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Abstract
A simple, transparent, two-dimensional, nonlinear model of cell reorientation is constructed
in this paper. The cells are attached to a substrate by “focal adhesions” that transmit the
deformation of the substrate to the “stress fibers” in the cell. When the substrate is subjected
to a deformation, say an in-plane bi-axial deformation with stretches λ1 and λ2, the stress
fibers deform with it and change their length and orientation. In addition, the focal adhesions
can detach from the substrate and reattach to it at new nearby locations, and this process of
detachment and reattachment can happen many times. In this scenario the (varying) fiber
angle � in the reference configuration plays the role of an internal variable. In addition
to the elastic energy of the stress fibers, the energy associated with the focal adhesions
is accounted for by a wiggly energy εa cos�/ε, 0 < ε � 1. Each local minimum of this
energy corresponds to a particular configuration of the focal adhesions. The small amplitude
εa indicates that the energy barrier between two neighboring configurations is relatively
small, and the small distance 2πε between the local minima indicates that a focal adhesion
does not have to move very far before it reattaches. The evolution of this system is studied
using a gradient flow kinetic law, which is homogenized for ε → 0 using results from weak
convergence. The results determine (a) a region of the λ1, λ2-plane in which the (referential)
fiber orientation remains stuck at the angle � and does not evolve, and (b) the evolution of
the orientation when the stretches move out of this region as the fibers seek to minimize
energy.
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1 Introduction

The reference configuration plays a central role in continuum solid mechanics. In the sim-
plest settings it is a fixed (time-independent) configuration of the body with material points
being identified by their position vectors in this configuration. On the other hand, many
interesting physical phenomena involve time-dependent, i.e., varying, reference configura-
tions. This is encountered for example in problems involving propagating “defects” (such
as cracks, dislocations and phase boundaries): not only do the defects move when viewed
from the laboratory frame (i.e. the current configuration), but, since they are associated with
different material points at different times, they also move with respect to the reference con-
figuration. A different setting in which one confronts this same issue is in surface growth,
where new material points are added to the body at its boundary which therefore requires one
to consider a varying set of material points, i.e., a time-dependent reference configuration.

One way in which to view the problem examined in this paper is that it is a study of a
fiber-reinforced composite material in which the fiber orientation � in the reference config-
uration is time-dependent. Consider as a toy problem a single fiber attached at its two ends
to a substrate. As the substrate deforms, so does the fiber. Now suppose that in addition to
the substrate deformation, the attachments between the fiber and substrate can detach and
then reattach at some new points on the substrate, and that this process can continue until
the fiber has reached a new preferred length and orientation. Our goal is to model a system
undergoing such a process of reorientation.

This problem is motivated by the phenomenon of reorientation in cell biology, e.g., [9],
[10], [11], [12], [17], [23]. In this setting, the stress fibers in the cytoskeleton of the cell
are attached to a substrate (the extra-cellular matrix) by “focal adhesions” that transmit
force between the substrate and the cell. When the substrate is deformed, say cyclically,1

the stress fibers reorient themselves during which process the focal adhesions continually
detach and reattach at different nearby sites until they eventually reach a steady state. The
details of this process, and the final fiber orientation, depend on the amplitude, frequency
and bi-axiality ratio of the loading, e.g., [6], [13], [17]; see discussion surrounding equation
(B.8) in Appendix B.

In addition to the experimental work described in the aforementioned references, sev-
eral theoretical studies of such systems have been carried out. A few from among them are
the following: an isotropic linear elasticity model by Faust et al. [10]; an anisotropic lin-
ear elasticity model by Livne et al. [17]; continuum mechanical models based on nonlinear
elasticity by Melnik and Goriely [20], Ciambella and Nardinocchi [8], Ciambella et al. [7],
Lucci and Preziosi [19]; a viscoelastic model by Lucci, Giverso and Preziosi [18]; a co-
existent phase nonlinearly elastic model by Lazopoulos and Stamenovic [16], Lazopoulos
and Pirentis [15]; and so on. Ciambella and Nardinocchi [8] point out that similar reorien-
tation occurs in other physical systems such as liquid crystals and liquid crystal elastomers.
We also draw attention to the micromechanics based three-dimensional model developed

1In this context, such periodic loading occurs, for example, in the lungs due to breathing, arteries due to
pulsating blood flow, and cardiac muscles due to the beating heart.
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Fig. 1 A cartoon of the system. The “cell” is attached at its two ends to the substrate by a pair of “focal
adhesions”. During a loading process the substrate is subjected to stretches λ1(t) and λ2(t) in the respective
directions e1 and e2 where t is time, and this deformation is transmitted to the cell by the focal adhesions.
(a) In the reference configuration the cell makes an angle �(t) at time t with the direction e1. The referential
angle �(t) is time-dependent because the focal adhesions can detach and then reattach to different points of
the substrate. (b) In the current configuration the cell makes an angle θ(t) with e1

by Vigliotti et al. [24], as well as the study of the reorientation of cells overlying grooved
substrates, Ristori et al. [22].

The first goal of the present paper is to construct a simple, transparent, two-dimensional,
nonlinear model that is essentially equivalent to the aforementioned nonlinearly elastic mod-
els [8], [19] but whose construction by-passes the complexities (as well as the generalities,
rigor and elegance) of continuum mechanics.

In many problems involving a changing reference configuration, one introduces an in-
ternal variable to characterize an evolving feature of that configuration, e.g., the position
of a crack-tip or the surface describing a phase boundary. A change in the internal vari-
able leads to energy dissipation and through this one can identify a work-conjugate driving
force (sometimes referred to as a configurational force). In thermodynamic equilibrium, the
driving force vanishes, a concept closely related to the minimization of energy. When the
system is not in equilibrium, the internal variable evolves according to a kinetic law relating
the driving force to the rate-of-change of the internal variable (and possibly other variables),
e.g., Callen [5] and Kestin [14]. This is the approach we follow.

We characterize the mechanical response of a cell by an energy function W(λ1, λ2,�)

where λ1 and λ2 are the in-plane stretches of the substrate that are transmitted to the cell
via the focal adhesions, and the internal variable � is the angle of orientation of the cell in
the reference configuration; see Fig. 1 for a schematic depiction of the system. While we
illustrate our approach using an energy of the form W(�) where �(λ1, λ2,�) is the stretch
along the fibers, our approach is not limited to such energies. During a (slow) nonequilibrium
process with λ1 = λ1(t), λ2 = λ2(t), � = �(t), the dissipation-rate is the difference between
the rate of working and the rate of increase of stored energy:

D := σ1λ̇1 + σ2λ̇2 − d

dt
W(λ1(t), λ2(t),�(t)) = −∂W

∂�
�̇ ≥ 0, (1)
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where σα = ∂W/∂λα is a Piola stress component. Observe that the dissipation-rate vanishes
if the internal variable � is constant. The dissipation-rate can be written as

D= f �̇ ≥ 0 where f := −∂W

∂�
(2)

is the driving force conjugate to �̇. In thermodynamic equilibrium f = 0:

∂W

∂�
= 0.

The evolution of the system when it is not in equilibrium is taken to be governed by a
kinetic law �̇ = V(f) where the kinetic response function V obeys V(f)f ≥ 0 required by the
dissipation inequality D≥ 0. The simplest example of such a kinetic law is a gradient flow,

m �̇ = f,

which is a linear relation between �̇ and the conjugate driving force f, the constant parameter
m > 0 being the mobility.

The second and in fact principal goal of the present paper is to model the detach-
ment/reattachment process using a wiggly energy. During reorientation, a focal adhesion
along a stress fiber detaches from the substrate and reattaches at a new, nearby, location.
This process of detachment and reattachment repeats continually as the fiber reorients. This
suggests that the energy associated with a focal adhesion has many local minima, each cor-
responding to a particular configuration of the focal adhesion, with some amount of energy
required to move it from one local minimum to the next. To account for this in as simple a
way as possible, we supplement the energy considered above with an additional wiggly en-
ergy aε cos�/ε associated with the focal adhesions. The distance between the energy wells
of this periodic energy, and its amplitude (the energy barrier), both scale with the small pa-
rameter ε. The small amplitude indicates that only a small amount of energy is needed to
crossover from one energy-well to the next, and the smallness of the distance between local
minima indicate that focal adhesions do not displace far before they reattach. Thus we next
consider the energy

Wε(�;λ1, λ2) = W(�;λ1, λ2) + aε cos�/ε, a > 0, 0 < ε � 1. (3)

The driving force associated with Wε is

fε(�;λ1, λ2) := −∂Wε

∂�
(�;λ1, λ2) = f(�;λ1, λ2) + a sin(�/ε);

observe that while the wiggly energy → 0 as ε → 0 the associated driving force does not. If
the evolution obeys a gradient flow kinetic law then

m �̇ε = −∂Wε

∂�
(�ε;λ1, λ2).

Given the loading λ1(t), λ2(t) and the initial orientation �ε(0), this kinetic equation is be
solved for �ε(t). However, we are not interested in this detailed (exact) solution �ε(t) that
accounts for each attachment and detachment of a focal adhesion. It is the effective kinetic
law governing the effective orientation that is of interest and this leads us to homogenize the
preceding differential equation using the results of Abeyaratne, Chu and James [1], [2]. As
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we shall show, this determines a region of the λ1, λ2-plane on which fibers do not reorient.
The boundary of this region is the threshold for reorientation, with the orientation evolving
according to the effective kinetic law when the stretches lie outside this region. This is
consistent with the qualitative observations reported by Faust et al. [10]. We have not found
quantitative information on this phenomenon in the literature, and it would be important to
compare our predictions with such measurements.

Given the minimalistic nature of our model, the internal variable � need not represent
the orientation of a family of fibers. A model like the one we develop could possibly be used
to study other physical systems, for example, friction, though one must of course choose a
function Wε(�;λ1, λ2) appropriate for that system.

The rest of this paper is organized as follows: the basic problem is described in Sect. 2.
Then in Sect. 3 we examine the equilibrium configurations of the system and their stability.
The evolution of the system when it is out of equilibrium is studied in Sect. 4, and in Sect. 5
we incorporate the kinetics of attachment and detachment through a wiggly energy.

2 Preliminaries

We imagine a cell to be a slender ellipse-like two-dimensional object overlying a substrate.
Each cell is attached to the substrate, the substrate being the loading device that applies
a deformation to the cell. The substrate is subjected to a homogeneous deformation with
gradient

F(t) = λ1(t)e1 ⊗ e1 + λ2(t)e2 ⊗ e2 + λ3(t)e3 ⊗ e3 (4)

at time t , where the λi ’s are the principal stretches, the principal directions {e1, e2, e2} are
fixed, and the cells lie in the plane spanned by e1 and e2.

We assume the “stress fibers” in a cell to be oriented in the direction of its major axis.
Though a cell is attached to the substrate, its points of attachment can change and so its
orientation in the reference configuration is time-dependent in general. In the setting of
interest here, there are two families of cells with the associated stress fibers oriented at
angles2 ±�(t) in the reference configuration with respect to the direction e1. With no loss
of generality we take � ∈ [0,π/2]. The unit vectors defining the stress fiber directions (in
the reference configuration) are

mR(t) = cos�(t) e1 + sin�(t) e2, m′
R(t) = cos�(t) e1 − sin�(t) e2. (5)

In the deformed configuration the stress fibers make angles ±θ(t) with the e1-direction given
by

tan θ = λ2

λ1
tan�. (6)

If the cell was attached to fixed points of the substrate, then � would be constant though θ

would vary with t when the deformation was time-dependent.

2Livne et al. [17] say they observe two angles, one the mirror image of the other. Hence, like Livne et al. [17]
and Ciambella and Nardinocchi [8] we take the fiber angles to be ±�. In contrast, Lucci and Preziosi [19]
take them to be � and � + π/2.
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In what follows, the stretches �1 and �2 in the directions of the major and minor axes of
the ellipse-like cell, i.e., the stress fiber direction and the direction perpendicular to it, will
play a central role. They are given by

�1 =
√

λ2
1 cos2 � + λ2

2 sin2 �, �2 =
√

λ2
1 sin2 � + λ2

2 cos2 �. (7)

We note in passing that when viewed from the continuum theory of nonlinear elasticity, the
anisotropic invariants I4 := |FmR|2 and I6 := |Fm′

R|2 can be readily shown using (4), (5)
and (7)1 to be

I4 = I6 = �2
1. (8)

If the cell can be treated as being elastic and isotropic, then its energy can be expressed
as a function of λ1 and λ2. However, due to the preferred orientation induced by the stress
fibers, the response is anisotropic and the energy will be a function of the fiber orientation
� as well:

W = Ŵ (λ1, λ2,�); (9)

see, for example, Ogden [21]. Since we model the substrate as a hard loading device that
applies a prescribed deformation, the energy of the substrate does not enter the model.

Given the stretches λ1 and λ2, we are first interested in the equilibrium fiber orientations
that minimize the energy Ŵ (λ1, λ2,�), i.e., the angles � given by

∂Ŵ

∂�
= 0,

∂2Ŵ

∂�2

∣∣∣∣
equilibrium

> 0. (10)

Some authors have assumed that, instead of minimizing the energy, the fibers orient them-
selves in the directions of minimum strain or minimum stress; see references and discussion
in Livne et al. [17].

During a (slow) nonequilibrium process with λ1 = λ1(t), λ2 = λ2(t), � = �(t), the local
dissipation-rate D is the difference between the rate of working and the rate of increase of
stored energy given by (1). From the alternate expression (2)1 for D we identify

f = −∂Ŵ

∂�
, (11)

to be the driving force conjugate to the orientation �; see, e.g., [3], [4], [5], [14]. Observe
that f = 0 in equilibrium.

We assume that when it is out of equilibrium, the fiber orientation evolves according to
a gradient flow, i.e., a linear kinetic relation between the rate of change of the referential
orientation �̇ and the driving force f:

μτ �̇ = −∂Ŵ

∂�
. (12)

For convenience we have introduced the constant μ > 0 here which is a parameter that
appears in Ŵ and has the dimension of Ŵ . The constant τ > 0 then has the dimension of
time and characterizes the rate at which the cells reorient themselves as they evolve towards
equilibrium. The term m := μτ > 0 is thus the mobility whose positivity ensures that the
dissipation-rate is nonnegative.
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3 Equilibrium and Stability

Though our model is not limited to the following energy function, it is convenient for pur-
poses of illustration to consider an energy of the form3

Ŵ (λ1, λ2,�) = W(�1), (13)

where �1 is the stretch in the stress fiber direction introduced previously in (7)1. In the
context of the continuum theory of nonlinear elasticity, such an energy corresponds, for
example, to a strain energy function that is the sum of an isotropic part (a function of the
principal scalar invariants I1, I2, I3 that are independent of � and so has been omitted since
it does not affect our analysis here) and an anisotropic part of the form W(I4, I6) where the
anisotropic invariants I4 and I6 were given previously in (8). We assume the following mild
restrictions on W(�):

W ′(1) = 0, W ′′(1) > 0; W ′(�)

{
> 0 for � > 1,

< 0 for 0 < � < 1.
(14)

Note in particular that � = 1 is the unique zero of the function W ′(�).
The first and second derivatives of Ŵ with respect to � are

∂Ŵ

∂�
= W ′(�1)

2�1
(λ2

2 − λ2
1) sin 2�, (15)

∂2Ŵ

∂�2
= �1W

′′(�1) − W ′(�1)

4�3
1

(λ2
1 − λ2

2)
2 sin2 2� − W ′(�1)

�1
(λ2

1 − λ2
2) cos 2�. (16)

Motivated by the experiments of Livne et al. [17], we will be interested in equilibrium con-
figurations with

λ1 ≥ 1 ≥ λ2 > 0, (17)

and so in particular shall not consider equilibria in which4 λ1 = λ2 except for the trivial one
λ1 = λ2 = 1.

According to (10)1, (15) and λ1 �= λ2 the equilibrium configurations are given by

W ′(�1) sin 2� = 0, (18)

which yields

� = 0, � = π

2
, � = �eq. (19)

Here �eq is the unique angle in [0,π/2] corresponding to W ′(�1) = 0, which by (14) cor-
responds to �1 = 1, and therefore by (7)1 is given by

cos2 �eq = 1 − λ2
2

λ2
1 − λ2

2

. (20)

3Lucci and Preziosi [19] say that the stiffness in the direction of the stress fibers is 2-10 times greater than in
the direction normal to them.
4Wang et al. [12] say there is no preferred orientation when λ1 = λ2 which is consistent with (15) and (16).
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Fig. 2 The equilibrium fiber
orientations �eq and θeq (in the
reference and current
configurations respectively)
versus the stretch λ1 at different
constant values of λ2. Observe
that �eq → π/2 while

θeq → cos−1
√

1 − λ2
2 as

λ1 → ∞ in accordance with (20)
and (21). It is θeq that is observed
in the laboratory

In view of the inequalities in (17), equation (20) defines a real angle �eq.
The fiber orientation θeq in the deformed configuration is given by (6) and (20) to be

cos2 θeq = 1 − λ2
2

λ2
1 − λ2

2

λ2
1. (21)

It is worth noting that it is θeq (not �eq) that is observed in the laboratory. For example if the
stretch λ1 increases monotonically from λ1 = 1 with λ2 < 1 held constant, the equilibrium

angle θeq in the current configuration increases from 0 to cos−1
√

1 − λ2
2, whereas the angle

�eq in the reference configuration increases from 0 to π/2 (no matter what the value of λ2).
If the stretch λ2 is held constant at λ2 = 1, then θeq = �eq = π/2 for all λ1 > 1; and similarly
θeq = �eq = 0 for λ1 = 1 and λ2 < 1. Graphs of �eq and θeq versus λ1 are shown in Fig. 2.

To study the stability of these equilibria we evaluate the second derivatives of Ŵ at each
equilibrium configuration which from (16), (19) and (20) lead to

∂2Ŵ

∂�2

∣∣∣∣
�=0

= −W ′(λ1)

λ1
(λ2

1 − λ2
2),

∂2Ŵ

∂�2

∣∣∣∣
�=π/2

= W ′(λ2)

λ2
(λ2

1 − λ2
2), (22)

∂2Ŵ

∂�2

∣∣∣∣
�=�eq

= W ′′(1)(λ2
1 − 1)(1 − λ2

2). (23)

Keeping (14) and (17) in mind, we conclude that the equilibrium configurations � = 0
and � = π/2 are unstable (they correspond to local maxima of Ŵ (λ1, λ2, ·)), while the
configuration � = �eq is stable (it corresponds to a local minimum of Ŵ (λ1, λ2, ·)). Figure 3
schematically depicts the variation of Ŵ with � at fixed λ1, λ2.

It is worth remarking that the preceding results on the equilibrium configurations and
their stability do not depend on any particular choice of the energy W(�1).

Some detailed results pertaining to the equilibrium fiber orientation, and how they com-
pare with the results of others, can be found in Appendix A.

4 Slow Dynamic Evolution: Illustration

From hereon we will primarily focus on the angle �(t) in the reference configuration. The
corresponding angle θ(t) in the current configuration can always be calculated using (6).
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Fig. 3 Energy Ŵ versus
orientation � at fixed values of
the principal stretches. The figure
has been drawn for the particular
energy W(�1) = μ

2 (�2
1 − 1)2

with λ1 = 1.2, λ2 = 0.9. The key
characteristics of the curve do not
depend on this particular choice
of W(�1)

According to (12) and (15), in a slow nonequilibrium process the fiber orientation evolves
according to the linear gradient flow kinetic relation

μτ �̇ = −∂W

∂�
= W ′(�1)

2�1
(λ2

1 − λ2
2) sin 2�. (24)

To illustrate the details of this evolution, consider the particular energy function

W(�1) = 1

2
μ(�2

1 − 1)2, μ > 0, (25)

where the elastic modulus μ is a constant. This corresponds, for example, to the energy
W = 1

2 μ4(I4 − 1)2 + 1
2μ6(I6 − 1)2 of nonlinear elasticity theory where I4 and I6 are the two

anisotropic invariants introduced previously. This is in fact precisely the model considered
by Melnik and Goriely [20] and one of the models used by Ciambella and Nardinocchi [8];
it is also closely related to a special case of a model considered by Lucci and Preziosi [19].
From (7)1 and (25) this energy can be written explicitly as

Ŵ (λ1, λ2,�)

= μ

8

[
(λ2

1 − λ2
2)

2 cos2 2� + 2(λ2
1 − λ2

2)(λ
2
1 + λ2

2 − 2) cos 2�

+ (λ2
1 + λ2

2 − 2)2
]
. (26)

Figure 3 presented earlier, where we plotted Ŵ versus � at fixed λ1 and λ2, pertained to the
particular energy (26).

The evolution equation (24), (25) can now be written as

τ�̇ = F(�;λ1, λ2), (27)

where the (scaled) driving force5 F is

F(�;λ1, λ2) = [
A(λ1, λ2) cos2 � − B(λ1, λ2)

]
sin 2�, (28)

with

A(λ1, λ2) = (λ2
1 − λ2

2)
2, B(λ1, λ2) = (λ2

1 − λ2
2)(1 − λ2

2). (29)

5Note that F = f/μ where f is the driving force introduced previously in (11).
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Fig. 4 Driving force F versus � at fixed λ1, λ2 according to (28), (29). When � ∈ (0,�eq) the driving force
is positive and �(t) will increase towards �eq; whereas if � ∈ (�eq,π/2) the driving force is negative and
�(t) will decrease towards �eq. This is depicted by the arrows in the figure. The figure has been drawn for
λ1 = 1.5, λ2 = 0.5

The evolution equations (27), (28), (29) coincide with equations (3.39), (4.42) of Ciambella
and Nardinocchi [8].

Evolution according to the kinetic relation (27) depends on the characteristics of the
driving force F . With a prime denoting differentiation with respect to �, one can show
that F has the following properties: F(0;λ1, λ2) = 0, F ′(0;λ1, λ2) > 0, F(π/2;λ1, λ2) =
0, F ′(π/2;λ1, λ2) > 0, F(�eq;λ1, λ2) = 0, F ′(�eq;λ1, λ2) < 0. Moreover, one can verify
that F(·;λ1, λ2) has a unique local maximum in (0,�eq) and a unique local minimum in
(�eq,π/2). Therefore the graph of the driving force F(�;λ1, λ2) versus � at any fixed
λ1, λ2 with λ1 > 1 > λ2 > 0 is as shown in Fig. 4. The function F(·;λ1, λ2) vanishes at
� = 0,π/2 and �eq; is positive on (0,�eq); and negative on (�eq,π/2). Moreover, when
� increases from 0, the curve rises to a local maximum on (0,�eq), then falls to a local
minimum in (�eq,π/2), before rising again. Though the figure shows the height of the peak
to be larger than the depth of the valley, this is not always true – it depends on the values of
λ1, λ2.

The �, F -plane shown in Fig. 4 is in fact the phase plane for the ordinary differential
equation (27) (at fixed λ1, λ2). The three intersection points of the graph of F with the
horizontal axis are equilibrium (stationary) points of τ�̇ = F(�;λ1, λ2). We see from Fig. 4
that whenever �(t) ∈ (0,�eq), the driving force is positive. Consequently �̇ > 0 and �(t)

will increase towards �eq. On the other hand if �(t) ∈ (�eq,π/2), the driving force is
negative, thus �̇ < 0, and so �(t) will decrease towards �eq. This is depicted by the arrows
in the figure. Thus trajectories leave the equilibrium points (0,0) and (π/2,0), and therefore
they are unstable, whereas trajectories enter the stable equilibrium point (�eq,0). This is
consistent with the energy sketched in Fig. 3 which has local maxima at � = 0 and π/2 and
a local minimum at �eq.

Given λ1(t), λ2(t) and �(0), equation (27) is to be solved for �(t). Figure 5 displays the
predicted response when the specimen is subjected to the monotonic loading described in the
figure caption. One can verify from (20) that the equilibrium fiber orientation corresponding
to the initial conditions is �eq = 0o, and since this is smaller than the initial fiber orientation
�(0) = 50o, the curves decline at the initial instant as �(t) starts to evolve towards �eq.
However, when the value of the stretch λ1(t) becomes sufficiently large, the sign of �̇ as
given by (27) becomes positive and the curves turns around and rise. This is most apparent
in the curve corresponding to ε = 1/25 where the loading is very slow. Some additional
results can be found in Appendix B.
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Fig. 5 Fiber orientation �(t)

versus time t/τ according to the
kinetic relation (27), (28), (29).
The figure has been drawn for the
monotonic loading
λ1 = 1 + 0.5 t/T with λ2 = 0.9
and �(0) = 50o . The parameter
ε = τ/T is the ratio between the
kinetic and loading timescales τ

and T respectively. Observe that
λ1(t) → ∞ as t → ∞ so that in
accordance with (20),
�(t) → π/2 in this limit; see
also the upper dashed curve in
Fig. 2

5 Accounting for the Energy of Detachment/Attachment

For the reasons described in the paragraph containing (3) in the introduction (Sect. 1), we
now consider the energy

Wε(�;λ1, λ2) = W(�;λ1, λ2) + aε cos�/ε, a > 0, 0 < ε � 1, (30)

where W is given by (26) and we have dropped the hat from W . The energy aε cos�/ε

is associated with the focal adhesions. Each of its local minima corresponds to a particular
configuration of the focal adhesions. The distance between the energy wells of this periodic
energy, and its amplitude (the energy barrier), both scale with ε. The small amplitude indi-
cates that only a small amount of energy is needed to crossover from one energy-well to the
next, and the smallness of the distance between local minima indicates that focal adhesions
do not displace far before they reattach.

For small ε, the energy aε cos�/ε has a periodic array of many energy wells (local
minima) in the interval [0,π/2]. On the other hand a function such as α�+aε cos�/ε,α >

0, will have local minima only if the slope α of the linear term is sufficiently small. For large
α, the curvature of the combined function will keep changing without it having any local
minima. With this as background, recall from Fig. 3 that the graph of W versus � is flat (has
zero slope) at � = 0,�eq and π/2. When aε cos�/ε is added to W , the combined energy
Wε will therefore inherit local minima in the vicinity of these three extremal points. This
can be seen in Fig. 6 where the top (blue) curve corresponds to W and the middle (black) to
Wε . Ignore the bottom (red) curve for now. For clarity, the curves have been shifted slightly
in the vertical direction. The system can get stuck (be in metastable equilibrium) in any one
of these energy wells. Away from � = 0,�eq and π/2 the combined energy may have no
local minima and the system cannot be in equilibrium there.

The driving force associated with Wε is

Fε(�;λ1, λ2) := −∂Wε

∂�
(�;λ1, λ2) = F(�;λ1, λ2) + a sin(�/ε), (31)

and we assume that the fiber orientation obeys the linear gradient flow kinetic law

τ �̇ε = −∂Wε

∂�
(�ε;λ1, λ2). (32)

Given λ1(t), λ2(t) and �ε(0), the kinetic equation (32) can be solved for �ε(t). However
we are not interested in this detailed (exact) solution �ε(t) that accounts for each attachment
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Fig. 6 Plots of the energy
functions W (top), Wε (middle)
and W (bottom) versus �. For
clarity, the curves have been
shifted vertically

and detachment of the focal adhesions. It is the effective kinetic law governing the effective
orientation �(t) that is of interest. This leads us to homogenize �ε(t).

Before presenting the result of homogenization, it is helpful to gain some insight6 into
what we might expect the result to look like. The response predicted by (32) depends on
the characteristics of the driving force Fε . Figure 7 shows a graph of Fε(�;λ1, λ2) versus
� according to (32), (31), (28), (29), for the particular choice of parameter values given
in the caption. This is essentially the phase plane for the differential equation τ �̇ε(t) =
Fε(�ε(t);λ1, λ2) and all motions follow the curve shown. This curve has many oscillations.
More importantly, it crosses the horizontal axis at several points and therefore the differential
equation (32) has many equilibrium (stationary) points. Figure 7 should be compared with
Fig. 4 where we showed the driving force F without the wiggly energy.

If the process of fiber reorientation starts at any point in Fig. 7 above the horizontal
axis, the driving force is positive and so �̇ε will also be positive; thus the fiber will reorient
towards the nearest equilibrium point to the right of the starting point. Thus a process starting
at,7 say, C will evolve all the way to D. On the other hand a process starting at A will evolve
slightly before getting stuck at B.

Likewise, if the process of fiber reorientation starts at any point below the horizontal
axis, the driving force is negative, �̇ε is therefore also negative, and the fiber will reorient
towards the nearest equilibrium point to the left of the starting point. Thus if one starts at
F, reorientation occurs all the way to E, but starting at G leads to just a little change in
orientation before getting stuck at H.

Thus many initial conditions lead eventually to the equilibrium points D and E, and in this
sense one might speak of the single equilibrium point �eq (in the case without the wiggly
energy) having bifurcated into the two equilibrium points D and E (or perhaps the family of
equilibrium points between D and E).

On the other hand starting very near either end or the middle in Fig. 7 leads to very little
evolution before the system gets stuck. The number of equilibrium points – the intersection
points of the driving force curve with the horizontal axis – increases as ε → 0 eventually

6Throughout the following discussion we shall hold the principal stretches fixed.
7See the caption in Fig. 7 for how a label such as “C” relates to the dot vertically above or below it.
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Fig. 7 Driving force Fε versus � at fixed λ1, λ2 according to (28), (29), (31). This should be compared with
the graph of F shown in Fig. 4. A label such as “A” refers to the dot vertically above or below it in Fig. 7.
Trajectories that start at C and F evolve all the way to D and E respectively. On the other hand trajectories that
start at A and G evolve just a little before getting stuck at B and H respectively. The figure has been drawn
for λ1 = 1.5, λ2 = 0.5, ε = 0.005 and a = 0.5

filling up three segments of the horizontal axis on which no evolution occurs at all, one near
� = 0, another near � = π/2 and the third near � = �eq.

As mentioned previously, we are not interested in the detailed solutions �ε(t) of the
kinetic law (32) that we have just been discussing. It is the effective kinetic law governing the
effective orientation �(t) that is of interest. Using weak convergence methods Abeyaratne,
Chu and James [1], [2] have shown that �ε(t) → �(t) uniformly, where �(t) obeys the
gradient flow

τ �̇ = −∂W

∂�
(�;λ1, λ2), (33)

with the effective driving force being

−∂W

∂�
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

+√[F(�;λ1, λ2)]2 − a2, F (�;λ1, λ2) > a,

0, −a ≤ F(�;λ1, λ2) ≤ a,

−√[F(�;λ1, λ2)]2 − a2, F (�;λ1, λ2) < −a.

(34)

We refer the reader to [1], [2] for a proof of this result.
From (33) and (34) we see that the fiber orientation does not evolve (and therefore re-

mains stuck at the value �) when −a ≤ F(�;λ1, λ2) ≤ a. Thus a is a measure of the critical
amount of adhesion needed for focal adhesions to detach from the substrate. The region of
the λ1, λ2-plane on which the filament orientation remains stuck at a value � can be deter-
mined explicitly by substituting (28) and (29) into −a ≤ F(�;λ1, λ2) ≤ a. Figure 8 shows
these regions for three values of �.

The associated effective energy W can be determined (to within an additive function of λ1

and λ2) by integrating (34). Figure 6 shows a plot of W in red (as well as W and Wε in blue
and black) versus �. The flat segments of W , correspond to zero driving force, and therefore
characterize where the system gets stuck. These parts of W correspond to the segments of
Wε that involve local minima (when ε → 0); see discussion in the paragraph just below (30).
As noted previously, one might speak of the single local minimum �eq (in the case without
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Fig. 8 The regions of the λ1, λ2-plane where the filament orientation remains stuck at an angle �. The
figure has been drawn for a = 0.1. Our interest is particularly in the lower right quadrant where λ1 > 1 and
0 < λ2 < 1

Fig. 9 Intersection of the curve
corresponding to the driving
force F(�;λ1, λ2) with the
horizontal lines with intercept
±a. The figure has been drawn in
the case where each line
intersects the curve twice. This is
always true for sufficiently small
values of a

the wiggly energy) as having bifurcated into the two local minima corresponding to �−
eq and

�+
eq (see Fig. 10) or perhaps to all of the points between them.

Finally we wish to plot the effective driving force F(�;λ1, λ2) = −∂W/∂� versus �

(and compare it with the graphs of the driving forces F and Fε ). In order to do this, we must
map the range inequalities in (34) into inequalities on �. This involves finding the roots
� ∈ (0,π/2) of the pair of algebraic equations F(�;λ1, λ2) = ±a.

Figure 9 provides a graphical illustration of this task. The figure has been drawn for
sufficiently small8 a in which case each of these equations has two real roots (in (0,π/2)).
The two roots of F(�;λ1, λ2) = +a have been denoted by �1 and �−

eq where 0 < �1 <

�−
eq < �eq. Likewise �+

eq and �2, with �eq < �+
eq < �2 < π/2, denote the two roots of

F(�;λ1, λ2) = −a.
From the figure we see that F > a for �1 < � < �−

eq and F < −a for �+
eq < � < �2.

Thus the effective driving (34) can be written as

F(�;λ1, λ2) = −∂W

∂�
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

+√[F(�;λ1, λ2)]2 − a2, �1 < � < �−
eq,

0, otherwise,

−√[F(�;λ1, λ2)]2 − a2, �+
eq < � < �2.

(35)

8For larger values of a it is possible that only one of these equations has real roots or that neither has real
roots. We shall restrict attention to the case where a is sufficiently small such that each equation has 2 real
roots. The extension to the other cases is straightforward though (possibly) physically less interesting.
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Fig. 10 Driving forces F (red),
Fε (black) and F (blue) versus �

at fixed λ1, λ2. The figure has
been drawn for λ1 = 1.5,
λ2 = 0.5, ε = 0.005 and a = 0.4

The driving forces F , Fε and F , are given by (28), (31) and (35) respectively and their
variations with � are shown in Fig. 10. The system gets stuck (in a metastable configuration)
in the horizontal red segments.

Finally, to illustrate all of this, consider a loading program with λ2 = 1/λ1 so that we
then have only one independent loading parameter which we take to be λ1. Using MATHE-
MATICA, we find that F(�;λ1, λ

−1
1 ) > a in the lower shaded region of the λ1, �-plane in

Fig. 11, and similarly that F(�;λ1, λ
−1
1 ) < −a within the upper shaded region.9 Thus the

fiber orientation remains stuck and does not evolve in the unshaded regions, evolving only if
and when the loading enters a shaded region. Next, we monotonically increased the stretch
λ1 according to λ1(t) = 1+2[1−exp (−t)] and solved the kinetic equation for several initial
fiber orientations. The values of the initial orientations are given in the figure caption. The
resulting solution trajectories, λ1(t), �(t), are shown in Fig. 11 (where the red curve corre-
sponds to the equilibrium angle �eq(t) as given by (20) for this loading). The curves clearly
show how the solution trajectory in this plane remains stuck (i.e., the fiber orientation does
not change) until the trajectory enters a shaded region. Since the driving force F is > a > 0,
in the lower shaded region, the orientation angle increases there; while the orientation angle
decreases in the upper shaded region since the driving force is < −a < 0 there.

These results are consistent with the qualitative observation by Faust et al. [10] that there
is a certain threshold of stretch that must be exceeded before fiber reorientation begins to
occur. We have not found quantitative information on this threshold and the results of the
present paper should be tested against further experiments.

Appendix A: The equilibrium orientation

In order to compare the equilibrium fiber angle predicted here with Livne et al.’s [17] result
based on linear anisotropic elasticity, let

λ1 = 1 + ε1, λ2 = 1 − rε1. (A.1)

In order that λ1 > 1 > λ2 > 0 one must have

ε1 > 0, r > 0, rε1 < 1.

9A vertical line λ1 = constant, for λ1 sufficiently large, intersects the shaded regions at four points corre-
sponding to �1, �−

eq, �+
eq and �2.



R. Abeyaratne et al.

Fig. 11 The trajectories λ1(t), �(t) associated with a loading program λ1(t) = 1 + 2[1 − exp (−t)],
λ2(t) = 1/λ1(t). In the unshaded region the driving force F ∈ (−a, a): accordingly, each trajectory is ini-
tially horizontal (i.e. �(t) is constant) showing that the fiber orientation is stuck until the trajectory enters
a shaded region. The angle can increase in the lower shaded region where the driving force F > a > 0 and
decrease in the upper shaded region where F < −a < 0. The kinetic equation was solved for the initial con-
ditions �(0) = 3o,20o,40o and 80o . The figure has been drawn for a = 0.05. The red curve corresponds to
the equilibrium angle �eq(t) given by (20) evaluated for the loading at hand

Substituting (A.1) into (20) and (21) yields the equilibrium fiber angles

cos2 �eq = 2 − r(λ1 − 1)

2 + (1 − r)(λ1 − 1)

r

1 + r
, (A.2)

cos2 θeq = 2 − r(λ1 − 1)

2 + (1 − r)(λ1 − 1)

r

1 + r
λ2

1. (A.3)

Figure 12 shows the variation of cos2 θeq with 1/(1 + r) for two values of λ1. The curves
look misleadingly linear on the plotted range which they are not (unless λ1 = 1).

Even though Livne et al. [17] report strain amplitudes up to 24%, suppose we treat |ε1|
as � 1. Then the two preceding expressions can both be approximated as

cos2 �eq ≈ cos2 θeq ≈ 1 − 1

1 + r
. (A.4)

The equilibrium angle derived by Livne et al. [17] was

cos2 �eq = b − 2b − 1

1 + r
, (A.5)

which coincides with (A.4) when b = 1. The graphs of cos2 �eq versus 1/(1 + r) according
to (A.4) and (A.5) are (exactly) straight lines.
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Fig. 12 Graphs of cos2 θeq
versus 1/(1 + r) according to
(A.3) for two values of λ1. The
curves misleadingly look linear
on the plotted range. Observe that
they depend on the value of
stretch λ1 which is in contrast to
the infinitesimal deformation
approximation (A.4)

If we were to consider the slightly more general energy function

W = 1

2
μ

[
b(�2

1 − 1)2 + (1 − b)(�2
2 − 1)2

]
, μ > 0, 0 < b ≤ 1, (A.6)

that depends on both stretches �1 and �2, then, instead of (A.2) we obtain

cos2 �eq = 2(1 − b + br) + (1 − b − br2)ε1

2(1 + r) + (1 − r2)ε1
, (A.7)

which upon approximation for small ε1 leads precisely to (A.5).

Appendix B: Slow dynamic evolution

As mentioned previously, our evolution equations (27), (28), (29) coincide with equations
(3.39), (4.42) of Ciambella and Nardinocchi [8]. To compare them with Livne et al. [17]’s
evolution equation let

λ1 = 1 + ε1, λ2 = 1 + ε2 = 1 − rε1. (B.1)

On substituting (B.1) into (27), (28) and approximating the result for small ε1 we get

τ�̇ = 4ε2
1(1 + r)2

[
cos2 � − r

1 + r

]
sin 2�. (B.2)

For the slightly more general energy function (A.6) we find

τ�̇ = 4ε2
1(1 + r)2

[
cos2 � − rb + 1 − b

1 + r

]
sin 2�. (B.3)
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Fig. 13 Fiber orientation �(t) versus time t/τ . The oscillatory (black) curve corresponds to the solution of
the kinetic equation (27) for the loading (B.5). The monotonic (red) curve is associated with the solution
of the averaged equation (B.6). The figure has been drawn for τω = 30, ε0 = 0.1, λ1 = 1.2, λ2 = 0.9 and
�(0) = 50◦

Livne et al. [17]’s formula, based on anisotropic linear elasticity, is

τ�̇ = Kε2
1(1 + r)2

[
cos2 � − rb + 1 − b

1 + r

]
sin 2�, (B.4)

where b and K are material parameters.
Finally, consider the following loading involving periodic oscillations superposed on a

bi-axial stretch:

λ1(t) = λ1 + ε0 cosωt, λ2(t) = λ2 + ε0 cosωt. (B.5)

Here the constant positive parameters λ1 and λ2 characterize the base state, ε0 is the am-
plitude of the superposed oscillation and ω its frequency. The oscillatory (black) curve in
Fig. 13 shows the variation of �(t) with t found by solving (27) for the loading (B.5);
the underlying parameter values are given in the figure caption. The fiber orientation does
not converge (strictly) to an equilibrium orientation since the loading oscillates indefinitely.
Instead, it settles down to a steady oscillation about an equilibrium orientation.

If the time-scale τ of the kinetic processes is much slower than the time-scale 2π/ω of
the loading, we can average equation (27), (28) over the fast time-scale (in which calculation
�(t) is treated as constant). This leads to

τ�̇ = F(�), (B.6)

where the averaged driving force is

F(�) = [
A cos2 � − B

]
sin 2�, (B.7)

and the averaged values of A and B are

A = 1

2π/ω

∫ 2π/ω

0
A(λ1(t), λ2(t))dt = (λ1 − λ2)

2
[
(λ1 + λ2)

2 + 2ε2
0

]
,
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Fig. 14 The effect of the amplitude ε0 of oscillation on the average equilibrium orientation �eq according to
(B.8). The figure has been drawn for λ1 = 1.2, λ2 = 0.9

B = 1

2π/ω

∫ 2π/ω

0
B(λ1(t), λ2(t))dt = 1

2
(λ1 − λ2)

[
2(λ1 + λ2)(1 − λ

2
2) − (λ1 + 5λ2)ε

2
0

]
.

The monotonic (red) curve in Fig. 13 shows a plot of �(t) versus t according to the averaged
evolution equation (B.6), (B.7).

The average equilibrium orientation of the fibers according to the averaged equation
(B.6), (B.7) is given by

cos2 �eq = B

A
= 1 − λ

2
2 − (λ1 + 5λ2)(λ1 + λ2)

−1ε2
0/2

λ
2
1 − λ

2
2 + 2(λ1 − λ2)(λ1 + λ2)−1ε2

0

. (B.8)

Comparing (B.8) with (20) shows how the amplitude of oscillation ε0 affects the average
equilibrium orientation. Figure 14 shows a plot of �eq versus ε0 for the parameter values
indicated in the caption. Clearly, (B.8) shows that the average equilibrium orientation (also)
depends on the bi-axiality ratio λ2/λ1.
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