�

Remark 5 Bounds (15)-(16) are in general conservative. The only tight bounds are
those achieved on the phase shift φω(δ) when the numerator is a constant. We point
out that these bounds are valid for small enough input signals: in this case, the lin-
ear approximation is valid and our results transfer to the original nonlinear system.
However, for large signals, the prediction capability could be lost. For instance, large
signals could drive some system components into saturations and, in this case, the
resulting amplitude and phase could be different from those estimated by our analysis.

�

4.1 Bounds onmagnitude and phase plots of the transfer function

The tools developed in this section allow us to derive bounds on the Bode plot of the
system transfer function, which represents the magnitude and the phase of the transfer
functionW (iω, δ) as a function of the frequencyω.More precisely, plotting the bounds
(15) and (16) as a function of the perturbation frequency ω provides the admissible
intervals for magnitude and phase plots, respectively. Since these bounds are not tight,
we introduce the concept of inner and outer bounds to assess how conservative they
are.

Definition 3 (Outer bounds formagnitude and phase.)Functions A−
out (ω) and A+

out (ω)

are outer lower and upper bounds for the output magnitude amplification factor Aω(δ)

if, for every ω ≥ 0, it holds

A−
out (ω) ≤ Aω(δ) ≤ A+

out (ω), ∀ δ ∈ D. (17)

Functions φ−
out (ω) and φ+

out (ω) are outer lower and upper bounds for the output phase
shift φω(δ) if, for every ω ≥ 0, it holds:

φ−
out (ω) ≤ φω(δ) ≤ φ+

out (ω), ∀ δ ∈ D. (18)

�
Clearly, the bounds in (15) and (16) intended as functions of the frequency ω, i.e.,

A−
out (ω) = μ−

q (ω)

μ+
p (ω)

, A+
out (ω) = μ+

q (ω)

μ−
p (ω)
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and

φ−
out (ω) = θ−

q (ω) − θ+
p (ω), φ+

out (ω) = θ+
q (ω) − θ−

p (ω),

are outer lower and upper bounds for the output magnitude amplification factor and
the output phase shift, respectively. As already remarked, these intervals are in general
conservative. To evaluate the degree of conservatism, we can introduce inner lower
and upper bounds, so as to derive sub-intervals that are necessarily included in the
outer intervals, as per the following vertex result.

Proposition 4 (Inner bounds for magnitude and phase.) Assume that J (δ) is totally
multiaffine in δ and introduce the following functions of the frequency ω ≥ 0:

A−
in(ω) = min

δ∈D̂
Aω(δ), A+

in(ω) = max
δ∈D̂

Aω(δ),

φ−
in(ω) = min

δ∈D̂
φω(δ), φ+

in(ω) = max
δ∈D̂

φω(δ),

where Aω(δ) and φω(δ) are defined as in (10) and (11), respectively. Then, for every
ω ≥ 0 and for every δ ∈ D, the following inclusions hold:

[
A−
in(ω), A+

in(ω)
] ⊆ [A−

out (ω), A+
out (ω)

]
[
φ−
in(ω), φ+

in(ω)
] ⊆ [φ−

out (ω), φ+
out (ω)

]

�

Proof The values A−
in(ω), A+

in(ω), φ−
in(ω) and φ+

in(ω) are actually achieved for

some vertex δ ∈ D̂, hence the corresponding bounds cannot be tightened. There-
fore, the inclusions [A−

in(ω), A+
in(ω)] ⊆ [A−

out (ω), A+
out (ω)] and [φ−

in(ω), φ+
in(ω)] ⊆

[φ−
out (ω), φ+

out (ω)] hold. 	

Remark 6 All the results we have presented so far can be extended to the case in which

E = ∂ f
∂u

∣∣∣
(x̄,ū)

and H = ∂h
∂x

∣∣
x̄ are also uncertain, provided that the matrix

[−J (δ) −E(δ)

H(δ) 0

]

is totally multiaffine in δ. Then, the transfer function can be written as

W̃ (s, δ) = H(δ)(s I − J (δ))−1E(δ) =
det

[
s I − J (δ) −E(δ)

H(δ) 0

]

det(s I − J (δ))
= q̃(s, δ)

p̃(s, δ)

and Theorem 5 holds true without changes, as well as all the results in Sect. 4. Also
all the results in Sect. 3 remain valid: in fact, the sensitivity in Theorem 2 corresponds
to the transfer function computed at s = 0. �
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4.2 Self-sustained oscillations: what do the critical frequencies tell us?

Critical frequencies are fundamental when analysing oscillators. If, for a certain value
of the parameters, an equilibrium point becomes marginally stable with two complex
eigenvalues on the imaginary axis, the imaginary part of these eigenvalues is expected
to provide a good estimate of the oscillating frequency ω. This reasoning is heuristic
in the following sense. The onset of oscillations requires the presence of a negative
loop with sufficiently high loop gain (see, e.g., the work by Blanchini et al. 2014;
Domijan and Pécou 2011; Gouze 1998; Snoussi 1998 and the references therein). If
all the eigenvalues lie to the left of the imaginary axis, oscillations cannot be per-
sistent. If the eigenvalues are exactly on the imaginary axis, the oscillations of the
linear (linearised) systems are persistent, but, if these eigenvalues cross the imaginary
axis (even slightly, due to a perturbation), then the oscillatory trajectories diverge in
principle. However, unavoidable saturations in the original nonlinear system cause a
“virtual gain reduction", which keeps the oscillations bounded. This situation can be
seen as due to the reduction of the critical gain, namely the gain value corresponding
to purely imaginary eigenvalues. An approximate guess of the oscillating frequency
can therefore be obtained as follows.

Definition 4 (Potential oscillatory frequency.) The value ω is a potential oscillatory
frequency if p(iω, δ) = 0 for some δ ∈ D. �

The next vertex result, a corollary to Proposition 3, allows us to identify potential
oscillatory frequencies.

Theorem 6 (Potential oscillatory frequencies and denominator critical values.) A
potential oscillatory frequency ω must be such that s̄ = iω is a denominator critical
value as per Definition 2, namely, the convex polygon P(s̄) = conv{p(s̄, δ), δ ∈ D̂}
includes the origin. �

The opposite is not true in general: if iω is a denominator critical value, it still
could be that no parameter value exists in the admissible bounds for which there are
imaginary roots. In fact, the convex hullP(s̄) = conv{p(s̄, δ), δ ∈ D̂} is larger than the
actual set {p(s̄, δ), δ ∈ D}, and it may happen that 0 ∈ P(s̄) but 0 /∈ {p(s̄, δ), δ ∈ D}.
Still, the polygon P(s̄) provides good indications about the oscillation frequency we
can expect.

The previous considerations can be applied also to the case of a stable system with
a negative loop including delays that cause the onset of oscillations.

Consider the system with y(s) = W (s)u(s) and a delay τ in the closed loop,
u(t) = y(t − τ), hence u(s) = e−sτ y(s). To analyse its oscillatory behaviour, we
need to study the quasi-polynomial

Ψ (s, τ, δ) = q(s, δ)e−sτ + p(s, δ)

and the existence of possible roots in iω. For any fixed ω, the set of all Ψ (iω, τ, δ)

enjoys the same property of the polynomials q(s, δ) and p(s, δ): the convex hull of the
set is the convex hull of the vertices. Therefore, the previous analysis holds unchanged.
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input
non-adaptive output

adaptive output

over-adaptive output

Fig. 2 System with non-adaptive (orange), adaptive (green) and over-adaptive (blue) responses to a step
input (red) (color figure online)

5 Robust adaptation analysis for uncertain systems

In this section, we report vertex results to assess adaptation to a persistent constant
input (step input), a remarkable property of several biological systems (Alon 2006;Ma
et al. 2009). An input-output dynamical system exhibits adaptation if, after a persistent
input has been applied, the output initially increases and, after a transient, eventually
decreases so as to get close(r) to its pre-perturbation value. Adaptation includes perfect
adaptation (El-Samad et al. 2002; Giordano et al. 2016; Khammash 2021; Kim et al.
2014; Yi et al. 2000), which is achieved when the output asymptotically recovers
exactly its pre-perturbation value and can be formally associated with the system
transfer function W (s) vanishing for s = 0.

Adaptation is difficult to define formally and then to assess, even more so in the
case of systems with uncertain parameters; see the discussion by Blanchini et al.
(2020). It roughly requires the step response to be (essentially) first increasing and then
decreasing: temporary trend changes and oscillations can occur during the transient,
but the response must be predominantly decreasing for large values of t . For instance,
consider the three output signals shown in Fig. 2 in response to a step perturbation (red
signal): we call the orange one, which does not eventually decrease, non-adaptive; the
green one, which first increases and then decreases, adaptive; the blue one, which first
increases and then decreases so much that it changes sign, over-adaptive.

Throughout this section, we consider the following standing assumption.

Assumption 1 Consider system (1), with δ ∈ D. The step response ys(t) correspond-
ing to the input u(t) = ū is initially positive (i.e. ∃ τ > 0 such that ẏs(t)

.= d
dt ys(t) > 0

for 0 < t ≤ τ ) and limt→∞ ys(t) is finite. �
The sign of ū is therefore implicitly chosen to ensure that ys(t) is initially positive. We
can say that the system is adaptive if ys(t) is essentially increasing for small values
of t and essentially decreasing for larger values of t . In order to provide a formal
definition, we consider the weighted integral

Ia =
∫ ∞

0
eat ẏs(t)dt . (19)

Then, the abscissa of convergence, σ , is the largest value of a for which the integral
in (19) is finite:

σ = sup{a : |Ia | < ∞}. (20)
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Note that, when a = 0, the integral in (19) is equal to limt→∞ ys(t) in view of the
Final Value Theorem, hence it is finite according toAssumption 1.We can then provide
a formal definition of adaptation (which does not require linearity of the system in
general; see Blanchini et al. 2020).

Definition 5 (Adaptive step response.) Given the weighted integral Ia defined in (19),
the response ys(t) to the step input ū, starting from zero initial conditions, is adaptive
if there exists ā < σ such that

Ia > 0 for a < ā,

Ia < 0 for ā < a < σ.

More precisely, we say it is partially adaptive if ā > 0; perfectly adaptive if ā = 0;
over-adaptive if ā < 0. Given the uncertain system (1) with step response ys(t, δ),
adaptation is robust if the property holds for all ū and all δ ∈ D. �

The idea is that, when a < 0, the values of ẏs(t) at earlier times (mainly positive
in an adaptive system) are weighed more, while when a > 0 the values of ẏs(t) at
later times (mainly negative in an adaptive system) are weighed more; the larger is a
in absolute value, the more visible such an effect is.

Perfect adaptation corresponds to ẏs(t) having zero mean on the interval [0,∞),
i.e., limt→∞ ys(t) = I0 = 0. Partial adaptation corresponds to ẏs(t) having zero
mean on the interval [0,∞) if weighted by an increasing exponential eāt (ā > 0);
namely, limt→∞ ys(t) = I0 > 0. Over-adaptation corresponds to ẏs(t) having zero
mean on the interval [0,∞) if weighted by a decreasing exponential eāt (ā < 0);
namely, limt→∞ ys(t) = I0 < 0. Finally, sign-definiteness of ẏs(t) (either positive
or negative) implies the lack of adaptation (but the converse is not true: there are
non-adaptive systems for which ẏs(t) is not sign-definite).

Consider system (1) with impulse response ẏs(t), namely, the rational transfer
function W (s) is the Laplace transform of ẏs(t) for ū = 1. Then, the abscissa of
convergence of W (s) is σ , defined in (20), while −σ is the spectral abscissa, namely,
the largest among the real parts of the poles ofW (s) (recall that the poles of a transfer
function are the roots of its denominator polynomial). Given the complex numbers
w1 and w2, we say that w1 dominates w2 if �(w1) > �(w2). Then, the following
proposition characterises adaptation as the presence of a single dominant real zero,
larger than the spectral abscissa.

Proposition 5 (Characterisation of adaptive step response.) Let W (s) = H(s I −
J )−1E = q(s)/p(s) be the rational, strictly proper transfer function of the linear
asymptotically stable system (1). The system step response is adaptive if and only if
there exists exactly one real zero,−ζ , such that ζ < σ . Partial adaptation corresponds
to ζ > 0, perfect adaptation to ζ = 0, over-adaptation to ζ < 0. �
Proof When a < σ , Ia = ∫∞

0 eat ẏs(t)dt = lims→0 W (s − a) = W (−a). Then, the
threshold value is ā = ζ , where −ζ is a real zero, which must be the only zero in the
open interval (−σ,∞) in order to prevent other sign changes. 	


Now, given the uncertain system (1), we wish to check whether it has a robustly
adaptive response. To this aim, we consider the system transfer function W (s, δ) =
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H(s I − J (δ))−1E = q(s, δ)/p(s, δ). Then, for all admissible values of δ, we evaluate
both the position of its real zeros (real roots of q(s, δ)) and the spectral abscissa −σ

(i.e., the largest real part of all poles, namely, of all roots of p(s, δ)). If, for all possible
values of the uncertain parameters, there is a single real zero −ζ with ζ < σ , this
reveals robust adaptation.

We approach this problem through vertex algorithms and graphical methods based
on the theory of parametric robustness and the Mapping Theorem by Barmish (1994).

In particular, the spectral abscissa −σ can be robustly evaluated as follows.

Proposition 6 (Robust spectral abscissa.) The value −a is a robust spectral abscissa,
namely, a < σ(δ) for all δ ∈ D, if

0 /∈ P(iω − a), ∀ω ≥ 0,

with P(iω − a) defined as in (13). �

In fact, the spectral abscissa −σ is less than −a if and only if all the roots of the
characteristic polynomial p(s, δ) have real parts less than −a, which is equivalent to
p(s−a, δ) being Hurwitz for all δ ∈ D. Since the convex hull of {p(s−a, δ), δ ∈ D}
is equal toP(iω−a), the convex hull of {p(s−a, δ), δ ∈ D̂}, the proposition provides
a sufficient condition. For a fixed a, the condition can be checked in practice by plotting
via computer graphics the setP(iω−a) for a finite frequency range, sufficiently large
and sufficiently densely sampled.

As an alternative, one can also check whether p(s − a, δ) is Hurwitz through the
solution of a convex optimisation problem, as done by Blanchini et al. (2019): this
approach is harder to implement, but it is non-conservative.

The position of the real zeros and poles can be robustly evaluated based on a vertex
result.

Proposition 7 (Characterisation of zeros and poles.) The real λ is a zero of the transfer
function W (s, δ), i.e. q(λ, δ) = 0, for some δ ∈ D if and only if functions

ϕ−(λ) = min
{
q(λ, δ), δ ∈ D̂

}
and ϕ+(λ) = max

{
q(λ, δ), δ ∈ D̂

}

have opposite sign.
Analogously, the real λ is a pole of the transfer function W (s, δ), i.e. p(λ, δ) = 0,

for some δ ∈ D if and only if functions

ψ−(λ) = min
{
p(λ, δ), δ ∈ D̂

}
and ψ+(λ) = max

{
p(λ, δ), δ ∈ D̂

}

have opposite sign.
Functions ϕ−(λ) and ϕ+(λ) (resp. ψ−(λ) and ψ+(λ)) provide tight bounds,

namely, for each real λ they provide the actual minimum and maximum value of
q(λ, δ) (resp. p(λ, δ)) over δ ∈ D. �
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Proof Given a fixed λ, the polynomial q(λ, δ) is multiaffine in δ, so it does achieve
both its minimum, ϕ−(λ), and its maximum, ϕ+(λ), on some vertex of the hyper-
rectangle D. Therefore, if ϕ−(λ) and ϕ+(λ) have the same sign, also q(λ, δ) has the
same sign. Conversely, if these extrema have different sign, i.e. ϕ−(λ) ≤ 0≤ ϕ+(λ),
then continuity implies the existence of some δ∗ such that q(λ, δ∗) = 0. The proof for
the pole case is identical. 	


The previous result entails that we can draw the exact envelope of the real plot of
the polynomials p(λ, δ) and q(λ, δ) as a function of λ, which we call robust real plot.
Drawing the two functions ϕ−(λ) and ϕ+(λ) (resp. ψ−(λ) and ψ+(λ)) is enough to
locate the real zeros (resp. real poles) of the uncertain system.

In order to assess robust adaptation for an uncertain system, we need to check
whether the system has a real dominant zero for all possible values of the uncertain
parameters. First of all, we need to verify that Assumption 1 holds robustly: this can
be done through a vertex test.

Lemma 1 (Robust vertex check.) Assumption 1 holds for all δ ∈ D if and only if the
leading coefficient of q(s, δ) is positive for all δ ∈ D̂. �
Proof The step response is positive in a right neighbourhood of 0 due to Assump-
tion 1. Hence, the first non-zero derivative of ẏs(t), of order r (relative degree of
W (s, δ), namely, difference between the degree of the denominator and the degree of
the numerator), must be positive. The initial value theorem yields limt→0 y

(r)
s (t) =

lims→∞ srW (s, δ) > 0, hence the leading coefficient qn−r (δ) of q(s, δ) must be pos-
itive for all δ ∈ D. Since qn−r (δ) is a multiaffine function, its minimum is achieved at
the vertices δ ∈ D̂. Then, it is necessary and sufficient that all the values at the vertices
are positive. 	

Definition 6 (Robust real zero dominance.) If −σ < 0 is a robust spectral abscissa
(i.e., it dominates all poles for all δ ∈ D ), the system with transfer function W (s, δ)
is robustly real zero dominant if, for all δ ∈ D, there exists a real zero that dominates
−σ . �

Robust real zero dominance can be checked through a vertex result.

Proposition 8 (Checking robust real zero dominance.) Let −σ be a robust spectral
abscissa for the transfer function W (s, δ), δ ∈ D. Then the system has the robust
real zero dominance property if ϕ+(−σ) < 0. Furthermore, the real dominant zero is
unique if q ′(λ, δ), the derivative of q(λ, δ) with respect to λ, is positive for all δ̂ ∈ D̂
and for all λ ∈ [−σ,∞). �
Proof The leading coefficient of q(s, δ) is positive under Assumption 1, hence q(λ, δ)

converges to +∞ as λ → +∞. If ϕ+(−σ) < 0, then q(−σ, δ) < 0 for all δ, hence
there is at least one real root to the right of −σ , i.e. a dominant real zero. The root is
unique if, for all λ ∈ [−σ,∞), q ′(λ, δ) > 0 for all δ, which is implied by q ′(λ, δ̂) > 0
for all δ̂ ∈ D̂ due to the multi-affinity of the derivative. 	


The presence of at least one dominant real zero suggests that there is adaptation,
but is not enough: the dominant real zero must be unique in view of Proposition 5. We
need therefore to establish robust uniqueness, again through a vertex result.
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Proposition 9 (Checking robust root uniqueness.) Let [cL , cR] be an interval where
ϕ−(λ) and ϕ+(λ) have opposite sign and ϕ+(cL) = 0 and ϕ−(cR) = 0 (or the other
way round). Each point in the interval is a root of q(s, δ) for some δ ∈ D. The root is
unique for all δ ∈ D if all the vertex derivative polynomials q ′(s, δ), δ ∈ D̂, have the
same sign (either positive or negative) in this interval. �

Proof The intersection of q(s, δ) with the interval [cL , cR] is unique for all δ ∈ D if
the derivative q ′(s, δ) does not change sign in the interval for all δ ∈ D. Since the
derivative q ′(s, δ) is a multiaffine function of δ, its maximum and minimum value are
on the extrema, δ ∈ D̂. 	


An important issue, whichwe nowbriefly discuss, is the perfect or partial adaptation
to non-constant signals, for instance sinusoidal signals. To achieve perfect adaptation
to a sinusoidal signal, a system must satisfy the so-called internal model principle
(Sontag 2003), as it has been highlighted in the literature (see for instance the work
by Bin et al. (2021), Mucci et al. (2020) and the references therein). In our context,
perfect adaptation to a sinusoidal signal of frequency ω is equivalent to the condition
Aω(δ) ≡ 0, namely, it is equivalent to considering (17) with A+

out (ω) = 0. This
condition is quite restrictive to be ensured. Hence, we can consider adaptation, not
perfect, just by requiring that A+

out (ω) ≤ ε, where ε > 0 is a small enough tolerance
parameter. An advantage of our proposed approach is that it allows us to perform the
analysis on a whole assigned interval of frequencies, rather than on a fixed one.

6 Case studies of biological systems

We present in this final section some case studies of biological systems, to which we
apply the techniques we have illustrated in the previous sections.

6.1 Incoherent Feed-Forward Loop with first-order enzyme reactions

The incoherent Feed-Forward Loop (i-FFL) is a circuit where the input triggers the
output response and also activates a negative controller, which eventually suppresses
the output. It is known that, when the input is a ramp, the i-FFL exhibits a pulse
response,while it exhibits an oscillatory output in response to a periodic input (Mangan
and Alon 2003; Krishnan and Floros 2019). Here, we consider an implementation of
the i-FFL realised through a synthetic transcriptional circuit (Kim et al. 2014), and we
investigate to what extent small periodic perturbations of the constant input can affect
the output.We let the parameters of the circuit take values in a hyper-rectangle centered
around the desired nominal values. This situation reflects the fact that precisely tuning
the parameters of a synthetic circuit is rarely possible.

The transcriptional i-FFL designed by Kim et al. (2014) is composed of two RNA
species, a and b, whose production is controlled by the common input u and which
hybridise to form the complex c. Within the complex, RNase catalyses the degradation
of b, while it poorly catalyses the degradation of a; for this reason, when c degrades,
only a, but not b, is released (see Kim et al. 2014 for details). A mathematical model
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of the circuit is provided by Kim et al. (2014), and the same model is adopted by
Krishnan and Floros (2019) (see model KI14) to examine the response of adaptive
circuits to a variety of stimuli. Assuming first-order enzyme reactions for a, b, c and
zero-order reactions for the input u, the circuit is described by the following ordinary
differential equations:

⎧
⎪⎨

⎪⎩

ȧ = u − g1(a) − g2(a, b, c)

ḃ = κ2u − g3(a, b)

ċ = g2(a, b, c)

(21)

where g1(a) := a is the degradation term, g2(a, b, c) := κ1(ab−c) describes hybridi-
sation of a and b and the release of free a upon degradation of c, g3(a, b) = κ2ab
describes hybridisation of a and b. The RNA species b represents the output of the
circuit.

When the input is a constant signal u(t) ≡ ū, the circuit reaches the unique equilib-
rium (aeq , beq , ceq) = (ū, 1, ū). Around the equilibrium, the dynamics of the circuit
is described by the linearised system:

{
ẋ(t) = Jx(t) + Ev(t)

y(t) = Hx(t)

where x := [
a b c

]�, E := [
1 κ2 0

]�, H := [
0 1 0

]
, and J is the Jacobian at the

equilibrium, i.e. J = J (aeq , beq , ceq) with

J (a, b, c) =
⎡

⎣
−1 − κ1b − κ1a κ1

−κ2b −κ2a 0
κ1b κ1a −κ1

⎤

⎦ .

With respect to the partial derivatives of the functions g1, g2 and g3, the Jacobian
J (a, b, c) admits the BDC-decomposition:

J (a, b, c) =
⎡

⎣
−1 −1 −1 −1 0 0
0 0 0 0 −1 −1
1 1 1 0 0 0

⎤

⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

α 0 0 0 0 0
0 β 0 0 0 0
0 0 γ 0 0 0
0 0 0 ρ 0 0
0 0 0 0 ε 0
0 0 0 0 0 η

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 −1
1 0 0
1 0 0
0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦

where:

α : = ∂g2
∂a

= κ1b β : = ∂g2
∂b

= κ1a γ : =
∣∣∣∣
∂g2
∂c

∣∣∣∣ = |−κ1| = κ1

ρ : = ∂g1
∂a

= 1 ε : = ∂g3
∂a

= κ2b η : = ∂g3
∂b

= κ2a
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Fig. 3 Bounds on the Bode plots of magnitude and phase of the transfer function of the i-FFL model (21).
Red curves represent outer bounds (see Theorem 5 and Definition 3), while blue curves represent inner
bounds (see Proposition 4) (color figure online)

Let the nominal values of the parameters be κ1 = 0.01 and κ2 = 200, as reported
in the Supplementary Material of the work by Krishnan and Floros (2019), and let
the nominal input be ū = 0.1. Assume uncertainty bounds of ±50% on κ1, κ2. Then,
the vector δ that collects the diagonal entries of matrix D, i.e. δ = [

α β γ ρ ε η
]�,

belongs to the hyper-rectangle
[
δ−, δ+], where

δ− : = [0.005 0.0005 0.005 1 100 10
]�

,

δ+ : = [0.015 0.0015 0.015 1 300 30
]�

.

Note that the fourth element of δ, i.e. ρ, inherently has value 1 because, by definition,
ρ := ∂g1

∂a and ∂g1
∂a = 1 because the model variables are non-dimensional (see the work

by Kim et al. (2014) for details). Finally, let v(t) = μ cos(ωt) be a small periodic
perturbation acting on the input ū.

By exploiting the results of Sect. 4, we can examine how, depending on the pertur-
bation frequency ω, the output b is affected by the perturbation v. Figure 3 shows
lower and upper bounds on the Bode plots of the transfer function W (iω, δ) =
H (iωI − J )−1 E : these bounds have been computed as in Theorem 5 and Propo-
sition 4, and indicate, for each frequency ω, the admissible values of the magnitude
amplification factor and the phase shift of the output b.

Now assume uncertainty bounds of ±50% on the nominal value of the input ū, too.
With respect to κ1, κ2 and ū, the Jacobian at the equilibrium

J = J (aeq , beq , ceq) =
⎡

⎣
−1 − κ1 −κ1ū κ1

−κ2 −κ2ū 0
κ1 κ1ū −κ1

⎤

⎦

is not BDC-decomposable.
However, since J is totally multiaffine in κ1, κ2 and ū, the vertex arguments and the

results of Sect. 4 can still be applied. Let the amplitude and the frequency of the periodic
perturbation v beμ = 0.05 and ω1 = 0.5, respectively, so that v(t) = 0.05 cos(0.5t).

123



35 Page 28 of 43 F. Blanchini et al.

The computation of the numerator and denominator polynomials of the transfer
function W (s) = H (s I − J )−1 E = q(s)/p(s) yields:

q (s, κ1, κ2) : = κ2s
2 + 2κ1κ2s (22)

p (s, κ1, κ2, ū) : = s3 + (1 + 2κ1 + κ2ū) s2 + (κ1 + κ2ū + κ1κ2ū) s + κ1κ2ū (23)

Plotting of the polygonsQ(iω1) and P(iω1), which are reported in Fig. 4, shows that
neitherQ(iω1) norP(iω1) includes the origin, and hence s = iω1 is both a numerator
and denominator non-critical value. Then, bounds on magnitude and phase of each
polynomial can be computed as in Theorem 4, which yields:

θ−
q = 3.0817 θ+

q = 3.1216 μ+
q = 75.1349 μ−

q = 25.0050

θ−
p = 2.0157 θ+

p = 2.1245 μ+
p = 25.1702 μ−

p = 2.8098

Finally, in view of Theorem 5, the amplification factor Aω and the phase shift φω of
the output b satisfy the following inequalities:

μ−
q

μ+
p

= 0.9934 ≤Aω ≤ 26.7403 = μ+
q

μ−
p

(24)

θ−
q − θ+

p = 0.9572 ≤φω ≤ 1.1059 = θ+
q − θ−

p (25)

Figure 5 reports the perturbed input signal ū + v(t) and the output b(t). The interval
between the maximum and minimum values of the output allowed by the bounds (24)
is indicated by the gray area: as it can be seen, the bounds on the output amplitude are
indeed satisfied.

To investigate the degree of conservatism of the bounds (24), N = 1000 sets of
parameters have been randomly sampledwithin the given hyper-rectangle and, for each
set of parameters, the amplification factor of the output has been computed. Figure 6
shows the parameters sampled within the hyper-rectangle (left panel) and a histogram
of the amplification factors (right panel),where the red dashed lines indicate the bounds
(24). Black diamonds indicate the vertices of the hyper-rectangle (left panel) and the
corresponding amplification factors (right panel).

6.2 Coherent Feed-Forward Loop with Hill dynamics

In a coherent Feed-Forward Loop (c-FFL), activation of the most downstream element
x3 of the circuit occurs both directly from themost upstream element x1 and indirectly,
via the intermediate element x2, which is, in turn, activated by x1. A c-FFL with Hill-
type dynamics is described by the following set of equations (see the work by Ghafari
and Mashaghi (2017)):

⎧
⎪⎨

⎪⎩

ẋ1 = u − g1(x1)

ẋ2 = H+
1 (x1) − g2(x2)

ẋ3 = H+
2 (x2) · H+

1 (x1) − g3(x3)

(26)
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Fig. 4 Left panel: polygonQ(iω1) for the numerator polynomial (22) of the transfer function of the i-FFL
model (21). Right panel: polygon P(iω1) for the denominator polynomial (23) of the transfer function of
the i-FFL model (21) (color figure online)

Fig. 5 Left panel: input signal ū + v(t). The periodic perturbation is v(t) = 0.05 cos(ω1t) with ω1 = 0.5.
Right panel: output b(t). The gray area indicates the interval between the maximum and minimum values
of the output allowed by the bounds (24) (color figure online)

Fig. 6 Left panel: N = 1000 sets of values for κ1, κ2 and ū, randomly sampled within the hyper-rectangle
whose vertices are indicated by the black diamonds. Right panel: histogram of the output amplification
factors corresponding to the randomly sampled parameters. Black diamonds indicate the amplification
factors corresponding to the vertices of the hyper-rectangle. Red dashed lines indicate the bounds (24)
(color figure online)

where u is the external input, H+
i (xi ) = Vi

xni
xni +Kn

i A
, i = 1, 2, is the activating Hill

function, and gi (xi ) := γi xi , i = 1, 2, 3 are the degradation terms. The downstream
element x3 is taken as output of the circuit.
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When the input is a constant signal u(t) ≡ ū, the circuit reaches the unique equi-
librium:

x1eq = ū

γ1
, x2eq = H+

1 (x1eq)

γ2
, x3eq = H+

2 (x2eq)H+
1 (x1eq)

γ3

Around the equilibrium, the dynamics of the circuit is described by the linearised
system {

ẋ(t) = Jx(t) + Ev(t)

y(t) = Hx(t)

where x := [x1 x2 x3
]�, E := [1 0 0

]�, H := [0 0 1
]
, and the Jacobian is given by

J := J (x1eq , x2eq , x3eq) =
⎡

⎣
−γ1 0 0

a1(x1eq) −γ2 0
H+

2 (x2eq)a1(x1eq) H+
1 (x1eq)a2(x2eq) −γ3

⎤

⎦

where we have set:

ai (xi ) := ∂H+
i (xi )

∂xi
= nVi K

n
i A

xn−1
i

(xni + Kn
i A)2

, i = 1, 2

Upon definig α := a1(x1eq), β := H+
1 (x1eq)a2(x2eq) and ε := H+

2 (x2eq)a1(x1eq),
the Jacobian admits the BDC-decomposition:

J =
⎡

⎣
−1 0 0 0 0 0
0 −1 0 1 0 0
0 0 −1 0 1 1

⎤

⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

γ1 0 0 0 0 0
0 γ2 0 0 0 0
0 0 γ3 0 0 0
0 0 0 α 0 0
0 0 0 0 β 0
0 0 0 0 0 ε

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

Since J is BDC-decomposable, it is multi-affine in γ1, γ2, γ3, α, β and ε. Indeed,
computation of the transfer function W (s) = H (s I − J )−1 E = q(s)/p(s) shows
that both numerator and denominator polynomials are multi-affine:

q(s, γ2, α, β, ε) : = εs + αβ + δγ2 (27)

p(s, γ1, γ2, γ3) : = (s + γ1)(s + γ2)(s + γ3) (28)

Let the nominal values of the parameters be γ1 = γ2 = γ3 = 1, V1 = 0.6, V2 = 0.5,
K1A = K2A = 1, n = 2 (biologically plausible values are provided e.g. byGhafari and
Mashaghi 2017; Smolen et al. 2000;Mangan andAlon 2003), and let the nominal input
be ū = 1. Then, the nominal vector δ that collects the diagonal entries of matrix D is
δ = [

γ1 γ2 γ3 α β ε
]� = [

1 1 1 0.3 0.0758 0.0124
]�. Assume uncertainty bounds
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Fig. 7 Bounds on the Bode plots of the transfer function of the c-FFL model (26). Red curves represent
outer bounds (see Theorem 5 and Definition 3), while blue curves represent inner bounds (see Proposition
4) (color figure online)

equal to±50% on the entries of δ, namely assume that δ belongs to the hyper-rectangle[
δ−, δ+], where

δ− : = [0.5 0.5 0.5 0.15 0.0379 0.0062
]�

δ+ : = [1.5 1.5 1.5 0.45 0.1136 0.0186
]�

Let v(t) = μ cos(ωt) be a small periodic perturbation acting on the input ū. By
applying the results of Sect. 4, we can examine the effects of the periodic perturbation
v on the output x3. The bounds on the Bode plots of the transfer function W (iω, δ) =
H (iωI − J )−1 E are reported in Fig. 7: they provide, for each perturbation frequency
ω, admissible intervals for the amplification factor and the phase shift of the output
x3.

Now let the amplitude and the frequency of the periodic perturbation v beμ = 0.05
and ω1 = 0.55, respectively, namely let v(t) = 0.05 cos(0.55t). We investigate, in
two different scenarios, the degree of conservatism of the bounds on the amplification
factor.

In the first scenario, we assume uncertainty bounds of ±20% on all entries of the
vector δ. Plotting of the polygons Q(iω1) and P(iω1), which are reported in Fig. 8,
shows that neitherQ(iω1) nor P(iω1) includes the origin, and hence s = iω1 is both
a numerator and denominator non-critical value. Then, bounds on the amplification
factor of the output x3 can be computed by exploiting Theorem 4 and Theorem 5.
Figure 9 reports the perturbed input signal ū + v(t) and the output x3(t) together with
the interval values allowed by the bounds. To investigate the degree of conservatism
of the computed bounds, we randomly sample the parameters γ1, γ2, γ3, V1, V2, K1A,
K2A, and we retain N = 500 sets of parameters for which the bounds of ±20%
on the entries of δ are satisfied. Then, for each set of parameters, we compute the
amplification factor of the simulated output. A histogram of the amplification factors
is reported in Fig. 10.

In the second scenario, we fix γ1, γ2, and γ3 to the nominal values, and we assume
bounds of ±20% on entries α, β, and ε of the vector δ. In this case, the denomina-
tor polynomial p(s, γ1, γ2, γ3) is not subject to uncertainty. Plotting of the polygon
Q(iω1), which is reported in Fig. 11, shows that Q(iω1) does not include the origin,
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Fig. 8 Left panel: polygonQ(iω1) for the numerator polynomial (27) of the transfer function of the c-FFL
model (26). Right panel: polygon P(iω1) for the denominator polynomial (28) of the transfer function of
the c-FFL model (26) (color figure online)

Fig. 9 Left panel: input signal ū+v(t). The periodic perturbation is v(t) = 0.05 cos(ω1t) with ω1 = 0.55.
Right panel: output x3(t). The gray area indicates the interval between the maximum and minimum values
of the output allowed by the bounds computed as in Theorem 4 and Theorem 5 (color figure online)

Fig. 10 Histogram of the output amplification factors corresponding to N = 500 sets of parameters γ1, γ2,
γ3, V1, V2, K1A , K2A , for which the bounds of ±20% on the entries of δ are satisfied. Red dashed lines
indicate the bounds computed as in Theorem 4 and Theorem 5 (color figure online)
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Fig. 11 Polygon Q(iω1) for the numerator polynomial (27) of the transfer function of the c-FFL model
(26) (color figure online)

Fig. 12 Left panel: input signal ū+v(t). The periodic perturbation is v(t) = 0.05 cos(ω1t)withω1 = 0.55.
Right panel: output x3(t). The gray area indicates the interval between the maximum and minimum values
of the output allowed by the bounds computed as in Theorem 4 and Theorem 5 (color figure online)

and hence s = iω1 is both a numerator and denominator non-critical value. Then,
bounds on the amplification factor of the output x3 can be computed by exploiting
Theorem4 andTheorem5. Figure 12 reports the perturbed input signal ū+v(t) and the
output x3(t) together with the computed bounds (note that, with respect to Fig. 9, the
input and the output signals are the same, while the bounds are different). It can be seen
that the output stays within the gray area. To investigate the degree of conservatism,
we randomly sample the parameters V1, V2, K1A, and K2A, we retain N = 1000 sets
of parameters for which the bounds of ±20% on α, β, and ε are satisfied, and we
compute, for each set of parameters, the amplification factor of the simulated output.
Figure 13 shows the values of α, β, and ε for the retained sets of sampled parameters
and a histogram of the amplification factors.
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Fig. 13 Left panel: values of α, β and ε for N = 500 randomly sampled values of V1, V2 and K1A = K2A .
Right panel: histogram of the values of the magnitude amplification factor on the simulated output x3 (color
figure online)

6.3 The Brusselator oscillator

Consider the well-known Brusselator oscillator as described for instance by Epstein
and Pojman (1998). The model consists of the following two differential equations:

{
ẋ = −ax + bx2y − cx + u

ẏ = +ax − bx2y
(29)

The Jacobian of the system is:

J (a, b, c) =
[−a + 2bxy − c bx2

+a − 2bxy −bx2

]
.

At the equilibrium, it holds a = bxeq yeq and the Jacobian is therefore:

J =
[
a − c bx2eq
−a −bx2eq

]
.

To perform our analysis, we re-parameterise the problem adopting the parameters
δ1 = a, δ2 = c and δ3 = bx2eq , on which we impose the uncertainty bounds. The
Jacobian can thus be written as:

J =
[
δ1 − δ2 δ3
−δ1 −δ3

]
,

whose characteristic polynomial is p(s, δ1, δ2, δ3) = s2 + (−δ1 + δ2 + δ3)s + δ2δ3.
We assume uncertainty bounds of 0.4 ≤ δi ≤ 1, i = 1, 2, 3. By applying Theorem 6,
we can identify potential oscillatory frequencies of the system. To this aim, we plot
some polygonsP(iω) of the polynomial p(s, δ1, δ2, δ3): Fig. 14 shows some polygons
P(iω) for frequencyω in the interval [0.4, 0.55]. Since each of these polygons includes
the origin, we can conclude that all frequencies ω with 0.4 ≤ ω ≤ 0.55 are potential
oscillatory frequencies.
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Fig. 14 Polygons P(iω) for the characteristic polynomial p(s, δ1, δ2, δ3) of the Brusselator model (29).
The frequency is ω = 0.4 (upper, left panel), ω = 0.45 (upper, right panel), ω = 0.5 (bottom, left panel),
and ω = 0.55 (bottom, right panel). Parameters values: a = 0.95, b = 0.5, c = 0.4 u = 0.4 (color figure
online)

To verify that the system exhibits oscillations in this range of frequencies, let us
consider for numerical purposes the following data: a = 0.95, b = 0.5, c = 0.4
(reaction rate constants) and u = 0.4 (input). These are proper parameters for the
model; to performour analysis,we consider the parameters δi , onwhich the uncertainty
bounds are imposed. With these values of the original parameters, the bounds 0.4 ≤
δi ≤ 1 are satisfied; indeed, it results: δ1 = 0.95, δ2 = 0.4 and δ3 = 0.5. Simulation
of the model, reported in Fig. 15, shows that, with this set of parameters, the system
exhibits sustained oscillations, and the frequency of oscillation is about ω ≈ 0.44,
consistently with the fact that the polygon P(i0.44) includes the origin.

6.4 The Goldbeter oscillator

The Brusselator was a very simple, illustrative example of oscillator. In this section,
we consider a more complex oscillator, which describes the circadian oscillations
of PER protein in Drosophila. The system is based on multiple phosphorylation of
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Fig. 15 Simulation of the Brusselator model (29). The parameter values are the same as in Fig. 14 (color
figure online)

PER and on the negative feedback implemented by the nuclear form of PER on the
transcription of the per gene. A mathematical description of the system was proposed
by Goldbeter (1995). The Goldbeter oscillator model includes five state variables: M
denotes the concentration of mRNA transcripts from per gene; P0, P1 and P2 denote
the concentration of PER protein in the unphosphorylated, monphosphorylated and
biphosphorylated form, respectively; PN denotes the concentration of the nuclear form
of PER. The system is described by the following five differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ṁ = vs
Kn
I

K n
I +Pn

N
− vm

M
Km+M

Ṗ0 = ksM − V1
P0

K1+P0
+ V2

P1
K2+P1

Ṗ1 = V1
P0

K1+P0
− V2

P1
K2+P1

− V3
P1

K3+P1
+ V4

P2
K4+P2

Ṗ2 = V3
P1

K3+P1
− V4

P2
K4+P2

− k1P2+k2PN − vd
P2

Kd+P2
ṖN = k1P2 − k2PN

(30)

The total concentration of PER protein, denoted by Pt , is computed as Pt := P0 +
P1 + P2 + PN .

Straightforward computations show that the Jacobian of the system takes the fol-
lowing form:

J =

⎡

⎢⎢⎢⎢⎣

− α 0 0 0 − ρ

ks −γ β 0 0
0 γ −(β + ε) φ 0
0 0 ε −(φ + ν + k1) k2
0 0 0 k1 −k2

⎤

⎥⎥⎥⎥⎦
(31)

where the Greek letters denote the partial derivatives of the Michaelis-Menten and
Hill functions, specifically:

α : = vmKm

(Km + M)2
γ : = V1K1

(K1 + P0)2
β : = V2K2

(K2 + P1)2
ε : = V3K3

(K3 + P1)2
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φ : = V4K4

(K4 + P2)2
ν : = vd Kd

(Kd + P2)2
ρ : = nvs K n

I P
n−1
N

(Kn
I + Pn

N )2

Since the Jacobian ismulti-affine inα,β,γ , ε,φ, ν,ρ, ks , k1, k2,we can apply the results
of Sect. 4.2 to identify potential oscillatory frequencies. Let the nominal values of the
parameters be the values adopted by Goldbeter (1995), namely: vs = 0.76μMh−1,
vm = 0.65μMh−1, Km = 0.5μM , ks = 0.38h−1, vd = 0.95μMh−1, k1 = 1.9h−1,
k2 = 1.3h−1, Kd = 0.2μM , n = 4, KI = 1μM , K1 = 2μM , K2 = 2μM ,
K3 = 2μM , K4 = 2μM , V1 = 3.2μMh−1, V2 = 1.58μMh−1, V3 = 5μMh−1,
V4 = 2.5μMh−1. Consider as working point of the system the rough values around
which M , P0, P1, P2 and PN are known to oscillate (Goldbeter 1995), namely: M̄ =
1.75μM , P̄0 = 1.1μM , P̄1 = 0.67μM , P̄2 = 0.58μM , P̄N = 0.85μM . For the
nominal values of the parameters and the considered working point, the Jacobian is:

J̄ =

⎡

⎢⎢⎢⎢⎣

−0.06 0 0 0 −0.81
0.38 −0.68 0.44 0 0
0 0.68 −1.85 0.75 0
0 0 1.41 −2.96 1.3
0 0 0 1.9 −1.3

⎤

⎥⎥⎥⎥⎦

Assume rough uncertainty bounds of ±50% on each non-zero entry of the Jacobian,
namely on α, β, γ , ε, φ, ν, ρ, ks , k1, k2. To identify potential oscillatory frequencies
of the system, we compute the characteristic polynomial of the Jacobian (31), and we
plot the polygon P(iω), which is the convex hull of the value set, in a large range
of frequencies. As seen from Fig. 16, P(iω) includes the origin for frequencies ω

in the interval [ωmin, ωmax ] = [0.14, 0.42]. These frequencies represent potential
oscillatory frequencies of the system. The corresponding oscillation period ranges
from Tmin = 2π/ωmax = 14.96h to Tmax = 2π/ωmin = 44.88h. As reported in
Fig. 17, this is fully consistent with the numerical simulations proposed by Goldbeter
(1995).

6.5 Adaptation analysis

The biochemical reaction network

∅ k1−⇀ X1, ∅ k2−⇀ X2, X1 + X2
g12−−⇀ X3

g3−⇀ X4, X1 + X4
g14−−⇀ ∅, X2

g2−⇀ ∅, X4
g4−⇀ ∅

can be associated with a system of differential equations, describing the time evolution
of the species concentrations, having state vector x = [x1 x2 x3 x4

]�:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = k1 − g12(x1, x2) − g14(x1, x4)

ẋ2 = k2 − g12(x1, x2) − g2(x2)

ẋ3 = g12(x1, x2) − g3(x3)

ẋ4 = g3(x3) − g14(x1, x4) − g4(x4)

(32)
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Fig. 16 Polygons P(iω) of the characteristic polynomial of the Jacobian (31) for frequencies ω in the
interval [ωmin , ωmax ] = [0.14, 0.44] (color figure online)

Fig. 17 Dynamic evolution of the Drosophila oscillator model (30). Numerical values of the parameters
are the nominal ones adopted by Goldbeter (1995) (color figure online)

Linearisationyields a BDC-decomposable systemwith Jacobian J = BDC ,where

B =

⎡

⎢⎢⎣

−1 −1 0 −1 −1 0 0
−1 −1 0 0 0 −1 0
1 1 −1 0 0 0 0
0 0 1 −1 −1 0 −1

⎤

⎥⎥⎦ ,
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Fig. 18 Robust real plot with lower and upper bounding functions for the numerator, left, and the denom-
inator, right, in Example 6.5. The real pole and zero intervals are disjoint and the zero dominates the pole
(color figure online)

Fig. 19 The set P(iω − a) in the example in Sect. 6.5 for a = 0.133 and ω ∈ [0.01, 0.05], left, along with
a zoom-in panel to better visualise the neighbourhood of the origin, right (color figure online)

D = diag

{
∂g12
∂x1

,
∂g12
∂x2

,
∂g3
∂x3

,
∂g14
∂x1

,
∂g14
∂x4

,
∂g2
∂x2

,
∂g4
∂x4

}
.= diag(δ),

C =

⎡

⎢⎢⎣

1 0 0 1 0 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 1 0 1

⎤

⎥⎥⎦ .

We consider an additive input on x1, namely E = [1 0 0 0]�, and we take x3 as
output, namely H = [0 0 1 0]. The lower and upper bounds on δ are given as δ− =
[1 1 1 1 1 0.0 3] and δ+ = [2 2 2 2 2 0.1 4]. For δ6 = 0, it can be seen that the
system has perfect adaptation: the transfer function has a zero at the origin. We wish
to assess whether adaptation (although non-perfect) is robustly maintained for small
values of δ6? The robust real plot is shown in Fig. 18 and shows that the dominant zero
interval [−0.1,−0.0] is to the right of the dominant pole interval, [−0.79,−0.133].
Therefore, we have robust real zero dominance. The same conclusion can be drawn
by noticing that −a = −0.133 is a robust spectral abscissa, since the origin does not
belong to the set P(iω − a) as can be seen in Fig. 19, and that ψ+(−a) < 0.
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7 Concluding discussion

This paper aims at building a connection between robustness analysis problems that
arise in systems biology and a class of powerful robustness analysis tools developed
within the realm of control theory (Barmish 1994). Although the general principles of
biological robustness have been thoroughly discussed from a variety of perspectives
(Khammash 2016; Kitano 2004; Lesne 2008; Stelling et al. 2004; Streif et al. 2016;
Whitacre 2012) and several dedicated tools have been adopted to perform the robust-
ness analysis of specific models, or classes of models, as discussed in the introduction,
we are still lacking a general framework that allows us to robustly assess properties
of interest for biological models in a systematic way.

For the first time to our knowledge, this work proposes to leverage the vertex-
type results developed in the 90s in the control community (Barmish 1994) for the
robustness analysis of a vast class of biological models that turn out to have a totally
multiaffine uncertainty structure: the class we consider includes generic biochemical
reaction networks, as well as chemical reaction networks with mass-action kinetics.
For this class of systems, building upon the work by Barmish (1994), we derive vertex
results that allow us to robustly assess the input-output sensitivity, in the presence of
input perturbations that can be either constant or periodic, in the neighbourhood of an
equilibrium state. Besides being useful for the robust steady-state sensitivity analysis in
the presence of constant perturbations and for the robust frequency-response sensitivity
analysis in the presence of sinusoidal disturbances, vertex-type algorithms also enable
to robustly assess non-singularity, stability, and adaptation.

Our analysis has twomain limitations. First, it is based on linearisation: all our char-
acterisations do transfer from the linear approximation to the original nonlinear system
when small input signals are considered, but the prediction capability may be lost for
large inputs. Second, the analysis requires in general a re-parametrisation, namely,
it considers uncertain parameters that may be functions of the original parameters:
as a consequence, providing uncertainty bounds is not always straightforward, and a
certain degree of conservatism is introduced, which we have numerically quantified
in some case studies.

A benefit of the approach is that it allows us to resort to very effective methods
available in the literature, which are shown to be applicable to study biologically
relevant models and provide a critical insight into their robustness analysis.

A potentially interesting alternative approach to the robustness analysis of biologi-
cal systems relies on the probabilistic methods and randomised algorithms introduced
by Tempo et al. (2005), which tackle uncertain systems by assessing their properties in
probability, through sampling (Monte Carlo) techniques. These approaches have the
advantage of being quite flexible, since they do not require special structures (e.g. mul-
tiaffinity) and they can fruitfully support other methodologies, as shown for instance
in the case study by Kim et al. (2006). However, they have two main drawbacks: the
number of samples required to get to a conclusion with a given confidence may be
huge, and their outcome is heavily distribution-dependent, so that different sample
distributions for the system parameters can result in completely different conclusions
on the system properties. A possible future research direction is that of systemati-
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cally combining probabilistic and classic approaches for the robustness analysis of
biological models.
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