
Dipartimento di
Informatica, Bioingegneria,
Robotica e Ingegneria dei Sistemi

Table Augmentation in Data Lakes
Federico Dassereto

Theses Series DIBRIS-TH-2023-42

Ph.D. Thesis

Università di Genova
Dipartimento di Informatica, Bioingegneria,

Robotica ed Ingegneria dei Sistemi
Ph.D. Thesis in

Computer Science and System Engineering
Computer Science Curriculum

Table Augmentation in Data Lakes
by

Federico Dassereto

April 2023

Ph.D. Thesis in Computer Science and System Engineering (S.S.D. INF/01)
Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Università di Genova

Candidate
Federico Dassereto
federico.dassereto@edu.unige.it

Title
Table Augmentation in Data Lakes

Advisors
Giovanna Guerrini
DIBRIS, Università di Genova
giovanna.guerrini@unige.it

External Reviewers
Reviewer 1,
Dipartimento di Informatica - Scienzae Ingegneria, Università di Bologna,
reviewer1@unige.it

Reviewer 2,
School of Mathematics and Computer Science, Heriot-Watt University,
reviewer1@unige.it

Location
DIBRIS, Univ. di Genova
Via Opera Pia, 13
I-16145 Genova, Italy

Submitted On
April 2023

mailto:federico.dassereto@edu.unige.it
mailto:giovanna.guerrini@unige.it
mailto:reviewer1@unige.it
mailto:reviewer1@unige.it

Abstract

Data lakes are centralized repositories that store large quantities of raw, un-
structured, and structured data, allowing for ad-hoc data analysis, exploratory
data analysis, andmachine learning. However, the lack of metadata and schema
in data lakes makes it challenging to work with tabular data and find related
information stored in different tables. However, it is still an open problem
how efficiently retrieve these tables at large scale when the settings of a data
lake holds. The thesis introduces a novel approach to table augmentation that
enables efficient data integration from multiple sources in a data lake. Table
augmentation involves adding new data to an existing table in a horizontal
fashion (by retrieving tables that can be horizontally concatenated to a query
that serves as query table). The proposed approach consists of several compon-
ents, including data lakes hashing, join search, similarity, and augmentation.
The proposed approach is named TASH. TASH is a framework based on a
spatial index in which tables are mapped and queried. Its goal is to identify
the most useful columns for subsequent machine learning tasks. The table
retrieval process employs a combination of set containment search and sim-
ilarity search. Candidate tables are initially identified using set containment
search and then ranked based on their similarity to the query. Experimental
results demonstrate that TASH can effectively identify joinable tables and se-
lect the most relevant features, thereby enabling efficient table augmentation
in data lakes. This research contributes to the field of big data by providing
a practical solution to the challenges of data integration and analysis in data
lake environments.

v

Acknowledgements

vii

Contents

1 Introduction 1
1.1 The Problem: Table Augmentation 2
1.2 Key Components of the Approach 6
1.3 Overview of the Approach . 9
1.4 Summary of Contributions . 10
1.5 Outline of the Thesis . 10

2 Related Work 13
2.1 Similarity and Union Search 13
2.2 Hashing . 17
2.3 Augmentation Approaches . 18

3 Background 21
3.1 Relational Tables . 21
3.2 Table-as-a-Query Paradigm and Table Retrieval 24
3.3 Information Theory . 26
3.4 Hashing . 28
3.5 Spatial Indexes . 30

4 Problem Statement and Approach 33
4.1 Problem Statement . 33
4.2 Basic Approaches . 34
4.3 The Impossibility of Estimating Conditional Entropy from

Individual Entropies . 38
4.4 An Inverted Index based on Information Theory 41
4.5 The TASH Approach: Overview 44
4.6 The TASH Approach: Index Construction 47
4.7 The TASH Approach: Probing 49

5 Evaluation 53
5.1 Evaluation Schema . 54
5.2 Datasets . 54
5.3 Comparison with Existing Approaches 56

5.3.1 Baseline . 56
5.3.2 Our Approach . 57
5.3.3 Limitations . 59

6 Conclusion ad Future Work 61

7 Other Contributions 65

ix

x Contents

Bibliography 67

1
Introduction

In the era of big data, the ability to efficiently manage and process vast amounts
of information has become crucial. One approach to this problem is the use
of data lakes, which allow for the storage of vast quantities of raw data in a
flexible and scalable manner.
A data lake is a centralized repository that allows the storage of large

amounts of raw, unstructured, and structured data. The basic principle of
a data lake is to store data in its native format without any pre-processing,
such as schema or metadata definitions. The goal of a data lake is to enable
researchers to perform ad-hoc data analysis, exploratory data analysis, and
machine learning on raw data in a cost-effective manner.

In a data lake, data is stored in its native format without any pre-processing
or transformation [72]. Tabular data is one such format that is commonly
found in data lakes. In the absence of metadata and schema, tabular data
can be challenging to work with, as the structure of the data is not readily
apparent. The lack of metadata and schema information can make it difficult
to understand the meaning of the data, which can lead to incorrect analysis
results. However, there are several techniques that can be used to work with
tabular data in a data lake environment.
One such technique is to use schema-on-read, where the structure of the

data is inferred when the data is read. Schema-on-read allows researchers to
explore the data without the need for a predefined schema. Another technique
is to use data profiling to understand the structure and content of the data.
Data profiling involves analyzing the data to extract statistics, such as the
number of null values, unique values, and data types, to gain insights into the
data’s structure.
Data lakes are becoming increasingly popular as a cost-effective way to

store and process large amounts of data. One of the reasons of this increasing
popularity relies indeed on the highlighted feature that, unlike traditional
databases where the schema is fixed, data lakes allow users to store data in
various formats and structures. However, the flexibility of data lakes also
makes it challenging to find related information stored in different tables as
well as to identify the relationships among data in different tables, which can
hinder data analysis and integration.
Finding related information in a data lake is a non-trivial task, since data

in data lakes is often stored in various formats, including structured, semi-
structured, and unstructured data. The data may also be stored in different file

1

2 introduction

formats, such as CSV, JSON, or Parquet. In addition, data lakes typically lack a
centralized schema. Without a clearly defined schema, it may be challenging
to determine which columns in different tables represent the same data.

Another challenge in finding related information in a data lake is that data
is often stored in multiple locations. Data can be stored in different buckets or
directories, making it difficult to find all the relevant tables. Furthermore, data
can be replicated or duplicated, further increasing the complexity.

However, the usefulness of data lakes is heavily dependent on the ability to
extract insights from the stored data. One of the key challenges in this regard
is table augmentation, which involves finding relevant data across multiple
tables and combining it to form a more complete dataset.

1 . 1 The Problem: Table Augmentation

Table augmentation refers to the process of adding new data to an existing table,
in order to increase its size or expand its scope [67]. There are two main types
of table augmentation: horizontal and vertical. Horizontal table augmentation
[30] involves adding new columns to an existing table, typically by joining it
with another table based on a shared key. This type of augmentation is often
used in data analysis and machine learning applications, where it can help to
improve model accuracy by incorporating additional features or attributes. By
contrast, vertical augmentation [68] involves adding new rows to an existing
table, typically by synthesizing new data points based on existing data. In
both cases, the idea is to retrieve tables that allow to augment the content
of the current table with related information either since they are joinable,
thereby adding new columns, (in the case of horizontal augmentation) or can
be unioned, thereby adding new rows, (in the case of vertical augmentation).
Horizontal Augmentation. One of the key benefits of horizontal aug-

mentation is that it allows for the efficient joining of large datasets, which can
be time-consuming and resource-intensive using traditional SQL join opera-
tions. By indexing the columns in both tables and using hash-based similarity
search algorithms, it is possible to quickly identify and retrieve matching rows
from each table, enabling the creation of a new table with combined data. An-
other important aspect of horizontal augmentation is the need for consistent
metadata and schema across tables. Since each table represents a unique set
of attributes or features, it is critical to ensure that the columns being joined
are semantically equivalent and compatible with one another. In cases where
the metadata or schema are inconsistent or missing, additional preprocessing
steps may be required to transform the data into a common format before it
can be effectively joined. This type of augmentation is often used in machine
learning and data generation applications, where it can help to increase the
size of the training dataset and improve model performance. However, creating
new rows synthetically also introduces additional complexity and potential
bias into the data, as the generated rows may not accurately represent the
underlying distribution of the data.

1.1 the problem: table augmentation 3

To address these issues, several techniques have been developed for synthetic
data generation, including generative adversarial networks (GANs) [39, 63]
and variational autoencoders (VAEs) [69]. These methods use deep learning
algorithms to learn the underlying distribution of the data and generate new
samples that are statistically similar to the original data. However, care must be
taken to ensure that the synthetic data is representative of the true distribution,
and that any biases or limitations in the original data are not amplified or
perpetuated by the augmentation process.

Overall, table augmentation is a powerful technique for expanding and en-
hancing existing datasets, enabling more accurate and robust data analysis and
machine learning models. However, it requires careful attention to metadata
and schema consistency, as well as the potential biases and limitations intro-
duced by synthetic data generation. As the field of data science continues to
evolve and expand, new techniques and approaches for data augmentation will
undoubtedly emerge, enabling even more powerful and effective data analysis
and modeling.
Vertical Augmentation. Vertical table augmentation, on the other hand,

involves adding new rows to an existing table. This can be done by collecting
new data from external sources, or by synthesizing new data based on existing
data within the table. Vertical augmentation is often used in data generation
and data cleaning applications, where it can help to ensure that a dataset is
representative of the underlying population. Vertical augmentation can be
performed in different ways, one of which involves vertically merging the
tables. This technique can be used when we have multiple tables with exact or
overlapping columns, and we want to combine them into a single table with
more rows. By doing so, we can create a larger dataset that contains more
instances of the same attributes, which can help to improve the performance
of machine learning models.
The process of vertical augmentation involves appending rows from one

table to another, rather than adding new columns. This is different from hori-
zontal augmentation, which involves adding new columns to a table. When
we perform vertical augmentation, we need to ensure that the tables we are
merging have the same structure, with the same number and types of columns.
One way to perform vertical augmentation is to use the SQL UNION operator.
The UNION operator allows us to combine the results of two or more SELECT
statements into a single result set. When we use the UNION operator, the
columns of the result set are determined by the first SELECT statement, and the
types of the columns must be compatible with the columns in the subsequent
SELECT statements.

Since we have no metadata nor schemas, one approach to identifying tables
with overlapping columns is to use a hashing-based similarity search, similar to
what we discussed earlier for horizontal table augmentation. By representing
the columns of each table as hashes and comparing the hashes across tables, we
can identify tables with similar or identical columns. Once we have identified
these tables, we can perform a vertical merge by stacking the rows of the tables

4 introduction

on top of each other.
In addition to using similarity search, we can also use data profiling tech-

niques to identify and merge tables with overlapping columns. Data profiling
involves analyzing the content and structure of the data in a table, such as the
data types and values of the columns. By comparing the content and structure
of multiple tables, we can identify which tables have overlapping columns
and merge them accordingly. Another approach to vertical augmentation in a
data lake is to synthesize new data based on existing data within the tables.
This can be done using various data generation techniques, such as sampling,
interpolation, or extrapolation. For example, we can use statistical techniques
to generate new data points based on the distribution of existing data within a
table.
Synthesizing new rows based on existing data is a common technique in

data generation, particularly in cases where the amount of available data is
limited or the data is subject to privacy constraints. One popular approach to
data synthesis is known as generative adversarial networks (GANs), which
use a neural network to generate new samples that are similar to the existing
data. This technique has been successfully used in a variety of applications,
from generating realistic images to synthesizing patient data for medical
research. However, generating new data hides its challenges as well. One issue
is ensuring that the synthetic data accurately reflects the distribution of the
underlying population. This is particularly important in cases where the data
will be used for predictive modeling or decision-making, as inaccurate data can
lead to biased results. To address this, researchers have developed a number
of techniques for evaluating the quality of synthetic data, such as comparing
summary statistics or using statistical tests to compare the synthetic and real
data.
Another challenge is preserving privacy when generating synthetic data.

This is particularly important in caseswhere the original data contains sensitive
information, such as medical or financial data. Techniques such as differential
privacy can be used to ensure that the synthetic data does not reveal any
sensitive information about individuals in the dataset. In addition to generating
new data, vertical table augmentation can also be used to clean and enhance
existing data. For example, missing data can be imputed using techniques such
as mean imputation or regression imputation, which use the values of other
variables to estimate the missing values. Similarly, outliers or other anomalies
can be detected and removed using statistical techniques such as clustering or
outlier detection.

Overall, vertical table augmentation is an important tool in the data scient-
ist’s toolkit, allowing for the creation of new data and the enhancement of
existing data. However, it is important to carefully consider the implications of
generating synthetic data, particularly in cases where the data will be used for
decision-making or where privacy concerns are a factor. By using appropriate
techniques for data synthesis and evaluation, data scientists can ensure that
the resulting data is accurate, representative, and preserves the privacy of

1.1 the problem: table augmentation 5

individuals in the dataset.
The challenge of exact table augmentation. The table augmentation

problem is a fundamental and relevant issue that affects many aspects of the
database community [67]. From both theoretical and practical perspectives,
table augmentation is an essential concept that plays a vital role in database
systems. In this work, we will focus on horizontal augmentation.

From a theoretical perspective, the table augmentation problem is significant
because it allows us to better understand the relationships between tables
[51]. The problem helps us to identify and represent the various dependen-
cies and relationships that exist among different tables. This knowledge is
important because it enables us to design more efficient database systems
that can handle complex queries and transactions more effectively. In other
words, understanding the table augmentation problem can lead to significant
advancements in the field of database theory. From a practical perspective,
the table augmentation problem is crucial because it is a common issue that
affects many real-world use cases. For example, in data analysis, it is often
necessary to combine multiple tables to derive meaningful insights. However,
the tables may have different schemas or be incomplete, making it challenging
to join them effectively. The table augmentation problem provides a framework
for addressing this issue, enabling data analysts to create more accurate and
complete models.

In addition, the table augmentation problem is relevant in many other fields
beyond data analysis, including computer science, machine learning, and
artificial intelligence. For instance, in natural language processing, researchers
often use tables to represent data, but the tables may be incomplete or have
missing values. By addressing the table augmentation problem, researchers can
build more robust and accurate models that can handle such data effectively. In
theory, one could perform exact table augmentation by computing all possible
joins among the tables in a data lake, and then selecting the ones that satisfy
certain relevance criteria. However, this approach quickly becomes unfeasible
as the number of tables and their size increases. For example, if we have𝑛 tables,
each with𝑚 columns and 𝑘 rows, the number of possible joins is exponential
in 𝑛, and even selecting a subset of relevant columns can be computationally
expensive.

Moreover, exact approaches are sensitive to changes in the data, as a small
modification in one table may require the recomputation of all the joins. This
makes it difficult to scale such approaches to large and dynamic data lakes,
where new tables may be frequently added or modified. For these reasons,
approximate approaches based on hashing and similarity search have gained
attention in recent years, as they offer a scalable and flexible alternative to exact
table augmentation. By projecting the tables onto a lower-dimensional space
using a hash function, we can quickly identify potential joinable tables and
relevant columns, without computing all possible joins. The use of similarity
search further reduces the computational cost by allowing us to focus only on
the most similar pairs of tables, while ignoring those that are unlikely to yield

6 introduction

meaningful results.
We believe that finding joinable tables in data lakes is a significant challenge

due to the flexibility and complexity of data storage in data lakes. Existing
solutions have limitations, and the approach we propose in this thesis leverages
data fingerprints to efficiently identify joinable tables.

1 .2 Key Components of the Approach

The approach we propose to face the challenge of integrating data from mul-
tiple sources in a data lake, relies in a number of components, listed in what
follows, after making clear why we do not evaluate every possible candidate
table after performing the join operation (as we will see, this approach is
not feasible) and introducing the table representation we design. An import-
ant, final, ingredient is represented by the evaluation schema and metrics we
implemented.

Is it feasible tomaterialize a join over all tables? Joins are common oper-
ations in data analysis that involve combining data from multiple tables based
on a common attribute. In a data lake environment, joins can be challenging
due to the lack of a predefined schema and metadata.

Materializing a join over all tables in a large data lake is a computationally
expensive operation. This operation involves joining multiple tables that have
no defined schema or indexes. It is a common problem encountered in the
analysis of big data, where data is stored in a data lake without a clear structure.
The primary challenge of materializing a join over all tables in a data lake

is the sheer size of the data. Joining all tables in a data lake can result in a
combinatorial explosion, where the number of possible combinations grows
exponentially with the number of tables. This can lead to memory overflow,
disk I/O overload, and CPU usage bottlenecks.
In addition to the problem of size, there is also the issue of performance.

Joining tables without any indexes or metadata can lead to slow query times
due to the need for a full table scan. Full table scans can be particularly costly
when dealing with large datasets that don’t fit in memory, as disk I/O can
quickly become a performance bottleneck.

From a theoretical perspective, the problem of materializing a join over all
tables in a data lake is significant because it is an NP-complete problem. This
means that there is no known efficient algorithm that can solve this problem
in polynomial time. Therefore, any solution to this problem must rely on
heuristics or approximation algorithms.
From a practical perspective, the problem of materializing a join over all

tables in a data lake is relevant to a wide range of industries, including finance,
healthcare, and marketing. For example, in the finance industry, analysts may
want to join multiple tables to analyze trends in stock prices, trading volumes,
and other financial data. In healthcare, researchers may want to join multiple
tables to identify correlations between patient demographics and medical
conditions. In marketing, analysts may want to join multiple tables to analyze

1.2 key components of the approach 7

figure 1 . 1 The table-as-a-query paradigm

customer behavior across different channels.
In conclusion, materializing a join over all tables in a data lake to evaluate

table augmentation is a computationally challenging problem. It requires
significant computational resources, and there is no known efficient algorithm
that can solve it in polynomial time. The problem is relevant to a wide range
of industries and has significant practical applications. As such, it is an area of
active research in the database community.
Tables representation. In order to efficiently address the computational

challenges posed by the materialization of a join over all tables in a data lake, a
new approach based on a column-based indexing paradigm can be considered.
This approach, referred to as table-as-a-query and graphically depicted in
Figure 1.1, involves converting each element of each column in the data lake
to an integer number and using an index to search for columns rather than
tables.
The conversion of the data elements to integer numbers provides several

advantages. First, it allows for the efficient comparison and ordering of the
data. This is particularly relevant for operations such as sorting and searching,
where an ordering of the data is necessary. Moreover, by mapping the data to
integer numbers, the memory usage is reduced, since integer numbers require
less memory compared to strings or other data types.

In addition to ordering, another advantage of converting the data to integer
numbers is the ability to use a vocabulary-based approach. This approach
involves creating a dictionary or vocabulary that maps each unique data
element in the data lake to a unique integer number. By using a vocabulary,
we can efficiently map the data elements to integer numbers, reducing the
need for additional memory for storing the mappings.

Hashing. Using an image similarity hashing approach for mapping integers
is a powerful technique for simulating pixel intensity. This technique is useful
when dealing with large datasets where the columns represent images. In the
case of table augmentation, one can convert each element of each column to
an integer number and use an image similarity hashing approach to map the

8 introduction

integers.
The use of hashing in image similarity techniques is common in the field

of computer vision, where images are represented as sets of features. These
features are then hashed using a similarity hashing technique to create a
hash that represents the image. Similarly, in our case, we can use the column
representation of a table to create a hash that represents the column.

The use of an image similarity hashing technique allows us to consider our
integers mapping as input to such hashing, simulating pixel intensity. This
technique makes it possible to use image similarity techniques to compare
columns from different tables. The similarity metric used in image similarity
hashing can be used to measure the similarity between two columns.

One advantage of using hashing is that it provides a compact representation
of the data. The hashing function can map the integers to a smaller range of
values, reducing the amount of memory required to store the data. Additionally,
hashing allows for fast indexing and retrieval of data. This is because the hash
function can be used to map the data to a specific location in memory, allowing
for fast lookup times.

Another advantage of using hashing for table augmentation is that it allows
for efficient set containment searches for joins. One popular technique for set
containment searches is the LSH Ensemble approach [92]. This technique can
be used to efficiently join tables by performing set containment searches on
the hashed columns.
Padding and resampling.When working with column representations,

it is important to ensure that the inputs have a fixed length to be able to use
hashing algorithms like locality-sensitive hashing (LSH). However, the original
data in our tables may not have a fixed length, and this poses a challenge.
One approach to address this challenge is to pad the values with zeros or

some other placeholder value to create fixed-length inputs. For example, if we
have a column of strings representing names, we can add zeros to the end of
each string so that all strings have the same length. While padding ensures
fixed-length inputs, it may introduce bias and distort the original distribution
of the data. Padding may also lead to increased memory usage if we have many
columns with sparse data.

Another approach is to use resampling to create fixed-length inputs. In this
approach, we randomly sample a subset of the values from the column to create
fixed-length inputs. This can be done using techniques like random sampling
or stratified sampling, where we sample values with replacement based on
some criteria like the frequency of occurrence. Resampling ensures that the
original distribution of the data is preserved, but it may also introduce noise
and distort the original values. Moreover, resampling can lead to increased
computational costs if the data is very large.

The choice between padding and resampling depends on the specific require-
ments of the application and the properties of the data. If we care more about
fixed-length inputs and the original distribution of the data is not important,
then padding may be a better choice. On the other hand, if we want to preserve

1.3 overview of the approach 9

the original distribution of the data, then resampling may be a better choice.
Information Theory to Evaluate Table Augmentation. Information

theory metrics, such as entropy and mutual information, can be useful to
evaluate the quality of table augmentation. Entropy can be used to measure
the randomness or uncertainty of a column, while mutual information can
quantify the dependence between two columns. These metrics can help in
identify columns that are likely to be relevant for joining tables or for machine
learning tasks.
When augmenting tables in a data lake, one may encounter many tables

with similar column names or similar data, but not all of themmay be useful for
our purposes. Information theory metrics can help in filtering out irrelevant
tables or columns by quantifying their information content and correlation
with other tables or columns.

For example, suppose we want to join two tables on a common column.
We can use mutual information to identify which other columns in the two
tables are most likely to be relevant for the join. By computing the mutual
information between the common column and each column in the two tables,
we can rank the columns based on their relevance to the join. This can help us
select the most relevant columns for the join, while ignoring columns that are
irrelevant or redundant.

Similarly, when selecting tables or columns for machine learning tasks, we
can use entropy and mutual information to identify the most informative
and relevant features. By selecting columns with high entropy and high mu-
tual information with the target variable, we can improve the accuracy and
performance of our machine learning models.

Thus, information theory metrics can provide a principled and quantitative
way to evaluate table augmentation and feature selection in data lakes. By
leveraging these metrics, one can select tables and columns that are most likely
to be useful for his purposes, while avoiding and filtering out irrelevant or
redundant information.

1 .3 Overview of the Approach

To implement our approach, we use a suitable framework based on a KDTree
and exploit radius queries for both joining (i.e., identifying points in the radius)
and the most useful columns for subsequent machine learning tasks (i.e.,
identifying columns that are far away from the radius). Our experimental
results show that our approach can effectively identify joinable tables and
select the most relevant features, thereby enabling efficient table augmentation
in data lakes.
Our approach to table retrieval is based on data lakes hashing, join search,

similarity, and augmentation. We first convert each column of every table in
the data lake to a fixed-length integer vector using a hashing function. The
hashing function maps each column element to an integer in a fixed range.
We use a hashing function that is commonly used in image similarity, which

10 introduction

simulates pixel intensity. This approach allows us to use algorithms and data
structures developed for image similarity to operate on tables.

To perform table retrieval, we use a combination of set containment search
and similarity search. Given a query 𝑄 , we first use set containment search
to find the set of candidate tables that potentially match 𝑄 . We then use
similarity search to rank the candidate tables based on their similarity to 𝑄 .
To use similarity search, we represent the query 𝑄 as a fixed-length integer
vector using the same hashing function used for the data lake tables. We then
compute the similarity score between 𝑄 and each candidate table using a
similarity measure such as cosine similarity.

1 .4 Summary of Contributions
The thesis main contributions are:

• The development of a framework that indexes a data lake and allows for
the search of joinable tables that improve the predictive ability of a query
table.

• The representation of the tables of a data lake with hash fingerprints that
captures both the semantic content of each column of the table and keep
their values distributions.

• The definition of an algorithm, TASH, that exploits hashing functions,
information theoretic measures and spatial indexes to retrieve joinable
tables.

• The experimental evaluation of TASH, showing that it can achieve similar
performances of state-of-the-art approaches both in identifying joinable
tables and ranking them according to their improvement with respect to
the performance of a query table in various Machine Learning tasks.

1 .5 Outline of the Thesis
The thesis is organized as follows:

• In Chapter 2 we discuss the state-of-the-art in the two fundamental fields
dealt by the thesis. We splitted this Chapter in three main parts: similarity
and search of tables in data lakes, hashing techniques and augmentation
approaches. The Chapter focus on state-of-the-art approaches in each of
the depicted categories that individually concur as a key component of
our work.

• In Chapter 3 we introduce some preliminaries. In this chapter, we present
the basic notions and concepts useful to understand the thesis. We briefly
discuss the relational world on top of which data lakes originated, then we
discuss the paradigm we follow to design our work. We finally discuss key
components of our work, namely information theory, hashing techniques
and spatial indexes.

1.5 outline of the thesis 11

• In Chapter 4 we formalize the problem we are willing to solve and present
TASH, our algorithm to provide table augmentation in data lakes. We
present many possible base approaches to our solution, discussing the in-
tuitions behind them and highlights their limitations. Finally, we describe
in details TASH.

• In Chapter 5 we evaluate our method under different scenarios and com-
paring with existing methods. We evaluate on two main concepts, the
ability to find joinable tables and to retrieve tables that provide augment-
ation. Finally, we discuss the results emerged from the evaluation.

• In Chapter 6 we conclude our work summarizing the content of the
thesis, discussing the limitations of our work and drawing possible future
directions for this work.

• In Chapter 7 we present orthogonal work that we carried out in the period
of the PhD, presenting pubblications and results that do not directly link
to the content of this thesis.

2
Related Work

This thesis has been inspired by a major question: Is it possible to produce a
table augmentation, i.e., finding joinable tables with relevant feature columns,
without materializing the join operation? To answer this question, we system-
atically explore the literature to isolate the components of a possible solution.
The thesis aims to explore the possibility of a horizontal augmentation for
improving the performance of a machine learning model by adding new fea-
tures to a query table. The approach adopted in this thesis involves two key
concepts: similarity and search and hashing. In this chapter, the related work
in each of these three areas is discussed in detail.
The first concept, similarity and search, is explored through existing tools

and technologies that enable efficient join and union search in data lakes.
These techniques are crucial for identifying relevant data that can be used to
augment the query table with new features. The chapter provides an in-depth
analysis of the various approaches that have been proposed for similarity
search, including methods based on text, image, and graph similarity.

The second concept, hashing, is used to efficiently represent the query table
and the new features. The chapter discusses both table and column-oriented
hashing techniques and their advantages and disadvantages. The various
hashing techniques are analyzed based on their suitability for the proposed
approach.
The chapter concludes with a positioning of the proposed approach with

respect to the state-of-the-art. It provides a comprehensive overview of the
existing work in the three areas of similarity and search, information theory,
and hashing, and identifies the most promising techniques for the proposed
approach. The proposed approach has the potential to significantly improve
the performance of machine learning models by augmenting the query table
with new features.

2.1 Similarity and Union Search

One of the greatest novelty of our approach is to consider as input a whole table,
in a paradigm called table-as-a-query. Considering a table as a whole query
allows taking care of each aspect of the columns all at once and extending the
ranking by columns to a complete table. Within this paradigm, in this section,
we present the relevant research work on searching tables that are similar

13

14 related work

according to some similarity measure. Since many of the approaches rely on
hashing techniques, these two section are strictly related and connected.

The very starting point was [51] and its extension [76], in which the authors
put themselves in a relational scenario and elaborate on the possibility of
exploiting measures that suggest whether it is safe or not to avoid a join while
doing feature selection. It is worth to notice that they refer to a scenario in
which the key-foreign key mapping is explicit and the number of involved
relations is modest. Along this way of relying on the schema information,
[20] proposed a method to find joinable tables by using the metadata of the
tables, involving schema information and key identification, as well as entity
recognition to find relevant tables. Despite our problem statement, they do
not consider the problem of identifying joinable tables that contains relevant
columns. This scenario is very typical in many approaches, since many ap-
proaches focus on a discovery scenario with an iterative human-in-the-loop
situation where the exploration depends on human interactions. Similarity
search is not the only task that can be carried on during an exploration, and
exhaustive source of other applications such as entity mapping or keyword-
based search can be found in [15, 86]. SILKMOTH [24] is proposed as a system
capable of rapidly discovering related set pairs in collections of sets. It creates
a signature for each set, prunes the search space based on the signatures,
and applies the maximum matching metric on remaining candidates to verify
relatedness. The authors characterize the space of signatures in a way that
guarantee the same output as the brute-force method, as well as the proposal
of two filters and a simple optimization to further prune the candidates and
improve efficiency.

Focusing on data discovery, in [14] a system called AURUM is described,
which is designed to address the problem of data discovery in organizations
where analysts spend more time searching for relevant data than analyzing it.
AURUM builds and maintains an enterprise knowledge graph (EKG), which
captures relationships between datasets and helps users to navigate among
disparate sources. On the other hand, [83] proposes a system that performs
entity augmentation and attribute discovery by leveraging the vast corpus of
HTML tables available on the web. The authors present three core operations
to achieve this, with the goal of high precision and coverage, fast response
times, and applicability to any arbitrary domain of entities. Along with [83],
[54] relies on metadata in addition to table content. ALITE [45] is a proposal
for scalable integration of tables discovered using join, union, or related table
search. It relaxes previous assumptions that tables share common attribute
names, are complete, and have acyclic join patterns. Three new benchmarks
for integration using real data lake tables are developed and shared to evaluate
the performance of ALITE, which is shown to outperform previous algorithms
for computing the Full Disjunction.

A consistent part of the work concerning open data and their integration
can be found in [67]. The key idea was to enable data science by exploiting the
power of open data and their massive size, posing the basis for internet-scale

2.1 similarity and union search 15

algorithm that allow for join and union search.

Union search. One of the first algorithm for table union search was OC-
TOPUS [10]. The algorithm works with a decomposition of many problems,
and it is basically founded on keyword search. They uses search-style keyword
queries and returns a ranked list of relevant web tables. They mainly use
tf-idf score and mean string length difference to find the similarity between
the columns and combine them to infer the table similarity This work has
been used as starting point for many other works, such as those originated
from Web Tables [52] [73] and [68]. A deep and detailed survey on web tables
usage in data integration can be found in [87]. [20] defines the problem of
finding unionable web tables as an entity complement problem. Two tables
are deemed unionable if they share similar schemas and a “subject” column,
which is a single column that contains the entities the table is about. This
work assumes that each table has a single subject column, a common trait of
web tables, but this is a limiting assumption in data lakes and open data. Also,
this approach relies solely on an existing KB. [38] introduces SemProp, which
links related tables by creating DAGs of table elements and external sources
such as ontologies and embeddings, connected by semantic and syntactic links.
Although the goals are similar, we solely leverage the data values in tables
whereas SemProp mainly uses the tables’ schemas and names to find related
tables. [6] proposes an attribute-unionability framework similar to [68] that
adds attribute name similarity, regular expression similarity, and distribution
similarity to determine the relatedness between tables. We focus on attribute
values, and also include relationship and type hierarchy semantics. A recent
work on union search is [44], where the authors define union in new way, in
which added rows matches semantically through the usage of a knowledge
base, inherited and extracted from the data lake itself, where it is easier to
produce a semantically meaningful union exploiting the predicates that links
entities, that in this case are columns.

Join search. [85] presents algorithms for clustering relational columns into
attributes based on common properties and characteristics of the values they
contain. These relationships are useful for schema matching and better under-
standing and working with the data. The algorithms use statistical measures
to identify strong relationships between columns and decompose the database
into connected components to cluster sets of columns. [61] conducts an ex-
tensive analysis of algorithms for set similarity joins. The analysis shows that
efficient verification is crucial for the performance of these algorithms. The
paper found that most algorithms exhibit similar performance, with the prefix
filter being the key technique. In [92], the authors use Jaccard set containment
score to measure the relevance of a domain to a query domain. They present
an index structure called LSH Ensemble, which uses Minwise Hashing and do-
main partitioning to cope with data volume and skew. The authors construct
a cost model that describes the accuracy of LSH Ensemble and prove that
there exists an optimal partitioning for any data distribution. It is worth noti-
cing that Jaccard similarity is expressed on set and not on bag, meaning that

16 related work

repetition are not considered in the precision results. [91] discusses the devel-
opment of Auto-Join, a system that can automatically search over a rich space
of operators to compose a transformation program, whose execution makes
input tables equi-joinable. This system is relevant to ad hoc data analysis in
spreadsheets, where users need to join tables whose join-columns are from the
same semantic domain but use different textual representations. The authors
developed an optimal sampling strategy that allows Auto-Join to scale to large
datasets efficiently, while ensuring joins succeed with high probability. Josie
[90] (JOining Search using Intersection Estimation), is an algorithm designed
for finding joinable tables in massive data lakes. The problem is formulated
as an overlap set similarity search problem, considering columns as sets and
matching values as the intersection between sets. The authors observe that
modern data lakes typically have massive set sizes and dictionaries that include
hundreds of millions of distinct values, making traditional set similarity search
techniques inefficient. JOSIE minimizes the cost of set reads and inverted index
probes. The authors show that Josie performs almost as well, and in some cases
even better, on real data lakes. In [71] the authors propose a new principle
called the pigeonring principle, which organizes boxes in a ring and constrains
the number of items in multiple boxes to yield stronger conditions. By utilizing
this new principle, stronger filtering conditions can be established for prob-
lems that identify data objects whose similarities or distances to the query are
constrained by a threshold. The authors show that the pigeonhole principle is a
special case of the new principle, and all pigeonhole principle-based solutions
can be accelerated by the new principle. They introduce a universal filtering
framework to encompass the solutions to these problems based on the new
principle and discuss how to quickly find candidates specified by the new
principle.

Embeddings. In the context of machine learning, embeddings refer to the
mapping of an entity (such as a word or object) to a high-dimensional vector
of real values. The resulting geometric relationship between the vectors of
two entities captures their co-occurrence or semantic relationship. Algorithms
for learning embeddings are based on the idea of "neighborhoods" – that sim-
ilar entities tend to belong to the same neighborhood in a contextual sense.
As a result, the algorithm aims to position the vectors representing similar
entities close to each other in the resulting vector space. Embeddings have
been used for task such as entity resolution [32] to achieve high accuracy
and efficiency with minimal human involvement. DeepER uses uni- and bi-
directional recurrent neural networks (RNNs) with long short-term memory
(LSTM) hidden units to convert each tuple to a vector representation that
captures similarities between tuples. A locality sensitive hashing (LSH) based
blocking approach is used to produce smaller blocks by considering all attrib-
utes of a tuple. Approaches have been made to exploit latent information to
represent tuples in relational databases and take advantage of the semantic
information [7, 8, 9]. On of the first prototype systems in this direction is
[termite], where embedding are learnt from the data, reducing human effort.

2.2 hashing 17

They also implement a Termite-Join operator that identifies related concepts,
even in unstructured data. [40] takes into account the semantics of the word
embedding and the relational schema. RetroLive, an interactive system, is
developed based on Retro, which allows exploring how retrofitted embeddings
improve performance for various Machine Learning and integration tasks. The
system also includes interactive visualizations to explore the characteristics of
the adapted vectors and their connection to the relational database. REMA [48]
uses relational embeddings to capture semantic similarity of attributes. Rema
embeds database rows, columns, and schema information into multidimen-
sional vectors that reveal semantic similarity. In [11, 12] The authors proposes
an algorithm for obtaining local embeddings that are effective for data integra-
tion tasks on relational databases. The algorithm uses a compact graph-based
representation to specify a rich set of relationships inherent in the relational
world. It then derives sentences from such a graph that effectively describes
the similarity across elements (tokens, attributes, rows) in the two datasets,
and the embeddings are learned based on such sentences. The paper also pro-
poses effective optimization to improve the quality of the learned embeddings
and the performance of integration tasks. Other approaches use embeddings
for different tasks, such as predicting column types and relationships [79],
matching textual content [1] with structured data in an unsupervised setting
and linking entities across relations and graphs [56, 35]. Particular interest
also to schema matching [84, 82].

2.2 Hashing

Hashing techniques are known to be effective both in space and time to repres-
ent data in compressed but efficient way [19]. Among the various approaches
to hashing, a very relevant area related to our work is the Locality Sensitive
Hashing family. The Locality Sensitive Hashing (LSH) index is a method for
solving the approximate nearest neighbor search problem in high-dimensional
spaces. It can also be used for the approximate R-near neighbor search problem.
The LSH index requires a family of hash functions that have a high collision
probability for inputs that are close and a low collision probability for inputs
that are far apart. The distance measure used must be symmetric. The formal
definition of LSH functions can be found in [43]. An LSH function is a hash
function whose collision probability is high for inputs that are close and low
for inputs that are far apart. While LSH was originally developed for Jaccard
distance, it has been extended to other distance metrics such as Euclidean
[23], Hamming [43], and Cosine distance [16]. However, some LSH variations
require the data to be vectors with fixed dimensions, which is not practical for
domain search at an internet scale. MinHash LSH is better suited for internet-
scale domain search as it does not require a fixed set of domain values. It has
been extensively compared with SimHash [78], while Asymmetric Minwise
Hashing is a state-of-the-art technique for containment search over documents
that uses MinHash LSH to index transformed domains. Even if useful for con-

18 related work

tainment search, the asymmetric transformation can reduce recall when the
domain size distribution is highly skewed. Lately, LSH has been the center of
both theoretical and practical improvements [89, 17, 3].

2.3 Augmentation Approaches

Arda [18] discusses automatic data augmentation, which involves finding new
features relevant to a user’s predictive task with minimal human involvement.
ARDA is an end-to-end system that takes a dataset and a data repository as
input and outputs an augmented dataset that improves the performance of a
predictive model. The system has two components: (1) a framework to search
and join data based on various attributes of the input and (2) a feature selection
algorithm that prunes out noisy or irrelevant features from the resulting join.
The authors extensively evaluate different system components and benchmark
their feature selection algorithm on real-world datasets. ARDA is part of the
family of techniques for automatic machine learning, which aims to automate
the process of training predictive models and make machine learning more
accessible. A concrete limitation of ARDA is that it assume as input the set
of candidate keys, ignoring the discovery of joinable columns and it does
materialize each possible join after sampling, making it very expensive un-
der a computational perspective. Pexeso [30] is a framework for discovering
joinable tables in data lakes that can handle misspellings, different formats,
and capture semantic joins. The framework targets the case when textual val-
ues are embedded as high-dimensional vectors and columns are joined upon
similarity predicates on these vectors. To efficiently find joinable tables with
similarity, the authors propose a block-and-verify method that utilizes pivot-
based filtering and a partitioning technique for large data lakes. The solution
identifies more tables than equi-joins and outperforms other similarity-based
options, with join results useful in data enrichment for machine learning tasks.
Pexeso rely on pre-trained embedding mappings, making it difficult to retrieve
joinable columns on dataset that have low coverage with respect to embedding
vocabulary. Auctus [13] discusses the challenges involved in discovering relev-
ant structured data from the large volumes of structured data available, from
Web tables to open-data portals and enterprise data. The authors present the
Auctus dataset search engine, which addresses some of these challenges. They
describe the system architecture and how users can explore datasets through
a rich set of queries. The authors also present case studies demonstrating how
Auctus supports data augmentation to improve machine learning models and
enrich analytics. Auctus extracts metadata from the input tables to profile
data, and act as a human-in-the-loop system, in which every table identified
as joinable must be validated and, although the join columns are suggested,
the same user must click on them to move on in the process. As expected,
it works much more an engine than as an automatic system. Valentine [49]
discusses the challenges involved in capturing relationships among heterogen-
eous datasets in large data lakes, traditionally termed schema matching. The

2.3 augmentation approaches 19

effectiveness of schema matching methods heavily relies on discovering and
integrating datasets. However, evaluating schema matching methods is still a
daunting task due to the lack of openly-available datasets with ground truth,
reference method implementations, and comprehensible GUIs. The authors
propose Valentine, the first system to offer an open-source experiment suite to
organize, execute and orchestrate large-scale matching experiments. Valentine
provides a user-centric GUI and a scalable holistic matching system that can
receive tabular datasets from heterogeneous sources and provide similarity
scores among their columns to facilitate modern procedures in data lakes, such
as dataset discovery. The demonstration showcases Valentine’s functionalit-
ies and enhancements. Sketch [75] discusses how dataset search is a critical
capability in both research and industry, enabling new applications from data
enrichment to machine learning model improvement. The authors focus on a
specific type of data-driven query that supports relational data augmentation
through numerical data relationships: given an input query table, finding the
top-k tables that are both joinable with it and contain columns that are correl-
ated with a column in the query. They propose a novel hashing scheme that
allows the construction of a sketch-based index to support efficient correlated
table search. The authors show that their proposed approach is effective and
efficient, achieving better trade-offs that significantly improve both ranking
accuracy and recall compared to the state-of-the-art solutions. Most of the
approaches described in this Section actually rely on those presented in Section
2.1 as a low level implementation of joinability discovery.

3
Background

In this chapter, we introduce the necessary background concepts to fully
describe the problemwe are facing in this work. The chapter is divided into five
parts, each focusing on a particular aspect of data management. The first part
examines the core principles of Database Management Systems (DBMS) and
the fundamentals of relational algebra. Relational tables form the backbone of a
majority of data storage systems, as they enable the efficient organization and
retrieval of structured data. In the second part the focus shifts to the innovative
approach of viewing tables as queries. This paradigm allows for the seamless
integration of data from disparate sources, as well as the efficient retrieval
of information from large-scale databases and data lakes. The section delves
into the underlying principles of this paradigm, exploring its benefits. The
third part presents the fundamental concepts of data compression, entropy,
and redundancy in the context of data management. Understanding these
concepts is essential for designing efficient algorithms and data structures that
minimize storage requirements and optimize data transmission. This section
also highlights the role of information theory in improving the performance of
database systems. The fourth part, covers the techniques and methods used to
map data items to hash fingerprints, allowing for efficient retrieval and storage
of information. Lastly, the fifth part explores the use of spatial data structures
for indexing and querying geometric data.

3.1 Relational Tables
A database management system (DBMS) is a software system that allows users
to store, retrieve, and manage data efficiently. In a DBMS, data is organized in
tables, which consist of rows (also called records or tuples) and columns (also
called fields or attributes). Each row represents a single instance of the entity
being described by the table, and each column represents a different aspect or
property of that entity.

A common problem in DBMS involves finding a subset of rows that satisfy
certain criteria specified by the user. For example, a user might want to retrieve
all customers who have purchased a particular product in the last year, or
all employees who have worked for the company for more than 5 years. The
criteria for selecting the rows can be expressed as a Boolean expression or a
combination of Boolean expressions, where each expression is based on one
or more columns of the table. The goal is to find an efficient way to evaluate

21

22 background

these expressions and retrieve the matching rows, while minimizing the time
and resources required to do so.
Relational Algebra. Relational algebra is a language consisting in a set

of mathematical operations used to query data stored in a relational database.
These operations are designed to provide a declarative approach to data re-
trieval, allowing users to specify the desired result set without worrying about
the underlying data access mechanisms.

In relational algebra, data is represented as tables, which consist of a set of
named columns and a set of rows, with each row representing a single record.
Each column is associated with a data type, which defines the kind of data
that can be stored in that column. The basic constructs of relational algebra
include:

• Selection: 𝜎\ (𝑅): a unary operation that selects a subset of rows from a
table that satisfy a specified condition \ .

• Projection: 𝜋𝐴1,𝐴2,...,𝐴𝑛
(𝑅): a unary operation that selects a subset of

columns 𝐴1, 𝐴2, ..., 𝐴𝑛 from a table.
• Union: 𝑅 ∪ 𝑆 : a binary operation that combines two tables with the same

schema into a single table, eliminating duplicate rows.
• Difference: 𝑅 − 𝑆 : a binary operation that computes the set of rows that

are in one table but not in another.
• Cartesian product: 𝑅 × 𝑆 : a binary operation that combines two tables

into a single table by taking the cross product of their rows.
• 𝑅 Z\ 𝑆 : a binary operation that combines two tables based on a common

column, producing a new table with columns from both tables where the
common column values match.

Table Retrieval for Relational Tables. In table retrieval, the goal is to
retrieve tables that are similar to a given input table. Regarding the join opera-
tion in such a scenario, one approach is to hash each column to a fingerprint,
and then use a similarity search algorithm to find columns with similar fin-
gerprints. These similar columns can be treated as if they were in the same
table, and the join operation can be performed on them. Specifically, a hash
function can be used to map each column’s values to a vector of integers, and
then a distance metric such as Euclidean distance can be used to measure
the similarity between two columns’ fingerprints. By setting a threshold on
the distance, columns with similar fingerprints can be identified and joined
together. One approach to solving this problem is to hash all the columns of
the input table to a fingerprint and then perform a similarity search in the res-
ulting fingerprint space. However, this approach does not take into account the
relational structure of the data, and can lead to poor performance for certain
types of queries. To address this issue, we propose to use the basic constructs
of relational algebra to model the table retrieval problem. Specifically, we can
represent each table as a set of tuples, and perform selection, projection, and
join operations to compare tables. For example, we can select a subset of rows

3.1 relational tables 23

from a table that match a given condition, project a subset of columns from
a table, or join two tables based on a common column. To simulate the join
operation in table retrieval, we can hash the columns of the input table to very
similar fingerprints, such that columns with the same value in the common
column have similar fingerprints. We can then perform a similarity search on
the resulting fingerprint space, and retrieve tables that are similar to the input
table based on the common column. This approach takes into account the
relational structure of the data and can lead to better performance for certain
types of queries.
Assuming that we have two tables, Table A and Table B, with a known

schema, we want to perform a join operation on these tables based on a
common column, such as "ID".
In SQL, we would write something like:

SELECT *
FROM TableA
INNER JOIN TableB
ON TableA.ID = TableB.ID

This would return a result set containing all the columns from both tables
where the ID column matches.

In comparison, a table join via hashing would involve creating hash codes
for each column in both tables and comparing them to find matches. For
example, we could use MinHash or Locality Sensitive Hashing (LSH) to hash
the columns and identify matches between the two tables.

Here’s an example of how this might look in Python using the LSH-Ensemble
algorithm:

from datasketch import MinHash, MinHashLSHEnsemble

Assume Table A and Table B are Pandas DataFrames with
columns "ID" and "Value"

Convert each column to a set of shingles (in this case,
just the values)

A_shingles = [set(TableA["Value"])]
B_shingles = [set(TableB["Value"])]

Create MinHash objects for each column in both tables
A_minhashes = [MinHash(num_perm=128) for i in range(len(

TableA.columns))]
B_minhashes = [MinHash(num_perm=128) for i in range(len(

TableB.columns))]

Update each MinHash object with the shingles from each
column in each table

for i in range(len(TableA.columns)):
A_minhashes[i].update(A_shingles[i])

24 background

for i in range(len(TableB.columns)):
B_minhashes[i].update(B_shingles[i])

Create an LSH Ensemble object and add the MinHash objects
from Table A

lsh = MinHashLSHEnsemble(num_perm=128, num_part=16)
for i in range(len(TableA.columns)):

lsh.add(str(i), A_minhashes[i])

Query the LSH Ensemble with the MinHash objects from
Table B

matches = []
for i in range(len(TableB.columns)):

result = lsh.query(B_minhashes[i])
matches.append(result)

Flatten the list of matches and remove duplicates
matches = list(set([item for sublist in matches for item in

sublist]))

Join the matching rows from Table A and Table B
result = TableA.loc[TableA["ID"].isin(matches)].merge(

TableB.loc[TableB["ID"].isin(matches)], on="ID")

In this example, we are using MinHash to create hash codes for each column
in both tables, and LSH Ensemble to find matches between them. We then
join the matching rows from Table A and Table B to create a new table with
the desired output. Overall, we can see that table join via hashing can be a
powerful alternative to SQL joins when dealing with large data lakes that have
no known schema or index.

3.2 Table-as-a-Query Paradigm and Table Retrieval
A data lake D is a collection of tables {𝑇1, . . . ,𝑇𝑛}. 𝑇𝑖 is a table composed
of column (i.e., Attributes) and rows (i.e., Tuples). Each table does not hold
any particular shape and the header is unknown. Each table 𝑇𝑖 is composed
of a set of Attributes {𝐴1(𝑇𝑖), . . . , 𝐴𝑘 (𝑇𝑖)}. An equivalent notation to access
the elements of column 𝐴 𝑗 in table 𝑇𝑖 is 𝑇𝑖 .𝐴 𝑗 . Similarly, a tuple of table 𝑇𝑖 is
identified by 𝑟𝑜𝑤𝑙 (𝑇𝑖), stating that we are accessing the 𝑙-th tuple of the table.
Each table is stored in the data lake without any prior information or metadata,
the only accessible information lie inside the table themselves. The lack of
metadata implies that in order to extract knowledge from the tables they must
be accessed or queried one-by-one.

Among the tables in the data lake, we identify a special table Q called query
table. Such a table must have at least two special attributes, namely:

• an Attribute J , representing the Join column;

3.2 table-as-a-qery paradigm and table retrieval 25

• an Attribute Y, representing the Target column.

Reconnecting to what discussed in Chapter 1, the Join column Q .J repres-
ents the column on which our similarity search is built. In particular, we want
to retrieve all the tables inD having at least a column which is similar to Q .J .
The Target column Q .Y refers to the column of the query table against which
we would like to perform the augmentation. Q .Y represents the outcome of a
machine learning task, that can be either classification or regression.

Table Retrieval. Table retrieval is the task of finding a table or a set of tables
from a large dataset based on a user’s query. This problem can be declined under
two main scenarios: when the schema is known (DBMS) and when the schema
is unknown (data lakes). This distinction is crucial and poses the problems
at the core of this work, because once tackling data lakes and schemaless
data, retrieving tables efficiently is not a computational issue only, but also a
methodological problem as well. Such a task is particularly challenging when
the query is underspecified, the data is unstructured, and there is no schema or
indexing information available. In this section, we formalize the table retrieval
problem in the context of data lakes and introduce a novel approach based on
hashing, join search, similarity, and augmentation.
The problem of table retrieval in a DBMS involves finding tables that are

similar to a given query table based on their column-wise content. In Section
1.1 we discussed some intuitions that can be shaped as a table retrieval setting.
More formally, suppose we have a set of 𝑛 tables 𝑇1,𝑇2, ...,𝑇𝑛 , each having𝑚
columns 𝐶1,𝐶2, ...,𝐶𝑚 . Given a query table 𝑄 with columns 𝐶′

1,𝐶
′
2, ...,𝐶

′
𝑚 , the

goal is to find the tables from the set that are most similar to 𝑄 based on their
column-wise content. This can be done exploiting the schema information and
writing plain SQL queries to solve the problem.

For what concerns the data lake scenario, let us consider a 𝐷 that consists
of 𝑛 tables 𝑇1,𝑇2, . . . ,𝑇𝑛 , where each table 𝑇𝑖 has𝑚𝑖 columns and 𝑘𝑖 rows. We
assume that the data lake does not have any schema or indexing information,
and the tables are unordered. The goal of table retrieval is to find a subset of
tables 𝑆 ⊆ 𝑇1,𝑇2, . . . ,𝑇𝑛 such that 𝑆 satisfies a given query 𝑄 . The query 𝑄 is
defined as a table with𝑚 columns and 𝑘 rows, where each cell can be a value
or a wildcard. A wildcard represents any value and allows the query to be
underspecified.
One solution to this problem is to hash all the columns of the tables to a

fingerprint and perform a similarity search in such a space. Each column can
be hashed to a binary vector, and the table can be represented as a set of these
binary vectors. The similarity between two tables can then be calculated based
on the similarity of their corresponding sets of binary vectors. This approach
allows efficient retrieval of tables that are similar to the query table, as it
reduces the search space to a much smaller dimension. However, choosing
an appropriate hash function and setting the parameters of the hash function
can be challenging and requires careful consideration to achieve accurate and
efficient retrieval. In the following of this Chapter, we will dive better in the
formal details of this setting.

26 background

3.3 Information Theory

Information theory is the study of quantifying the amount of information
in a message or a signal. It provides a framework to measure, store, and
communicate information. In this section, we will discuss some fundamental
concepts of information theory, including entropy, conditional entropy, and
mutual information.

Probability and Density Functions in Information Theory. In inform-
ation theory, probability, conditional probability, and density functions play a
crucial role in understanding the uncertainty associated with a random vari-
able. The probability of an event is defined as the measure of the likelihood
that the event will occur, and it is always a value between 0 and 1. If an event
is impossible, its probability is 0, and if it is certain to occur, its probability is 1.
The probability of an event A is denoted by P(A). Conditional probability refers
to the probability of an event occurring given that another event has occurred.
It is denoted by P(A|B), where A and B are events. The conditional probability
of A given B is calculated as the probability of both A and B occurring divided
by the probability of B occurring:

𝑃 (𝐴|𝐵) = 𝑃 (𝐴 ∩ 𝐵)
𝑃 (𝐵) (3.1)

In information theory, we also deal with uncertain events, and we use
probability theory to model and quantify the uncertainty. Probability theory
provides a framework for computing the likelihood of events, given some
prior knowledge or assumptions. The basic concept in probability theory is a
random variable, which is a variable that can take on different values with some
probability distribution. The probability distribution specifies the likelihood
of each possible value that the random variable can take. The probability of
an event 𝐸 is defined as the sum of the probabilities of all the outcomes that
correspond to 𝐸. If 𝑃 (𝐸) is the probability of event 𝐸, then 0 ≤ 𝑃 (𝐸) ≤ 1. If
𝐸1 and 𝐸2 are two events, then their union 𝐸1 ∪ 𝐸2 is the event that either
𝐸1 or 𝐸2 occurs. The probability of the union is given by the sum of the
probabilities of 𝐸1 and 𝐸2, minus the probability of their intersection 𝐸1 ∩ 𝐸2:
𝑃 (𝐸1∪𝐸2) = 𝑃 (𝐸1) +𝑃 (𝐸2) −𝑃 (𝐸1∩𝐸2). The intersection of two events 𝐸1 and
𝐸2 is the event that both 𝐸1 and 𝐸2 occur. Conditional probability is a measure
of the probability of an event occurring given that another event has occurred.
It is defined as the probability of the intersection of two events 𝐸1 and 𝐸2,
divided by the probability of 𝐸2: 𝑃 (𝐸1 |𝐸2) = 𝑃 (𝐸1 ∩ 𝐸2)/𝑃 (𝐸2). Conditional
probability is used to model the dependence between events, and it is essential
in Bayesian inference and machine learning.

Entropy. Entropy is a measure of the amount of uncertainty or randomness
in a system. It was first introduced by Claude Shannon in his seminal paper on
information theory in 1948 [77]. The entropy of a random variable 𝑋 , denoted
by 𝐻 (𝑋), is defined as:

3.3 information theory 27

𝐻 (𝑋) = −
∑︁
𝑥∈X

𝑝 (𝑥) log𝑝 (𝑥), (3.2)

where X is the set of possible outcomes of 𝑋 , and 𝑝 (𝑥) is the probability
mass function of 𝑋 . The entropy measures the average amount of information
conveyed by each outcome of 𝑋 . It is maximum when all outcomes are equally
likely, and minimum when one outcome is certain to occur.

Conditional Entropy. Conditional entropy is a measure of the uncertainty
remaining in a random variable 𝑌 after another random variable 𝑋 is observed.
The conditional entropy of 𝑌 given 𝑋 , denoted by 𝐻 (𝑌 |𝑋), is defined as:

𝐻 (𝑌 |𝑋) = −
∑︁
𝑥∈X

∑︁
𝑦∈Y

𝑝 (𝑥,𝑦) log𝑝 (𝑦 |𝑥), (3.3)

where Y is the set of possible outcomes of 𝑌 , and 𝑝 (𝑦 |𝑥) is the conditional
probability mass function of 𝑌 given 𝑋 = 𝑥 . The conditional entropy measures
the average amount of information needed to describe 𝑌 after 𝑋 is observed.
It is minimum when 𝑌 is completely determined by 𝑋 , and maximum when 𝑌
is independent of 𝑋 .
Mutual Information.Mutual information is a measure of the amount of

information that two random variables𝑋 and𝑌 share. The mutual information
between 𝑋 and 𝑌 , denoted by 𝐼 (𝑋 ;𝑌), is defined as:

𝐼 (𝑋 ;𝑌) =
∑︁
𝑥∈X

∑︁
𝑦∈Y

𝑝 (𝑥,𝑦) log 𝑝 (𝑥,𝑦)
𝑝 (𝑥)𝑝 (𝑦) , (3.4)

where X and Y are the sets of possible outcomes of 𝑋 and 𝑌 , respectively,
and 𝑝 (𝑥,𝑦), 𝑝 (𝑥), and 𝑝 (𝑦) are the joint and marginal probability mass func-
tions of 𝑋 and 𝑌 . The mutual information measures how much knowing 𝑋
reduces the uncertainty about 𝑌 and vice versa. It is zero if 𝑋 and 𝑌 are inde-
pendent, and positive if they are dependent. Mutual information is often used
in machine learning to measure the dependence between features and labels
or between different features. It can be used to select informative features, to
cluster data, or to evaluate the performance of a classification or regression
model.
Conditional Entropy for Expressing Functional Dependencies in

DBMS. In database management systems (DBMS), functional dependencies
are used to model relationships between attributes in a relation. These depend-
encies are used to enforce constraints on the data, ensuring that it is consistent
and free from redundancies. Conditional entropy is a measure of the amount
of uncertainty in a random variable given knowledge about another random
variable. In the context of functional dependencies, conditional entropy can
be used to express the degree to which one attribute is dependent on another.
Suppose we have a relation 𝑅(𝐴, 𝐵), where 𝐴 and 𝐵 are attributes. We can

define the functional dependency𝐴 → 𝐵 tomean that, for any two tuples 𝑡1 and
𝑡2 in 𝑅, if 𝑡1.𝐴 = 𝑡2.𝐴, then 𝑡1.𝐵 = 𝑡2.𝐵. To express this functional dependency
using conditional entropy, we can compute the entropy of 𝐵 given 𝐴, denoted
as 𝐻 (𝐵 |𝐴). If 𝐻 (𝐵 |𝐴) = 0, then 𝐵 is completely determined by 𝐴 and the

28 background

functional dependency 𝐴 → 𝐵 holds. If 𝐻 (𝐵 |𝐴) > 0, then 𝐵 is not completely
determined by 𝐴 and the functional dependency does not hold. Conditional
entropy can also be used to express partial dependencies. Suppose we have
a relation 𝑅(𝐴, 𝐵,𝐶), where 𝐴 and 𝐵 together determine 𝐶 . We can express
this partial dependency as 𝐴, 𝐵 → 𝐶 . To check if this partial dependency
holds, we can compute the entropy of 𝐶 given 𝐴, 𝐵, denoted as 𝐻 (𝐶 |𝐴, 𝐵). If
𝐻 (𝐶 |𝐴, 𝐵) = 0, then 𝐶 is completely determined by 𝐴 and 𝐵 and the partial
dependency holds. In summary, conditional entropy provides a useful tool for
expressing functional dependencies and partial dependencies in DBMS. By
computing the entropy of one attribute given another, we can determine the
degree of dependence between the attributes and enforce constraints on the
data to ensure consistency and avoid redundancies.

3.4 Hashing

Many relevant approaches in set similarity search rely on hashing function.
In particular, in this section we will see and discuss the broad family of LSH
algorithms and the data sketches that rely on it.

LSH. Locality-sensitive hashing (LSH) is a widely used approximate nearest
neighbor (ANN) search technique. The idea behind LSH is to hash the high-
dimensional data points into lower-dimensional hash codes in a way that the
hash codes of similar data points are likely to be the same. This allows for fast
similarity search by only comparing the hash codes of data points instead of
the original high-dimensional vectors. The LSH algorithm can be divided into
two main steps: (1) hash function construction and (2) hash table creation. In
the first step, a set of hash functions is generated such that each hash function
maps data points to a binary hash code. The hash functions are designed in
such a way that the probability of two data points having the same hash code
is higher if the data points are similar according to some distance metric. In
the second step, hash tables are created by grouping data points with the same
hash code into the same bucket.

The quality of LSH heavily depends on the choice of hash functions and on
the number of hash tables used. A good set of hash functions should maximize
the probability of collision for similar data points while minimizing the prob-
ability of collision for dissimilar data points. The number of hash tables used
affects the quality of the search results, with a larger number of hash tables
generally resulting in more accurate results at the cost of increased computa-
tion and memory usage. LSH is widely used in large-scale machine learning
and data mining applications, such as image and video search, document re-
trieval, and recommendation systems. It is particularly useful when dealing
with high-dimensional data, where exact nearest neighbor search becomes
computationally infeasible. However, it is important to note that LSH is an
approximate search technique and may not always return the exact nearest
neighbor. The quality of the search results depends heavily on the choice of
hash functions and the number of hash tables used.

3.4 hashing 29

LSH Ensemble. LSH Ensemble is a popular technique for approximate
nearest neighbor search in high-dimensional data. It involves combining mul-
tiple hash tables, each using a different random projection, to produce more
accurate and robust query results. LSH Ensemble has been shown to outper-
form single LSH tables and other state-of-the-art indexing methods in many
real-world scenarios. One of the key advantages of LSH Ensemble is its ability
to handle high-dimensional data efficiently. Traditional indexing methods,
such as tree-based approaches, suffer from the curse of dimensionality and
become impractical when the number of dimensions is large. LSH Ensemble,
on the other hand, can be easily scaled to high-dimensional data without sig-
nificant loss in query accuracy. Moreover, LSH Ensemble can be implemented
efficiently on distributed systems, making it a suitable candidate for large-scale
applications.
Another advantage of LSH Ensemble is its flexibility and tunability. By

adjusting the number of hash tables and their parameters, one can control the
trade-off between query accuracy and query time. Furthermore, LSH Ensemble
can be combined with other indexing methods to produce hybrid solutions
that offer even better performance. Despite its advantages, LSH Ensemble is
not a silver bullet and has its limitations. One of the major challenges is the
selection of the optimal hash functions and their parameters. This process
requires careful tuning and experimentation, and may not be feasible in some
scenarios. Moreover, LSH Ensemble may not perform well on datasets with
complex structures or skewed distributions.

Overall, LSH Ensemble is a powerful and widely used technique for approx-
imate nearest neighbor search. Its combination of efficiency, scalability, and
flexibility makes it a suitable choice for many real-world applications.
Hashing for Table Retrieval. In table retrieval, the goal is to efficiently

search a large database of tables to find those that match a given query. One
approach to this problem is to hash the columns of each table to a set of
fingerprints and perform a similarity search in the resulting fingerprint space.
This approach has several benefits over traditional indexing techniques.

First, hashing allows for fast and efficient retrieval of tables. By converting
each column into a fixed-length fingerprint, we can perform similarity searches
using algorithms like locality-sensitive hashing (LSH) that are designed to
efficiently search large high-dimensional spaces. This enables us to quickly
retrieve tables that are similar to the query without performing a full table
scan.
Second, hashing is a memory-efficient approach to indexing. Traditional

indexing techniques like B-trees or hash tables can be memory-intensive,
especially for large databases with many columns. Hashing, on the other
hand, requires only a small amount of memory to store the fingerprints of
each column, making it an attractive option for systems with limited memory
resources.

Third, hashing can be used to enable approximate search. In many cases, an
exact match for the query is not required, and it may be sufficient to retrieve

30 background

tables that are similar to the query. Hashing allows us to perform approximate
search efficiently by defining a similarity threshold and retrieving all tables
whose fingerprints fall within that threshold.

Hashing for Column Similarity Search. In the previous section, we
discussed how the problem of table retrieval can be approached by hashing all
the columns of a table to a fingerprint and then performing a similarity search
in the resulting space. However, the question remains of how to choose an
appropriate hash function for this purpose. One promising approach is to use
a hash function that is based on the 𝑘-nearest neighbors (𝑘-NN) algorithm.
Specifically, we can treat each column of a table as a vector and use 𝑘-NN
to project these vectors onto a low-dimensional space that preserves their
relative distances. This projection can then be used as the fingerprint for the
column.
One advantage of using a 𝑘-NN based hash function is that it can capture

both local and global patterns in the data. Local patterns refer to correlations
between neighboring values in a column, while global patterns refer to correla-
tions between columns themselves. By projecting columns that exhibit similar
local patterns to similar fingerprints, we can find related columns that might
otherwise be missed by traditional similarity metrics. Similarly, by projecting
columns that exhibit dissimilar global patterns to dissimilar fingerprints, we
can find columns that are not correlated.

To simulate the join operation, we can keep columns hashed to very similar
fingerprints together, effectively grouping together columns that share similar
values or patterns. This way, when a user queries the table for a particular
value or pattern, the algorithm can quickly locate the relevant column group
and return the desired results. Overall, using a 𝑘-NN based hash function for
column similarity search offers a promising approach to the problem of table
retrieval, allowing for efficient and effective search through large tables of
data.

3.5 Spatial Indexes

Spatial indexing is a technique used in computer science and geographic
information systems to efficiently store and query large sets of objects based
on their spatial properties. Spatial indexes use data structures to organize
spatial data in a way that allows for fast and efficient queries.
A suitable data structure for implementing the KNN-based hash function

is a KD-Tree. KD-Trees are a type of binary search tree that is optimized
for performing nearest neighbor searches. The idea behind a KD-Tree is to
recursively partition the data into smaller regions of the space by splitting
along a dimension at each level of the tree. The splitting plane is chosen to be
the median of the data in that dimension, and the data points are partitioned
into two halves on either side of the plane. This process is repeated until the
regions are small enough to perform a linear search.

The KDTree works by recursively partitioning the space into two parts along

3.5 spatial indexes 31

a single dimension. Each node in the tree represents a region of space, and
the partitioning is done such that the two children of each node correspond
to the two halves of the region along the selected dimension. This process is
repeated until each leaf node represents a small region of space containing
a small number of points. To query the KDTree, one starts at the root node
and recursively descends the tree, following the path that is closest to the
query point. At each level of the tree, the algorithm selects the child node
that is closer to the query point and continues the descent. Once a leaf node
is reached, the algorithm returns the points contained in that leaf node and
searches the neighboring nodes to ensure that all nearby points are returned.
One of the benefits of the KDTree is that it can be used to efficiently answer
range queries, where one wants to find all the points within a certain distance
of a query point. This is achieved by searching the KDTree recursively, but
skipping over nodes that are further away than the current radius. Overall, the
KDTree is a powerful data structure for spatial indexing and is widely used in
a variety of applications, such as computer vision, data mining, and machine
learning.
With the KNN-based hash function, radius queries can be used for both

joining (points in the radius) and machine learning useful columns (far away
from the radius). A radius query is a query that returns all data points within
a certain radius of a given query point. In the context of table retrieval, radius
queries can be used to find columns that are correlated with a given column
or set of columns.
In addition to KDTree, there are other types of spatial indexes that are

commonly used in data science and machine learning, such as quadtree, R-tree,
and ball tree. However, these indexes have different strengths and weaknesses
compared to KDTree, which is why we chose to use KDTree for our solution.
The quadtree [74, 81] is a tree data structure that recursively subdivides space
into four quadrants. It is commonly used for partitioning two-dimensional
space for efficient querying of points or rectangles. However, it does not work
well for high-dimensional data like the ones we are dealing with in our table
augmentation problem. The R-tree [47, 4, 5] is a tree data structure that is used
for spatial indexing of multidimensional data like points, lines, and rectangles.
It uses bounding boxes to organize the data in a hierarchical manner, allowing
for efficient range queries. However, R-trees can be expensive to build and
update, and can have poor performance on skewed distributions of data. The
ball tree [28] is a tree data structure that partitions space into a series of hyper-
spheres, making it suitable for nearest-neighbor searches in high-dimensional
spaces. However, it can be expensive to build andmaintain, and can be sensitive
to the choice of distance metric.

Overall, we chose to use KDTree for our solution because it is efficient, easy
to implement, and can handle high-dimensional data well. Its performance is
not significantly affected by skewed distributions of data, and it can handle
both range and nearest-neighbor queries efficiently.

4
Problem Statement and Approach

In this chapter, we formalize the problem statement and present in detail
our proposed approach. We begin by formalizing the problem statement and
outlining its significance in the context of machine learning.
However, before delving into the details of our proposed approach, we

believe it is important to discuss the various basic approaches that we explored
during our research. We experimented with several ideas and techniques, some
of which proved to be ineffective and led us to blind spots.
Therefore, we dedicate a significant portion of this chapter to discussing

these approaches and the insights we gained from them. We will discuss how
we designed each of the solutions that resulted ineffective, highlighting both
advantages and limitations and how we overpassed the issues.

Specifically, we discuss our attempts at discovering approximate functional
dependencies to evaluate relatedness, including the approximate functional
dependencies and graph functional dependencies. We also explore the use of
information theorymeasures frommarginals and extending the Josie algorithm.
Finally, we consider the potential of word embedding to map tables.

After presenting these failed approaches, we then present our proposed solu-
tion in detail. By contextualizing our approach within the broader landscape
of failed attempts, we aim to provide a more nuanced and comprehensive un-
derstanding of the problem of horizontal table augmentation and the potential
solutions to it.

4.1 Problem Statement
Let Q be a table, which will be referred to as Query Table, containing

• an attribute J , representing the Join column;
• an attribute Y, representing the Target column.

We consider J a column composed of string only values, while Y is a
numeric column acting as the target column of a machine learning task.
Let D be a data lake consisting of a set of tables, including Q.
Let T ∈ D be a table, that will be referred to as Joinable Table in the data

lake that contains:

• a column J ’ that may contain overlapping sets of values with J , so that
columns J and J ’ can be used to join tables T and Q, i.e., Q ZJ=J′ T

33

34 problem statement and approach

• a number of other columns C

Let, finally, be 𝑀 be a machine learning task on the tables in D and let
M be its performance. In this setting,M is intended to be a number whose
domain depends on the task. For a classification task,M ∈ [0, 1], for regression
tasks it represents the mean error, so its range is [0,∞]. Therefore, M can be
considered a contraction ofM(Y).
Let us define a Candidate Augmenting Column as a column CA such that

CA is a column of a joinable table T , different from the join column J ’, such
that
M(Q ZJ=J′ 𝛱J′,CA T) > M(Q).
A column CA can contain any type of data, there are no limitations on its

type. Thus, the augmenting column improves the performance of the machine
learning task with respect to that achieved on the query table alone. This is
the desired behavior for applications such as data augmentation for machine
learning models, where the goal is to add new columns (features) to an existing
training dataset while maintaining the same number of rows.
We can define the augmentation improvement of an augmenting column

CA ∈ T as the increase inM, that is:
𝛥𝐴 (CA) =M (Q ZJ=J′ 𝛱J′,CA (T)) -M(Q).
Among the candidate augmenting columns, we define a ranking R induced

by the order relation >𝐴 such that, given two augmenting columns CA1 ∈
T 1, CA2 ∈ T 2: CA1 >𝐴 CA2 if 𝛥𝐴(CA1) > 𝛥𝐴 (CA2).
We are then typically interested, given an integer 𝑘 , to retrieve the top-𝑘

augmenting columns among the candidate ones, i.e., finding the 𝑘 augmenting
columns with the highest augmentation improvement.
Note that this ranking of columns also implies a ranking of tables, since

the augmenting columns may belong to different tables and that while the
definition of augmentation improvement may seem to refer to a choice of a
column only, this actually requires a high degree of joinability as well. Tables
are ordered according to their most relevant column performance, expressed
in terms of distance from the target column.
The ranking of tables must satisfy the rule that the top-k tables of the

ranking produce an augmentation, meaning that the suggested join between
the query table Q and the top-ranked tables in the ranking R will improve the
predictive ability of Q with respect to T . The idea is to suggest to the user the
most interesting table that guarantees an improvement without the need of
materializing any join to catch such information. Our system returns the list
of tables worthy of being joined to the query table.

4.2 Basic Approaches
DB-Like functional dependencies. Our first intuition was to consider func-
tional dependencies to evaluate the grade of relatedness of two columns. As it
is known, functional dependencies have a high degree of complexity in com-
puting their presence [62]. Before focussing on the possibility of computing

4.2 basic approaches 35

Element Symbol Description

Data lake D A repository of tables without any metadata
information. Typical scale of such a structure
is in hundreds of thousands tables.

Query table Q ∈ D A table identified as query. It will be the table
object of search by the index.

Join column J ∈ Q A column of the query table acting as join
search key. All columns of all tables in the data
lake similar to this column will be identified.

Target column T ∈ Q A column of the query table acting as target
column. All columns of all joinable tables in
the data lake that contains relevant features
to help the columns of the query table in pre-
dicting this column will be identified.

Candidate table T ∈ D A table that can be joined with the query table,
i.e., a table that contains at least a column very
similar to the Join column

Candidate Column CA ∈ T A column of a candidate table that can pro-
duce an augmentation, i.e., a column that con-
tains relevant features to improve the predict-
ive ability of Q

Candidate join column J ′ ∈ C A column of C that contains common values
with J ∈ Q

Model Performance M The performance of a machine learning in
predicting Y.

Ranking 𝑅(𝐶1, . . . ,𝐶𝑛) An ordered list of tables that, joined with the
query table, will produce an improvement in
the query table ability of predicting the target
column.

Hash Function 𝐻 (𝐶) An hash function applied to all column at the
time of index creation.

table 4.1 Ingredients involved in the problem statement

36 problem statement and approach

FDs, either in an exact or approximate way as we will discuss later on, we put
the attention on its mathematical validity. In this phase, the research question
was: Is there a relation between the existence of a functional dependency among
columns and their relatedness?

A functional dependency is a relationship between two attributes in a rela-
tion that describes how the values in one attribute determine the values in the
other attribute. Formally, we can define a functional dependency as follows:
Let 𝑅 be a relation with attributes 𝐶1 and 𝐶2, and let 𝑡1 and 𝑡2 be tuples in

𝑅. We say that 𝐶1 functionally determines 𝐶2 in 𝑅, denoted as 𝐶1 → 𝐶2, if for
any two tuples 𝑡1 and 𝑡2 in 𝑅:
If 𝑡1 [𝐶1] = 𝑡2 [𝐶1], then 𝑡1 [𝐶2] = 𝑡2 [𝐶2].
In other words, the value of 𝐶2 is uniquely determined by the value of 𝐶1

in any tuple in 𝑅. We can also say that 𝐶1 is the determinant and 𝐶2 is the
dependent attribute.
For example, let consider a relation 𝑅 with attributes employee_id, em-

ployee_name, and employee_department. We can say that employee_id →
employee_name because the value of employee_name is uniquely determined
by the value of employee_id for any employee in the database. Similarly, we
can say that employee_id→ employee_department for the same reason.

To access the tuples 𝑡1 [𝐶1] and 𝑡2 [𝐶1], we simply use the subscript notation
to access the values of attribute𝐶1 in tuples 𝑡1 and 𝑡2, respectively. For example,
𝑡1 [𝐶1] would access the value of attribute 𝐶1 in tuple 𝑡1.

It is worth noticing that, in a database scenario, it is known what is the
primary key of the relation; following the nature of the functional dependen-
cies, the key is the determinant of each other column. Applying this scenario
to our use-case suggested us that the belonging of two columns to the same
relation it is not a mandatory fact. The meaning of that is the following: we
can evaluate the same information, i.e., the functional dependency, between
two columns belonging to different tables. The complexity of the operation is
not affected. What is truly affected is the implication of a column of table 𝑇1
completely determining another column in table 𝑇2. From a learning perspect-
ive, a feature that fully determines another features is irrelevant, or redundant.
These intuitions suggested us two relevant facts: a) columns that act as key
with respect to the target column are not relevant to provide augmentation and
b) discrete values for functional dependencies does not help us in quantifying
how much a column determines another.
Functional dependencies, as a matter of principle, are effective in giving

insights on the possibility of finding relevant tables, on the augmentation side
only. They cannot be easily used to search for joinable table, even if they were
computable in reasonable times.

Graph Functional Dependencies. While considering FDs, we moved our
attention to graph functional dependencies for a while. This is because we
started to consider a data lake as a graph rather than a repository of tables.
Other approaches do the same thing [55] while considering different problems.
This can be done at different levels of granularity: a node of the graph can be

4.2 basic approaches 37

a table, a column or even a value. We focused on the latter, supported by the
existence of large scale graph engines such as Neo4J [66] that support efficient
operation on data lake size use cases. Many approaches exist that search for
FDs in graphs [36, 37]. Since the complexity of such discovery is the same as
traditional FDs, the problem of GFDs has been posed as detection of patters in
a graph, the identification of subgraphs to make the problem easier and detect
violation of FDs rather than considering their discovery. Summarizing this brief
excursion, the idea of considering a data lake as a graph is surely interesting
but of limited usefulness, since it does not simply of any order the discovery
and make possibly more difficult to retrieve joinable tables. Furthermore, in
addition to the graph representation, a mapping table-column-value must be
kept, suggesting that the space required for such a solution would be greater
than the data lake itself.

Discovering Approximate Functional Dependencies to Evaluate Re-
latedness. Stated that functional dependencies can be somehow interesting
to evaluate augmentation, we focused on the possibility of actually computing
them. As well as our join search, functional dependencies discover can be done
either exactly on approximately. Exact discovery is harder and in the scope
of our work less interesting, since we rely on a probabilistic background, so
we focused on approximate approaches. A very relevant work is this scenario
is PYRO [50]. PYRO is based on a lattice structure that is useful to generate
all possible dependencies while keeping reasonable pruning techniques to
make the problem computable. Lattices allow for a bottom up traversal in
which previously computed results can be reused without the need of extra
computation. PYRO has been built on top of previous works in the field of
FDs discovery such as [42, 34]. We tested some of the algorithms that tackle
this problem, although some consideration emerges. The main disadvantage
of considering traditional FDs is that they do not provide any insight on how
a column or a set of columns can improve the predictive ability of query table.
Alternately, they can be used as metadata after the augmentation has been
provided, for example by reducing the number of involved columns to avoid
redundancy. This analysis is out of the scope for this work, since the issue of
actually computing these measures in a reasonable time is still open.

Reliable Fraction of Information. While considering functional depend-
encies a promising direction, we stepped back for a while to a wider look at
what a functional dependency is. Since we were deep in a database-oriented
perspective, we asked ourselves which other communities could have faced a
similar problem. We came out the whole community that focused on data and
knowledge discovery. We ended up on works that tries to discover functional
dependencies from data outside the relation world [60, 59, 58]. This approach
discusses the Fraction of Information 𝐹 (𝑋 ;𝑌) as an ideal choice for measuring
dependency between categorical input and output variables. 𝐹 (𝑋 ;𝑌) is defined
as the ratio between mutual information and Shannon entropy, representing
the proportional reduction of uncertainty about Y by knowing X. However,
estimating mutual information from empirical samples is challenging and

38 problem statement and approach

can lead to overestimation, known as dependency-by-chance. To address this
issue, the authors propose a reliable mutual information estimator 𝐼0(𝑋 ;𝑌) by
correcting the standard plug-in estimator with an expected value under a null
hypothesis model. This estimator accounts for dependency-by-chance and is
computationally efficient. However, maximizing this estimator is NP-hard. The
authors develop bounding functions for 𝐼0, enabling efficient exact, approxim-
ate, and heuristic algorithms to be used in branch-and-bound and heuristic
search, thus reducing the search space. This approach discovers reliable de-
pendencies among categorical input features and an output variable. Meaning
that, the selected groups of input features approximate well the output vari-
ables. This approach prove to be useful and effective in a slightly different
scenario to ours: It finds the subset of input categorical features that correlates
better to an output feature. It does not search for features that can provide an
augmentation, rather it finds group that correlate to the output variable. In our
scenario, that would not provide augmentation, rather it would add redund-
ancy to query table because the found columns would behave accordingly to
the output. Furthermore, since the problem has a different setup and statement,
there are many difficulties in adopting such a framework to our scenario. First,
the search for joinable tables should be done elsewhere. None of the phases
of the approach seems to be suitable to a join integration. Secondly, it is not
meant to work on large datasets, composed of many tables even of small sizes.
Another disadvantage of this framework is either its speed in computing FDs
(they are actually reliable but slow or even infeasible). Summarizing the hard-
ness of an integration to our case, we can say that adopting this framework
would be as difficult as materializing a join over joinable tables (identified
using different algorithms). Later in this chapter we will discuss and idea of
extending an approach based on hashing that could have been considered the
join search step for this adoption. The takeaway of such an experience is that,
once again, information theory seems to be an interesting area to invest in for
figuring out a solution.

4.3 The Impossibility of Estimating Conditional
Entropy from Individual Entropies
In information theory, entropy is a measure of uncertainty or randomness in a
random variable. It is defined as the average amount of information contained
in each event of the random variable. Entropy is a fundamental concept in
information theory and has many applications in fields such as statistics,
physics, and computer science. Conditional entropy is a measure of the amount
of uncertainty in a random variable given the value of another random variable.
It is defined as the average entropy of the conditional distribution of the first
variable given the second variable. Intuitively, conditional entropy measures
the amount of uncertainty in a random variable that is left after the value of
another random variable is known. One might think that given the individual
entropies of two random variables, one could estimate their conditional entropy.

4.3 the impossibility of estimating conditional entropy from individual entropies 39

However, it turns out that this is not possible in general. In this section, we
will prove this result mathematically.

𝐻 (𝑋) = −
∑︁
𝑥∈X

𝑃 (𝑋 = 𝑥) log2 𝑃 (𝑋 = 𝑥) 𝐻 (𝑌) = −
∑︁
𝑦∈Y

𝑃 (𝑌 = 𝑦) log2 𝑃 (𝑌 = 𝑦)

where X and Y are the support sets of 𝑋 and 𝑌 , respectively.
The conditional entropy of 𝑋 given 𝑌 is defined as:

𝐻 (𝑋 |𝑌) =
∑︁
𝑦∈Y

𝑃 (𝑌 = 𝑦)𝐻 (𝑋 |𝑌 = 𝑦) = −
∑︁
𝑦∈Y

𝑃 (𝑌 = 𝑦)
∑︁
𝑥∈X

𝑃 (𝑋 = 𝑥 |𝑌 = 𝑦) log2 𝑃 (𝑋 = 𝑥 |𝑌 = 𝑦)

We want to show that 𝐻 (𝑋 |𝑌) cannot be determined from 𝐻 (𝑋) and 𝐻 (𝑌)
alone. Suppose that we have access to 𝐻 (𝑋) and 𝐻 (𝑌), and let us assume that
𝐻 (𝑋 |𝑌) can be expressed as a function of 𝐻 (𝑋) and 𝐻 (𝑌), i.e.,

𝐻 (𝑋 |𝑌) = 𝑓 (𝐻 (𝑋), 𝐻 (𝑌))
for some function 𝑓 . We will show that this assumption leads to a contra-

diction.
Consider the following example. Let 𝑋 and 𝑌 be two independent Bernoulli

random variables with 𝑃 (𝑋 = 1) = 𝑝 and 𝑃 (𝑌 = 1) = 𝑞. Then, we can compute
the entropies as follows:

𝐻 (𝑋) = −𝑝 log2 𝑝 − (1 − 𝑝) log2(1 − 𝑝) 𝐻 (𝑌) = −𝑞 log2 𝑞 − (1 − 𝑞) log2(1 − 𝑞)
The joint distribution of 𝑋 and 𝑌 is given by:

𝑃 (𝑋,𝑌) = 𝑃 (𝑋)𝑃 (𝑌) = 𝑝𝑞(1 − 𝑝) (1 − 𝑞)
The conditional entropy of 𝑋 given 𝑌 is:

𝐻 (𝑋 |𝑌) = −
∑︁
𝑦∈0,1

𝑃 (𝑌 = 𝑦)
∑︁
𝑥∈0,1

𝑃 (𝑋 = 𝑥 |𝑌 = 𝑦) log2 𝑃 (𝑋 = 𝑥 |𝑌 = 𝑦)

= −
∑︁
𝑦∈0,1

𝑞𝑦 (1 − 𝑞)1−𝑦
∑︁
𝑥∈0,1

𝑃 (𝑋 = 𝑥 |𝑌 = 𝑦) log2 𝑃 (𝑋 = 𝑥 |𝑌 = 𝑦)

As we can see, the conditional entropy𝐻 (𝑋 |𝑌) reduces to the entropy𝐻 (𝑋),
which does not depend on 𝑌 . This is because 𝑋 and 𝑌 are independent, and
hence, knowing 𝑌 does not provide any additional information about 𝑋 .
This example illustrates that, in general, knowledge of the individual en-

tropies 𝐻 (𝑋) and 𝐻 (𝑌) is not sufficient to determine the conditional entropy
𝐻 (𝑋 |𝑌). The reason is that the conditional entropy takes into account the
dependencies between the variables, which cannot be inferred from the in-
dividual entropies alone. Therefore, to accurately estimate the conditional
entropy, we need to consider the joint distribution of the variables or use other
methods, such as machine learning algorithms, to learn the conditional probab-
ilities from data. In the following, we will present two demonstrations. In the
first one, we show that 𝐻 (𝑋 |𝑌) cannot be determined from 𝐻 (𝑋) and 𝐻 (𝑌)
alone. In the second one, we show that we cannot derive their conditional
entropy 𝐻 (𝑋 |𝑌) or mutual information 𝐼 (𝑋 ;𝑌).

40 problem statement and approach

Proof: Assume we have two columns, 𝑋 and 𝑌 , with known entropies𝐻 (𝑋)
and 𝐻 (𝑌). We aim to show that we cannot derive their conditional entropy
𝐻 (𝑋 |𝑌) or mutual information 𝐼 (𝑋 ;𝑌).

First, let us consider the definition of conditional entropy:

𝐻 (𝑋 |𝑌) =
∑︁
𝑦∈𝑌

𝑃 (𝑌 = 𝑦)𝐻 (𝑋 |𝑌 = 𝑦)

By Bayes’ rule, we have:

𝑃 (𝑌 = 𝑦) = 𝑃 (𝑋 = 𝑥,𝑌 = 𝑦)
𝑃 (𝑋 = 𝑥) =

𝑃 (𝑋 = 𝑥 |𝑌 = 𝑦)𝑃 (𝑌 = 𝑦)
𝑃 (𝑋 = 𝑥)

Substituting this into the equation for conditional entropy, we have:

𝐻 (𝑋 |𝑌) =
∑︁
𝑦∈𝑌

𝑃 (𝑋 = 𝑥 |𝑌 = 𝑦)𝑃 (𝑌 = 𝑦)
𝑃 (𝑋 = 𝑥) 𝐻 (𝑋 |𝑌 = 𝑦)

We can simplify this expression by noting that 𝑃 (𝑋 = 𝑥) = ∑
𝑦∈𝑌 𝑃 (𝑋 =

𝑥,𝑌 = 𝑦) = ∑
𝑦∈𝑌 𝑃 (𝑋 = 𝑥 |𝑌 = 𝑦)𝑃 (𝑌 = 𝑦), giving:

𝐻 (𝑋 |𝑌) =
∑︁
𝑦∈𝑌

𝑃 (𝑋 = 𝑥 |𝑌 = 𝑦)𝐻 (𝑋 |𝑌 = 𝑦) −
∑︁
𝑦∈𝑌

𝑃 (𝑌 = 𝑦) log 𝑃 (𝑌 = 𝑦)

Similarly, the definition of mutual information is:

𝐼 (𝑋 ;𝑌) =
∑︁
𝑥∈𝑋

∑︁
𝑦∈𝑌

𝑃 (𝑋 = 𝑥,𝑌 = 𝑦) log 𝑃 (𝑋 = 𝑥,𝑌 = 𝑦)
𝑃 (𝑋 = 𝑥)𝑃 (𝑌 = 𝑦)

Again, we can substitute in the expressions for 𝑃 (𝑋 = 𝑥) and 𝑃 (𝑋 = 𝑥,𝑌 =

𝑦), giving:

𝐼 (𝑋 ;𝑌) =
∑︁
𝑥∈𝑋

∑︁
𝑦∈𝑌

𝑃 (𝑋 = 𝑥 |𝑌 = 𝑦)𝑃 (𝑌 = 𝑦) log 𝑃 (𝑋 = 𝑥 |𝑌 = 𝑦)
𝑃 (𝑋 = 𝑥)

Using the same substitution as before, we get:

𝐼 (𝑋 ;𝑌) =
∑︁
𝑥∈𝑋

∑︁
𝑦∈𝑌

𝑃 (𝑋 = 𝑥 |𝑌 = 𝑦)𝑃 (𝑌 = 𝑦) log 𝑃 (𝑋 = 𝑥 |𝑌 = 𝑦)∑
𝑦′∈𝑌 𝑃 (𝑋 = 𝑥 |𝑌 = 𝑦′)𝑃 (𝑌 = 𝑦′)

Thus, both𝐻 (𝑋 |𝑌) and 𝐼 (𝑋 ;𝑌) involve the conditional probabilities 𝑃 (𝑋 =

𝑥 |𝑌 = 𝑦), which cannot be derived solely from the entropies 𝐻 (𝑋) and 𝐻 (𝑌).
Therefore, we have shown that if we know the entropy of two columns,

we cannot derive their conditional entropy or mutual information. □

Proof: Assume we have two random variables 𝑋 and 𝑌 , and we know their
joint probability mass function 𝑃𝑋,𝑌 , as well as the probability mass func-
tions 𝑃𝑋 and 𝑃𝑌 for 𝑋 and 𝑌 , respectively. We want to show that given this
information, we cannot determine the conditional entropy 𝐻 (𝑋 |𝑌) or the
mutual information 𝐼 (𝑋 ;𝑌).

4.4 an inverted index based on information theory 41

First, consider the case of 𝐻 (𝑋 |𝑌). By definition, we have:

𝐻 (𝑋 |𝑌) =
∑︁
𝑦∈Y

𝑃𝑌 (𝑦)𝐻 (𝑋 |𝑌 = 𝑦)

where 𝐻 (𝑋 |𝑌 = 𝑦) is the conditional entropy of 𝑋 given 𝑌 = 𝑦. Using the
chain rule of entropy, we have:

𝐻 (𝑋 |𝑌 = 𝑦) =
∑︁
𝑥∈X

𝑃𝑋 |𝑌 (𝑥 |𝑦) log2
1

𝑃𝑋 |𝑌 (𝑥 |𝑦)
= −

∑︁
𝑥∈X

𝑃𝑋,𝑌 (𝑥,𝑦) log2 𝑃𝑋 |𝑌 (𝑥 |𝑦)

where 𝑃𝑋 |𝑌 (𝑥 |𝑦) is the conditional probability mass function of 𝑋 given
𝑌 = 𝑦. Since 𝑃𝑋 |𝑌 (𝑥 |𝑦) is not given, we cannot compute 𝐻 (𝑋 |𝑌).

Next, consider the case of 𝐼 (𝑋 ;𝑌). By definition, we have:

𝐼 (𝑋 ;𝑌) = 𝐻 (𝑋) − 𝐻 (𝑋 |𝑌)

Since we cannot compute 𝐻 (𝑋 |𝑌), we cannot compute 𝐼 (𝑋 ;𝑌) either.
Therefore, knowing only the joint probability mass function 𝑃𝑋,𝑌 and the

probability mass functions 𝑃𝑋 and 𝑃𝑌 , we cannot determine the conditional
entropy 𝐻 (𝑋 |𝑌) or the mutual information 𝐼 (𝑋 ;𝑌). □

4.4 An Inverted Index based on Information Theory

Motivated by the promising results from information theory in discovering
functional dependencies, we tried to build an approach based on an inverted
index that leverages information theory to evaluate the relatedness of columns
for horizontal table augmentation.
An inverted index is a data structure that stores a mapping from words or

terms to their locations in a set of documents. It is the backbone of many search
engines, as it allows for efficient querying and retrieval of relevant documents.
In our case, we adapt the concept of an inverted index to map column values
to their occurrences in tables, enabling efficient search for joinable tables. A
visual representation of such an index can be found in Figure 4.1.

Our approach consists of the following steps:

• Key identification: For each table, we identify the column that is more
likely to be a key. This can be done in many ways: by treating each column
as a set and normalizing by the number of rows or exploiting information
theory.

• Index construction: For each column in every table, compute the condi-
tional entropy between the column and the column of the table more
likely to be a key. Store these values in an inverted index data structure,
where the keys are the column values and the values are the occurrences
of these values in the tables. For the association of values and tables where
the value does not belong to the table, a special value is inserted. This
particular will be useful to the search of joinable tables. We decided to
store the conditional entropy with respect the key because our intuition
was to exploit the similarity between the key of the table and the join

42 problem statement and approach

figure 4.1 Idea of the inverted index to store conditional entropy

column (the search column). As long as these two column (join and local
key) are similar, the store value approximate well the behavior of the
tables.

• Candidate generation: Using the inverted index, generate a list of can-
didate pairs of columns that have the potential to be joinable. This step
involves searching the index for columns with similar value distributions
or by filtering rows and columns to prune non-joinable tables.

• Augmentation evaluation: We rank each candidate table according to
decreasing order of the index value (the mutual information between the
key and the column).

• Augmentation: Perform the horizontal table augmentation using the
selected candidate pairs. This step involves joining the tables based on
the identified related columns, resulting in an enriched query table with
additional relevant features.

Our approach offers several advantages over traditional methods. First, it
leverages information theory to provide a more accurate and interpretable
measure of relatedness between columns. This helps in identifying the most
relevant columns for horizontal table augmentation. Second, the use of an
inverted index enables efficient search for joinable tables, resulting in faster
query processing and a more scalable solution. Finally, by focusing on the
conditional entropy, our approach accounts for dependency-by-chance and
provides a statistically reliable estimator for high-dimensional mutual inform-
ation. Summarizing, the proposed inverted index-based approach seemed to
be a novel and efficient method for horizontal table augmentation. By identi-
fying and prioritizing related columns based on their mutual information, this
method facilitates the discovery of meaningful relationships between columns
and improves the overall quality of the augmented query table. However, it
proved to be low effective. This is mainly due to a fact: our idea of storing con-

4.4 an inverted index based on information theory 43

ditional entropy centered the point, but it did not consider the target column
at all. Storing both values would have made the index far too complex and
ineffective, although we actually investigated skyline queries to optimize with
respect to different dimensions.

Ideal scenario. Figure 4.2 depicts the ideal scenario that we are trying to
achieve. The example shows two tables, the one on the left is the query table
(J is the join column, T is the target column), while the one on the right shows
a candidate table (Jís the candidate join column and 𝐶𝑖 is the column that
will provide augmentation). In the example, T is a binary column {0,1} where
0 means that the city is in Europe while 1 means it is outside. The diagram
represents the probabilities. Even if expressed in terms of probabilities, the
step to entropies is straightforward with the content of Chapter 3. Among all,
𝑃 (𝑇 |𝐽) is computable anytime, since both information lie in the query table. If
we conduct a strict join search, then we can consider J ≈ J́, so 𝑃 (𝐶𝑖 |𝐽) can be
considered≈ 𝑃 (𝐶𝑖 |𝐽 ′). The very relevant information, that cannot be computed
is 𝑃 (𝑇 |𝐶𝑖), the probability of a fixed value of T given a specific value of 𝐶𝑖 .
Expressed in terms of entropy and conditional entropy, that would express
the reduction of uncertainty of T while knowing 𝐶𝑖 . The approximation of
this quantity is the real missing bit to make the inverted index working. The
idea that this quantity cannot be estimated by simple marginals, probability
distributions or conditional entropy has been discussed in Chapter 1. We tried
to derive such a quantity from the top equation of Figure 4.2, but expanding and
substituting values in such an equation does not lead to any conclusion, since
there are always two hidden terms.We also tried to put upper and lower bounds
to individual quantities, such as conditional entropy by making it collapse to
entropy: this is the case in which the values and can be 0 in its lower bound
and the entropy value. Again, none of the substitution led a valid estimation of
the quantity. We consider this lesson the most significative, although probably
the most negative, because is the deeper blind spot in which we ended up but
at the same time it opens the door to the following intuition of involving and
hash function, that encapsulates in it many probabilistic properties of what
we need. But before getting in the direction of hash function, we investigate
the possibility of exploiting word embeddings.

Word embedding to map tables. Following the line of previous research
that we conducted in past years [21, 26], we also considered the possibility of
using word embeddings. Roughly speaking, word embeddings are representa-
tion of word as vectors in a high dimensional space. Such dimensionality is
high (traditional word embeddings lie in 300-d spaces), but it is very limited if
we consider the dimensionality of the space derived by the one-hot-encoding
representation a vocabulary. The great power of embeddings is that they are
pre-trained on extremely large text corpora, the most used are W2V [65],
Glove [70] and Bert [25]. This allows us to use them without the need of a
computational power difficult to be afforded. These embeddings naturally
encapsulate the semantic meaning of words, being able to solve equations like
Paris:France=Rome:x . The embeddings would tell you, by vectorial operations,

44 problem statement and approach

figure 4.2 Ideal scenario

that the vector most likely to the right choice (i.e., the closest) is the vector
representing the world Italy.

For element-wise similarity operations, embeddings seem to be very prom-
ising and much research is involving them both in explainability and effective-
ness. In our case, their usage is surely a matter of investigation which is apart
from the scope of this work. We had the idea of filling the inverted index with
embedding vectors for table values, but doing that would have not provided
any extra information. There exists approaches that actually use word embed-
dings, such as Pexeso [30] or [6] and [2], where embeddings are basically used
to perform join search or schema inference in data lakes. A very good reason
for which we did not integrate word embeddings in our work is that they
only maps strings to vectors. We wanted to implement a system that is able to
perform a join only on strings but being able of considering numerical columns
while evaluating the augmentation. This is impossible using the nowadays
word embedding technologies. Furthermore, word embeddings can still be
considered for the join search phase, but the method we proposed somehow
encapsulate the same idea in a bit different way. For a matter of completeness,
the field of knowledge graphs embedding (KNE) could be a promising bridge
in unifying our work to a broader data integration framework, in which tables
are not only augmented but also linked to other entities. This step was in
principle in our workflow, but the problem of augmentation proved to much
harder than what it seemed to be at the time we draw the timeline of this
work.

4.5 The TASH Approach: Overview
TASH also includes column augmentation, which allows us to augment a table
with missing columns to match the query𝑄 . To perform column augmentation,
we first identify the missing columns in the candidate tables. We then search
for columns in the data lake that can be augmented to the missing columns in
the candidate tables using similarity search. We use the same hashing function

4.5 the tash approach: overview 45

Approach Pros Limitations

Functional
Dependen-
cies

Helpful in identifying related
tables

Hard to compute, not helpful
in join search, need to materi-
alize each possible join before
discovering

Reliable
Fraction of
Information

Multi-column correlation
among tables

Inefficient to compute, Rep-
resent how columns could
substitute the target rather
than searching for new fea-
tures, needs to materialize
each possible join before dis-
covering

Inverted
Index

Join search and augmenta-
tion at the same time, ad-hoc
data structure to store inform-
ation theory measures to ex-
actly rank the columns

The required information to
be stored would be greater
and slower than materializ-
ing the join and search table
by table without indexing

Embeddings Semantic information and
representation of the values
in the tables

In the case of pre-trained em-
beddings, likely to be low the
coverage of values, vectors
of word embeddings tend to
be high dimensional and un-
likely to be at data lake scale

table 4.2 Recap of naive approaches

used for the data lake tables to represent the missing columns and compute
the similarity scores between the missing columns and the columns in the
data lake.
TASH is not dependent on the chosen hash function. Any suitable hash

function can be used as long as it meets the requirements of the algorithm. In
fact, the algorithm can be adapted to use any hash function of the user’s choice.
The hash function is used to create a fingerprint for each column in the tables.
The fingerprints are then used to identify joinable columns between tables.
TASH is flexible and can work with any hash function because the hashing
function is only used to create fingerprints and does not directly influence the
joinability of columns. TASH is agnostic to the choice of hashing function,
so users can choose the hashing function that works best for their use case.
This flexibility allows for a customized and optimized approach to joining
tables in a data lake. Additionally, if a user believes that their hashing function
works better for their particular use case, they can easily plug in their hashing
function into our algorithm.
When using a hash function for TASH, it is important to ensure that the

function satisfies certain properties. Firstly, it is essential that columns with

46 problem statement and approach

similar values have similar fingerprints. This is what allows us to perform
efficient joins based on the similarity of the fingerprints. Secondly, columns
with dissimilar distributions must be far apart from each other in the hash
space. This is necessary to prevent unrelated columns from being erroneously
grouped together. Therefore, if a user chooses to implement their own hash
function, it is critical that they are aware of these properties and ensure
that their function satisfies them. Failure to do so can result in incorrect or
inefficient joins, leading to poor performance and inaccurate results.

In the proposed approach for table augmentation using hashing, each table in
the data lake is represented as a matrix of integers obtained from a vocabulary
mapping. Specifically, each word in the data lake is assigned an ordinal number,
which is then used to construct the matrix. This matrix is then treated as a
2D image and flattened into a 1D array of pixel intensities, where each pixel
represents a unique word in the table.
The column vectors of each table can then be thought of as a collection of

images, where each image represents a column and each pixel represents a
word in that column. These images can then be compared using techniques
from image similarity search, such as K-NN hashing. In K-NN hashing, the
image vectors are converted into binary fingerprints using a hashing function,
which are then stored in a KDTree. This allows for efficient nearest neighbor
searches by querying the KDTree for points within a certain radius of the
query point.
However, in order to use K-NN hashing, all images must be of the same

length. To achieve this, we use padding and resampling to bring each column
vector to a standard length. Padding involves adding padding values to the end
of the vector to bring it up to the desired length, while resampling involves
repeating or deleting pixels to adjust the length of the vector. By using a con-
sistent length for all column vectors, we ensure that the resulting fingerprints
are of the same length, making them compatible for nearest neighbor searches.

The output of the hashing algorithm is a matrix of binary fingerprints, where
each row represents a unique column in the data lake. We keep a mapping
of each fingerprint to the original column and table, allowing us to retrieve
the original data when needed. The fingerprints are stored in a KDTree for
efficient nearest neighbor searches using radius queries.
Before diving into the details of the approach, we summarize its main

components:

• Compute vocabulary of all the values in each table
• Convert each table to the numerical indexing of each value in the vocab-

ulary
• Add padding to make each table of same size
• Compute the hash fingerprints
• Fill the KDTree with fingerprints
• Probe the to augment the Query Table

4.6 the tash approach: index construction 47

4.6 The TASH Approach: Index Construction

ID Name Age Gender

1 Alice 25 F
2 Bob 30 M
3 Claire 35 F

ID Name Weight

1 Alice 60
2 Bob 70
3 Dave 80

table 4.3 Tables A and B

To illustrate TASH, consider the following example. Suppose we have two
tables, Table A and Table B as represented in Table 4.3, we can construct a
vocabulary mapping from the words in both tables. Using this vocabulary
mapping, we can represent each table as a matrix of integers. For Table A, we
get two tables of the same sizes but with new values. Tables converted are
represented in Table 4.4.

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 14

1 5 17
2 6 18
3 7 19
4 16 20

table 4.4 Table A and B converted to integers using the vocabulary mapping

In more formal terms, the process can be described as follows. Let𝑇1,𝑇2, ...,𝑇𝑛
be the tables in the data lake, and let 𝑉 be the vocabulary of all distinct words
found in the data lake. For each𝑇𝑖 , we create a matrix𝑀𝑖 of size 𝑑𝑖 × 𝑙 , where 𝑑𝑖
is the number of distinct words in 𝑇𝑖 and 𝑙 is the length of the longest column
in the data lake. Each cell (𝑗, 𝑘) of 𝑀𝑖 is assigned the ordinal number of the
word at that position in the corresponding column of 𝑇𝑖 , as determined by the
vocabulary mapping.

We then perform padding on each matrix𝑀𝑖 to ensure that they all have the
same size 𝑑 × 𝑙 . This is necessary for the K-NN hashing algorithm to work, as it
requires all input vectors to be of the same length. Padding is done by adding
dummy rows or columns of padding values to the matrix as needed, while
resampling would involve either upsampling or downsampling the matrix
to achieve the desired size. In this work, only padding is investigated while
resampling is left as future work.
The resulting matrices 𝑀1, 𝑀2, ..., 𝑀𝑛 are then fed into the K-NN hashing

algorithm [41], which converts each matrix into a binary fingerprint vector of
length 𝑘 . These fingerprints are stored in a K-d tree, which can be efficiently
queried for nearest neighbors within a given radius. The mapping of each
fingerprint to its original column and table is also stored, allowing us to retrieve
the associated data when a match is found.

To illustrate the process, consider the following example. Suppose we have
two tables in the data lake:

48 problem statement and approach

ID Name Age
1 Alice 25
2 Bob 30
3 Charlie 20

table 4.5 Table 𝑇1

ID City Country
1 London UK
2 Paris France
3 Berlin Germany

table 4.6 Table 𝑇2

We first create the vocabulary 𝑉 = {ID, Name, Age, City, Country, Alice,
Bob, Charlie, London, Paris, Berlin, UK, France, Germany} We then convert
each table to a matrix as follows:

𝑀1 =

1 2 3
6 7 8
9 10 11

 , 𝑀2 =

1 2 3
10 11 12
13 14 15

 (4.1)

The resulting binary fingerprints can then be used for similarity search,
where given a query table or column, we can find the most similar table or
column in the data lake by finding the nearest neighbors in the KDTree. This
allows for efficient table augmentation and data exploration, as we can quickly
find related tables or columns based on their similarities. It is worth noticing
that in the following we will discard the values acting as headers of the tables.
To further improve the search efficiency, we can use techniques such as

locality-sensitive hashing (LSH) and random projection, which can reduce
the search space by mapping similar tables or columns to the same bucket or
projection space. This can significantly speed up the search process, especially
when dealing with large datasets with high-dimensional features.

Overall, the approach of using hashing for table augmentation provides
a powerful tool for exploring and analyzing large-scale data lakes. By con-
verting tables to binary fingerprints and storing them in a KDTree, we can
efficiently perform similarity search and find related tables or columns based
on their similarities. This can help to improve data quality, uncover hidden
relationships, and facilitate data-driven decision-making.
As an example, consider a data lake containing customer transaction data

from a retail store. By converting the transaction tables to binary fingerprints
and storing them in a KDTree, we can quickly identify related tables based on
their transaction patterns, such as which products are frequently purchased to-
gether or which customers tend to make large purchases. This information can
then be used to improve the store’s marketing strategies, optimize inventory
management, and enhance the overall customer experience.

Padding and resampling for hashing algorithm. The matrix generated
from the previous step serves as the input for the hashing algorithm. However,

4.7 the tash approach: probing 49

the algorithm requires that all tables have the same length, which can be an
issue when dealing with tables of varying sizes. To overcome this problem, we
can use padding to ensure that all tables have the same dimensions.

Padding involves adding extra rows to the matrix so that it matches the size
of the largest table. The additional rows or columns can be filled with padding
values or other values that do not affect the overall structure of the table. For
instance, if we have two tables with dimensions 5x5 and 3x3, we can pad the
second table with two rows of padding values to make it 5x3.
An example of padding is as follows. We consider two tables: table 𝑇𝐴 (on

the left of Table 4.7) and table𝐴 (in the middle of Table 4.7). In this example the
tables have two different dimensions. Table 𝐴 has dimensions 3x3, while Table
𝐵 has dimensions 5x3. We can pad Table 𝐴 with two more rows of padding
values to make it 5x3, which now matches the dimensions of Table 𝐵. Table 𝐴
with padding values is depicted on the right of Table 4.7.

ID Name Age
1 Alice 25
2 Bob 30
3 Charlie 20

ID Name Age
1 Alice 25
2 Bob 30
3 Charlie 20
4 Dave 15
5 Elly 35

ID Name Age
1 Alice 25
2 Bob 30
3 Charlie 20
-1 -1 -1
-1 -1 -1

table 4.7 From the left: Table 𝑇𝐴 in its original form. 𝑇𝐵 in its original form. 𝑇𝐴
with two extra row of padding values.

Padding ensures that all tables have the same dimensions, which allows
us to apply the hashing algorithm to all tables. Additionally, it preserves the
overall structure of the table and does not affect the integrity of the data.

When performing table augmentation using hashing, it is important to en-
sure that all tables have the same length. This is because the hashing algorithm
requires inputs of the same shape to be able to produce the desired outputs.
One way to achieve this is through resampling.
Resampling is a process by which we adjust the size of each table so that

they are all the same length. The most common way to resample tables is to
pad the shorter ones with zeros until they match the length of the longest
table. However, this can lead to a significant increase in the size of the input
data, which can slow down the hashing algorithm and increase the memory
requirements.

4.7 The TASH Approach: Probing
TheKDTree index. The basic idea is to use the fingerprints of similar columns
to narrow down the search space for join queries.

In the KDTree, each node is associated with a sub-region of the data space.
The region is divided along one dimension by a splitting hyperplane, and
the two halves of the region are associated with the two child nodes. Each

50 problem statement and approach

node contains a set of fingerprints that represent the data points within its
sub-region. The fingerprints can be thought of as compact representations of
the data points that capture some of their key properties.
To perform a join search query, we start by computing the fingerprints

for the query data points. We then perform a radius query in the KDTree to
find all nodes whose fingerprints are within a certain distance of the query
fingerprints. The distance metric can be any metric that is appropriate for
the fingerprint representation, such as the Euclidean distance or the cosine
similarity.

Once we have identified the relevant nodes, we can traverse the tree to find
the actual data points that match the join condition. To do this, we start at
the root node and recursively descend down the tree, choosing the child node
whose splitting hyperplane is closest to the join condition. At each node, we
check the fingerprints of the data points within the node to see if they match
the query fingerprints. If they do, we add them to the set of matching data
points.

By using fingerprints to narrow down the search space, we can significantly
reduce the computational cost of join queries. However, the effectiveness of
this approach depends on the quality of the fingerprints and the choice of
distance metric. If the fingerprints are too coarse or the distance metric is
inappropriate, we may end up with false positives or miss some relevant data
points.
In addition to radius queries, there are other search techniques that can

be used with KDTrees, such as k-nearest neighbor queries and range quer-
ies. These techniques may be more suitable for some types of join queries,
depending on the specifics of the data and the query conditions. Ultimately,
the choice of search technique will depend on the characteristics of the data
and the performance requirements of the application.

• Join search with radius query on a specific column: The first step is to
perform a join search on a specific column, identified as the join search
column. This means that we will be searching for matching values in this
column between the two tables. We perform a radius query to find all
values in the join search column that are within a certain distance (the
radius) of the query value. This returns a set of candidates for the join.

• Keeping the candidates in memory: We keep the candidates for the join
in memory, as we will be using them in the next step.

• Mapping fingerprints to columns and tables: We use the vocabulary
mapping and the fingerprints to map each column in each table to its
corresponding integer value. We also keep track of which table each
column belongs to. This allows us to easily access all the columns in a
table that are linked to a given candidate column.

• Creating a new space for projection: We create a new space in which to
perform the next step. This space is constructed by projecting the query
table, the candidate columns, and all the columns linked to the candidate

4.7 the tash approach: probing 51

columns. This means that we are creating a new space in which we can
compare the columns from the query table to the candidate columns and
their linked columns.

• Performing radius queries on candidate columns: We perform a radius
query on each candidate column in the new space. This returns a set of
columns that are within the specified radius of the candidate column.

• Collecting outliers: We collect all the columns that are outliers in the new
space. These are columns that are joinable with the candidate columns
(because they belong to joinable tables), but are far away from other
joinable columns. These columns contain new information that can be
used to augment the join.

Overall, this approach allows us to use fingerprints to efficiently search for
joinable columns in large datasets. We start with a radius query to find candid-
ate columns, and then use the mapping between fingerprints and columns/t-
ables to project the data into a new space for comparison. By performing
radius queries on the candidate columns in this new space, we can quickly
identify columns that are joinable with the candidates and those that contain
new information to augment the join.
After performing the join search with a radius query on the specific join

search column, we have a set of candidate columns that are potentially joinable
with the query table. To efficiently explore the space of joinable columns, we
exploit the mapping between fingerprints and the actual columns and tables.
We create a new space in which we project the query table, candidate

columns, and all columns linked to the candidate columns. This space consists
of multiple dimensions, where each dimension corresponds to a column in one
of the tables.We use the fingerprints tomap the columns to their corresponding
dimensions in the space.
Once we have this space, we perform a radius query on each candidate

column. This query returns all the columns that are within a certain radius of
the candidate column in the joint space. The columns that are returned are
those that are highly correlated with the candidate column and are potentially
joinable.

However, we also want to identify the columns that are not highly correlated
with the candidate column but are still joinable. We call these columns outliers.
We can identify these outliers by looking for columns that are far away from
other columns that are highly correlated with the candidate column.

Once retrieved, we order the columns by their euclidean distance from the
target column, that has been projected onto the space as well as all other
columns of the query table.

52 problem statement and approach

(a) Initial state: the
hashing space is full
of all columns

(b) The orange dot
represents the join
column of the query
table

(c) Radius query around
the join column.
Retrieved table are
recognized using the
dot-column-table
association

(d) Exploiting the
association table, all
irrelevant tables are
removed from the
space

(e) Columns of the query
table are projected

(f) After another radius
query for each
column of the query
table, all the columns
inside the radius are
discarded because
they are likely to be
redundant

(g) All the residual
columns in the space
are likely to be
relevant

figure 4.3 Steps in the approach

5
Evaluation

Several approaches have been proposed to address the challenge of finding
joinable tables in data lakes. One approach is to use schema inference to
identify the relationships between tables. This involves analyzing the data
in each table to infer the schema and then using this information to identify
joinable tables. Another approach is to use metadata management tools to
track the relationships between tables. Metadata management tools can track
the lineage of data and provide information on the relationships between
tables. However, these approaches have limitations. Schema inference can
be inaccurate, especially when dealing with semi-structured or unstructured
data. Metadata management tools can also be challenging to implement and
maintain, especially in large data lakes with multiple data sources.
In our approach, we leverage the unique properties of data fingerprints to

identify joinable tables in data lakes. We use a combination of resampling and
KD-Tree algorithms to efficiently identify the relationships between tables.
Our approach allows us to quickly identify joinable tables in a data lake, even
when the data is stored in various formats and locations. By leveraging data
fingerprints, we can accurately identify columns that represent the same data,
even when the columns have different names.
In this Chapter, we focus on the evaluation of our proposed approach for

solving the augmentation problem, and compare it against a baseline approach
and other existing methods. Our approach utilizes a novel algorithm that
leverages a combination of hashing and statistical features to identify joinable
columns between tables that provides an augmentation.
The baseline approach we use is a LSH ensemble search that retrieves

joinable columns and orders the tables by containment. This approach has been
widely used in the literature as a benchmark for evaluating the performance of
new methods. Our proposed approach is expected to outperform the baseline
approach due to its use of a different hashing idea.

In this chapter, we present the schema of our evaluation, the datasets used
for evaluation, the results of the baseline approach, and a comparison of our
proposed approach with other existing methods. We focus on precision and
recall as the primary measures of performance evaluation.

First, we describe the schema of our evaluation, which includes the definition
of the metrics used to evaluate the performance of the different methods. We
explain how we measure the precision and recall of the joinable column search
algorithms, and the criteria used to select the datasets for evaluation.

53

54 evaluation

Next, we provide a description of the datasets used for evaluation. We
describe the structure of the datasets and the size of the tables. We also explain
the selection criteria used to ensure the datasets are representative of real-
world scenarios.

Afterwards, we present the results of the baseline approach. We compare
the performance of the LSH ensemble search algorithm against our proposed
approach, using the same datasets and evaluation metrics. We analyze the
results, identifying the strengths and weaknesses of the baseline approach.
Finally, we present a comparison of our proposed approach with other

existing methods. We analyze the performance of the different methods in
terms of precision and recall, and identify the areas where our approach
performs better.

5 . 1 Evaluation Schema

We evaluate our approach against competitors on different levels. First of
all, we discriminate between the approaches that computationally conclude
against those that do not. This is relevant because some approaches materialize
the join, meaning a large amount of memory and time spent in creating or
probing the index. The second level of analysis is qualitative, splitting our
evaluation in join search capability and augmentation power. For what concern
the join evaluation, we use two metrics, precision and recall. With precision,
we aim at giving a qualitative analysis of the ability of our approach to retrieve
all the tables that it is expected to retrieve. With recall, we want to quantify
how many of the table retrieved as "joinable" should have been actually found,
measuring the approach ability to filter out tables that are not joinable enough.
Finally, we evaluate if we can rank the retrieved tables recognized as joinable
ordering them by their contribution in improving the predictive ability of a
machine learning task. The learning task is the prediction of a column of the
query table.

5 .2 Datasets

OPEN. OPEN is a dataset of relational tables from Canadian Open Data Re-
pository [92]. We extract English tables that contain more than 10 rows.
WDC. The WDC 2015 Web Table Corpus [53], contains 10.24 billion genu-

ine tables. The extraction process consists of two steps: table detection and
table classification. The percentages of relational, entity, and matrix tables
are 0.9%, 1.4%, and 0.03%, respectively. The remaining 97.75% accounts for
layout tables. When storing a table, its orientation is also detected, indicating
how the attributes are placed. In horizontal tables, the attributes are placed in
columns, while in vertical tables they represent rows. There are 90.26 million
relational tables in total. Among those, 84.78 million are horizontal and 5.48
million are vertical. The average number of columns and rows in horizontal

5.2 datasets 55

Dataset #tables #terms #columns
OPEN 10.2K 17.2M 21.6K
WDC 516K 8.6M 516K

table 5.1 Datalakes statistics. OPEN is used for joinability, WDC is used for both
joinability and augmentation search.

tables are 5.2 and 14.45. In vertical tables, these numbers are 8.44 and 3.66, re-
spectively. [53] also extract the column headers and classify each table column
as being numeric, string, data, link, boolean, or list. The percentages of the
numeric and string columns are 51.4% and 47.3%, respectively. Besides, the
text surrounding the table (before and after) is also provided. Furthermore,
[53] provide the English-language Relational Subset, comprising relational
tables that are classified as being in English, using a naive Bayesian language
detector. The language filter considers a table’s page title, table header, as
well as the text surrounding the table to classify it as English or non-English.
The average number of columns and rows in this subset are 5.22 and 16.06
for horizontal tables, and 8.47 and 4.47 for vertical tables. The percentages of
numeric and string columns are 51.8% and 46.9%. A total of 139 million tables
in the WDC 2015 Web Table Corpus are classified as entity tables. Out of these,
76.70 million are horizontal and 62.99 million are vertical tables. The average
number of columns and rows are 2.40 and 9.08 for horizontal tables, and 7.53
and 2.06 for vertical tables. The column data types are quite different from
that of relational tables. String columns are the most popular, amounting to
86.7% of all columns, while numeric columns account for only 9.7%.
Ending up in the following situation:

• the dataset of relational tables is made of 50M tables (250 GB size)
• cleaned by metadata, that we do not manage, the total size goes down to

21.5 GB
• applying the same filtering of [30], we extract English tables that contain

more than 10 rows, keeping the 33% of the total number of tables, resulting
in 16M tables

• on top of the 16M, we filtered out numerical columns to create ground,
becausewe only allow for join search on string column (and LSH ensemble
is proved to work on string only columns)

Machine Learning Task.We also identified two datasets (tables) that have
a bunch of join matches (according to LSH with threshold > 0.8) in a subset of
WDC tables. These two dataset have a column that act as target, solving two
classification tasks.

Amazon toy product classification contains 10,000 rows of toy products from
Amazon.com 1. The task is to predict the category from 39 classes (hobbies,
office, arts, etc.) of each toy. We use “product name” as query column.

1 https://www.kaggle.com/PromptCloudHQ/toy-products-on-amazon

https://www.kaggle.com/PromptCloudHQ/toy-products-on-amazon

56 evaluation

Video game sales regression contains 11,493 rows of video games with
attributes and sales information 2. The task is to predict the global sales. We
use “Name” (game’s name) as query column.

Preprocessing. Many steps of preprocessing have been performed on the
datasets. Mainly, it has been necessary to uniform the upper and lower cases,
since hashing is sensible to such an information. Secondly, stopwords have
been removed as well, since they generally act as noise and do not provide any
new information. Furthermore, stopwords in the join search column would
make the search harder and longer.

5 .3 Comparison with Existing Approaches

In this section, we compare our proposed approach with some existing ap-
proaches. As we will see, there is no direct comparison among us and our
competitors, since, to the best of our knowledge, the statement of our problem
has not been tackle yet in literature.

5 .3 . 1 Baseline

The first evaluation we made, in order to test the capability of our approach to
retrieve joinable tables, was to compute the fingerprints of tables that do not
belong to any data lake. We did this because we wanted to check the ability
of the hashing function to actually stick close in the hashing space columns
with similar values. We identified a table containing information about the
United States, whose join column was the list of all states. Furthermore, we
retrieved 17 tables from the web that shared the same column. Some tables
had the very same column, while others had slight different values, such as
missing or extra states (for example, some tables presented Puerto Rico as a
state). We preprocessed them by applying the transformation to lowercase and
removing stopwords and then computed the fingerprints with [41]. Once we
queried the KDTree to get the closest point to the query column, we retrieved
all the expected columns, identifying all the 17 tables as joinable. After that,
we include 100 random tables from OPEN, to be hashed in the same way. We
did so to check if the hashing algorithm was overlearning the representation.
Results confirmed the joinability for the expected tables and discarded 95% of
the others, meaning that the hashing algorithm is able to catch the similarity
among columns.

Secondly, we randomly selected 30 tables from each of the datasets (OPEN
and WDC) and use them as query table to test the precision and recall ability
of our approach. Since LSH Ensemble is considered as state-of-the-art for
joinability discovery, we used it as ground truth. Results are reported in Table
5.2. The table compares ourselves with the ground truth and Pexeso. As well
as LSH Ensemble, we are able to retrieve all the joinables tables expected to be

2 https://www.kaggle.com/gregorut/videogamesales

https://www.kaggle.com/gregorut/videogamesales

5.3 comparison with existing approaches 57

OPEN WDC
Method Precision Recall Precision Recall
LSH Ensemble 1.000 0.611 1.000 0.589
Pexeso 0.911 0.821 0.948 0.868
TASH 1.000 0.722 1.000 0.747

table 5.2 Precision and recall with LSH Ensemble, Pexeso and our approach

Method #Match Micro-F1
No-join - 0.589 ± 0.077
Equi-join 0.13% 0.586 ± 0.051
Jaccard-join 0.54% 0.585 ± 0.073
TF-IDF join 0.72% 0.594 ± 0.049
Pexeso 0.76% 0.613 ± 0.072
TASH 0.89% 0.604 ± 0.041

table 5.3 Amazon toy product classification

retrieved. A partial limitation is the recall, since it shows that our approach
consider some tables as joinable, while they should not be. This fact opens
an interesting distinction in our framework: evaluation the algorithm itself,
meaning the steps, and the selected tool to implement it. This is a limitation due
to the chosen hash function, that we remind it adapted from image similarity
[41]. The schemawe propose is agnostic from the chosen hash function, making
it possible for a user to plug in a custom function.

5 .3 .2 Our Approach

To evaluate the ability of our approach in improving the predictive ability of
the query table, we ran our framework on a subset of WDC, that we will call
SWDC. For a matter of comparison with [30], we randomly select 1000 rows
from the query tables and search for joinable. We retrieve the joinable tables
and then rank them according to the number of columns that act as outliers,
i.e., we rank higher the joinable tables with higher number of columns that
results from the Project-Filter-Search steps of our framework. Table 5.3 shows
the performance results for the Amazon toy product classification. Accordingly
with previous results, the percentage of joinable tables discovered is low in
percentage but higher respect to other approaches. This is due to the fact
that the hashing function puts closer columns that should not be. However,
we achieve good results, comparable with [30]. Our method results in an
augmentation which is less accurate than [30], but comparable. The advantage
of our method is that it is faster and cheaper in terms of memory, since our
binary representation is lighter than their embedding counterpart. Similarly,
Table 5.4 shows good results in the regression task, showing that our method
is suitable for both classification and regression tasks.
Figure 5.1 shows the top-5 ranked tables retrieved by our solution. On the

58 evaluation

Method #Match Micro-F1
No-join - 2.09 ± 0.75
Equi-join 0.05% 2.05 ± 0.65
Jaccard-join 0.14% 1.98 ± 0.73
TF-IDF join 0.31% 2.02 ± 0.55
Pexeso 0.64% 1.78 ± 0.66
TASH 0.89% 1.87 ± 0.42

table 5.4 Video game sale regression

left, the closer to 1 means the better performance. We report as best result the
same table of Table 5.3, and the others four accordingly. As expected, the top-1
ranked table is the one performing better. This not true for all other tables,
meaning that the hash function is not perfect. The same thing happens for
the second task, with values closer to zero meaning a better result. For both
experiments we reported the result of [30], although in their research there is
no indication about which table performs better or if the prediction results are
the aggregation of different tables via multiple joins.

(a) Top-5 ranked tables for Amazon toy
product classification. The closer to 1
the better

(b) Top-5 ranked tables for Video game
sale regression. The closer to 0 the
better

figure 5.1

Parameters tuning. In order to achieve the presented results, we had to
deal with different parameters tuning phases. The first parameter to tune was
the threshold for LSH-Ensemble. We recall that we used LSH-Ensemble as
ground-truth for identifying tables as joinable. We tried different threshold
values (0.7, 0.8, 0.9) opting for 0.8 since it was the last value allowing us to
consider joinable similar tables without the constraints of being too similar,
as supposed with higher thresholds. For what concerns the generation of the
fingerprints, there two main parameters to tune: the 𝑘 value, meaning the
number of neighbors used in the learning of hash fingerprints, and 𝑛, meaning
the number of bits of the fingerprints. For what concerns 𝑘 , the authors [41]

5.3 comparison with existing approaches 59

themselves suggest tuning such a parameter ad-hoc for the reference dataset,
ranging from a lower value of 5 up to 50. This parameter proved to have a
great influence on the execution time of the framework, posing us in front of
trade-off choice between accuracy of the fingerprints and efficiency. We tested
5, 10, 15 and 20 ending up with choosing 10, because it allowed us to have good
joinability performances at a reasonable time cost. For what concern the choice
of 𝑛, we tested many possibilities using a joinability problem as evaluation.
The dimension we tested are 16, 32, 64, 128 and 256, choosing 128 because
it was a cheaper solution to 256 while showing very similar performances.
The latest tuning required was the radius of the query in the KDTree. We
experimentally choose 0.3 as a value.

The problem of augmenting tables in data lake is a task thatmany researchers
are facing at this time. Since many approaches focus on different aspects, we
tried to summarize and classify them. Table 5.5 reports the results of our
investigation. It is worth noticing that it is hard to compare to the approaches
actually tackling the augmentation problem for many reasons, among which:

• There are approaches that only focus on showing the theoretical feasibility
of an approach without testing the method;

• There are approaches that only focus on evaluating the proposed approach
in terms of time execution, without quantifying the quality of the provided
augmentation;

• There are approaches that prove themselves to be effective on relatively
small data lakes, closing their scenario to a bunch of tables among which
search and materializing all the possible joins.

It is worth noticing that all the approaches providing augmentation work
under the closed world assumption. Meaning that it is possible to select as
query table only a table that is already in the data lake at the time of creation
of the index or the infrastructure that allows for the search. This is not true
for all join search algorithms that do not provide augmentation.

Heuristic Index Hash Embedding Learning
Joinability - [90, 13] [92] [30, 12, 80, 6, 31] [57]
Unionability - [49, 64, 27, 46, 13] - [11, 12, 6] [31]
Augmentation [76, 51] [33, 18, 29] [75] [11, 12] [88, 57]

table 5.5 When to use state-of-the-art methods for a specific problem

5 .3 .3 Limitations

As strongly dependent on the hash function, our framework is deeply influ-
enced by the chosen hash function performance. Furthermore, since the hash
function encapsulates the distribution probability of the elements of each
column, the quality evaluation must be done at a different time by actually
materializing the joins between the query table and each candidate. This is

60 evaluation

mitigated by the fact that our framework is expected to return a list of tables
that can be joined with the query table and produce an augmentation rather
than joining itself. Another limitation is that our framework only works table-
to-table. This means that it is not able to evaluate if a group of tables together
could perform better that a single join. This is the reason for which Figure
5.5 shows individual performance of the retrieved tables. Such a behavior
is similar to what happens in feature selection algorithms, where there are
filter methods that evaluate the relevance of a feature to a target and wrapper
methods, that evaluate the performance of a subset of feature with respect to
the target. Another interesting point is that we only use the padding technique
to fit each table to the same size, as prerequisite for the fingerprint generation
algorithm. Surprisingly, it worked pretty well. We conjecture that this is due
to the fact the tables used as query tables were of the average size of the tables
in the data lake. Tables with higher or lower number of rows might perform
worst with the padding. This is because the padding itself is recognized by a
valid value from the algorithm, meaning that a predominance of the padding
value in a column can ruin the representation. We redirect to Chapter 6 for
further discussions on this element.

6
Conclusion ad Future Work

In this thesis, we presented an algorithm for searching joinable tables in data
lakes and ranked all candidate tables by their ability of improving the predictive
ability of a query table. We showed how hashing and information theory are
fundamental to solve the problem, and we provide results that are competitive
with the state-of-the-art in this field.

Contributions. We presented an approach, named TASH, based on an
indexing of a data lake, which can be built in a fast way and it is not too space
consuming, such that the index makes it probable to identify joinable tables
that provide augmentation. We exploited two different concepts, hashing and
information theory, to build such a framework. The data lake is primarily
converted to an ordered dictionary, so that each column of each table is rep-
resented as a vector of identical size with the ordinal id of the term in the
vocabulary. Each column is then treated as an image and hashed to generate
a binary fingerprint. Each fingerprint is then stored into a spatial index, on
which it is possible to execute a radius query to get joinable tables with respect
to a query table. Each joinable table is ranked according to its relevance in
augmenting the predictive ability of the original query table. The approach
allows for one-to-one join search, and the search for joinable tables is limited
to string columns only. Our approach is agnostic of the content of all other
columns, but it does not discard them, because they can contain relevant nu-
merical information for improving the performances of the query table. We
demonstrated that it is possible to encapsulate the steps of searching for a
joinable table and evaluate its contribution in improving the performance of a
Machine Learning model in a single framework without the need to materialize
the join for each table. The evaluation shows that we are competitive with
state-of-the-art approaches that solve the same problem (or a single aspect of
our problem) using fully explainable algorithms, such as hashing, rather than
relying on deep learning techniques. It has to be clear that our approach solves
a particular case of augmentation, the one-to-one join between columns, and
it has been tested on basic machine learning tasks. The infrastructure seems
to be scalable to very large data lakes, as long as the machine on which the
framework will be run is powerful enough to handle large vocabularies.
Limitations. As we have seen, TASH is able to identify tables that can be

joined and that provide an augmentation. There are, however, several aspects
of our work that open up significant possibilities for further investigation.
The hash function is a pluggable component of the framework. This can be

61

62 conclusion ad future work

seen as a feature of our approach, because it allows a user to plug her own
custom function to solve the task. On the other hand, the framework is very
dependent on the quality of the hash function. Plugging a function unable of
catching similarity among columns while keeping the information about the
distribution of data in the fingerprint would result in very poor results.

Ranking individual tables.As it is known in feature selection, the contribution
of two individual features alone is different from the contribution that the
same features would provide together.
Padding and resampling. Even if padding seems to be pretty effective, for

very large tables as input the amount of padding values might dramatically
decrease the performances. This is due to the fact that the number of padding
values might overcome the content of the column, ruining both the joinability
search and the Machine Learning performance. A more effective solution could
be considering to filling the spaces left blank by the size difference with a
resampling of the values that already belong to the column. This would allow
the system not to increase the vocabulary size (since values would be recycled)
and to preserve as much as possible the distribution of the data inside the
columns. By preserving the distribution, the hash function would then be free
to exploit its power without dealing with padding values.

Static indexing. Another limitation is given by the fact that it is not possible
to index a new table on the fly. Once the fingerprints are created, the framework
can only be probed but not updated. This is due to the fact that, in order to
create the fingerprints, all columns must be processed, i.e., the fingerprint of
each table depends on the whole set of columns. This is true also for other
competitor approaches. Approaches that rely on pre-trained embeddings or
knowledge graphs mitigate a bit this problem at the cost that not all the values
might be mapped to entities, resulting in a partial representation of the input
table.

Future Work. As the research in tackling the problem we discussed in this
thesis is florid, we are in an early stage of progress. So, there are many possible
ways of extending and improving this work. In the following, we will discuss
some possible future directions.

Test new hash functions. The most obvious extension of this work could be to
use different hash function that guarantee the required properties of catching
similarity and distribution. The whole world of Learning to Hash functions
is florid as well and the integration of Machine Learning and Deep Learning
algorithms for hashing is making this area interesting and proficient. The core
of the TASH framework is that the hash function is pluggable, so that it will
be easy to integrate a custom function in the workflow.

Split indexes by table size. To overcome the padding vs resampling limitation,
a possible solution could be to create many groups of tables of similar size to
be given as input to the hash algorithm. This step would bring many advant-
ages, among which: each group would include a subset of all the tables, each
fingerprint would be more precise since less padding or resampling would be
required. At this point, a query table could be queried against many different

conclusion ad future work 63

partitions, even by sampling elements of the query table or adding padding
to fit well. Instead of padding or resampling tables to a fixed length, we can
map each table to the index that covers its length range, and then resample the
table to the length of the corresponding index. This can significantly reduce
the amount of padding or resampling needed, leading to a more efficient and
effective hashing process. To illustrate this, consider an example where we
have two tables, A and B. Table A has a length of 4, while table B has a length
of 3. Instead of padding table B with zeros to match the length of table A, we
can map table B to an index that covers lengths 1-4, and then resample it to
a length of 4. Similarly, we can map table A to an index that covers lengths
1-4 and resample it to a length of 4 as well. This way, both tables are the
same length, and we have minimized the amount of padding and resampling
required. Furthermore, having multiple indexes can also help to improve the
accuracy of the hashing algorithm. By mapping tables to indexes based on their
length range, we can ensure that similar tables are mapped to the same index,
which can lead to more accurate results. This is because tables that are similar
in length are more likely to be similar in content as well, and thus should be
treated similarly by the hashing algorithm. In summary, by using multiple
indexes to cover a range of table lengths, it would be possible to minimize the
amount of padding and resampling required during the table augmentation
process. This can lead to a more efficient and effective hashing algorithm.
Incorporate in a DBMS to run a SQL query rather than relying on KD-tree.

The choice of using a spatial index can be substituted by incorporating the
fingerprints in a DBMS and using plain SQL queries to retrieve the results.

7
Other Contributions

In this chapter, we briefly discuss other works that have been published during
the years of the PhD. The works lie in a bit of different area than the content
of this thesis, they are mainly concerned with geographical knowledge and
Geo-Names. They are centered on the role of embeddings in representing
geographical concepts, like geographical ontologies and taxonomies. The
core project is presented in [26], an consists of an algorithm for inferring
the position of a tweet based on the Geo-Names (i.e., names referring to
objects with a geographical position) in its content. The main contribution in
this work is designing and developing the usage of word embeddings in the
representation of geographical objects in a small area, like that of a city, as
embedding vectors. We developed a complete evaluation of the embedding
technique able of qualitatively characterizing the embedding. This quality
study has been the subject of further publications [21, 22].
Some of the concepts we developed in these works could be applied in the

table augmentation setting for the problem we faced in this thesis. However,
the main problem arising when trying to use them in for the problem faced in
the thesis is that embeddings encapsulate semantic information that can be
useful, but it presents some limitations:

• Ideally, the embedding representation can be alternative to the hash
representation. The problem is that embeddings are at value-level, while
our framework works at both column and table level.

• Previous limitation suggests that the hashing should be computed on the
vectorial representation, adding an extra level of complexity. Alternatively,
the column representation could be the mean of values in each column,
making it harder to capture similarity between tables of different length.

• Euclidean word embeddings lie in high dimensional spaces. This would
make the index structure much larger and potentially intractable.

• To exploit embeddings, a entity matching layer should be introduced.
Since Euclidean embeddings are pre-trained, it is possible that the cov-
erage of entities in the data lake is poor. This is true also considering
knowledge graphs techniques.

• Embeddings can be used on string columns only, that is the case of join
search, but it is not the case once augmentation is evaluated.

• Hyperbolic embeddings do not seem to be suitable for the problem, since
there is a lack of scalability in computing and there is a hierarchical

65

66 other contributions

structure in the data lake.

Bibliography

[1] Naser Ahmadi, Hansjörg Sand, and Paolo Papotti. Unsupervised Match-
ing of Data and Text. In: 2022 IEEE 38th International Conference on Data
Engineering (ICDE). 2022, pp. 1058–1070. Cited on p. 17.

[2] Nour Alhammad, Alex Bogatu, and Norman W Paton. Towards Schema
Inference for Data Lakes. In: arXiv preprint arXiv:2206.03881 (2022).
Cited on p. 44.

[3] Alexandr Andoni, Ilya Razenshteyn, and Negev Shekel Nosatzki. Lsh
forest: Practical algorithms made theoretical. In: Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, 2017, pp. 67–78. Cited on p. 18.

[4] Lars Arge, Mark de Berg, Herman Haverkort, and Ke Yi. The priority
R-tree: A practically efficient and worst-case optimal R-tree. In: ACM
Transactions on Algorithms (TALG) 4.1 (2008), pp. 1–30. Cited on p. 31.

[5] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The R*-tree: An efficient and robust access method for points
and rectangles. In: Proceedings of the 1990 ACM SIGMOD international
conference on Management of data. 1990, pp. 322–331. Cited on p. 31.

[6] Alex Bogatu, Alvaro AA Fernandes, Norman W Paton, and Nikolaos
Konstantinou. Dataset discovery in data lakes. In: 2020 IEEE 36th In-
ternational Conference on Data Engineering (ICDE). 2020, pp. 709–720.
Cited on pp. 15, 44, 59.

[7] Rajesh Bordawekar, Bortik Bandyopadhyay, and Oded Shmueli. Cog-
nitive database: A step towards endowing relational databases with
artificial intelligence capabilities. In: arXiv preprint arXiv:1712.07199
(2017). Cited on p. 16.

[8] Rajesh Bordawekar and Oded Shmueli. Exploiting Latent Information in
Relational Databases via Word Embedding and Application to Degrees
of Disclosure. In: CIDR. 2019. Cited on p. 16.

[9] Rajesh Bordawekar and Oded Shmueli. Using word embedding to en-
able semantic queries in relational databases. In: Proceedings of the 1st
workshop on data management for end-to-end machine learning. 2017,
pp. 1–4. Cited on p. 16.

[10] Michael J Cafarella, Alon Halevy, and Nodira Khoussainova. Data in-
tegration for the relational web. In: Proceedings of the VLDB Endowment
2.1 (2009), pp. 1090–1101. Cited on p. 15.

67

68 bibliography

[11] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan.
Creating embeddings of heterogeneous relational datasets for data in-
tegration tasks. In: Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 2020, pp. 1335–1349. Cited on pp. 17,
59.

[12] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan.
Embdi: generating embeddings for relational data integration. In: Pro-
ceedings of the 29th Italian Symposium on Advanced Database Systems,
SEBD. 2021, pp. 331–338. Cited on pp. 17, 59.

[13] Sonia Castelo, Rémi Rampin, Aécio Santos, Aline Bessa, Fernando
Chirigati, and Juliana Freire. Auctus: a dataset search engine for data
discovery and augmentation. In: Proceedings of the VLDB Endowment
14.12 (2021), pp. 2791–2794. Cited on pp. 18, 59.

[14] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan,
Samuel Madden, and Michael Stonebraker. Aurum: A Data Discovery
System. In: 2018 IEEE 34th International Conference on Data Engineering
(ICDE). 2018, pp. 1001–1012. Cited on p. 14.

[15] Adriane Chapman, Elena Simperl, Laura Koesten, George Konstantin-
idis, Luis Daniel Ibáñez, Emilia Kacprzak, and Paul Groth. Dataset search:
a survey. In: VLDB J. 29.1 (2020), pp. 251–272. Cited on p. 14.

[16] Moses S Charikar. Similarity estimation techniques from rounding
algorithms. In: Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing. 2002, pp. 380–388. Cited on p. 17.

[17] Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie
Li, Tri Dao, Zhao Song, Anshumali Shrivastava, and Christopher Re.
Mongoose: A learnable lsh framework for efficient neural network
training. In: International Conference on Learning Representations. 2021.
Cited on p. 18.

[18] Nadiia Chepurko, RyanMarcus, Emanuel Zgraggen, Raul Castro Fernan-
dez, Tim Kraska, and David Karger. ARDA: Automatic Relational Data
Augmentation for Machine Learning. In: Proc. VLDB Endow. 13.9 (2020),
pp. 1373–1387. Cited on pp. 18, 59.

[19] Lianhua Chi and Xingquan Zhu. Hashing techniques: A survey and
taxonomy. In: ACM Computing Surveys (CSUR) 50.1 (2017), pp. 1–36.
Cited on p. 17.

[20] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Halevy, Hongrae Lee,
Fei Wu, Reynold Xin, and Cong Yu. Finding Related Tables. In: SIGMOD
’12. Association for ComputingMachinery, 2012, 817–828. Cited on pp. 14,
15.

bibliography 69

[21] Federico Dassereto, Laura Di Rocco, Giovanna Guerrini, and Michela
Bertolotto. Evaluating the effectiveness of embeddings in representing
the structure of geospatial ontologies. In: Geospatial Technologies for
Local and Regional Development: Proceedings of the 22nd AGILE Con-
ference on Geographic Information Science 22. 2020, pp. 41–57. Cited on
pp. 43, 65.

[22] Federico Dassereto, Laura Di Rocco, Shanley Shaw, Giovanna Guerrini,
and Michela Bertolotto. How to Tune Parameters in Geographical On-
tologies Embedding. In: Association for Computing Machinery, 2020.
Cited on p. 65.

[23] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni.
Locality-sensitive hashing scheme based on p-stable distributions. In:
Proceedings of the twentieth annual symposium on Computational geo-
metry. 2004, pp. 253–262. Cited on p. 17.

[24] Dong Deng, Albert Kim, Samuel Madden, and Michael Stonebraker.
Silkmoth: An efficient method for finding related sets with maximum
matching constraints. In: arXiv preprint arXiv:1704.04738 (2017). Cited
on p. 14.

[25] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. In: arXiv preprint arXiv:1810.04805 (2018). Cited on p. 43.

[26] LauraDi Rocco, FedericoDassereto,Michela Bertolotto, Davide Buscaldi,
Barbara Catania, and Giovanna Guerrini. Sherloc: a knowledge-driven
algorithm for geolocating microblog messages at sub-city level. In:
International Journal of Geographical Information Science 35.1 (2021),
pp. 84–115. Cited on pp. 43, 65.

[27] Hong-Hai Do and Erhard Rahm. COMA—a system for flexible combina-
tion of schema matching approaches. In: VLDB’02: Proceedings of the
28th International Conference on Very Large Databases. 2002, pp. 610–621.
Cited on p. 59.

[28] Mohamad Dolatshah, Ali Hadian, and Behrouz Minaei-Bidgoli. Ball*-
tree: Efficient spatial indexing for constrained nearest-neighbor search
in metric spaces. In: arXiv preprint arXiv:1511.00628 (2015). Cited on p. 31.

[29] Yuyang Dong and Masafumi Oyamada. Table Enrichment System for
Machine Learning. In: Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 2022,
pp. 3267–3271. Cited on p. 59.

[30] Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada.
Efficient joinable table discovery in data lakes: A high-dimensional
similarity-based approach. In: 2021 IEEE 37th International Conference
on Data Engineering (ICDE). 2021, pp. 456–467. Cited on pp. 2, 18, 44, 55,
57–59.

70 bibliography

[31] Yuyang Dong, Chuan Xiao, Takuma Nozawa, Masafumi Enomoto, and
Masafumi Oyamada. DeepJoin: Joinable Table Discovery with Pre-
trained Language Models. In: arXiv preprint arXiv:2212.07588 (2022).
Cited on p. 59.

[32] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty,
Mourad Ouzzani, and Nan Tang. Distributed representations of tuples
for entity resolution. In: Proceedings of the VLDB Endowment 11.11 (2018),
pp. 1454–1467. Cited on p. 16.

[33] Mahdi Esmailoghli, Jorge-Arnulfo Quiané-Ruiz, and Ziawasch Abedjan.
COCOA: COrrelation COefficient-Aware Data Augmentation. In: EDBT.
2021, pp. 331–336. Cited on p. 59.

[34] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. Discovering
conditional functional dependencies. In: IEEE Transactions on Knowledge
and Data Engineering 23.5 (2010), pp. 683–698. Cited on p. 37.

[35] Wenfei Fan, Liang Geng, Ruochun Jin, Ping Lu, Resul Tugay, and Weny-
uan Yu. Linking Entities across Relations and Graphs. In: 2022 IEEE 38th
International Conference on Data Engineering (ICDE). 2022, pp. 634–647.
Cited on p. 17.

[36] Wenfei Fan, Chunming Hu, Xueli Liu, and Ping Lu. Discovering graph
functional dependencies. In: ACM Transactions on Database Systems
(TODS) 45.3 (2020), pp. 1–42. Cited on p. 37.

[37] Wenfei Fan, Yinghui Wu, and Jingbo Xu. Functional dependencies for
graphs. In: Proceedings of the 2016 international conference on manage-
ment of data. 2016, pp. 1843–1857. Cited on p. 37.

[38] Raul Castro Fernandez, EssamMansour, Abdulhakim A Qahtan, Ahmed
Elmagarmid, Ihab Ilyas, Samuel Madden, Mourad Ouzzani, Michael
Stonebraker, and Nan Tang. Seeping semantics: Linking datasets using
word embeddings for data discovery. In: 2018 IEEE 34th International
Conference on Data Engineering (ICDE). 2018, pp. 989–1000. Cited on
p. 15.

[39] Maayan Frid-Adar, Eyal Klang, Michal Amitai, Jacob Goldberger, and
Hayit Greenspan. Synthetic data augmentation using GAN for improved
liver lesion classification. In: 2018 IEEE 15th international symposium on
biomedical imaging (ISBI 2018). 2018, pp. 289–293. Cited on p. 3.

[40] Michael Günther, Maik Thiele, Erik Nikulski, and Wolfgang Lehner.
RetroLive: Analysis of Relational Retrofitted Word Embeddings. In:
EDBT. 2020, pp. 607–610. Cited on p. 17.

[41] Xiangyu He, Peisong Wang, and Jian Cheng. K-nearest neighbors hash-
ing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019, pp. 2839–2848. Cited on pp. 47, 56–58.

bibliography 71

[42] Yka Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen.
TANE: An efficient algorithm for discovering functional and approx-
imate dependencies. In: The computer journal 42.2 (1999), pp. 100–111.
Cited on p. 37.

[43] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: to-
wards removing the curse of dimensionality. In: Proceedings of the thir-
tieth annual ACM symposium on Theory of computing. 1998, pp. 604–613.
Cited on p. 17.

[44] AamodKhatiwada, Grace Fan, Roee Shraga, ZixuanChen,WolfgangGat-
terbauer, Renée J Miller, and Mirek Riedewald. SANTOS: Relationship-
based Semantic Table Union Search. In: arXiv preprint arXiv:2209.13589
(2022). Cited on p. 15.

[45] Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée J.
Miller. Integrating Data Lake Tables. In: Proc. VLDB Endow. 16.4 (2022),
932–945. Cited on p. 14.

[46] Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée
J Miller. Integrating Data Lake Tables. In: Proceedings of the VLDB
Endowment 16.4 (2022), pp. 932–945. Cited on p. 59.

[47] Ravi Kanth V Kothuri, Siva Ravada, and Daniel Abugov. Quadtree and
R-tree indexes in oracle spatial: a comparison using GIS data. In: Proceed-
ings of the 2002 ACM SIGMOD international conference on Management
of data. 2002, pp. 546–557. Cited on p. 31.

[48] Christos Koutras, Marios Fragkoulis, Asterios Katsifodimos, and Chris-
toph Lofi. REMA: Graph Embeddings-based Relational Schema Match-
ing. In: EDBT/ICDT Workshops. 2020. Cited on p. 17.

[49] Christos Koutras, Kyriakos Psarakis, George Siachamis, Andra Ion-
escu, Marios Fragkoulis, Angela Bonifati, and Asterios Katsifodimos.
Valentine in action: matching tabular data at scale. In: Proceedings of
the VLDB Endowment 14.12 (2021), pp. 2871–2874. Cited on pp. 18, 59.

[50] Sebastian Kruse and Felix Naumann. Efficient discovery of approxim-
ate dependencies. In: Proceedings of the VLDB Endowment 11.7 (2018),
pp. 759–772. Cited on p. 37.

[51] Arun Kumar, Jeffrey F. Naughton, Jignesh M. Patel, and Xiaojin Zhu. To
Join or Not to Join?: Thinking Twice about Joins before Feature Selection.
In: Proceedings of the 2016 International Conference on Management of
Data, SIGMOD. 2016, pp. 19–34. Cited on pp. 5, 14, 59.

[52] Oliver Lehmberg and Christian Bizer. Stitchingweb tables for improving
matching quality. In: Proceedings of the VLDB Endowment 10.11 (2017),
pp. 1502–1513. Cited on p. 15.

[53] Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer.
A Large Public Corpus of Web Tables Containing Time and Context
Metadata. In: Proceedings of the 25th International Conference Companion
on World Wide Web. 2016, 75–76. Cited on pp. 54, 55.

72 bibliography

[54] Oliver Lehmberg, Dominique Ritze, Petar Ristoski, RobertMeusel, Heiko
Paulheim, and Christian Bizer. The mannheim search join engine. In:
Journal of Web Semantics 35 (2015), pp. 159–166. Cited on p. 14.

[55] Aristotelis Leventidis, Laura Di Rocco, Wolfgang Gatterbauer, Renée J
Miller, and Mirek Riedewald. DomainNet: Homograph Detection for
Data Lake Disambiguation. In: EDBT 2021 (2021). Cited on p. 36.

[56] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, Jin Wang, Wataru Hirota, and
Wang-Chiew Tan. Deep Entity Matching: Challenges and Opportunities.
In: J. Data and Information Quality 13.1 (2021). Cited on p. 17.

[57] Jiabin Liu, Chengliang Chai, Yuyu Luo, Yin Lou, Jianhua Feng, and
Nan Tang. Feature augmentation with reinforcement learning. In: 2022
IEEE 38th International Conference on Data Engineering (ICDE). 2022,
pp. 3360–3372. Cited on p. 59.

[58] Panagiotis Mandros, Mario Boley, and Jilles Vreeken. Discovering de-
pendencies with reliable mutual information. In: Knowledge and Inform-
ation Systems 62.11 (2020), pp. 4223–4253. Cited on p. 37.

[59] Panagiotis Mandros, Mario Boley, and Jilles Vreeken. Discovering Reli-
able Correlations in Categorical Data. In: 2019 IEEE International Con-
ference on Data Mining (ICDM). 2019, pp. 1252–1257. Cited on p. 37.

[60] Panagiotis Mandros, Mario Boley, and Jilles Vreeken. Discovering Reli-
able Dependencies from Data: Hardness and Improved Algorithms. In:
IEEE International Conference on Data Mining, ICDM. 2018, pp. 317–326.
Cited on p. 37.

[61] Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. An empirical
evaluation of set similarity join techniques. In: Proceedings of the VLDB
Endowment 9.9 (2016), pp. 636–647. Cited on p. 15.

[62] Heikki Mannila and Kari-Jouko Räihä. On the complexity of inferring
functional dependencies. In: Discrete Applied Mathematics 40.2 (1992),
pp. 237–243. Cited on p. 34.

[63] Giovanni Mariani, Florian Scheidegger, Roxana Istrate, Costas Bekas,
and Cristiano Malossi. BAGAN: Data Augmentation with Balancing
GAN. In: International Conference on Machine Learning. 2018. Cited on
p. 3.

[64] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity
flooding: A versatile graph matching algorithm and its application to
schema matching. In: Proceedings 18th international conference on data
engineering. 2002, pp. 117–128. Cited on p. 59.

[65] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. In: arXiv preprint
arXiv:1301.3781 (2013). Cited on p. 43.

bibliography 73

[66] Justin J Miller. Graph database applications and concepts with Neo4j. In:
Proceedings of the southern association for information systems conference,
Atlanta, GA, USA. Vol. 2324. 36. 2013. Cited on p. 37.

[67] Renée J Miller. Open data integration. In: Proceedings of the VLDB En-
dowment 11.12 (2018), pp. 2130–2139. Cited on pp. 2, 5, 14.

[68] Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, and Renée J Miller. Table
union search on open data. In: Proceedings of the VLDB Endowment 11.7
(2018), pp. 813–825. Cited on pp. 2, 15.

[69] Hiromitsu Nishizaki. Data augmentation and feature extraction using
variational autoencoder for acoustic modeling. In: 2017 Asia-Pacific
Signal and Information Processing Association Annual Summit and Con-
ference (APSIPA ASC). 2017, pp. 1222–1227. Cited on p. 3.

[70] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In: Proceedings of the 2014 con-
ference on empirical methods in natural language processing (EMNLP).
2014, pp. 1532–1543. Cited on p. 43.

[71] Jianbin Qin and Chuan Xiao. Pigeonring: A Principle for Faster Threshol-
ded Similarity Search. In: Proc. VLDB Endow. 12.1 (2018), 28–42. Cited on
p. 16.

[72] Franck Ravat and Yan Zhao. Data lakes: Trends and perspectives. In:
Database and Expert Systems Applications: 30th International Conference,
DEXA. 2019, pp. 304–313. Cited on p. 1.

[73] Dominique Ritze, Oliver Lehmberg, Yaser Oulabi, and Christian Bizer.
Profiling the Potential of Web Tables for Augmenting Cross-domain
Knowledge Bases. In: Proceedings of the 25th International Conference
on World Wide Web, WWW. 2016, pp. 251–261. Cited on p. 15.

[74] Hanan Samet. The quadtree and related hierarchical data structures. In:
ACM Computing Surveys (CSUR) 16.2 (1984), pp. 187–260. Cited on p. 31.

[75] Aécio Santos, Aline Bessa, Christopher Musco, and Juliana Freire. A
sketch-based index for correlated dataset search. In: 2022 IEEE 38th
International Conference on Data Engineering (ICDE). 2022, pp. 2928–
2941. Cited on pp. 19, 59.

[76] Vraj Shah, Arun Kumar, and Xiaojin Zhu. Are Key-Foreign Key Joins
Safe to Avoid when Learning High-Capacity Classifiers? In: Proceedings
of the VLDB Endowment 11.3 (2017). Cited on pp. 14, 59.

[77] Claude E Shannon. A mathematical theory of communication. In: The
Bell system technical journal 27.3 (1948), pp. 379–423. Cited on p. 26.

[78] Anshumali Shrivastava and Ping Li. In defense of minhash over simhash.
In: Artificial intelligence and statistics. 2014, pp. 886–894. Cited on p. 17.

74 bibliography

[79] Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çağatay Demir-
alp, Chen Chen, and Wang-Chiew Tan. Annotating Columns with Pre-
Trained Language Models. In: SIGMOD ’22. Association for Computing
Machinery, 2022, 1493–1503. Cited on p. 17.

[80] Sahaana Suri, Ihab F Ilyas, Christopher Ré, and Theodoros Rekatsinas.
Ember: no-code context enrichment via similarity-based keyless joins.
In: Proceedings of the VLDB Endowment 15.3 (2021), pp. 699–712. Cited
on p. 59.

[81] Waldo Tobler and Zi-tan Chen. A quadtree for global information stor-
age. In: Geographical Analysis 18.4 (1986), pp. 360–371. Cited on p. 31.

[82] Sandhya Tripathi, Bradley A Fritz, Mohamed Abdelhack, Michael S
Avidan, Yixin Chen, and Christopher R King. Deep Learning to Jointly
Schema Match, Impute, and Transform Databases. In: arXiv preprint
arXiv:2207.03536 (2022). Cited on p. 17.

[83] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri.
InfoGather: Entity Augmentation and Attribute Discovery by Holistic
Matching with Web Tables. In: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. 2012, 97–108. Cited on
p. 14.

[84] Jing Zhang, Bonggun Shin, Jinho D Choi, and Joyce C Ho. SMAT: An
attention-based deep learning solution to the automation of schema
matching. In: Advances in Databases and Information Systems: 25th
European Conference, ADBIS. 2021, pp. 260–274. Cited on p. 17.

[85] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M Pro-
copiuc, and Divesh Srivastava. Automatic discovery of attributes in
relational databases. In: Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of data. 2011, pp. 109–120. Cited on
p. 15.

[86] Shuo Zhang and Krisztian Balog. Web Table Extraction, Retrieval, and
Augmentation: A Survey. In: ACM Trans. Intell. Syst. Technol. 11.2 (2020),
13:1–13:35. Cited on p. 14.

[87] Shuo Zhang and Krisztian Balog. Web table extraction, retrieval, and
augmentation: A survey. In: ACM Transactions on Intelligent Systems
and Technology (TIST) 11.2 (2020), pp. 1–35. Cited on p. 15.

[88] Yi Zhang and Zachary G. Ives. Finding Related Tables in Data Lakes
for Interactive Data Science. In: Proceedings of the 2020 International
Conference on Management of Data, SIGMOD. 2020, pp. 1951–1966. Cited
on p. 59.

[89] Bolong Zheng, Zhao Xi, Lianggui Weng, Nguyen Quoc Viet Hung, Hang
Liu, and Christian S Jensen. PM-LSH: A fast and accurate LSH frame-
work for high-dimensional approximate NN search. In: Proceedings of
the VLDB Endowment 13.5 (2020), pp. 643–655. Cited on p. 18.

bibliography 75

[90] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes.
In: Proceedings of the 2019 International Conference on Management of
Data, SIGMOD. 2019, pp. 847–864. Cited on pp. 16, 59.

[91] Erkang Zhu, Yeye He, and Surajit Chaudhuri. Auto-join: Joining tables
by leveraging transformations. In: Proceedings of the VLDB Endowment
10.10 (2017), pp. 1034–1045. Cited on p. 16.

[92] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. LSH
Ensemble: Internet-Scale Domain Search. In: Proc. VLDB Endow. 9.12
(2016), pp. 1185–1196. Cited on pp. 8, 15, 54, 59.

	Abstract
	Acknowledgements
	1 Introduction
	1.1 The Problem: Table Augmentation
	1.2 Key Components of the Approach
	1.3 Overview of the Approach
	1.4 Summary of Contributions
	1.5 Outline of the Thesis

	2 Related Work
	2.1 Similarity and Union Search
	2.2 Hashing
	2.3 Augmentation Approaches

	3 Background
	3.1 Relational Tables
	3.2 Table-as-a-Query Paradigm and Table Retrieval
	3.3 Information Theory
	3.4 Hashing
	3.5 Spatial Indexes

	4 Problem Statement and Approach
	4.1 Problem Statement
	4.2 Basic Approaches
	4.3 The Impossibility of Estimating Conditional Entropy from Individual Entropies
	4.4 An Inverted Index based on Information Theory
	4.5 The TASH Approach: Overview
	4.6 The TASH Approach: Index Construction
	4.7 The TASH Approach: Probing

	5 Evaluation
	5.1 Evaluation Schema
	5.2 Datasets
	5.3 Comparison with Existing Approaches
	5.3.1 Baseline
	5.3.2 Our Approach
	5.3.3 Limitations

	6 Conclusion ad Future Work
	7 Other Contributions
	Bibliography

