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Abstract
A number of studies on novice programming report that loops and conditionals can be potential sources
of errors and misconceptions. We then felt the need to engage in a more systematic and in-depth
investigation about the teaching and learning of iteration in some representative high schools of our
regional area. As a medium-term outcome of this endeavour we expect to get �ne-grained insights about
the nature of students’ di�culties, on the one hand, as well as to identify possible pedagogical approaches
to be adopted by teachers, on the other. As a step of this project, we designed and administered a
survey composed of a set of small tasks, addressing students’ understanding of iteration in terms of code
reading abilities. After summarising the motivations underlying the choice of the tasklets and the overall
structure of the instrument, in this paper we will focus on a particular aspect which has not yet received
extensive attention in the computer science education literature. Speci�cally, we will consider students’
perception of self-con�dence, in connection with their actual performance in each task, the speci�c
program features, the cognitive demands (procedural vs. higher-level thinking skills), and the use of
code vs. �ow-charts. A noteworthy result of this analysis is that students’ perception of self-con�dence
is poorly correlated to actual performance in the task at hand. The main implications of our study are
twofold, pertaining our understanding of less conspicuous facets of the learning of iteration as well as
possible pedagogical strategies to strengthen metacognitive skills.
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1. Introduction

Learning to program is a complex, “slow and gradual process” [1]. Students’ di�culties are
well known and have been extensively investigated for tertiary education (e.g. [2, 3, 4]). Also
such basic �ow-control constructs as conditionals and loops turn out to be potential sources of
several mistakes and misconceptions for novice learners [5, 6]. However, the overall picture as
to the teaching and learning of iteration at the upper secondary level is still a bit fragmentary
and calls for more systematic study.

In the attempt to make some progress in this direction, focusing on the high school context in
our regional area, we are collecting teachers’ and learners’ insights from a range of perspectives,
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including subjective perception, instructional practice, ability and challenges to achieve program-
related tasks. In particular, we have used an instrument designed to investigate students’ ability
and perception of self-con�dence when analysing small programs based on iteration constructs.
In accordance with Izu’s et al. program comprehension perspective [7], the proposed test is
based on a set of small code reading tasks, or tasklets.

After summarising the rationale behind the chosen tasklets and the structure of the instrument,
in this paper we will mainly focus on a particular aspect which has not yet been deeply
investigated in computing education, and particularly at pre-tertiary level. Speci�cally, we will
consider students’ perception of self-con�dence in connection with their actual performance,
the program features, the implied cognitive demands and the use of textual code vs. �ow-charts.
Being able to monitor one’s “current level of mastery and understanding” while trying to

accomplish a task is indeed an important metacognitive competence [8], which appears to be
particularly crucial in computer science [9]. As pointed out by Brown and Harris [10], “from
both psychometric and learning theory perspectives, the accuracy of self-assessment [...] is
critical. If self-assessment processes lead students to conclude wrongly that they are good or
weak in some domain and they base personal decisions on such false interpretations, harm
could be done, even in classroom settings.”
The design of the tasklets and of the related questions was guided by the outcome of some

preliminary work, namely; (i) A number of interviews asking experienced high-school teachers
about the role of iteration in their practice and the related learning issues [11]; (ii) A “pilot”
survey addressed to students, including questions about their subjective perception of di�culties
as well as three short exercises on basic iteration constructs [12].
The rest of the paper is organised as follows. After mentioning in Sect. 2 some relevant

background, Sect. 3 outlines scope, main features and organisation of the developed instrument.
Then, Sect. 4 summarises the major �ndings concerning high school students’ perception of
self-con�dence. Finally, in Sect. 5 we conclude with a few remarks and future perspectives.

2. Background

Starting from the pioneering work on the cognitive implications of programming tasks in the
early 1980s, e.g. [13, 2], empirical research has persistently shown that �ow-control constructs
such as conditionals and loops are frequent sources of errors and misconceptions for novice
learners [5, 6, 14], especially when combined into nested constructs [15]. The reasons may be
manifold, ranging from lack of problem solving skills to the need for accuracy and strenuous
practice. According to Perkins et al. [16] programming is indeed “problem-solving intensive,”
in fact it requires multiple skills [17], and students may fail to develop a viable model of the
underlying notional machine [18] or may not be able to see code execution at higher levels of
abstraction to infer a program’s purpose [19]. Moreover, part of the students’ di�culties may
also be related to the habits and expectations of both teachers and learners [17].
Here the focus is on students’ perceived self-con�dence while achieving a task, in fact one

of the issues raised by our previous pilot study [12]. Being able to fairly assess the degree
of self-con�dence in the devised solution is connected to metacognitive skills, that can be
generally meant as “one’s knowledge about one’s cognitive processes” [20]. While extensively
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investigated in other �elds, e.g. [21], metacognition is recently receiving wider attention also
for programming education [22, 23]. Most often metacognitive skills have been explored
in connection with students’ success in tasks or exams [24, 25, 26] and some educators see
pedagogical value in providing learners with opportunities to re�ect on their metacognitive
awareness under the guidance of the teacher [24, 20]

3. Characterisation of the instrument

The results of our pilot studies focused on iteration involving teachers [11] and students [12],
also in light of the issues discussed in the literature on novice programming, raised a number of
questions that seemed to us worth further investigation, in particular:

Q1. To what extent are students at ease with a range of features implied by iteration? (E.g.,
loop conditions, nesting of �ow-control constructs, . . . )

Q2. How does the e�ort to trace code execution impact on the analysis of more abstract program
properties?

Q3. Are students more at ease when using �ow-chart or textual code representations of pro-
grams?

Q4. To what extent does students’ perception of self-con�dence correspond to their actual
achievement in a task?

It is precisely around the above questions that our investigation instrument has been designed.
To this aim, we have �rst identi�ed the general areas and topics outlined in Table 1, where
each area is labeled with the questions Q1–4 it pertains to. Then, we have de�ned two sets of
6 tasklets, whose scope covers the areas and topics listed in Table 1 in as balanced a way as
possible. The size and complexity of a taskset are chosen in such a way that students could
reasonably complete their work on it in about one hour — i.e. before losing concentration.
Each individual tasklet presents a program based on iteration constructs and asks one or

two multiple-choice questions about its related properties. When the question brings into play
high-level thinking skills (area A in Table 1), the student is also required to assess in a 4-grade
Likert scale her/his perceived level of self-con�dence on the provided answer. In addition, the
programs of three tasklets may be shown either as textual code or as �ow-charts (line FC in
Table 1). Finally, this instrument has been made accessible as an online survey, the taskset and
the code/�ow-chart format of selected tasklets being assigned randomly.
To accommodate for the common practice in the considered high schools, the textual code

is Java-like. In the following we will elaborate a little more on each of the areas reported in
Table 1. For more details about the individual tasklets, English translations of the four versions
(two tasksets ⇥ code/�ow-chart modes) of the test-survey are available via the links provided
in the online appendix http://nid.dimi.uniud.it/additional_material/iteration_tasksets.pdf .

A. Tasklets addressing higher-order thinking skills. This is a central area for our in-
vestigation and each tasklet includes at least a question of this type. It covers two broad
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Table 1
Areas and topics addressed by the tasklets.

A. Tasklets addressing higher-order thinking skills (Q2, Q4)

1. Abstraction on the computational model

a. Equivalence (nested constructs, for/while,
do-while/while . . . )

b. Reversibility

2. Relationships with the application domain

a. Completion (condition, expression, statement . . . )

b. Functional purpose

B. Tasklets addressing code features (Q1, Q3)

1. Structural features

a. Plain loop
b. Nested conditional
c. Nested loop

2. Processing plan

a. Exit condition
b. Loop control variable
c. Downward for loop

B. (continued)

3. Conditions

a. Simple condition
b. Composite condition
c. Boolean expression/variable

C. Tasklets addressing code execution,
conceivably via tracing (Q1, Q2)

1. Output/final state
2. Number of iterations

D. Tasklets addressing data types (Q1)

1. Numerical data (only)
2. Non-numerical data
3. Array data

SC. Perception of self-confidence (Q4)

FC. Flow-chart versus code (Q3)

categories, concerning abstraction over the computation structure and functional abstraction
in connection with some problem domain. To test students’ abilities in the former category
we ask equivalence [27] and reversibility [28] questions. The tasklets in the latter include more
common types of questions which ask either to choose an appropriate item (e.g., a condition, an
arithmetic expression, a statement) to complete a program with a given purpose or to identify
the intended purpose of a given program — in fact an instance of the recurrent “Explain in Plain
English” theme [19]. As an example, Figure 1 shows an equivalence question with four answer
options. Both equivalence and reversibility tasks require students to reason about program
behaviour comprehensively, generalising what could be ascertained by tracing code execution
for speci�c input data. The role of reversibility in learning, in particular, dates back to Piaget’s
work on cognitive development, where it is considered as an indicator of achievement of the
concrete operational stage, and according to a neo-Piagetian perspective the learning stages
apply regardless of age when approaching new knowledge domains [29]. Thus, reversibility
seems to be an appropriate instrument to assess their comprehension in the early stages of
learning to program.

B. Tasklets addressing specific code features. The code features listed in Table 1 are easily
recognisable in a tasklet by program inspection and are connected with the �ndings of our pilot
work [11, 12], indicating loop conditions and nested constructs as major sources of di�culties
— nested loops being seen as the hardest challenge in the learners’ subjective perception.
Widespread issues and misconceptions regarding nested constructs, in particular, have also been
identi�ed in a number of studies [30, 31, 32, 15]. Additional di�culties worth consideration that
can be ascribed to loop structures arise in the treatment of loop-control variables, see e.g. [2],
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reference option 1 option 2
program

option 3 option 4

T1.4 (ii) – Which option is equivalent to the reference program? The input requirements are that both the values
of m and n are positive (> 0) integers and two programs are meant to be equivalent if the final states of their executions are always
the same, whenever the initial states are the same — and provided the initial states comply with the given input requirements.

Figure 1: Example of equivalence question.

and while dealing with down-counting loops as opposed to more stereotypical up-counting
loops, as pointed out in [33].

C. Tasklets addressing code execution. Small problems that can be solved at a low opera-
tional level by tracing the code execution are quite common, since tracing is deemed to be a
basic ability “to build [...] higher-level comprehension skills upon” it [34]. In any case such
ability should not be taken for granted; many students struggle, for instance, with tracing loops,
especially while-loops [35]. Here, however, our main purpose is to address the investigation
question Q2: whether code tracing can to some extent support higher-order thinking in the task
at hand. In [12] we found indeed some cues suggesting that students’ performance on more
abstract tasks may improve when they are actually led to engage in some careful tracing, but
that they tend to elude this e�ort to check their conjectures about program behaviour. Thus, the
idea is to ask questions pertaining to the “abstract” area A, either including or not a previous
question that can be answered via tracing, in particular to determine the program output or the
overall number of iterations for given input data.

D. Tasklets addressing data types. The covered data types are essentially numbers, booleans,
characters, strings, and arrays. The indexed access to arrays, in particular, can be problematic
for novices, especially in connection with iteration — see e.g. the recent work [36, 37].

SC. Perception of self-confidence. Each tasklet requires to reason about a given program by
asking at least one question in the area A, and after answering this question students must also
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indicate their perceived level of self-con�dence in a Likert scale ranging from 1 (not con�dent
at all) to 4 (fully con�dent). Besides the reasons mentioned in the introduction and the potential
pedagogical implications [24, 20], we included this feature since our study [12] suggested that
students’ perception of di�culty and actual performance in a task tend not to be consistent.

FC. Flow-chart versus code. According to [38], “�owcharts support novice programmers
[...] and give guidance to what they need to do next, similar to a road-map.” They may also help
to identify di�culties and misconceptions [14]. On the other hand, Ramsey’s et al. �ndings [39]
seem to indicate that the use of �ow-charts may not be natural for students and that working
with code often gives rise to better performances. Thus, we tried to investigate more broadly
on this topic: the impact of using �ow charts should result from comparing the outcomes for
two randomly assigned versions of the same tasklet, where the program is presented as �ow
chart vs. textual code.

4. Data collection and analysis of the results

The test-survey has been administered to 225 students from 16 high schools disseminated in
the considered geographical area. 76% of the students followed a technical program, 15% a
scienti�c one and 9% other types of curricula. Their age range was 15–18; more speci�cally 18%
were attending the 2nd year, 54% the 3rd and 28% the 4th year (over 5 years of upper secondary
instruction). All the students have engaged in the test in controlled situations, either during
classwork (166) or at the beginning of a summer workshop (59). The data provided through the
survey have been collected and processed in anonymous form.1

Of the investigation questions introduced in Section 3, Q4 has an explicit focus on students’
perception of self-con�dence, whereas Q1–3 may be addressed both in terms of performance
and self-con�dence. As mentioned earlier, here we will take the latter perspective and consider
students’ performance only in order to answer Q4. In the following analysis, we will refer to the
tasklets (available online — see section 3) by labels in the format TS.K, where S = 1|2 denotes
the taskset and K = 1 ÷ 6 the K-th tasklet in that taskset, possibly followed by the speci�c
question, either (i) or (ii), when two multiple choice questions are asked.

Q1 – Self-confidence for di�erent code features. The bar diagram reported in Figure 2
shows the distribution of students’ perceived levels of self-con�dence on their answers concern-
ing abstract properties of the programs occurring in the tasklets. In summary, we can make the
following observations:

• Both tasklets requiring to deal with boolean variables (T1.3 and T2.1) have been perceived
as especially challenging.

• Most students feel not self-con�dent with string-processing code (T1.6, T2.3, T2.5); the
only possible exception is tasklet T2.6, but only about 20% of the subjects is fully con�dent
on their achievement and this is in fact the tasklet that registered the worst performance.

1Since no personal information was shared with any third party, and neither the students nor their institutions could
be identi�ed through the presented data, the research policies of our country do not require the approval by an
ethics commission.
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Figure 2: Students’ perception of self-confidence for each question addressing higher-order thinking
skills — sorted by decreasing “positive” level of self-confidence (Likert levels 3 and 4).

• Programs that carry out purely numerical (hence mathematical) computations, on the
other hand, are perceived as easier to understand (T1.1, T1.2, T1.4); an exception in
this respect is tasklet T2.2, which however requires to master the equivalence between
di�erent iteration constructs (for, while and do-while).

• Other code features, including nested constructs, seem to be perceived as more or less
troublesome, depending on the context in which they occur.

For the sake of exempli�cation, the question shown in Figure 1 (T1.4) received the highest
level of overall self-con�dence. At the other extreme, of lowest self-con�dence, the tasklet T2.5
includes a reversibility question for a string-processing program based on a plain loop.

It may be worth noting that most �gures of our analysis do not distinguish between hetero-
geneous subgroups of students since we intend to convey a general idea about their perceived
self-con�dence, independently of speci�c contexts. However, the average overall level of self-
con�dence turned out to be essentially the same for technical (2.56) and scienti�c schools (2.55),
and just a little lower for other types of schools (2.42). The di�erences appear more pronounced,
on the other hand, over subsequent years of instruction, indicating an increase from the 2nd
(2.20) to the 3rd year (2.70) and, unexpectedly, a decrease from the 3rd to the 4th year (2.46).

Q2 – Self-confidence in connection with tracing. We found no evidence that previous
e�ort to trace code execution can increase the perceived level of self-con�dence while analysing
a program at a more abstract level. In particular, we may contrast the self-con�dence bars in
Figure 2 for T1.3(ii) and T2.4(ii). Both questions ask to identify a program’s functional purpose:
in the former case after tracing the program to count the iterations for a given input; in the
latter after answering a more abstract reversibility question. The impact of tracing on program
comprehension should however be investigated more accurately by means of a speci�cally
designed instrument.
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Figure 3: Students’ self-confidence while analysing flow charts vs. textual code for all the tasklets
whose programs could be presented in both forms; dashed green line: average percentages of “positive”
levels of self-confidence (3 + 4).

Q3 – Impact of flow charts on self-confidence. As clearly illustrated by the bar diagram
in Figure 3, students’ self-con�dence does not appear to be a�ected by reasoning on �ow charts
rather than on textual code — and in fact their performance does not either. Also in terms of
average levels of self-con�dence when using �ow charts vs. textual code, the outcomes are
hardly distinguishable: 2.76 vs. 2.69 for the �rst taskset and 2.26 vs. 2.25 for the second one.

Q4 – Self-confidence vs. performance. The most signi�cant insight of the investigation,
from a pedagogical perspective, is that students’ perception of self-con�dence on the provided
solution is very poorly correlated with their actual performance in the task. To devise a
quantitative measure, the options of the multiple-choice questions have been subdivided into
three groups: correct answers, incorrect answers and severely incorrect answers.2

To begin with, after collecting the data the instrument turned out to be very well calibrated
for the sake of the intended analysis, since it resulted into a balanced tripartition of the answers:
35% correct, 30% incorrect and 35% severely incorrect (more speci�cally, 37%, 29% and 34% for
taskset 1; 33%, 31% and 36% for taskset 2).
Then, in order to establish a reasonable correspondence with the Likert range 1–4, these

three groups have been assigned weights 4, 2 and 1, respectively. On this basis, Pearson’s
correlation coe�cient between self-con�dence and performance is only 0.235 for taskset 1
and 0.208 for taskset 2 (less than, for example, the correlation measured in similar tests in
university courses [25, 26]). The correlation is low for most tasklets, the only exception being
the 0.598 level for T2.4(ii), and it is not statistically signi�cant for �ve items of the second taskset
(p > 0.05); moreover, for three items of the �rst taskset 0.02 < p < 0.05.

Alternatively, things can also be seen from a complementary standpoint by looking at
individual subjects: in this respect the correlation between self-con�dence and performance

2Refer to the online appendix to see how the options provided for each task have been classi�ed in these terms.
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Figure 4: Visualisation of the poor correlation between self-confidence on the proposed solution and
actual achievement in the tasklets.

is negative for 35% of the students. The general situation is probably better illustrated by the
diagram in Figure 4, where we can see that, on the whole, about half of the incorrect answers
as well as more than 40% of the severely incorrect answers are nevertheless associated with a
positive perception of self-con�dence on the provided solution. Conversely, more than 1/3 of
the correct answers are paired with a negative perception of self-con�dence.
In particular, remarkably high rates of positive self-con�dence (Likert levels 3 and 4) for

incorrect and severely incorrect answers have been registered for tasklet T1.2 (72%), for the
equivalence question T1.4(ii) reported in Figure 1 (63%), for tasklet T1.1 (62%) and for T2.6(ii)
(57%). Just to give a rough idea of the scope of these tasks, T1.2 asks a reversibility question
about a while loop with a composite condition and a nested if-else. In T1.1 the student is
required to identify the appropriate condition of a plain loop carrying out a simple numerical
computation. Finally, T2.6 asks again to assess equivalence between simple do-while and
while constructs used in string-processing programs.

5. Conclusions

In this paper we have attempted to analyse high school students’ perception of self-con�dence
while engaging in small program comprehension tasks. In Section 3 we have outlined the main
motivations underlying the choice of the tasks and the overall structure of the used instrument.
In Section 4 we have then summarised a range of �ndings concerning high school students’
perception of self-con�dence. This will hopefully help to build a more detailed picture about
the understanding of iteration in the high school context.

In a nutshell, the major results of our analysis can be stated as follows. First, students seem to
be more at ease with mathematical computations than with string-processing tasks (what may
be partly a consequence of the examples customarily presented in class), but boolean variables
are probably troublesome to them. Second, being required to trace code execution does not
appear to have a signi�cant impact on the understanding of more abstract program properties.
Third, our results do not support previous �ndings [39] that �ow-charts may not be natural for
students: the levels of self-con�dence when using �ow charts or textual code are essentially the
same. The most salient outcome is, however, that students’ perception of self-con�dence is very
poorly correlated to their actual performance in a task, what is likely to indicate weakness of
metacognitive skills.
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In light of the last observation as well as of the role of metacognitive skills in e�ective learning
[40], the main implications of our study pertain to devising pedagogical strategies to strengthen
learners’ awareness in this respect. According to Schraw [21], indeed, metacognitive awareness
can be taught. Thus, a more ambitious project could aim to elicit the reasons why students feel
more or less con�dent about the provided solutions, from their own perspective, and to explore
the impact of teaching metacognitive skills explicitly — in particular, if the type of tasks used in
our present study could also be exploited for these purposes.

Currently, the test-survey has been administered to more than 200 students, but we are trying
to broaden the scope of this empirical investigation, if possible by involving other interested
educators working in di�erent contexts. It would be especially interesting to compare the
perception of self-con�dence of girls versus boys. Indeed, besides noting that — unsurprisingly
— their average level of self-con�dence is slightly lower, we are unable to draw statistically
signi�cant insight from our present sample since the girls are only about 8% (19). It may also
be worth elaborating on and extending the tasksets outlined here for instructional purposes.
Indeed, we think that teachers could use them both as examples to illustrate di�erent aspects
connected to iteration and as instruments to assess students’ understanding of this topic.
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2017 – Informatics in Schools: Focus on Learning Programming, Springer International
Publishing, Cham, 2017, pp. 155–168.

[15] I. Cetin, et al., Teaching loops concept through visualization construction, Informatics in
Education - An International Journal 19 (2020) 589–609.

[16] D. Perkins, S. Schwartz, R. Simmons, Instructional strategies for the problems of novice
programmers, in: R. E. Mayer (Ed.), Teaching and Learning Computer Programming,
Routledge, New York, USA, 1988, pp. 153–178.

[17] T. Jenkins, On the di�culty of learning to program, in: Proceedings of the 3rd annual
LTSN ICS Conference, 2002, pp. 53–58.

[18] J. Sorva, Notional machines and introductory programming education, Trans. Comput.
Educ. 13 (2013) 8:1–8:31.

[19] R. Lister, B. Simon, E. Thompson, J. L. Whalley, C. Prasad, Not seeing the forest for the
trees: Novice programmers and the solo taxonomy, in: Proc. of the 11th Annual SIGCSE
Conf. on Innovation and Technology in Computer Science Education, ITICSE ’06, ACM,
New York, USA, 2006, pp. 118–122.

[20] M. Mani, Q. Mazumder, Incorporating metacognition into learning, in: Proceeding of the
44th ACM Technical Symposium on Computer Science Education, SIGCSE ’13, ACM, New
York, USA, 2013, pp. 53–58.

[21] G. Schraw, Promoting general metacognitive awareness, Instructional science 26 (1998)
113–125.

[22] P. Steinhorst, A. Petersen, J. Vahrenhold, Revisiting self-e�cacy in introductory program-
ming, in: Proceedings of the 2020 ACM Conference on International Computing Education
Research, 2020, pp. 158–169.

[23] D. Loksa, L. Margulieux, B. A. Becker, M. Craig, P. Denny, R. Pettit, J. Prather, Metacognition
and self-regulation in programming education: Theories and exemplars of use, ACM Trans.
Comput. Educ. To appear (2022).

[24] L. Murphy, J. Tenenberg, Do computer science students know what they know? a
calibration study of data structure knowledge, in: Proc. of the 10th Annual SIGCSE Conf.
on Innovation and Technology in Computer Science Education, ITiCSE ’05, ACM, New
York, USA, 2005, pp. 148–152.

[25] P. Denny, A. Luxton-Reilly, J. Hamer, D. B. Dahlstrom, H. C. Purchase, Self-predicted and
actual performance in an introductory programming course, in: Proc. of the 15th Annual

21



Conf. on Innovation and Technology in Computer Science Education, ITiCSE ’10, ACM,
New York, USA, 2010, pp. 118–122.

[26] P. Lee, S. N. Liao, Targeting metacognition by incorporating student-reported con�dence
estimates on self-assessment quizzes, in: Proc. of the 52nd ACM Technical Symp. on
Computer Science Education, SIGCSE ’21, ACM, New York, USA, 2021, pp. 431–437.

[27] C. Izu, C. Mirolo, Comparing small programs for equivalence: A code comprehension task
for novice programmers, in: Proc. of the 2020 ACM Conf. on Innovation and Technology
in Computer Science Education, ITiCSE ’20, ACM, New York, USA, 2020, pp. 466–472.

[28] C. Mirolo, C. Izu, E. Scapin, High-school students’ mastery of basic �ow-control constructs
through the lens of reversibility, in: Proc. of the 15th Workshop on Primary and Secondary
Computing Education, WiPSCE ’20, ACM, New York, USA, 2020, pp. 1–10.

[29] P. Sutherland, The application of piagetian and neo-piagetian ideas to further and higher
education, International J. of Lifelong Education 18 (1999) 286–294.

[30] D. Ginat, On novice loop boundaries and range conceptions, Computer Science Education
14 (2004) 165–181.

[31] I. Cetin, Student’s understanding of loops and nested loops in computer programming:
An APOS theory perspective, Canadian Journal of Science, Mathematics and Technology
Education 15 (2015) 155–170.

[32] M. Mladenovic, I. Boljat, �. �anko, Comparing loops misconceptions in block-based
and text-based programming languages at the K-12 level, Education and Information
Technologies 23 (2018) 1483–1500.

[33] A. Kumar, G. Dancik, A tutor for counter-controlled loop concepts and its evaluation, in:
33rd Annual Frontiers in Education - FIE ’03, volume 1, 2003, pp. T3C–7.

[34] R. Lister, E. Adams, S. Fitzgerald, et al., A multi-national study of reading and tracing
skills in novice programmers, in: Working Group Reports from ITiCSE on Innovation
and Technology in Computer Science Education, ITiCSE-WGR ’04, ACM, New York, USA,
2004, pp. 119–150.

[35] M. Lopez, J. Whalley, P. Robbins, R. Lister, Relationships between reading, tracing and
writing skills in introductory programming, in: Proc. 4th Int. Workshop on Comput. Educ.
Research, ICER ’08, ACM, New York, USA, 2008, pp. 101–112.

[36] L. Rigby, P. Denny, A. Luxton-Reilly, A miss is as good as a mile: O�-by-one errors
and arrays in an introductory programming course, in: Proc. of the 22nd Australasian
Computing Education Conf., ACM, New York, USA, 2020, pp. 31–38.

[37] C. S. Miller, A. Settle, Mixing and matching loop strategies: By value or by index?, in: Proc.
of the 52nd ACM Technical Symp. on Computer Science Education, SIGCSE ’21, ACM,
New York, 2021, pp. 1048–1054.

[38] R. Smetsers-Weeda, S. Smetsers, Problem solving and algorithmic development with
�owcharts, in: Proc. of the 12th Workshop on Primary and Secondary Computing Educa-
tion, WiPSCE ’17, ACM, New York, USA, 2017, pp. 25–34.

[39] H. R. Ramsey, M. E. Atwood, J. R. Van Doren, Flowcharts versus program design languages:
An experimental comparison, Commun. ACM 26 (1983) 445–449.

[40] S. Bergin, R. Reilly, D. Traynor, Examining the role of self-regulated learning on introduc-
tory programming performance, in: Proc. of the 1st Int. Workshop on Comput. Educat.
Research, ICER ’05, ACM, New York, USA, 2005, pp. 81–86.

22


	Keynote-Brinda-ISSEP22.pdf
	1 Abstract
	2 CV

	Keynote-Brinda-ISSEP22.pdf
	1 Abstract
	2 CV

	Keynote-Nardelli-ISSEP22.pdf
	1 Abstract
	2 CV

	Keynote-Sentance-ISSEP22.pdf
	1 Abstract
	2 CV

	camera_ready_manuscript.pdf
	1 Introduction
	2 Background
	3 Characterisation of the instrument
	4 Data collection and analysis of the results
	5 Conclusions

	ISSEP22_Local_1019.pdf
	1 Introduction
	2 Computational thinking
	2.1 Definition and related work
	2.2 Computational thinking in "basic digital education"

	3 Competency Model for Computational Thinking
	4 Competencies achievable using the BBC micro:bit
	5 Comparison and Recommendations
	6 Conclusion and Future Work

	ISSEP_2022_VF-8529.pdf
	1 Introduction
	2 Computational Thinking
	2.1 OntoCnE – Ontology for Computing at School
	2.2 The role of Learning Resources for Training Computational Thinking

	3 Designing Learning Resources
	3.1 Using Annotation
	3.2 Using Automata and ER

	4 Conclusion

	ISSEP_Local_0280.pdf
	1 Introduction
	2 Computer Science in Austrian Schools
	3 Digital Education in Austria
	3.1 Masterplan for Digitalization
	3.2 8-Point-Concept
	3.3 Introduction of the Subject ``Digital Education''
	3.4 Compulsory Subject Digital Education in Austria

	4 Conclusion and Outlook

	Paper-BPP-5084.pdf
	1 Introduction
	2 Related Work and Development
	2.1 Related Work
	2.2 Fundamental Programming Concepts
	2.3 Didactical Considerations

	3 Overview of the Learning Material
	3.1 Introduction of the micro:bit and the Programming Environment
	3.2 Event control (Working with Input) and Random Numbers
	3.3 First Contact with Branching
	3.4 Start Working with Variables
	3.5 Combination of Branching and Variables
	3.6 Repeating Code with Loops

	4 Experience with the Material
	4.1 Experiences from the Teacher's Point of View
	4.2 Survey Results on the Student Perception

	5 Conclusion and Future Work

	ISSEP2022 6314.pdf
	1 Introduction
	2 Creation of a structure for PhCSs
	3 Connection of the attributes to computational thinking
	3.1 Preselection of the attributes
	3.2 Illustration of the impact on a concrete example

	4 Discussion
	5 Conclusion

	ISSEP_1625.pdf
	1 Introduction
	2 Study Design
	2.1 Integration of the Teaching Learning Laboratory in a seminar
	2.2 Robotic Workshop Design
	2.3 Method and Instruments

	3 Summary

	ISSEP_3294_NEW.pdf
	1 Introduction
	1.1 Video Vignettes

	2 Method
	2.1 Reliability

	3 Preliminary Results and Discussion
	4 Conclusion

	ISSEP_5554.pdf
	1 Introduction
	2 Exams in Theoretical Computer Science
	3 Implementation of Digital Exams with Tablets
	3.1 Hardware Requirements
	3.2 Software Requirements

	4 Options for an iPad Exam in Theoretical Computer Science
	5 Further Steps
	6 Conclusions
	7 Acknowledgements

	Teachers views.pdf
	1 Introduction
	2 Method
	3 First Findings
	4 Discussion and Future work

	ISSEP_8436_NEW.pdf
	1 Introduction
	2 Method
	3 Preliminary Results
	4 Discussion and Conclusion

	ISSEP2022_LDL.pdf
	1 Introduction
	2 Related Work
	3 Project and Research Plan

	issep2022-workshop-final.pdf
	1 Workshop Contents

	ISSEP_Workshop-5825.pdf
	1 Making, Makerspaces & Maker-Education
	2 Making & Informatics
	3 The Making at School project

	ISSEP2022_DigiFit4All_Workshop_local_Proceedings.pdf
	1 Introduction
	2 Creating Courses by Competency Selection
	3 Testing the Learning Resources

	ISSEP22_Local_4795.pdf
	1 Introduction and Motivation
	2 Learning programming concepts using the Sphero Bolt

	ISSEP22-WSP-9087.pdf
	1 Extended Abstract

	ISSEP22-DC-2363.pdf
	1 Research Questions
	2 Methodology
	3 Results
	4 Related Work

	ISSEP22-DC-2501.pdf
	1 Introduction
	2 Research Questions and Methodology
	3 Initial Results
	4 Related Work

	ISSEP22-DC-2867.pdf
	1 Description

	ISSEP22-DC-3285.pdf
	1 Introduction
	2 Research Questions
	3 Methodology in each step of the thesis
	4 Related Works

	ISSEP22-DC-3461.pdf
	1 Basic Information
	2 Research Question
	3 Methodologies
	4 Achieved Results
	5 Related works

	ISSEP22-DC-3821.pdf
	1 Related work
	2 Research questions and methodology
	3 Results

	ISSEP22-DC-9695.pdf
	1 Research Questions
	2 Main research methodologies
	3 Already achieved results
	4 Most influential related works

	ISSEP_1625.pdf
	1 Introduction
	2 Study Design
	2.1 Integration of the Teaching Learning Laboratory in a seminar
	2.2 Robotic Workshop Design
	2.3 Method and Instruments

	3 Summary

	ISSEP22-WSP-9087.pdf
	1 Extended Abstract

	ISSEP22-WSP-9087.pdf
	1 Extended Abstract

	ISSEP22-WSP-9087.pdf
	1 Extended Abstract


