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Abstract: In recent years, due to the reduction in available natural resources, the attention of many
researchers has been focused on the reuse of recycled materials and industrial waste in common
engineering applications. This paper discusses the feasibility of using seven different materials as
alternative fillers instead of ordinary Portland cement (OPC) in road pavement base layers: namely
rice husk ash (RHA), brick dust (BD), marble dust (MD), stone dust (SD), fly ash (FA), limestone
dust (LD), and silica fume (SF). To exclusively evaluate the effect that selected fillers had on the
mechanical performance of asphalt mixtures, we carried out Marshall, indirect tensile strength,
moisture susceptibility, and Cantabro abrasion loss tests on specimens in which only the filler type
and its percentage varied while keeping constant all the remaining design parameters. Experimental
findings showed that all mixtures, except those prepared with 4% RHA or MD, met the requirements
of Indian standards with respect to air voids, Marshall stability and quotient. LD and SF mixtures
provided slightly better mechanical strength and durability than OPC ones, proving they can be
successfully recycled as filler in asphalt mixtures. Furthermore, a Machine Learning methodology
based on laboratory results was developed. A decision tree Categorical Boosting approach allowed
the main mechanical properties of the investigated mixtures to be predicted on the basis of the main
compositional variables, with a mean Pearson correlation and a mean coefficient of determination
equal to 0.9724 and 0.9374, respectively.

Keywords: asphalt mixtures; recycling; waste materials; alternative fillers; artificial intelligence;
machine learning; decision tree; CatBoost

1. Introduction

An in-service flexible road pavement is usually affected by deteriorating factors such
as traffic, water, and aging [1]. For this reason, it is crucial that the designed asphalt mixture
(AM) has suitable mechanical performance. AMs mostly consist of coarse aggregates
and bitumen, but also a certain percentage of filler must be added and balanced. A
proper amount of filler helps both in reducing the mixture porosity and in hardening the
bitumen, improving the overall performance in terms of rutting and shoving response [2–7].
Conversely, an excessive amount of filler decreases the aggregate content, thus leading
to a strength reduction [8]. Over the years, researchers have investigated the effects
that different mineral fillers produced in the mixtures they were used for [9–13], and
it was determined that cement produced the best improvements in AMs’ mechanical
performance [14]. However, increasing concern about environmental sustainability has
highlighted the high CO2 emissions related to cement manufacturing. For this reason, a
valuable alternative that is both environment-friendly and mechanically sound should be
found [15]. A successful substitution requires the complete characterization of the recycled
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material or industrial waste to be reused. The most critical parameters that could affect the
overall performance of the AM must be determined, namely: filler particle shape and size,
specific gravity, surface area, mineralogical composition, and the presence of potentially
harmful fine material [16,17]. In this framework, several waste materials have already
been analyzed as potential alternative fillers, such as: copper slag powder [18], bauxite
residue [19], empty palm fruit bunch ash [20], and coffee husk ash [21].

Recently, the mechanical behavior of asphalt mixtures prepared with marble dust has
proven to be technically sound and preferable to what can be achieved using fillers obtained
from steel slag or granite [22]. Low percentages of SiO2 coupled with high percentages of
CaO result in a higher water resistance and reduced moisture-induced damage [23]. The
possibility of achieving similar or even slightly better performance by replacing traditional
fillers with waste materials and the simultaneous reduction in waste disposal problems both
encouraged the present study. The study focused on the investigation of AMs prepared
with several materials as alternative fillers instead of ordinary Portland cement (OPC),
which was used as a reference. The mechanical characterization of rice husk ash (RHA),
brick dust (BD), marble dust (MD), stone dust (SD), fly ash (FA), limestone dust (LD),
and silica fume (SF) was carried out, together with an in-depth comparative evaluation.
Furthermore, Marshall, indirect tensile strength (ITS), moisture susceptibility and Cantabro
abrasion loss (CL) tests were performed on AMs prepared with these fillers to evaluate
their influence on the corresponding mixture’s behavior. Four different filler contents were
considered, ranging from 4% to 8.5% by volume of the mixture, with a step-size of 1.5%.

The resulting experimental data were processed by a machine learning (ML) model
based on a modern Categorical Boosting (or CatBoost) approach. In the last few decades,
support-vector machines, artificial neural networks, and decision-tree-based models are
gaining wide approval in the research community since they are able to predict the me-
chanical behavior of AMs in a faster and more accurate way than empirical or statistical
techniques [24,25]. Although they neglect the physical nature of the investigated problem,
they can provide a reliable alternative to the advanced constitutive equations related to the
mechanics of materials [26–30]. Several successful ML approaches have been established
over the years [31–33], thus allowing the mechanical behavior of AMs to be predicted in
terms of fatigue life [34], tensile strength [35], and international roughness index [36,37].
For these reasons, the second goal of this study was to develop a ML CatBoost approach ca-
pable of predicting the mechanical response of AMs based on a few compositional variables.
Despite the fact that relatively few data were obtained from the laboratory investigation,
an innovative data augmentation technique was implemented to expand the size of the
starting dataset, thus allowing the model to be properly trained.

The core aspect of the present study can be found in the recycling of waste materials
as alternative fillers in asphalt mixtures with the simultaneous reduction in waste disposal
problems. Furthermore, a direct comparison of the performance shown by mixtures
prepared with eight alternative fillers, along with the use of up-to-date machine learning
techniques to predict the mixtures’ mechanical behavior, represent the innovative aspect
of this research. The result was an integrated approach that, to determine and predict
the mechanical response of AMs prepared with selected fillers, involved both an in-depth
experimental investigation and the development of a proper ML model.

2. Materials and Methods
2.1. Aggregate, Bitumen and Fillers

Sharp-edged aggregates from crushed quartz were used in this investigation. They
were supplied by Safew Tech System (Indore, India), and several laboratory tests were
carried out to fully characterize them. A detailed overview of the parameters determined,
the procedures followed, the results obtained, and the limits set by the Indian Ministry of
Road Transport and Highways (MoRTH) has been provided in Table 1.
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Table 1. Aggregate properties.

Test Parameter Method Results MoRTH Limits

Cleanliness (dust) (%) IS 2386 Part I 3 5 (Max)
Bulk specific gravity (g/cm3) IS 2386 Part III 2.68 2–3

Percent wear by Los Angeles abrasion (%) IS 2386 Part IV 10.6 35 (Max)
Soundness loss by sodium sulphate solution (%) IS 2386 Part V 3.4 12 (Max)

Soundness loss by magnesium sulphate solution (%) IS 2386 Part V 3.7 18 (Max)
Flakiness and elongation index (%) IS 2386 Part I 35 (Max)

- 20 mm 27.93

- 10 mm 32.13
Impact strength (%) IS 2386 Part IV 27 (Max)

- 20 mm 4.15

- 10 mm 5.91
Water absorption (%) IS 2386 Part III 1.67 2 (Max)

The aggregate grading curve was then compared with the reference envelope specified
by the MoRTH about flexible road pavements. The material was consequently classified as
grade II, and the graphical representation of this comparison has been provided in Figure 1.
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Tiki Tar Industries is one of India’s largest private sector bitumen companies, and it
supplied the conventional VG–30 bitumen used in this investigation. Also in this case,
a detailed overview of the parameters determined, the procedures followed, the results
obtained, and the limits set by the MoRTH has been provided in Table 2.

The filler used as a reference is ordinary Portland cement (OPC), since this is the
material most widely used to prepare asphalt mixtures for base course layers in heavy-load
road pavements in India. Seven additional mineral fillers were analyzed, and a summary of
the comparative analysis is provided in Table 3. Both physical and chemical properties were
investigated in terms of specific gravity, methylene blue value (MBV), German filler [38],
fineness modulus (FM), surface area, pH, main oxide contents, and particle shape.
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Table 2. Bitumen properties.

Test Parameter Method Results MoRTH Limits

Absolute viscosity @60 ◦C (Poises) IS 1206 (P–2) 2855 2400–3600
Kinematic viscosity @135 ◦C (cSt) IS 1206 (P–3) 392 350 (Min)

Flash point Cleveland open cup (◦C) IS 1448 (P–69) 304 250 (Min)
Penetration @25 ◦C, 100 g, 5 s, (1/10 mm) IS 1203 49 45 (Min)

Softening point (R&B) (◦C) IS 1205 48 47 (Min)
Matter soluble in trichloroethylene (% by mass) IS 1216 99.45 99 (Min)

Viscosity ratio @60 ◦C IS 1206 (P–2) 1.3 4.0 (Max)
Ductility @25 ◦C (cm after TFOT) IS 1208 75 40 (Min)

Specific gravity (g/cm3) IS 1202 0.987 0.97–1.02

Table 3. Properties of the investigated mineral fillers.

Test Parameter
Mineral Filler Type

RHA BD MD SD FA OPC LD SF

Specific gravity
(g/cm3)

2.02 2.56 2.69 2.69 2.32 3.04 2.65 2.20

MBV (g/kg) 4.72 6.25 4.45 3.67 3.86 3.00 3.75 3.85
German filler (g) 65 40 70 85 75 85 97 94

FM 3.21 5.17 2.12 5.38 3.77 4.96 3.03 1.96
Surface area (m2/g) 2.31 2.69 4.37 2.70 2.19 1.75 2.70 16.45

pH 10.86 8.67 8.50 12.57 7.30 12.90 10.22 6.98
SiO2 (%) 89.67 39.55 0.60 82.37 48.24 21.43 0.48 93.5
CaO (%) 1.88 12.88 55.60 2.79 13.40 66.58 96.57 0.89

Al2O3 (%) 1.62 15.71 0.40 8.23 24.15 3.01 0.41 0.08
MgO (%) 0.97 3.29 0.10 1.47 1.46 1.39 0.46 0.82
Fe2O3 (%) 1.06 14.05 0.20 5.27 6.48 4.68 0.32 0.50

Particle shape Honeycombed Subangular
particles

Subangular
particles

Angular
particles Rounded

Granular/
subangular

particles

Granular
particles

Spherically
shaped

To evaluate exclusively the physical–mechanical impact that the selected fillers had on
reference mixtures, some volumetric variables were kept constant. Aggregate type, grading
curve, and bitumen type remained unchanged. The optimum bitumen content for each
asphalt mixture was evaluated. Conversely, eight selected fillers and four different filler
contents (4.0, 5.5, 7.0, and 8.5% by percentage volume of the mixture) were considered,
resulting in a total of 32 analyzed mixtures. It should be considered that the cumulative
percent passing 0.6, 0.3, and 0.075 mm sieves had to be equal to 100%, 95–100%, and
85–100% by weight of total aggregate, respectively. Furthermore, the grading percentage
of the 0.075 fraction ranged between 2–8% in accordance with MoRTH standards. The
particle shape of each filler is shown in Table 3. RHA, BD, MD, SD, FA, OPC, LD, SF,
(Figure 2) and the aggregates were individually preheated to 150 ◦C. Afterwards, the
required amount of aggregate and filler was mixed at 170 ◦C in a planetary mixer at the
speed of 140 ± 5 rpm. The respective amounts of bitumen were then added according to
MoRTH standards to prepare the mixtures. Volumetric properties of AMs significantly
impact on mechanical strength and long-term durability of road pavements. For this reason,
the percentage of air voids (AV), voids in the mineral aggregate (VMA), and voids filled
with bitumen (VFB) were measured in accordance with MoRTH standards. To prepare
the specimens for the following experimental investigation, the Marshall method was
followed. Although this technique has proven to lead to volumetric properties slightly
different from those observed in road pavements [39], it is still extensively used in road
laboratories [8,40–43] and is preferred to the SUPERPAVE method [44] because of its
simplicity and cost-effectiveness. Before the Marshall tests, each specimen (67 ± 3 mm in
height and 102 mm in diameter) was compacted by means of 75 Marshall hammer blows
on each side of the specimen. Afterwards, it was air-dried for 4 h and finally held for
35 ± 5 min in a water bath at 60 ± 1 ◦C. A 100 kN load cell was used along with a 50 mm
linear variable displacement transducer to obtain the maximum value of load resistance
and the corresponding deformation for a strain rate equal to 50.4 mm/min. The results
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obtained from this laboratory investigation are hereafter referred to as Marshall stability
(MS), flow (MF), and quotient (MQ) in accordance with the ASTM “D 6927 Standard Test
Method for Marshall Stability and Flow of Bituminous Mixtures” [45].
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MQ is defined as the ratio between MS and MF, and it has been empirically correlated
with asphalt concrete rutting performance [46]. The higher the MQ value, the better the
resistance to traffic-induced creep deformation shown by the asphalt mixture. Furthermore,
ITS tests were carried out for all the mixtures according to the ASTM “D 6931 Standard
Test Method for Indirect Tensile Strength (ITS) of Asphalt Mixtures” [47]. Specimens were
prepared according to the Marshall protocol, and tensile resistance at 25 ◦C was determined
by applying a constant loading rate equal to 50.8 mm/min on specimen diameters in
compression. A modified Lottman test was carried out to evaluate water sensitivity.
ITS values were determined before and after moisture conditioning (in accordance with
the AASHTO “T 283 Resistance of Compacted Asphalt Mixtures to Moisture-Induced
Damage”), and the ratio between them expressed the indirect tensile strength ratio (ITSR).
Specimens measuring 150 mm in diameter and 63.5 in thickness were compacted by means
of the Marshall hammer targeting an AV content of 7 ± 0.5%. After 24 ± 3 h storing at
25 ◦C, specimens were saturated at absolute vacuum pressure of 50 kPa for 10 min and
left soaking for an additional 10 min in a vacuum container targeting a saturation degree
of 75 ± 5%. Specimens were wrapped in a thin plastic film and sealed in a plastic bag
containing 10 ± 5 mL of water. Sealed specimens were frozen at –18 ± 3 ◦C for 24 h. The
plastic bag was then removed, and specimens were placed in a water bath at 25 ± 5 ◦C for
24 h. ITS tests were carried out on conditioned specimens according to ASTM D 6931 [47].

Finally, to account for mixture degradation behavior, a Cantabro abrasion loss test
was carried out according to the TxDOT designation Tex-245-F [48]. Specimens measuring
101 ± 1.5 mm in diameter and 50.8 ± 1.5 mm in thickness were compacted by means of the
Marshall hammer with 50 blows for each side. The initial weight of the test specimen at
25 ◦C (mi) was determined. After 24 h, the specimen was placed in a Los Angeles testing
machine without the abrasive charges. The test was carried out at the speed of 32 rpm
for 300 revolutions. Loose material broken off the test specimen was discarded, and then
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the final weight of the test specimen (m f ) was determined. Cantabro loss was calculated
according to Equation (1):

CL =
mi − m f

mi
× 100 (1)

2.2. CatBoost Model

Data from the laboratory investigation were analyzed by means of a modern ML
technique called CatBoost. This is an innovative algorithm that stems from the decision-
tree-based Gradient Boosting, but solves the main drawbacks commonly referred to as pre-
diction shift and target leakage [49]. Combining the implementation of decision tables [50]
and Ordered Boosting [49], CatBoost defines a more efficient and balanced tree architecture
that outperforms current decision-tree-based algorithms [51] such as XGBoost [52] and
LightGBM [53]. Furthermore, CatBoost allows datasets containing categorical variables to
be automatically processed and analyzed. For a deeper insight into CatBoost algorithm
functioning, a formal description can be found in the work of Prokhorenkova et al. [49]. To
optimize the performance of the CatBoost model, its hyperparameters need to be carefully
fine-tuned. An extensive grid search (Table 4) was implemented to identify the best values
in terms of number of trees to be built (number of iterations), maximum depth of such
trees (max depth), and gradient step size (learning rate). To avoid overfitting phenomena,
a k-fold cross-validation procedure [54] and an overfitting detector were implemented in
addition to the maximum tree depth condition [55]. Since 80% of the dataset was used for
model training and validation, the k-value was set equal to 4 so that each fold included
the same number of observations. The remaining 20% was used for the testing phase.
The overfitting detector was set equal to its default value of 20 according to the relevant
literature [56]. The best model was determined by minimizing the value of the loss function.
The most suitable function to accomplish this task was identified in MultiRMSE because
the goal was the simultaneous prediction of 5 parameters (MS, MQ, ITS, ITSR, and CL) on
the basis of 3 inputs, namely: a categorical variable identifying the filler type (CV), the filler
content (Fc), and the air void percentage (AV).

Table 4. Grid search summary.

Feature Grid Selected Value

Number of iterations 100, 250, 500, 1000, 2000 1000
Max depth 1, 2, 3, 4, 5 3

Learning rate 0.5, 0.1, 0.05, 0.01, 0.005 0.1
k-fold Cross-validation – 4

Overfitting detector – 20
Loss function – MultiRMSE

Let D be the number of output variables, N the number of observations included in
the test vector, yTi the i-th target, and yPi the i-th prediction. The analytical expression of
MultiRMSE is then determined as follows:

MultiRMSE =

√√√√ 1
N

N

∑
i=1

D

∑
d=1

(
yTi,d − yPi,d

)2
(2)

To accurately measure the reliability of the predictions, multiple performance metrics
were implemented. Their definitions and analytical expressions are provided in Table 5.
The meanings of the terms were kept consistent with the above; µ and σ refer to the mean-
value and standard deviation of each variable, respectively. The full methodology was
implemented in Python 3.8.5.
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Table 5. Performance metrics.

Metric Definition Analytical Expression

MAE Mean absolute error 1
N

N
∑

i=1

∣∣yTi − yPi

∣∣
MAPE Mean absolute percentage error 1

N

N
∑

i=1

∣∣∣ yTi−yPi
yTi

∣∣∣× 100

MSE Mean squared error 1
N

N
∑

i=1
(yTi − yPi )

2

RMSE Root mean squared error
√

1
N

N
∑

i=1
(yTi − yPi )

2

R Pearson correlation coefficient 1
N−1

N
∑

i=1

(
yTi−µyTi

σyTi

)(
yPi−µyPi

σyPi

)
R2 Coefficient of determination 1 − ∑N

i=1(yTi−yPi )
2

∑N
i=1

(
yTi−µyTi

)2

2.3. Data Augmentation

The performance of a machine-learning-based model is highly dependent on training
data’s quality, quantity and meaning. The small size of the datasets is one of the main
challenges in model development, since collecting a considerable amount of data often
requires a very long time and very high costs. Data augmentation techniques artificially
increase the available amount of data by generating new synthetic data based on the col-
lected experimental observations. However, a fundamental condition must be satisfied: the
augmented data must keep the original meaning of the experimental data without altering
it [57]. This request is easy to satisfy for image classification problems, since cropping,
zooming, or rotating an image does not modify its meaning. However, this condition
becomes trickier in time-series predictions or input-target fitting problems. In the field of
pavement engineering, small-size datasets frequently occur since most laboratory investi-
gations are expensive and time-consuming. For this reason, mechanical behavior analyses
are often limited to a small number of specimens and few variations of a given asphalt
concrete mixture. In this study, to estimate unknown values based on known data, the
modified Akima (Makima) cubic Hermite interpolation technique was implemented [58].
This improves on the original Akima algorithm [59], and consists in producing piecewise
polynomials with continuous first-order derivatives by performing a cubic interpolation. In
this way, even highly nonlinear problems with oscillatory data can be considered, without
the excessive local undulations of third degree polynomial or cubic spline interpolation. In
accordance with Oh et al. [57], original data were not outnumbered by augmented data. It
was implemented a Makima algorithm aimed at determining the feature value between
two successively investigated filler contents, resulting in 3 synthetic observations for each
curve. This was performed for each of the eight mineral fillers considered and provided
24 additional data points for each feature. The dataset size was nearly doubled, increasing
from 32 to 56 observations, and an exemplificative diagram related to the air voids of
mixtures prepared with RHA was produced (Figure 3).
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3. Results and Discussion
3.1. Laboratory Results

The results of the laboratory investigation are presented in Figures 4–11. The trend
in the air void percentage as the filler content changes can be observed in Figure 4 for
asphalt mixtures prepared with conventional and waste fillers. As expected, an increase
in filler content led to a corresponding decrease in air voids. All mixture types met the
requirements of MoRTH standards, with AV values within the range of 3%–5%. However,
for the same filler contents, LD and SF mixtures showed a lower air void content than OPC
mixtures, with differences ranging from 0.05% to 0.26%.

VMA is defined as the volume of intergranular void space between the compacted
mixture aggregates, including air voids and unabsorbed bitumen volume. As can be seen in
Figure 5, LD and SF mixtures show lower VMA values than OPC mixtures, with differences
ranging from 0.13% to 0.41%.

Considering a filler content equal to 8.5%, mixtures prepared with BD, MD, SD, RHA,
FA, OPC, LD, and SF showed VMA values equal to 16.41%, 16.31%, 16.28%, 16.24%, 15.99%,
15.87%, 15.74%, and 15.52%, respectively.
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The percentage of VMA filled with bitumen defines VFB. It can be noticed that an
increase in filler content led to a corresponding increase in the percentage of voids filled
with bitumen. In accordance with the previously described AV and VMA values, the
substitution of OPC with LD or SF slightly increased VFB in the corresponding mixtures
(Figure 6).

Differences ranged from 0.15% to 1.02%. However, all mixture types met the re-
quirements of MoRTH standards, with VFB values within the range of 65%–85% [60].
Considering a filler content equal to 8.5%, mixtures prepared with FA, SD, MD, BD, and
RHA showed VFB values lower than OPC mixtures and equal to 75.10%, 74.49%, 74.27%,
73.45%, and 72.80%, respectively. Because of their reduced bleeding possibility, mixtures
prepared with these five mineral fillers could be preferred in hot climate regions [61].

The mechanical behavior of the investigated mixtures has been empirically described
by means of Marshall parameters. MS is graphically represented in Figure 7. As expected,
an increase in filler percentage led to an increase in MS for each bitumen percentage [62–64].
Except for the mixtures prepared with 4%, 5.5%, and 7% RHA and 4% MD (9.01 kN,
9.36 kN, 9.80 kN, and 9.81 kN, respectively), all other mixtures showed MS values above
the acceptance threshold of 10 kN established by the Indian regulations. The highest MS
was reached for the highest filler content with values equal to 10.18 kN, 12.31 kN, 12.39 kN,
12.60 kN, 12.93 kN, 13.74 kN, 13.86 kN, and 13.98 kN for mixtures prepared with RHA, MD,
FA, BD, SD, OPC, LD, and SF, respectively. LD and SF mixtures showed similar behavior to
OPC, demonstrating that both materials could effectively replace OPC in asphalt concrete
mixtures. Finally, for filler contents of 5.5%, 7.0%, and 8.5%, mixtures prepared with
these three fillers also satisfied the acceptance requirement of 13 kN required by MoRTH
standards for mixtures prepared with modified bitumen.

The laboratory investigation of MF produced results in the range of 2 mm–4 mm, as
required by MoRTH standards. As expected, the lowest MF values occurred at the highest
filler contents. By identifying higher stability and lower flow values, the more resistant
mixtures in terms of permanent deformation at high temperatures can be empirically
determined. For each mixture analyzed, the trend in MQ can be observed in Figure 8. An
increase in filler content led to a corresponding increase in the MQ. The substitution of
OPC with LD or SF slightly increased VFB in the corresponding mixtures, with differences
ranging from 0.04% to 0.37%. However, the results confirmed the achievement of MoRTH
acceptance requirements (2 kN/mm–6 kN/mm) for all the investigated mixtures. With
respect to SD, MD, FA, BD, and RHA mixtures, MQ values were lower than those obtained
with OPC.

In order to understand the tensile resistance behavior of the investigated asphalt
concrete mixtures, the trend in the ITS as the filler content changed can be observed in
Figure 9. As can be observed, an increase in filler content led to a corresponding increase
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in ITS, with the highest values corresponding to a filler content equal to 8.5% and leading
to higher resistance against fatigue cracking. The substitution of OPC with LD or SF left
unaltered the ITS response, slightly increasing the ITS values in the corresponding mixtures.
Differences ranged from 1 kPa to 11 kPa, demonstrating that LD and SF can suitably
replace OPC in asphalt mixtures. MoRTH standards require an ITS above 600 kPa [60]: this
condition was verified for all the investigated mixtures, with peak ITS values even higher
than 1 MPa.

The laboratory investigation of ITSR (Figure 10) produced results higher than 75%,
as prescribed by MoRTH standards. A higher filler content resulted in slightly higher
resistance to water damage, with LD and SF mixtures showing higher ITSR values than
OPC. Differences ranged from 0.19% to 1.30%. Due to the antistripping properties of
portlandite and calcite minerals in SF, these mixtures showed the highest ITSR values.
Similarly, due to the calcite mineral present in LD, bitumen filler adhesion was improved,
resulting in high ITSR values. SD mixtures showed similar resistance to water damage as
OPC ones; whereas, MD, FA, BD, and RHA had lower ITSR values. Fine clays contained in
BD reduced the resistance to water damage of the corresponding mixtures. Similar results
were also observed by Kuity et al. and by Arabani et al. [65,66]. Finally, the high porosity
of RHA resulted in the lowest ITSR values observed.

With respect to Cantabro abrasion loss, it can be observed that higher filler contents
always resulted in lower CL values (Figure 11). LD and SF mixtures performed even
better than those prepared with conventional OPC. Considering a filler content equal to
8.5%, mixtures prepared with RHA, BD, FA, MD, SD, OPC, LD, and SF showed CL values
equal to 20.25%, 19.01%, 15.15%, 10.89%, 8.97%, 8.52%, 8.42%, and 8.04%, respectively.
In accordance with Figure 4, lower values for air voids resulted in a lower occurrence of
raveling phenomena.

For all mixtures and for all laboratory parameters analyzed, the standard deviations
observed ranged between 8% and 12% of the mean values.

3.2. CatBoost Modeling Results

The statistical description of the involved modeling variables is provided in Table 6.
As previously described, eight selected filler types and four different filler percentages were
analyzed having fixed both the bitumen type and content, and the aggregate grading curve.
This resulted in 32 original observations for each variable that, combined with the 24 data
points augmented by means of Makima interpolation, determined a comprehensive dataset
made up of 56 observations for each feature.

Table 6. Statistical description of CatBoost model variables.

Variable Description U.M. Count Mean Std. Dev.

CV Categorical variable–filler type – 56 – –
Fc Filler content % 56 6.25 1.51
AV Air voids % 56 4.42 0.40
MS Marshall stability kN 56 11.88 1.42
MQ Marshall quotient kN/mm 56 3.93 0.74
ITS Indirect tensile strength kPa 56 901.61 107.82

ITSR Indirect tensile strength ratio % 56 85.35 3.76
CL Cantabro Loss % 56 15.73 4.05

A Pearson correlation matrix [67] was used to preliminarily determine the strength of
correlations among the variables considered by the model (Figure 12). Each matrix element
is described by a sign and an absolute value. The former stands for direct (+) or inverse
(−) proportionality between the two variables under consideration. The latter specifically
reports the correlation strength and ranges between 0 and 1. A value of 0 means there is no
correlation; the value of one variable cannot be determined based on the value of the other
one. Conversely, a value of 1 means there is a perfect correlation; the value of one variable



Materials 2023, 16, 807 13 of 21

can be exactly determined based on the value of the other one. By way of example, a strong
positive correlation was identified between CV and MS [r = +0.76, n = 56, p < 0.0005]
and between Fc and ITS [r = +0.70, n = 56, p < 0.0005]. Conversely, a strong negative
correlation was identified between AV and MQ [r = −0.92, n = 56, p < 0.0005].
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To improve the efficiency of model training [68], all experimental observations of each
variable were normalized according to Equation (3). All data were scaled to the same range
[0, +1], so that the minimum and the maximum values of each variable corresponded to
the lower and the upper bounds, respectively.

xnorm =
x − xmin

xmax − xmin
(3)

The CatBoost model training process is represented in Figure 13. In the beginning,
both training and validation loss returned high values of about 0.60. As the iterations
proceeded, a rapid decrease in loss functions was observed with values settling at around
0.20 after about 50 and 100 iterations for training and validation loss, respectively. The
MultiRMSE value gradually decreased until the Best Point was reached, identified at
iteration 268 by a validation loss value of 0.1569. After this point, a significant decrease in
the validation MultiRMSE is no longer appreciable. Therefore, the training process was
stopped by the overfitting detector after 20 additional iterations. The identification of the
best point allows the best hyperparameters configuration to be fixed and to proceed to the
successive testing phase.

After the denormalization of the processed variables, the testing phase began. The
reliability of model predictions was described by means of six different evaluation metrics,
namely MAE, MAPE, MSE, RMSE, R, and R2 (Table 7). For each of the five target variables,
the mean absolute percentage error was always lower than 5%, with Pearson correlation
coefficients higher than 0.95 and coefficients of determination higher than 0.88.

Table 7. CatBoost model performance metrics.

Metric MS MQ ITS ITSR CL

MAE 0.2595 0.1099 29.5495 0.6441 0.7317
MAPE 2.3328 3.0829 3.4862 0.7669 4.3340
MSE 0.1101 0.0195 1432.5907 0.6495 0.7670

RMSE 0.3319 0.1396 37.8496 0.8059 0.8758
R 0.9778 0.9826 0.9543 0.9744 0.9727
R2 0.9478 0.9626 0.8885 0.9446 0.9437
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The influence each variable had on model predictions was determined by means
of a sensitivity analysis implemented in Python 3.8.5 (Figure 14). The algorithm allows
the importance of each input feature to be determined and normalizes them in order to
reach a total of 100%. The more important a given feature is, the more significant will
be the average change in predictions if that feature is changed. It can be noticed that the
categorical variable has the greatest importance (47.89 %), followed by air voids content
(39.07 %) and filler content (13.04 %).
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To provide a deeper insight into the model’s performance, direct comparisons between
test vector observations and the corresponding CatBoost predictions are shown in Figure 15.
The former are represented by black histograms, and the latter by gray histograms. The ID
of each test observation is reported on the horizontal axis. Although relevant fluctuations
can be observed in values of each target variable, the differences between the histograms
corresponding to the true values and the ones corresponding to the predicted values are
not too pronounced.
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A further point of view on the accuracy of the predictions made by the CatBoost
model was provided by the regression plots represented in Figure 16. The name of the
corresponding variable is displayed on the lower edge of each diagram, whereas the
Pearson correlation coefficients are reported on the upper edge. CatBoost predictions are
represented as light blue circles, whereas a theoretical perfect correspondence between
true values and predictions (standing for R = 1) is represented by the line-of-equality
displayed in blue. The distance between the predictions and the line-of-equality is very
small in all cases, confirming the remarkable results obtained with respect to the Pearson
correlation coefficients.
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4. Conclusions

The present study discusses a laboratory investigation about seven selected alternative
fillers that could replace OPC in asphalt concrete mixtures, and a subsequent machine
learning model carried out by means of a decision-tree-based CatBoost approach towards
mechanical performance prediction. All mixture design parameters were kept constant,
except for the type and percentage of fillers, selected from RHA, BD, MD, SD, FA, LD,
and SF, and ranging from 4.0% to 8.5% with 1.5% step-size. Marshall, ITS, moisture
susceptibility, and Cantabro abrasion loss were carried out for a detailed experimental
assessment. The obtained results were implemented into a ML CatBoost methodology,
thus allowing MS, MQ, ITS, ITSR, and CL to be simultaneously predicted on the basis of
three inputs, namely: a categorical variable distinguishing the filler type, the filler content,
and the air voids content. Six different goodness-of-fit metrics were implemented to fully
evaluate the prediction reliability, namely MAE, MAPE, MSE, RMSE, R, and R2. Promising
results were obtained, with MAPE always lower than 5%, and R and R2 always higher
than 0.95 and 0.88, respectively, for each of the five targets. Based on these findings, the
following conclusions can be made:

• Based on chemical and physical characterization, all the investigated alternative fillers
could potentially be used in asphalt mixture design and replace OPC according to
MoRTH standards;

• MoRTH requisites were fully satisfied also in terms of mechanical strength. Except for
mixtures prepared with 4.0%, 5.5%, and 7.0% RHA and those prepared with 4.0% MD,
all other mixtures showed a MS value above the acceptance threshold of 10 kN. LD
and SF at 8.5% even overcame the acceptance requisite for modified bitumen mixtures,
with MS values higher than 13 kN;

• All the investigated mixtures also satisfied MoRTH prescriptions in terms of moisture
susceptibility, as they provided ITSR values consistently higher than 75%;

• In general terms, LD and SF were found to be the best alternative fillers in asphalt
concrete mixtures among those investigated. They not only met MoRTH standards
but even provided a better performance than OPC in terms of MS, ITS, ITSR, and CL;

• The data augmentation technique was worthwhile. Remarkable results in terms of all
the evaluation metrics were obtained even on the basis of a small-size starting dataset;

• The CatBoost approach resulted in a successful predictive tool that can provide reliable
mechanical performance predictions, thus avoiding expensive and time-consuming
experimental procedures;

• The entire methodology was developed using Python 3.8.5. It is easily interpretable
and implementable by other researchers. Any further application to datasets different
from the one analyzed in this study requires new calibration and optimization of
model hyperparameters.

The entire experimental investigation was carried out at a laboratory scale. An in-
teresting future development would be to increase the available dataset size, obtained by
varying mixtures’ bitumen content or other design parameters. Furthermore, additional
properties related to mixtures’ performance could be included, such as rutting resistance or
fatigue life. Finally, it would be interesting to perform a similar investigation moving to a
full-size scale to understand the field mechanical behavior exhibited by mixtures prepared
with the investigated alternative fillers.
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Abbreviations

AM Asphalt Mixture
AV Air Voids
BD Brick Dust
BF Backhouse filler
CL Cantabro Loss
CV Categorical Variable
FA Fly Ash
Fc Filler content
FM Fineness Modulus
ITS Indirect Tensile Strength
ITSR Indirect Tensile Strength Ratio
MBV Methylene blue value
MD Marble Dust
MF Marshall Flow
ML Machine Learning
MQ Marshall Quotient
MS Marshall Stability
LD Limestone Dust
OPC Ordinary Portland Cement
QD Quarry Dust
RHA Rice Husk Ash
SD Stone Dust
SF Silica Fume
VMA Voids in the Mineral Aggregate
VFB Voids Filled with Bitumen
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