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Featured Application: Use of hydrophobic coatings as passive inflight icing safety device.

Abstract: Current technology has produced a wide range of advanced micro-structured surfaces,
designed for achieving the best wettability and adhesion performances for each specific application.
In the context of in-flight icing simulations, this opens new challenges since the current most popular
and successful ice accretion prediction tools neglect the details of the droplet behavior opting for a
continuous film model. Here, a phenomenological model, following, in a Lagrangian approach, the
evolution of the single droplets from the impinging to the onset of rivulets, is developed to simulate
the performances of super-hydrophobic surfaces in icing application. Possible rebound and droplet
spread on the impact, coalescence, single ice bead formation and droplet to rivulet transition are
taken into account. The first validation shows how the models are able to predict the anti-icing
capability of a super-hydrophobic surface coupled with a heating system.

Keywords: droplets; super hydrophobic; phenomenological model; icing; rivulets

1. Introduction

Most of the numerical models adopted in in-flight icing simulations are essentially
based on the Messinger model [1] and its extension to three-dimensional arbitrary sur-
faces [2], combined with the prediction of impinging mass flow following either a La-
grangian or Eulerian [3] droplet flow field analysis. The runback water layer is implicitly
assumed to behave as a continuous film whose velocity is mainly defined by the shear
stress. In the most sophisticated form, this approach allows for full integration into a
three-dimensional computational fluid dynamics (CFD) model, and offered efficient and
accurate results in a number of highly complex applications, up to the analysis of a whole
aircraft. However, it inherently skips most of the micro-scale effects related to the wettabil-
ity and adhesion properties of the substrate, as well as the details of the transitions between
moving droplets, rivulets, and full film flow regimes; actually, the smaller scale of these
phenomena would require unpractically refined grids. An exception is given by roughness
models developed on the basis of a droplet distribution analysis [4].

On the other hand, the advances in the development of micro- and nano-structured
surfaces provide a number of highly specialized surfaces, designed either for hydropho-
bicity or low ice adhesion properties, that are promising as passive anti-icing tools [5–8].
Although ice phobicity and hydrophobicity are not synonyms, and their correlation is a
matter of basic research [9,10], it is clear that some typical features of super-hydrophobic
surfaces, such as the higher probability of impinging droplet rebound or the reduction of
liquid–solid contact (and heat transfer) areas will help with an anti-icing strategy. Labora-
tory tests can define such micro-scale properties, usually via the analysis of a single droplet,
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but the actual performance under real-world in-flight icing conditions is highly dependent
on their interaction with the outer, macroscale flow field.

Thus, a kind of bridge is required to transfer the relevant micro-scale information to the
macroscale analysis around a whole airfoil or a whole airplane. In particular, considering a
super-hydrophobic surface, we have a few mechanisms that affect the ice accretion process.
First, above a threshold impinging velocity (i.e., Weber number) and low wettability, im-
pinging droplets may rebound, effectively reducing the collection efficiency, or (at even
higher Weber) may break down into smaller droplets [11], affecting the local ice beads’ re-
lated roughness and coalescence processes [12,13]. For an extremely water repellent surface,
the rebound may occur at relatively low We [14,15], and it is worth noting that the physical
phenomena behind the rebound are quite complex and might be strongly affected by the
topological details of the surface roughness and its different scales [15,16]. Furthermore,
the jumping droplet may stick to the surface after a few rebounds at lower energies.

As a second relevant effect, low hysteresis greatly enhances the runback water drainage,
since most droplets are quickly removed, ideally preventing the formation of a continu-
ous film. A population of droplets, either still or moving, will obviously have different
active heat transfer surfaces with respect to a continuous film [17–19], as well as different
equivalent runback water velocities, thus strongly affecting both the ice accretion and the
evaporation process. In particular, solid–liquid and air–liquid heat transfer will occur
through the droplet base circle (wet area fraction) and spherical cap surfaces, respectively,
while the velocity will be defined by the balance of forces acting on the droplets.

However, if the liquid water content is high enough, the moving droplets may merge,
forming individual rivulets; the rivulets, then, may coalesce forming a continuous film [20].
Even these transitions are strongly affected by the wettability properties, which in turn
control the stability of the contact lines.

Here, a phenomenological approach is chosen in order to assess the performance of
super-hydrophobic coatings under icing conditions. The unsteady evolution of a popula-
tion of individual droplets is predicted as a function of flow conditions (median volume
diameter MVD, liquid water content LWC) and surface wetting properties (contact angles,
surface tension) on uniform or non-homogeneous surfaces. The simulations are performed
following a Lagrangian approach, where the individual impinging droplets behave accord-
ing to specified rules driving rebound, break-up, and shear-induced motion. The droplet
will grow or reduce due to coalescence, evaporation or freezing.

The main aim of the work is to provide a suitable framework for an efficient evaluation
of the cumulative effect of a large ensemble of droplets over a (relatively) large surface
characterized by variable wettability properties and local fluid dynamic related parameters
(shear stress, pressure gradients), validating the results on a typical icing example. In
such cases, the full numerical modeling of all of the smaller scale effects would become
prohibitive, while the phenomenological approach preserves the computational efficiency.

2. Phenomenological Model

The process of in-flight ice accretion includes several steps, each involving different
physical phenomena, different scales and different regimes. The starting point is a cloud of
supercooled droplets. These droplets, driven by the airflow field, impinge on the surface:
the first impact location is entirely defined by the macroscopic scale droplet and airflow
fields, and may be predicted via straight CFD modeling.

On the other hand, the post-impact evolution of the droplet is defined by the solid–
liquid interaction features at the microscale. In particular, following [11], at low velocity,
small droplet size, and high surface tension (i.e., low Weber number), the droplets stick
on the surface, after a brief unsteady spreading step, assuming a roughly spherical cap
shape defined by the liquid–solid contact angle. Above a threshold We number, they will
rebound, re-emerging from the surface with a lower kinetic energy. Following the first
rebound, the droplet will be driven again by the airflow drag forces, which may either
move it far away from the solid surface or push it to a secondary impingement, possibly
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ending as a sticking drop further downstream. Furthermore, we have the possibility of
rebounding droplets interactions with new incoming ones. As noted in the introduction,
the physical mechanisms inducing super-hydrophobicity are quite complex, and at extreme
low wettability rebound may occur even at the lowest We: thus, the proposed description
and modeling of the process does not pretend to be appropriate for any possible coating
design (which would be a task well beyond the scope of the present work), but aims to
offer a suitable tool for the analysis of the most common standard super-hydrophobic
isotropic surfaces.

The actual quantity of water on the surface, in the form of a collection of spherical
cap-shaped droplets, is thus a result of the initial collection efficiency, reduced by the
rebounding mass flow, plus the water mass recovered from the secondary rebound and
drop–drop collisions.

The droplet’s evolution on the surface is driven by aerodynamic drag, pressure gradi-
ent and surface tension, as well as by the growth via coalescence with new impinging drop
and mass losses via evaporation or freezing. Thus, they may remain as sticking droplets,
evolving into frozen beads, or they may run along the surface as individual droplets or
merge into rivulets and possibly a film.

In order to develop a complete phenomenological model, each of the above-mentioned
steps and mechanisms must be described and taken into account with reasonable accuracy.

2.1. Droplet Impact Modeling

The evaluation of impinging collection efficiency requires interaction with the macro-
scale flow. Here, the amount of water hitting the airfoil is evaluated in a standard way
via Lagrangian tracing of droplets within a flow field computed via CFD tools (SU2 open-
source code), assuming one-way coupling (droplets do not impact on the airflow field).
The impact dynamics are quite complex: a comprehensive analysis and comparison may
be found in [15]. Here, we follow the model of Attane et al. [13].

The droplet energy is the sum of kinetic EK and surface energy Eσ, which in turn is
the sum of the contributions from both solid–liquid Ssl and liquid–air Sla interfaces.

Eσ = Slaσ + Sslσ(1− cosθs) (1)

The droplet energy decreases in time due to the sum of internal viscous dissipation Eµ

and the capillary rim dissipation E∗µ [13]:

dEK
dt

+
dEσ

dt
+ Eµ + E∗µ = 0 (2)

The surface and kinetic energy terms, as well as the internal viscous dissipation
Eµ (which include dissipation within the droplets and friction losses at the liquid–solid
interface), are integrated approximating the droplet shape during the impact as a shallow
cylinder of radius r and height h, while assuming an axisymmetric velocity field in the
radial x and normal coordinate y:

ux =
2

.
r

rh
xy uy = −2

.
r

rh
y2 (3)

Figure 1 shows a sketch of the approximated geometries. In Equation (3),
.
r is the time

derivative of the base radius of the droplet, i.e., its spreading (or retracting) velocity. The
rim dissipation E∗µ is evaluated via the following correlation [13]:

E∗µ = 4.48π·µ·r
(

Re√
We

) 2
3 .
r2 (4)
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Figure 1. Droplet evolution sketch, following [13], and coordinate system. (a) impinging droplet,
(b) shallow cylinder approximating the droplet shape during the spreading and retreat phase.

The local droplet Weber and Reynolds numbers are defined as

We =
ρu2

0r0

σ
(5)

Re =
ρu0r0

µ
(6)

where r0 and u0 are the incoming droplet radius and velocity, while σ, µ and ρ represent
water surface tension, viscosity and density. Substituting in (1) we obtain an ordinary
differential equation that can be solved in time. As initial conditions, we assume that
both kinetic and surface energies are still equal to the incoming spherical droplet values:
such conditions enable the evaluation of both the initial drop diameter and its advancing
velocity. Figure 2 shows the time history of the droplet base radius r (normalized with the
incoming droplet radius r0): agreement with experimental data as in [13] is reasonably
good, in particular in terms of maximum spread, while the radius oscillation time scale is
over-predicted.
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Figure 2. Droplet base radius r evolution in time: symbol: experimental data, lines: computed values.
Left, θs = 87◦, Re = 588·We0.5; right, θs = 100◦, Re = 454·We0.5.

Time-dependent simulations at increasing We may be used to define a rebounding
condition, which occurs when the droplet returns to its initial impact shape with residual
kinetic energy. The identification of the transition to splashing is a complex problem.
Different regimes (aerodynamic or hydrodynamic dominated) lead to different functional
dependencies [15]. Here, for the sake of consistency, we follow the same approach used for
the rebound limit: a further increase in We leads to a second threshold, above which the
droplet radius oscillations appear overdamped and it no longer retracts down to the initial
shape. This second level is assumed as the onset of corona splashing.
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A computation campaign at different We and Re was performed, and from post-
processing of the result the following correlations are derived for the two limiting values:

Wec,r = a
(1− cos θs)

l

log(1 + Re)− bθm
s

(7)

Wec,s = c(1− cos θ)nRe2 (8)

With a = 2.85737, b = 10.0471, l = −2.32544, m = −1.01734, c = 7.13676 × 10−5,
n = 6.81775. Results are shown in Figure 3, where it is evident that for any Re the range
of We allowing for full rebound gets smaller and smaller at low contact angles. Results
from Equation (7) can be compared with a regime map obtained from numerical fully 3D,
level set approach-based results at Re = 800 [21]: at θs = 100 and 120 the transition from
adhesion and rebound is located at We ~ 2.0 and We ~ 0.6, respectively, while Equation (7)
offers We = 2.0 and We = 0.57. Note also that Equation (8), for a given contact angle, locates
the splashing at constant product of Wec,s·Re−2, which is consistent with the experimental
results in [22].
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2.2. Collection Efficiency

The actual water mass flowing on the wall surface will be the combined result of the
first impact, possible rebound, secondary impingement and, potentially, the interaction
between rebounding and incoming droplets. Several CFD tools may be used at this step:
here, we combine the SU2 open-source solver with an in-house Lagrangian droplet tracking
code. Eulerian modeling is in general more efficient, but it is trickier to take into account
the rebound and the secondary impacts on the walls and between droplets.

A population of incoming droplets is generated according to the LWD and airspeed,
and their individual behavior is followed. The threshold values from the previous para-
graph are used to determine whether the impinging droplet sticks on the surface or re-
bounds: in the latter case, the residual kinetic energy determines the speed at which the
bouncing droplet leaves the surface and, thus, the subsequent droplet trajectory and its
maximum height. The droplet re-emerging from the surface may be driven away from the
wall, or experience a secondary impact a bit downstream. Since at any impact we have
some dissipation, most droplets will then stick at a location a bit downstream of the first
one. In such a case, the final position is noted and collection efficiency is evaluated by
integrating over a reasonable time interval ∆t. If the incoming droplet volume is Vd, and ni
is the number of droplets that came to halt on a wall element of the CFD mesh of surface
∆S, during ∆t, the collection efficiency β is computed as:

β =
u0LWC·∆t·∆S

ni·ρVd
(9)
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The correlations defined in Equations (7) and (8) are extended to the case of droplets
impinging at a non-zero incidence by using the normal component of the incoming velocity,
as suggested in [23].

2.3. Droplet Behavior and Runback Water Modeling

Modeling the runback water flow over a hydrophobic surface requires a simulation
of the evolution of the droplet population that takes properly into account the wetting
properties of the surface. These phenomena involve small-scale modeling, on the size of
the individual droplets, and the information required from the larger-scale flow field is
limited essentially to the amount of incoming water (i.e., the collection efficiency) and
its geometrical and dynamic characteristics (diameter, velocity components normal and
parallel to the wall), as well as the wall shear stress and pressure gradients. A possible
choice is to follow the evolution of each individual droplet after impinging via a Lagrangian
approach: since the number of involved droplets is very high, a full multiphase CFD
computation would quickly become unpractical. However, it is possible to simplify the
process with a phenomenological model that describes the main steps of the evolution,
namely impinging density, growth or reduction via coalescence and/or phase change and
aerodynamic drag-induced motion. These computations will be performed over a small
portion of the surface and are meant to provide, via integration, useful information in order
to offer corrections to the standard, continuous film models usually assumed for icing
simulation on regular surfaces.

We will assume that the droplets have a spherical cap shape, defined by their static
contact angle θs, while the hysteresis between advancing and receding contact angles will
be used in order to define the droplet’s force and energy balances. Additional elements that
need to be tracked are frozen beads and possibly rivulets. The former appears as spherical
segments, covering the base of the droplet and progressively growing until the liquid phase
disappears; the latter is modeled as an ensemble of interconnected droplets. The simulation
is carried out on a two-dimensional domain, which may be representative of an arbitrarily
shaped surface as long as we provide the proper distribution of shear stress, collection
efficiency and pressure gradients from the CFD solution of the macro-scale problem.

The main workflow of the procedure may be summarized in the following steps:

1. Generation of N impinging sites at random locations, depending on local collection
efficiency.

2. Coalescence check between new impinging droplets and existing ones.
3. Heat transfer balance for any single droplet.
4. Evaluation of freezing or evaporating mass flow.
5. Frozen mass will either contribute to the growth of an existing ice bead or create a

new one at the freezing bead location.
6. Droplet stretching limit check, detecting possible rivulet onset.
7. Droplet and rivulet movement check, including coalescences along the moving path.
8. Next time step.

The procedure described above was originally developed for a high-fidelity mod-
eling of icing roughness [4], and it has already been validated and applied to different
problems [18,19,24].

A population of incoming droplets is randomly generated at each time step. As an
example, on a rectangular domain Lx × Ly we define a maximum number of impinging
sites at any time step as

N0 =
u0LWC·∆t·Lx × Ly

ρVd
(10)

Then, given three random numbers αx, αy, αc; 0 < α < 1 the possible impinging sites
(x, y)i, i = 1, N0 are defined as

(
Lxαx, Lyαy

)
i, but they get activated only if (αc)i < β, thus

statistically complying with the computed collection efficiency.
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Once an initial distribution of the impinging droplets is given, we check if any coa-
lescence occurs. Coalescence takes place when the distance between the centers of two
droplets is less than the sum of their radii, and it results in a larger drop whose volume is
equal to the sum of the volumes of the parent droplets, located at the center of mass of the
two parent droplets. In the case of partially frozen beads, coalescence will involve only the
residual liquid volume, leaving the existing solid beads unchanged.

For hydrophilic substrates (θs < 90◦), coalescence will occur if the distance d between
the centers on the surface is lower than the sum of the base area radii:

d ≤ r1sinθs + r2sinθs (11)

while under hydrophobic conditions it will occur according to the geometrical consideration
in Figure 4, as √

d2 + (r1 − r2)
2cos2θs ≤ r1 + r2 (12)
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Figure 4. Coalescence condition for the hydrophobic substrate.

Droplets are subjected to external forces, namely gravity, aerodynamic drag and
pressure gradient if exposed to a fluid flow. Drag is evaluated via a drag coefficient
computed for spherical caps and from the local flow velocity. The local velocity, given the
small height of the droplets, is computed from the local shear stress, assuming a linear
profile normal distance from the wall. These forces deform the droplet shape, inducing
hysteresis due to the difference between the advancing θa and receding θr contact angles.
The actual contact angle will be a function of the azimuthal angle along the contact line,
as reported in [25,26]. The balance of drag, gravitational force projected along the surface,
and surface tension defines whether the droplet will stay still or will be shed away. Since
aerodynamic drag increases with r2, gravity contribution with r3, and surface tension only
with r, we can find a maximum radius allowing for immobile drops.

Then, the next step is the modeling of the moving droplet. A power balance between
aerodynamic force work, surface tension work, and viscous dissipation (sum of laminar
viscous dissipation within the droplet and wedge dissipation) is performed.

Then, the next step is the modeling of the moving droplet. Following [18,19], a power
balance between aerodynamic force work, gravity force work, surface tension work and
viscous dissipation (sum of laminar viscous dissipation within the droplet and wedge
dissipation) is performed,

ΦD + Φg −Φσ −Φµ = 0 (13)

ΦD = FD · ud =
1
2

ρacD|ua − ud|(ua − ud) · ud (14)

Φg = Fg·ud = ρlVdg·ud (15)

where ua is the local airflow velocity and cD is the drag coefficient, which can be estimated
as the one of a flow past a sphere, as done by [27]. The further condition that the droplet
moving direction agrees with the one of the resulting force Fg + FD is required in order to
close the problem. The derivation of surface tension work Φσ and viscous dissipation Φµ
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(given by the sum of laminar viscous dissipation within the droplet and wedge dissipation)
are given in [18,19]. The procedure is suited for both planar and curved surfaces, provided
that the substrate radius of curvature is larger than the droplet one.

2.4. Phase Change

At each time step, the energy balance of each individual droplet is performed in order
to define the freezing and evaporating mass flow rates [28]:

qs = qa + mevλev −m f λ f (16)

Here, qs is the heating flux from the solid wall, if present, and qa is the convective heat
transfer computed using the local heat transfer from the macroscale computation and the
actual droplet surface exposed to the air, while evaporating mass flow mev comes from a
heat and mass transfer analogy, m f is the freezing mass and λev, λ f the evaporation and
fusion of latent heat.

2.5. Rivulet Onset

At high wettability, or for high impinging mass flow, and low freezing rate, we can
have a runback water mass flow so high that the individual droplet regimes may give way
to the onset of rivulets. Here, a rivulet threshold is obtained via a force balance over half
of the droplet, as suggested in [20]. Essentially, we cut the droplet with a midspan plane,
normal to the drop velocity and to the substrate (Figure 5). If the resultant R of the forces
(due to drag, gravity, surface tension along the contact line, viscous force on the wet area)
over half of the droplet (assumed symmetric) is larger than the surface tension action Fσi
along the wet perimeter on the plane cut, we can assume that the droplet is starting to
stretch and is evolving into a rivulet.
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Figure 5. Sketch of the droplet stability balance.

Once the rivulet has started, it will move downstream driven by the sheart stress. At
high wettability, or for high impinging mass flow, and low freezing rate, we can have a high
runback water mass flow so high that the individual droplet regimes may give way to the
onset of the rivulet. Once the rivulet is generated, it is modeled as a series of interconnected
circles, in order to easily allow for coalescence check with the existing droplets according
to Equations (11) and (12). In Figure 6, the typical evolution is shown: to the left, a large
droplet is running from the bottom to the top until the growth due to the coalescence with
the other drops along its trajectory triggers the rivulet transition. From this point, the
rivulet height is fixed, and the possible increase in mass flow due to coalescences results
in its widening. Furthermore, we assume a triangular velocity profile normal to the wall
aligned with the shear as in the usual continuum model based on Messinger’s approach.
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3. Results

For a first assessment of the capability of the procedure outlined above, the experi-
mental setup of [29] was simulated. A small-scale NACA0012 profile is considered, with
a chord of 150 mm, partially heated and coated with combinations of hydrophobic and
hydrophilic sections.

In particular, we considered a case with a freestream velocity of 40 m/s, freestream
temperature of −5 ◦C, LWC = 1.0 g/m3, and droplet size of 30 µm. The airfoil is heated
for 5% of the chord length, with a heat flux of 33 W along the 400 mm spanwise length.
We compare two cases: in the first, the heated region is hydrophilic (θs = 65◦, θa = 105◦,
θr = 50◦) and the remaining area super-hydrophobic (θs = 157◦, θa = 159◦, θr = 154◦), in
the second case the whole surface is super-hydrophobic.

Figure 7 shows the collection efficiency, taking into account rebound and secondary
impacts for both cases. The effect is quite dramatic, with a nearly clean leading edge region,
although it is important to note that the very small thickness of the airfoil maximizes the
effect of rebound. The droplets with higher We will rebound around the leading edge, and
due to the small thickness of the airfoil, only a small fraction of them stops on the solid wall
after a few secondary impacts. However, these droplets landing somewhat downstream
with respect to their first impact are responsible for the recovery at x = 0.01, where the
collection efficiency is even higher than that in the hydrophilic region.
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The effect of the reduction in water gathering, combined with the improved drainage
of the smaller, low hysteresis droplets on the super-hydrophobic surface, leads to a better
performance of the fully hydrophobic airfoil. In particular, the droplet evolution was
computed on a small strip near the leading edge, as shown in Figure 8. Two snapshots
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of the droplet population are presented: red circles refer to liquid droplets and blue ones
to frozen beads. It is clear that we have better drainage in the hydrophobic setup, with
smaller and quicker droplets that evaporate or run downstream before any freezing. On
the other hand, the hydrophilic leading edge generates larger droplets and slower flow,
and thus we still have runback water beyond the heated strips, allowing for ice accretion as
observed in the experiment.
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Figure 8. Computed results: red, liquid droplets. Blue, frozen beads. Experimental data, recon-
structed from [29]: dark grey: iced area. Left, hydrophilic leading edge on an otherwise hydrophobic
coated airfoil. Right, fully hydrophobic coated airfoil.

Interactions between rebounding and incoming droplets are, on the contrary, nearly
negligible: Figure 9 shows the computed collision density, i.e., the number of collisions
between rebounding and incoming droplets per unit time and volume, around the airfoil
profile. The maximum value is attained in the region of the secondary peak in the collection
efficiency, at x ~ 10 mm, and is a bit less than 140 s−1·m−2, i.e., it is several orders of
magnitude lower than the number of the actual flying droplets at the same location.
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4. Conclusions

A comprehensive workflow, designed to simulate the effects of hydrophobic coatings
under icing conditions, was described. The aim was to offer the possibility to estimate the
impact of wettability properties in an efficient way, using a phenomenological model that
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takes advantage of several models either readily available in the literature or adapted for
the specific application.

A number of different effects, however, had to be taken into account, involving
different scales: droplet rebound, rivulet formation, and droplet–droplet interactions. The
first validation case offers only a threshold-like comparison, which allows verifying that
protection from ice formation is predicted. Thus, further detailed analysis and validation
of the individual mechanisms are still required: due to the complexity of the physical
phenomena and to the variability of the design of super super-hydrophobic coatings, the
models and phenomenological rules, in particular those related to the bouncing/splashing,
proposed in the present work, do not pretend to cover all of the possible regimes and
surfaces topology beyond those used in the validation cases. However, these first results
demonstrate that via the proposed computational framework it is actually possible to
predict the beneficial effect of properly designed coatings for ice mitigation purposes in a
real-world application.

Author Contributions: Writing—original draft, G.C.and N.S.; Writing—review & editing, M.P. and
P.G. All authors have read and agreed to the published version of the manuscript.

Funding: The present work was funded by the EU, within IMPACT project, call JTI-CS2-2019-CfP10-
LPA-01-80, Clean Sky 2 Joint Undertaking (JU) under grant agreement No. 885052.

Data Availability Statement: Validation data come from quoted open literature.
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Nomenclature

h droplet height
Eσ surface energy
EK kinetic energy
Eµ viscous dissipation
E∗µ rim dissipation
FD drag force
Fg gravity force
Fσ rigidity force
g gravity acceleration
.

mev evaporating mass flow rate
.

m f freezing mass flow rate
N0 number of impinging sites
q heat flux
r droplet radius
Re droplet Reynolds number, ρur/µ
Sla liquid–air interface area
Ssl solid–liquid interface area
t time
ua air velocity
ud droplet velocity
Vd droplet volume
We droplet Weber number, ρu2r/σ
x, y Cartesian coordinates
β collection efficiency
θs static contact angle
λev evaporation latent heat
λ f fusion latent heat
µ dynamic viscosity
ρ Density
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σ surface tension
ΦD drag force work
Φg gravity force work
Φσ surface tension work
Φµ viscous dissipation
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