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Abstract: Entropy of multivariate distributions may be estimated based on the distances of near-
est neighbours from each sample from a statistical ensemble. This technique has been applied on
biomolecular systems for estimating both conformational and translational/rotational entropy. The
degrees of freedom which mostly define conformational entropy are torsion angles with their period-
icity. In this work, tree structures and algorithms to quickly generate lists of nearest neighbours for
periodic and non-periodic data are reviewed and applied to biomolecular conformations as described
by torsion angles. The effect of dimensionality, number of samples, and number of neighbours on
the computational time is assessed. The main conclusion is that using proper data structures and
algorithms can greatly reduce the complexity of nearest neighbours lists generation, which is the
bottleneck step in nearest neighbours entropy estimation.
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1. Introduction

Entropy is a key quantity for statistics, physics, chemistry, and computer science. Its
meaning has been given in different contexts, but it can be basically traced to its probabilistic
definition as described hereafter.

For a large number of biophysical processes, including solvation, association, and
conformational transitions, it is very difficult to provide a theoretical estimation of the
change of entropy.

Molecular dynamics simulations can, in optimal situations, sample thermodynamic
ensembles of configurations and, in this context, estimation of entropy changes leads to
an immediate estimation of free energy changes because enthalpy is directly estimated in
simulations by the molecular mechanics energy, available through the force field.

Free energy is typically obtained by defining a path or a collective variable which can
vary continuously between the initial and the final states [1–4]. Such pathway methods have
some limitations because thermodynamic ensembles should be obtained at each discretized
point along the path, which requires long simulations, and moreover the obtained entropy
cannot be related to single or groups of degrees of freedom.

For this reason, entropy estimation from end-point simulations [1,5] has attracted interest.
The main difficulty in entropy estimation is related to the treatment of a large num-

ber of non-independent variables, which require appropriate approximations. A great
reduction in complexity is achieved by treating solvation implicitly through continuum
methods which provide, through the temperature dependence of the potential of mean
force, solvation entropy estimation [5–7]. The entropy of the solute is then approximated
by the entropy of the multivariate torsional angles distribution [8]. It is estimated that the
changes in the entropy associated with bonds and angles is about one order of magnitude
smaller than that associated with torsion angles [9,10].

Being left with only torsional angles as conformational variables, a straightforward
approach is to discretize the probability density functions (pdf) in histograms and to com-
pute the entropy for the discrete distribution. The approach is, however, prohibitive with
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the increasing number of torsion angles considered, because either most multidimensional
bins will contain 0 or few samples, or they will be so large that resolution will be reduced
with consequent overestimation of entropy.

A way to circumvent this problem is to consider only pairs of torsion angles and
estimating the total entropy using either the mutual information expansion (MIE) method
as proposed by Gilson and coworkers [11] or approximating it using an upper bound as
provided by the mutual information spanning tree (MIST) method, as proposed by Tidor
and coworkers [12,13].

If the mutual information of more than two variables is non-negligible, the above
approach will not provide a tight bound to entropy and, therefore, groups of variables of
higher dimensions must be taken into account.

Methods for non-parametric density and entropy estimation have been reviewed
before [14–17], and the reader is referred to these comprehensive reviews. Histogramming
the variables’ space and assuming a constant density inside each bin may be considered as a
simple way to estimate the density function. A flexible extension of this idea is provided by
kernel density estimators (kde). Constant, Gaussian, and other kernels are currently used in
many fields, notably machine learning [17]. For entropy estimation, any bias introduced at
the density estimation step is typically corrected afterwards. The approach leads, however,
to difficulties when the dimensionality of the problem increases, because multidimensional
integration of the density function must be performed. For this reason re-substitution
methods, which replace the integral by a sum over the available samples, for an unbiased
sampling, are useful [14].

The k-th nearest neighbours (briefly referred as: kNN) method [18,19], which general-
izes, in a rigorous way, the idea of estimating the multivariate probability density at each
sample by counting how many other samples are found within a given volume around that
sample and finally averaging over the samples, shares ideas with the histogram density
estimation, the kernel density estimator and re-substitution methods, previously proposed.

In the kNN method, however, the density is estimated only at the available samples,
and instead of fixing the volume within which neighbours are counted, the number of
neighbours is fixed and the minimum volume enclosing exactly that number of neighbours
is evaluated. The entropy is then evaluated using the distance to the k-th neighbour, which
overcomes the need of using a kde, simplifying calculations. In such a way, the density
at each sample is estimated in a simple way using the same number of samples and the
volume is flexibly adapted to the density of points, i.e., it will be small where samples are
dense and large where there are few samples. This procedure ensures that the resolution of
the distribution is matching as far as possible the number of samples available.

This adaptive feature appears particularly interesting when dealing with large multi-
dimensional spaces, such as the ones describing macromolecular conformation and solvent
configurations.

The method has been used by us and others before for estimating conformational [8,9,20–22],
translational/rotational [9,23–25], and solvation [23,26–28] entropy.

There are at least a couple of bottlenecks in this approach: the first is that a large
number of independent samples must be acquired, which means long simulation; the
second, and most important, is that a naive implementation would require the computation
of a number of distances quadratic in the number of samples.

In this article, we address the data structures and algorithms for nearest neighbours
generation which allow a substantial reduction in computational time and, in particular,
for periodic variables, such as torsion angles.

Compared to the literature existing on this subject (see, e.g., the review by Brown et al. [29])
here we address the implementation and application of the methods to the typical dimensionality
and number of samples found in the estimation of entropy from snapshots extracted from
biomolecular dynamics simulation trajectories, showing advantages and limitations of kNN
entropy estimation for typical biophysical systems.
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2. Materials and Methods
2.1. Entropy

Given a tuple ~x = (x1, x2, · · ·, xd) of d variables, the entropy of a multivariate probabil-
ity density function p(~x) is defined by:

S = −
∫

Vd

p(~x) log(p(~x))d~x (1)

where Vd is the multidimensional volume of the set of tuples of points admissible for the d
variables. The logarithm is taken for convenience here as the natural logarithm function.
Based on the above formula the entropy may be also defined as the expectation value of
− log(p(~x)), i.e.,

S = −〈log(p(~x))〉 (2)

2.2. Entropy Estimation Using the kNN Method

Let us assume to have a set of n points in d-dimensions V = {~x1,~x2, . . . ,~xn}. Let
us focus on one of them, say ~xi. The k-th nearest neighbours (kNN) method estimates
the probability density p̂ at each sample i by considering the minimal volume of a d-
dimensional ball enclosing its k nearest neighbour samples. If such volume is Vi,k, then
the density at sample i, under the assumption that it is approximately uniform in the
neighbourhood of the sample, is estimated, in a naive way, by:

p̂(~xi) ≈
k

n Vi,k
(3)

and, again in a naive way, if samples are taken with probability p(~x), the entropy may be
estimated as

Ŝ = −〈log(p(~x))〉 ≈ −∑i log p̂(~xi)

n
= − log(k) + log(n) + ∑i log(Vik)

n
(4)

The naive approach may be rigorously treated [18,19] and leads to the correct form of
the Equation (4) which is:

Ŝ = −Lk−1 + γ + log(n) + ∑i log(Vik)

n
(5)

where Lk is defined by L0 = 0 and Li = Li−1 + 1/i and γ is the Euler–Mascheroni constant
(0.5772 . . . ). Note that Lk−1 − γ replaces log(k) of the naive Equation (4).

Equation (5) provides an unbiased estimation of the entropy of the probability density
function p(~x) based on the kNN method.

It is important to note that in non-Euclidean spaces, such as those of single and pairs
of translation/rotations, the computation of both the distances and the corresponding
volumes of the balls with those distances as radii might be non-obvious.

The other space relevant for conformational entropy is the space of torsional angles
for which we must take only into account the periodicity in the definition of the distance.

2.3. Data Structures and Algorithms for k-th Nearest Neighbours Computation

Given a set V of n points in a d dimensional space, a semimetric is a function f :
V ×V → R such as that for all points ~x,~y ∈ V:

• f (~x,~x) = 0;
• ~x 6= ~y =⇒ f (~x,~y) > 0;
• f (~x,~y) = f (~y,~x).

Given ~x,~y,~z ∈ V we say that ~y is nearer to ~x than~z if f (~x,~y) < f (~x,~z).
In this work, we will consider both Euclidean spaces, where f is the Euclidean distance,

and non-Euclidean spaces, where f is a generic distance function.
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Given a semi-metric and the set of points V, the all-k-nearest-neighbours problem (all-k-
nn in short) is the problem of finding the k nearest neighbours of each point ~x ∈ V.

In this section, we briefly review the main approaches to solve this problem; in
particular, after describing a straightforward implementation we show how to exploit two
popular data structures for this kind of problems.

Before continuing, let us recall two basic results. If we can do comparison operations
on two numbers in constant time, the following statements hold:

• Given a list of n numbers, the sorting problem can be optimally solved in Θ(n log(n)) time.
• Given a list of n numbers and an index i, the selection problem (i.e., the problem of

finding the i-th smallest number) can be solved in O(n) time (for example, using the
Medians-of-medians algorithm [30]). It follows that the median of a list can also be
calculated in linear time.

Considering the problem in one dimension, it is well known [31] that there is a
Ω(n log(n)) lower bound in the algebraic decision tree model of computation. This is an
important result that we can use to judge the goodness of each algorithm we are going
to discuss.

2.3.1. Naive Algorithms

We can distinguish cases with d = 1 and d > 1 to provide two different naive
implementations with different run-time complexities.

One-Dimensional Approach

If all the points are in one dimension, a straightforward implementation is the following:

• Perform an ordering in Θ(n log(n)) time.
• For each point select the k-th neighbours in Θ(k) time.

The overall complexity is then Θ(n log(n) + kn) which is optimal considering the
lower bound discussed above. Note that once the points are ordered, considering a point p
in position i, the nearest neighbour of p is either in position i + 1 or in position i− 1.

Multidimensional Approach

If the points are in d dimensions, with d > 1, the previous approach stops working. A
straightforward implementation, in this case, is the following.

For each point p:

• Calculate all the distances between p and all the other points in Θ(nd) time.
• Find pk, a point that has the k-th smallest distance from p using a linear time selection

algorithm.
• Select all the j points whose distance from p is strictly less than d(p, pk) and then

arbitrary select k − j points whose distance is exactly equal to d(p, pk), if there are
more than one such points.

The overall complexity is then Θ(n)(Θ(nd) + O(n) + O(n)) = Θ(dn2) which is much
worse than the single dimension approach and it is not even near to the lower bound discussed.

2.3.2. Space Partitioning Algorithms

The use of tree data structures can be exploited to avoid the explicit computation
of Θ(n2) distances. As reported in Algorithm 1, first the tree is built and then for each
point p it is traversed looking for its neighbourhood. In the next sections, we describe
K-D Trees and vantage point (VP) Trees which are balanced binary trees that work with
multidimensional points. In these trees, the root node represents the entire set V and each
internal and leaf node represents a subset of V. Each point is memorized in a single leaf
node and each leaf node may contain at maximum b points where b > 1.

In Algorithm 2, we give a general recursive function to build such a tree starting from
a set of points. In each call, we construct a node u and we recursively build u.left and
u.right by splitting the input point set into two new sets according to the properties of



Biophysica 2022, 2 344

the tree structure. When the cardinality of the input set is less or equal than b, a leaf node
(which will store all the remaining points) is created. If, at each call, we spend Θ(nd) time
for the splitting process, then the equation of run-time complexity of Algorithm 2 is the
following:

T(n) =

{
Θ(1) if n ≤ b
T(αn) + T(βn) + Θ(nd) else

(6)

where n is the number of input points and α and β are the fractions of points that will be
stored, respectively, in the left and right sons.

We can now define the run-time complexity of Algorithm 1 as:

A(n, k, d) = T(n) + nS(n, k, d) (7)

where T(n) is the time taken by the tree construction algorithm (as seen in Equation (6))
and S(n, k, d) is the time taken by a single execution of the query algorithm (which we will
describe for both K-D Trees and VP Trees).

Algorithm 1 General all-k-nn algorithm using a tree structure

function ALL-KNN(points, n, k, d)
T ← BUILD-TREE(points) . Tree building
sol ← NEW-ARRAY(n) . Space allocation for solution
for each p ∈ points do

solp ← QUERY(p, T.root, k) . Tree traversal
end for
return sol

end function

Algorithm 2 General tree construction

function BUILD-TREE(points)
if |points| ≤ b then

return MAKE-LEAF(points)
end if
u← MAKE-INTERNAL-NODE
pointsleft ← {q ∈ points | q must be memorized in the left son}
pointsright ← {q ∈ points | q must be memorized in the right son}
u.left← BUILD-TREE(pointsleft)
u.right← BUILD-TREE(pointsright)
return u

end function

2.3.3. K-D Tree
The Data Structure

Considering Euclidean spaces, the best-known structure to solve the all-k-nearest-
neighbours problem uses the so-called K-D Tree. The K-D Tree was initially developed by
Bentley [32] and later on it was proposed in an optimized version by Bentley, Friedman,
and Finkel with the specific purpose of efficiently solving the kNN problem [33]. Each
internal node is endowed with two additional fields: the discriminator which is an integer
in the interval [1, d], and the partitionValue which is a real number. The semantics is
the following: for each node u let j = u.discriminator, for each point p = (p1, . . . , pd)
stored in the subtree rooted in u.left it must hold pj < u.partitionValue. Similarly, if p
is contained in the subtree rooted in u.right it must hold pj ≥ u.partitionValue. To
build a balanced tree, at each recursive call in Algorithm 2, first we calculate the projection
of all the input points onto the coordinate indicated by the discriminator and then the
partitionValue is chosen to be the median of those values so that the input points are
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split into two balanced sets. To maximize the information contained in each node splitting,
the discriminator is chosen to be the coordinate with maximum spread. Substituting
α = β = n

2 in Equation (6), we can see that we can build a balanced K-D Tree in Θ(dn log( n
b ))

time. Note that at each internal node, the partitionValue defines lower and upper bounds
on the value of the discriminator coordinate for each point contained in the two sons. We
say that each node is associated to a domain and the domain of the root is (−∞,+∞) for
each coordinate.

The Search Algorithm

We now describe the query algorithm, as proposed in [33]. The query algorithm is
recursive and takes as input a point p = (p1, . . . , pd), a node u and the value of k.

During the search, we have the need to compute many times the best k-th nearest
neighbours so far encountered. To satisfy the requirement we use a data structure called
max-priority queue .

In this case, we can use a max-priority queue of length k and we will use an efficient
implementation called max-heap. With this setup, we are able to retrieve the k-th nearest
neighbour yet found in constant time, and we can perform insertion and deletion operations
in O(log(k)) time.

At each recursive call, we visit the node u. If u is a leaf, all the points stored are
examined and the queue may be updated with nearer neighbours for p.

If u is an internal node, if pu.discriminator ≥ u.partitionValue we first recursively
visit u.right, otherwise, we first visit u.left. When the control returns from the recursive
call we have to decide if a call on the opposite son is necessary.

We consider the hyper-sphere centred in p with radius the k-th nearest distance from
p found in the priority queue. If the hyper-sphere intersects the domain of the node not
already visited, then the second recursive call must be performed.

After visiting node u we check if it is necessary to continue the search. If the hyper-
sphere previously described is completely contained in the domain of u, then the priority
queue contains the real k neighbours for p and the algorithm will terminate.

Analysis

In [33] it is shown that during a search, the average number of points examined R is
bounded by R ≤ (k

1
d + b

1
d )d. Note that R is independent of n, so, given values k and d,

the time taken by the query algorithm is proportional to the height of the tree, and since the
tree built is balanced, its height is proportional to log(n). We can conclude that the expected
time to solve the all-k-nn problem is O(dn log(n)), however, this is true just for small values
of d and k. The real worst case of the implementation is O(dn2 log(k)). The intuitive
meaning is that for some values of d and k, the query algorithm must perform 2 recursive
calls for each node, so all the Θ(n) nodes of the tree are visited.

2.3.4. VP Tree
The Data Structure

The good behaviour of the K-D Tree approach might sensibly degrade outside Eu-
clidean spaces (e.g., spaces with periodic boundary conditions [29]). VP Trees were pro-
posed by Yianilos [34] for dealing with generic metric spaces.

Instead of the discriminator and the partitionValue of K-D Trees, each node of a
VP tree has the following two additional attributes: the vantagePoint which is a point and
the radius which is a real value.

The semantics is the following: for each node u let vp = u.vantagePoint, for each
point p = (p1, . . . , pd) stored in the subtree rooted in u.left it must hold d(p, vp) < u.radius.
Similarly, if p is contained in the subtree rooted in u.right it must hold d(p, vp) ≥ u.radius.
In each call of the tree construction algorithm, the radius is chosen to be the median value
of the list obtained considering the distances between the vantagePoint and all the input
points. The vantagePoint can be chosen in various ways but the simplest method is to
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choose a random point from the input point set. As the K-D Tree, the VP Tree can be built
in Θ(dn log( n

b )) time.

The Search Algorithm

We now describe the query algorithm for the VP Tree as proposed in [34]:

• The input is the same as for K-D Tree.
• We maintain a max-priority queue of length k with the same meaning as for K-D Tree.
• In each call, we visit the node u, and if u is a leaf node the steps performed are the

same as for K-D Trees.

We maintain a global variable τ which bounds the maximum distance from the query
point p and its k-th nearest neighbour. τ is used to decide where to search and its initial
value is +∞, indicating that the neighbours of p could be everywhere in the space.

During the visit of u, we calculate f = d(p, u.vantagePoint), the distance from p
and u.vantagePoint. The first son visited is the one concordant to the search of p in the
tree, in particular, if f is less than u.radius, the first son visited is u.left, otherwise, it is
u.right.

After the control returns from the first recursive call, we have to decide if we have
to visit the second son. We consider the space between the hyper-sphere centred in
u.vantagePoint with radius u.radius + τ and the hyper-sphere with the same centre
and radius u.radius− τ.

If, after the traversal of the tree rooted in the first son, p is contained in the described
space, then we must visit the other son. Intuitively, if p is distant from u.vantagePoint
exactly u.radius, we trivially have to visit both sons, in fact, the hyper-sphere centred
in p with radius τ will always intersect both sons’ subspaces. If the distance of p and
u.vantagePoint is near to u.radius we visit the second son just in case the hyper-sphere
centred in p with radius τ intersects its associated subspace.

Note that when the control returns from the first visited son, the value of τ might
have decreased. Once the algorithm has terminated, the max-priority queue contains the
neighbours for p.

Analysis

The run-time complexity of the all-k-nn algorithm which uses the VP Tree is the same
as the one discussed for the K-D Tree, as can be shown using similar arguments [34]. So
we still obtain O(dn log(n)) expected time and O(dn2 log(k)) worst case. Experimental
results show that the KD Tree performs slightly better in Euclidean spaces, but the VP
Tree algorithm can be used in any metric space and we can still solve the neighbourhood
problem with the same complexity.

2.4. Software Availability

The software used for this article has been entirely written in C. It is available on
the GitHub repository (https://github.com/robyBorelli/nearest-neighbours-package, ac-
cessed on 12 October 2022) and distributed under the license GNU GPL v3. Instructions on
compilation and usage are deposited on the GitHub repository together with example files.

3. Results
3.1. Experimental Results of All-k-nn Algorithms

To experimentally verify the promising theoretical results of the all-k-nn algorithms of
the previous sections, we wrote a C implementation and then run three comparison tests
which are representative of common cases in molecular dynamics and databases’ analysis.

We implemented the following algorithms: Naive, K-D Tree, and VP Tree. We call
Naive the all-k-nn algorithm which computes all the Θ(n2) distances between points. The
Naive and VP Tree algorithms have also been implemented in the variant that works
in spaces with periodic boundary conditions. Referencing to the Naive algorithm may
be questionable because neighbour lists are computed, e.g., in MD simulation, by more

https://github.com/robyBorelli/nearest-neighbours-package


Biophysica 2022, 2 347

efficient algorithms (e.g., cell lists [35]) than the naive one, but such algorithms are not
applied to higher dimensions with the same efficiency, because the number of cells needed
grows exponentially with d. For this reason, tree structures have been widely used for
higher dimensions [29]. Therefore, we kept as a reference the Naive algorithm which is
straightforward to apply in all dimensions.

For each test, we present a double logarithmic scale plot which shows the dependency
of the execution-time with respect to parameters n, k, and d. We recall that in a double
logarithmic scale, polynomial functions are displayed as straight lines and straight lines
with the same inclinations are polynomials with the same degree.

In order to test the algorithms in a realistic scenario for estimating conformational and
configurational entropy from molecular dynamics simulation trajectories, we consider that
a typical sample may entail n = 10,000 to 100,000 samples, the dimension d of grouped
variables may be typically in the range 4 (the typical amino acid torsional angles) to 12
(12 variables are needed to describe pairs of rigid water molecules) and k may be in the
range of 10 to 20 depending on the resolution. All tests reported hereafter take these
numbers in consideration as references.

In Figure 1, we compare the algorithms as the number of points grows. We have taken
the time of 50 executions from n = 1000 to n = 200,000 with k = 20 and d = 6. We observe
that Naive algorithms show quadratic performances, as expected, and that the tree-based
algorithms lines’ have the same inclination indicating a linearithmic growth; the K-D Tree
algorithm has a lower multiplicative constant and so it performs best. In Figure 2, we show
the algorithms’ comparison as the size of the neighbourhood is increased, in particular,
we use values of k from k = 1 to k = 50. The asymptotic time of Naive algorithms is
independent of k and so we see no aggravation of efficiency as k becomes larger. The tree-
based algorithms have a slight decrease in performance but this is marginal considering
k << n. We must notice that choosing sufficiently large values of k will eventually lead
tree-based algorithms to quadratic performances. Intuitively, the greater the k, the more
nodes of the tree will be visited, in particular, with large-enough values of k, for each point
p, the tree traversal will pass through Θ(n) nodes and so the algorithm will degenerate to
an exhaustive search with quadratic complexity.

In Figure 3, the limitation of tree-based algorithms with increasing dimensionality is
illustrated. The naive algorithms’ performances grow linearly with the number of dimen-
sions d. We observe that starting from d = 1, the time of tree-based algorithms exponentially
becomes bigger so the addition of 1 dimension will cause at least a doubling in time. This
behavior continues until the same performance of Naive algorithms is reached and from
that point on the growth is linear with d. This phenomenon is called curse-of-dimensionality:
each algorithm that solves the all-k-nn problem will degenerate in at least a quadratic search
starting from certain values of d. This problem affects all the algorithms yet discovered.
Based on combinatorial arguments, when we consider uniformly distributed samples, we
may expect the algorithm efficiency to be lost when d ∈ Θ(log2(n)). For n = 100,000 this
amounts to d = 17, which is in the range where K-D Tree and VP Tree algorithms’ curves
merge with the Naive algorithm one in Figure 3. This limitation was further confirmed for
other values of n and d, as shown in Figure 4. With n = 100,000 and k = 20, the VP Tree
(periodic) is still convenient for d = 10 and it reaches the quadratic search with d = 11. The
VP Tree (non-periodic) and the K-D Tree are convenient even for d = 12, with the same
values of n and k. Even if asymptotic times are the same for the K-D Tree and the VP Tree,
we notice that the curse-of-dimensionality is a little bit more accentuated with the VP Tree
structure: with d = 12, n = 100,000, and k = 20 we observe that the VP Tree search is more
than 3 times slower than the K-D Tree one.

In all three tests, we can notice the advantage provided by the VP Tree structure: it
asymptotically performs the same with Euclidean and non-Euclidean spaces although the
multiplicative constant is lower for the Euclidean case.
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Figure 1. Computational times comparison of the all-k-nn algorithms as the number of points n
grows. d = 6, k = 20, 1000 ≤ n ≤ 200,000. Double logarithmic scale.

Figure 2. Computational times comparison of the all-k-nn algorithms as the size of the neighbourhood
k grows. n = 100,000, d = 6, 1 ≤ k ≤ 50. Double logarithmic scale.
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Figure 3. Computational times comparison of the all-k-nn algorithms as the number of dimensions d
grows. k = 20, n = 100,000, 2 ≤ d ≤ 25. Double logarithmic scale.

Figure 4. Computational times comparison of the all-k-nn algorithms as the number of dimensions d
grows. k = 20, three different values of n are used to show that the efficiency of the algorithms is lost
at about d = log2(n). Double logarithmic scale.

3.2. Entropy of Amino Acids in Random Conformations

In our previous report [22], we studied the entropy of all amino acids in coil conforma-
tion (i.e., not in α-helix or β-strand conformation, as obtained by DSSP analysis [36], in the
implementation given by Vriend and coworkers [37]). The dataset of structures used in
this work was obtained in a previous work (Mahmood et al., submitted) by downloading
non-redundant sequences (at less than 40% identity) from the culling server Pisces [38]
with resolution of < 4.0 Å and R-factor < 1.0. The set entails 27,316 sequences. Only amino
acids for which all torsion angles could be computed were considered.

For each amino acid the ensemble of all conformations available in the dataset was built
and the entropy was computed, essentially with the same results reported previously [22].
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The computational time, for each amino acid, together with the dimensionality and
numerosity, are reported in Table 1. All calculations are performed on an 11th Gen Intel(R)
Core(TM) i7-11850H @ 2.50 GHz CPU.

Table 1. Computational times for entropy computation from torsion angles for all amino acids in
the dataset of coil conformations. n is the numerosity of the samples and d is the dimensionality.
The number of neighbours is 20 for all amino acids.

aa. n d Time (s)

ALA 87,225 2 1.7
ARG 60,855 6 24.8
ASN 78,167 4 10.5
ASP 104,071 4 13.3
CYS 11,596 4 0.8
GLN 45,820 5 9.6
GLU 82,224 5 21.6
GLY 165,129 2 4.3
HIS 35,293 4 3.6
ILE 50,498 4 5.7
LEU 87,053 4 11.5
LYS 74,522 6 37.2
MET 17,022 5 2.8
PHE 45,531 4 4.8
PRO 136,006 2 3.1
SER 97,054 4 10.5
THR 78,923 4 9.0
TRP 15,222 4 1.3
TYR 39,659 5 8.0
VAL 64,047 3 3.5

3.3. Entropy of a Small Folded Protein

In order to provide a realistic application of the methods described above we have
considered 10,000 snapshots from a molecular dynamics simulation at 310 K of a small,
99-residue protein, β2−microglobulin in explicit solvent.

We have generated all torsion angles and created a different input file for each residue.
For each input file we computed the entropy using the vantage point data structure with
periodic boundary conditions.

The computational time for computing the entropy for all residue (after generating all
torsion angles) is, overall, 190 s on an 11th Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz
CPU. For a proper comparison, using a customized version of the program pdb2entropy [9],
the same computation on the same system takes 1341 s.

4. Discussion

We showed how we can achieve O(dn log(n)) expected time for the neighbourhood
selection problem for both Euclidean and non-Euclidean spaces. We must notice that,
as the number of dimensions increases, the algorithms described degenerate in at least
a quadratic search. This problem is known in the literature as curse-of-dimensionality and
the research is still open. In this work, we considered data structures and algorithms for
entropy estimation based on the kNN method. Tree structures are shown both theoretically
and experimentally to be efficient data structures in order to find the first k neighbours of
each of n samples.

The expected running time has been shown, for balanced trees, to be O(dn log(n)),
for both Euclidean and non-Euclidean periodic spaces. This conclusion implies, in principle,
orders of magnitude improvement over the naive solution.

The experimental tests performed here highlight the real efficiency of the method
depending on the number of samples, the number of neighbours, and the number of
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dimensions. The tested values of dimensionality, number of samples, and number of
neighbours were chosen in a range suited for the analysis of biomolecular simulations.

The efficiency decreases as the number of dimensions increases and the algorithms
degenerates in at least a quadratic search, depending on the number of samples.

In Euclidean spaces, a K-D Tree algorithm is most efficient, but in generic metric spaces
VP Trees are more flexible and can work with the same asymptotic run-time complexity.

We note that both K-D Tree and VP Tree can be memorized in O(n) space.
The tests reported here on two different realistic sets, i.e., (i) a collection of residue-based

torsion angles from a non-redundant set of 27,316 proteins and (ii) a set of 10,000 snapshots
from a molecular dynamics run of a small 99-residue protein show that entropy computation
using the data structures and algorithms described here can be performed almost an order
of magnitude faster than by the naive algorithm, demonstrating their usefulness.
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