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Via Opera Pia, 13 16145 Genova, Italy http://www.dibris.unige.it/
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Abstract

Web applications support a wide range of activities today, from e-commerce to health
management, and ensuring their quality is a fundamental task. Nevertheless, testing
these systems is hard because of their dynamic and asynchronous nature and their
heterogeneity. Quality assurance of Web applications is usually performed through
testing, performed at different levels of abstraction. At the End-to-end (E2E) level,
test scripts interact with the application through the web browser, as a human user
would do. This kind of testing is usually time consuming, and its execution time can
be reduced by running the test suite in parallel. However, the presence of dependen-
cies in the test suite can make test parallelization difficult.

Best practices prescribe that test scripts in a test suite should be independent (i.e.
they should not assume that the system under test is already in an expected state), but
this is not always done in practice: dependent tests are a serious problem that affects
end-to-end web test suites. Moreover, test dependencies are a problem because they
enforce an execution order for the test suite, preventing the use of techniques like
test selection, test prioritization, and test parallelization.

Another issue that affects E2E Web test suites is test flakiness: a test script is called
flaky when it may non-deterministically pass or fail on the same version of the Ap-
plication Under Test. Test flakiness is usually caused by multiple factors, that can be
very hard to determine: most common causes of flakiness are improper waiting for
async operations, not respected test order dependencies and concurrency problems
(e.g. race conditions, deadlocks, atomicity violations). Test flakiness is a problem
that affects E2E test execution in general, but it can have a greater impact in presence
of dependencies, since 1) if a test script fails due to flakiness, other test scripts that
depend on it will probably fail as well, 2) most dependency-detection approaches
and tools rely on multiple executions of test schedules in different orders to detect
dependencies. In order to do that, execution results must be deterministic: if test
scripts can pass or fail non-deterministically, those dependency detection tools can
not work.

This thesis proposes to improve the quality assurance for E2E Web test suites in two
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different directions:

1. enabling the parallel execution of dependent E2E Web test suites in a opti-
mized, efficient way

2. preventing flakiness by automated refactoring of E2E Web test suites, in order
to adopt the proper waiting strategies for page elements

For the first research direction we propose STILE (teST suIte paralLElizer), a tool-
based approach that allows parallel execution of E2E Web test suites. Our approach
generates a set of test schedules that respect two important constraints: 1) every
schedule respects existing test dependencies, 2) all test scripts in the test suite are
executed at least once, considering all the generated schedules.

For the second research direction we propose SleepReplacer, a tool-based approach
to automatically refactor E2E Web test suites in order to prevent flakiness.

Both of the tool-based approaches has been fully implemented in two functioning
and publicly available tools, and empirically validated on different test suites.
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Chapter 1

Introduction

In today’s world, Web applications are widely used and their capabilities keep growing with time.
Differently from old, static Web pages, modern Web applications provide a high level of user
interaction, and are becoming the preferred way to develop an application, since developing a
Web application is way easier than developing and supporting multiple versions of an application
for different platforms [SA20].

Given their diffusion, assuring quality of Web applications becomes a task of paramount impor-
tance, as ever more business-critical services rely on them. Many testing approaches and tech-
niques have been proposed and developed to improve the reliability of such systems. Among
them, End-to-end (E2E) testing is an approach able to test the application as a whole to ensure
that the system behaves as expected. It consists in automating the set of manual operations that
a human user would perform on the pages of the Web application, interacting with the pages
through a Web browser [LCRT16b]. The interaction with the browser is performed through dif-
ferent testing frameworks: one of the most used, and the one that we will use in this thesis, is
Selenium WebDriver. Since E2E test scripts perform the same actions that a user would do, E2E
testing provides a high fault detection capability, but on the other hand E2E test scripts tend to
be more fragile with respect to other kinds of testing like unit and integration testing [RLS19].
In fact, even if writing E2E Web test scripts is not a very difficult task for the developer thanks
to testing frameworks, the execution of a E2E test script is a very complex task that involves at
least a browser, the Web application front-end and back-end, the framework that manages the
interaction with the browser and the test script program itself. Moreover E2E testing, depending
on the size of the application under test, can become very time consuming [GD13], and there-
fore developers may want to speed up the execution by the use of test parallelization, a testing
technique where a test suite is divided in parts that are run in parallel, at the same moment. But
given the aforementioned complexity of the execution of E2E test scripts, running a E2E test
suite in parallel is a complex task. In particular, test parallelization is prevented by the presence
of test dependencies in the test suite [ZJW+14b, RS21]. The problem of test dependencies is
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not limited to the E2E Web testing field, but it also affects other kinds of testing. Best practices
prescribe that test scripts in a test suite should be independent, but this is not always true in
practice, since testers might rely on the application state set by previous tests when designing a
test script [RS21, GSHM15, ZJW+14a, BKMD15, GBZ18]. Test dependencies are particularly
problematic when they are not known to the developers, because if dependencies are broken with-
out knowing it, they may cause unpredictable failures that are hard to troubleshoot [LHEM14].
For this reason, different approaches have been proposed in literature to detect unknown depen-
dencies in test suites [GBZ18, BSM+19, ZJW+14a]. We will describe them more in detail in
subsequent chapters of this thesis, but the important thing to know is that these approaches re-
quire to run test scripts multiple times in different orders and check their results in order to detect
dependencies. Therefore, the application of these approaches is prevented by the presence of test
flakiness. A test script is flaky when it may non-deterministically pass or fail on the same version
of the Application Under Test (AUT), i.e. leading to different results in different runs on the
same AUT without any change in both the app and test code [EPCB19, ZPSH20]. The flakiness
problem is very insidious for companies because: (1) it makes lose confidence in the results of
the execution of the test suites with false alarms, (2) it increases deployment/release times, and
generally, (3) it increases development costs [ZPSH20].

The main goal of this thesis is to improve the efficiency of the execution of E2E Web test suites
from two different perspectives: reducing the execution time of the test suite and assuring the
correctness of the results. Although they are related to the same main goal, these two aspects of
E2E Web test efficiency require to be addressed with different approaches and ideas. To reduce
the execution time of a test suite, not only in the Web field, a commonly used strategy is test
parallelization, i.e. running more test scripts in parallel rather than sequentially. Differently
from other testing fields like unit testing, parallelization of E2E Web test suites poses different
challenges to the tester, like the management of the state of the application under test and the
interaction of different tests with different browsers. To ensure the correctness of the execution
results, instead, the tester should ensure that the test scripts are not flaky, i.e. that they always pass
when the application under test behaves correctly and they always fail when the application under
test does not behave correctly, without non-deterministic behaviours. The absence of flakiness
can be seen as a prerequisite for test parallelization, and for test execution in general since, as
we said before, the presence of flakiness makes the developers lose confidence in test results and
generally worsens the testing process. Moreover, as we briefly introduced before, and as we will
explain better in Section 5.1 flakiness can prevent the execution of many dependency detection
tools, that are required to enable the parallelization of dependent Web test suites. Therefore,
we divide the main goal of this thesis in two sub-goals, that will be addressed by two different
tool-based approaches. The two sub-goals of this thesis are:

1. Enabling parallelization of E2E Web test suites in presence of dependencies

2. Preventing flakiness by using the proper waiting strategies for page elements loading
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To achieve the first goal we propose STILE (teST suIte paralLElizer), a tool-based approach
that allows parallel execution of E2E web test suites. STILE generates a set of test schedules
that respect two important constraints: 1) every schedule respects existing test dependencies,
and 2) all test scripts in the test suite are executed at least once. Moreover, STILE optimizes
the execution by running only once the test scripts that are shared among the schedules, relying
on Docker to easily replicate the required state of the different instances system under test. We
implemented our approach in a tool and empirically evaluated it on eight E2E Web test suites.
We compared STILE with both the sequential execution of the test suite and a parallel, but
non-optimized execution using Selenium Grid, and our results show that STILE can reduce the
execution time up to 75% w.r.t. the sequential execution and up to 54% w.r.t. Selenium Grid.
Moreover, STILE provides a reduction in the energy consumption up to 75%.

To achieve the second sub-goal we propose SLEEPREPLACER, a tool based approach to automat-
ically refactor E2E Web test suites in order to prevent flakiness. To present SLEEPREPLACER we
need to briefly talk about waiting strategies in E2E Web test suites. Asynchronous calls in E2E
test suites are usually managed in two ways: thread sleeps and explicit waits. The first pause
the execution of the test for a given amount of time, giving the page the time to load. Explicit
waits, instead, actively poll the browser to know when a specific element is loaded. Usually, best
practices prescribe not to use thread sleeps, because they are inefficient (if the waiting time is too
long) and can be a source of flakiness (if the waiting time is too short), but they are still widely
used in practice. Refactoring a test suite from thread sleeps to explicit waits can be a difficult
and time consuming task, since each change should be validated to be sure it didn’t introduce
flakiness. In Section 2.3.2 we provide a more detailed description of waiting strategies for E2E
Web test scripts.

Our tool SLEEPREPLACER is able to automatically replace thread sleeps with explicit waits
without introducing novel flakiness, following a step-by-step approach where every thread sleep
is replaced and validated in isolation, relying on multiple executions of the modified test script
to be sure that the execution is not flaky. We empirically validated SLEEPREPLACER on four
different test suites, and we found that it can correctly replace in automatic way from 81% to
100% of thread sleeps, leading to a significant reduction of the total execution time of the test
suite (i.e., from 13% to 71%).

Both of our tool-based approaches have already been published in scientific literature. In detail,
in 2021 we published a conference paper [OLRV21], presented at the 14th International Con-
ference on the Quality of Information and Communications Technology (QUATIC 2021), that
describes a manual approach to replace thread sleeps with explicit waits in E2E test suites. Later
on, we improved and automated this approach, implementing it in the SLEEPREPLACER tool.
The paper [OLR22] that describes SLEEPREPLACER has been published in 2022 on the Soft-
ware Quality Journal (SQJ).
For what concerns STILE, in 2021 we published a conference paper [OLR+21b], presented at
the IEEE International Conference on Software Testing, Verification and Validation 2021 (ICST
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2021). In this paper, we describe the key concepts and ideas of our approach and provide a the-
oretical estimation of how much it will reduce the execution time fo the test suites. A journal
paper that describes more in detail the approach and, most importantly, provides an empirical
evaluation of the approach performed using actual execution of our tool, has been submitted
to the journal ACM Transactions on Software Engineering and Methodology (TOSEM) and is
undergoing revision.

This thesis is organized as follows:

• in Chapter 2 we give an introduction on Web applications and E2E Web testing, and we
present the key concepts used in this thesis, namely test dependencies, test flakiness and
test parallelization;

• in Chapter 3 we provide an overview of existing literature related to the topics of this
thesis;

• in Chapter 4 we present STILE, a tool-based approach to address the first research di-
rection of this thesis: the optimized parallel execution of dependent E2E Web test suites.
After presenting the key ideas behind STILE, along with the baseline approach with which
we compared it, we will describe our approach and its implementation. After that, in Sec-
tion 4.4 we will provide the empirical evaluation of our approach using 8 E2E Web test
suites;

• in Chapter 5 we present SLEEPREPLACER, a tool-based approach to address the second
research direction of this thesis: flakiness prevention in E2E Web test suites. After a moti-
vation for the approach, that explains why it is related to dependency-aware parallelization,
we will describe the steps that compose our approach and their implementation. After that,
in Section 5.5 we will provide the empirical evaluation of our approach using 3 small, open
source test suites and one industrial, large test suite;

• finally, Chapter 6 concludes this thesis with a summary of its contributions and some
possible directions for future work.
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Chapter 2

Background

In this chapter, we present the key concepts that are used in this thesis. After an introduction
about web applications and related technologies, we will give a brief overview on software test-
ing. Then, we will introduce the topics of software testing that we used in this thesis, namely
End-to-end (E2E) testing, test dependencies, test flakiness, and test parallelization for E2E Web
test suites.

2.1 Web applications

A web application is a type of software application that is accessed through a web browser and
runs on a web server. It typically adopts a client-server architecture, where the client (the web
browser) interacts with the server to request and receive data. A classical web application is
composed of three parts:

• The frontend, also called the client-side, is the interface that users interact with. It is
usually built using HTML (HyperText Markup Language), CSS (Cascading Style Sheets),
and JavaScript. The frontend is responsible for handling user interactions, and making
requests to the backend for data.

• The backend, also called the server-side, is the part of the web application that runs on
the server and processes requests from the frontend. It is responsible for handling busi-
ness logic, processing data, and interacting with databases or other external services. The
backend is typically built using programming languages such as Python, Ruby, PHP, or
Node.js.

• The database is where the web application stores and retrieves data. It can be a relational
database, such as MySQL or PostgreSQL, or a NoSQL database, such as MongoDB or
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Cassandra. The backend interacts with the database to store and retrieve data, such as user
information, product data, or other application data.

Since this work focuses on E2E testing, we will now introduce some basic concepts and tech-
nologies used in Web application’s frontend.

2.1.1 Overview of Web Application’s Frontend

2.1.1.1 HTML and the Document Object Model (DOM)

HTML (HyperText Markup Language) is the standard markup language used create Web pages,
both for static websites and dynamic web applications. An HTML document contains the text
of the actual page that will be displayed in the browser enclosed in tags, that represent the dif-
ferent kind of elements that the page will contain (e.g., <img> for images, <p> for paragraphs,
<table> for tables). In a standard Web page, HTML tags are nested: there is a main <html>
tag that contains the whole page, and a <body> tag that contains the main content of the page,
that is visible to users.

Nested tags in HTML documents define a hierarchical tree structure called Document Object
Model (DOM). The DOM represents each element of a web page as a node in a tree structure,
where the elements contained inside another elements are represented as children of the con-
taining element. Web browsers offer an API (Application Programming Interface) to access,
manipulate and interact with elements in a web page. This is fundamental both for modern web
applications, whose pages are frequently dynamically changed via JavaScript (see Section 2.1.4),
and for E2E web testing, since E2E tests rely on the DOM API to interact with the pages of the
Web Application Under Test (WAUT). Figure 2.1 shows an example of simple HTML document,
and Figure 2.2 shows the corresponding DOM tree structure.

Figure 2.1: Example of HTML document
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Figure 2.2: DOM tree of the example HTML document

2.1.2 CSS

CSS (Cascading Style Sheets) is a style sheet language used to define the appearance of a HTML
document. CSS allows to define how elements of the page should be displayed, i.e. layout, fonts,
colors and other visual properties. CSS uses selectors to target HTML elements, and uses rules
to define how the target element should be displayed. For example, the statement
p {
text-align: center;
font-color: red;
}
says that paragraph elements (<p> tag in HTML) must have the text aligned to the center and
the font color must be red.

To separate content from presentation, usually the CSS for a web page is contained in a separated
.css file

2.1.3 JavaScript

JavaScript is a scripting language that is primarily used to make interactive web pages. JavaScript
adds interactivity to classic HTML pages by enabling complex animations, pop-up elements and
dynamic changes in the page. JavaScript is executed in the client browser, and relies on the DOM
API offered by the browser to interact with page elements and intercept events, such as clicks
made by the user on page elements. JavaScript can listen to such events using event listeners and
execute the proper code (event handler or callback) when a certain event is detected.

In the context of web application frontends, JavaScript is mainly used for:
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1. Adding interactivity to web pages, for example allowing client-side form validation (the
data entered in a form by the user can be validated before sending it to the server), anima-
tions, event handling

2. Manipulating the DOM in order to modify the structure of a page in real-time, with no
need to reload the page

3. Making HTTP requests to remote servers, in order to fetch new content without triggering
a reload of the page. This last feature is the core of AJAX, a fundamental technology for
modern web applications that we will present in the following of this section.

2.1.4 AJAX

AJAX [G+05], short for Asynchronous JavaScript and XML, is a web development technique
that enables asynchronous communication between a web browser and a web server. AJAX
allows to dynamically load new content on the page without reloading the whole page: the new
content is requested from the server through AJAX and displayed by modifying the DOM of the
page through JavaScript. This results in a faster and smoother experience for the user, that does
not have to wait for the whole page to be reloaded. Today, a huge number of web applications
relies on AJAX, for example social networks, web-based e-mail clients, online productivity suites
and much more.

The advent of AJAX has drastically changed the web development world, enabling a new paradigm
for developing Single Page Applications (SPAs), that we will describe in the next subsection.

2.1.5 Single Page Applications

A Single Page Application (SPA) is a type of web application that loads a single HTML page,
and updates its content dynamically through AJAX. In contrast to traditional multi-page web
applications, where each user action triggers a reloading of the page, SPAs load a single page
initially and then dynamically update its content according to the user actions. Moreover, to
enable browsing the application while keeping a meaningful URL, SPAs rely on client-side rout-
ing, which is a technique where the routing logic is managed on the client-side rather than by the
server. When using client-side routing, JavaScript intercepts the request, retrieves the required
data from the server and displays it on the page, without triggering a full page reload.

In this section, we showed that web applications are highly modular pieces of software, whose
behavior does not depend on a single component, but rather on the interaction of different com-
ponents. Therefore, in order to assess the quality of a web application, testing its components in
isolation is not sufficient, but instead its required to test also the entire application as a whole.
This is the goal of End-to-End web testing, that we will describe in Section 2.3
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2.2 Introduction to Software Testing

According to the IEEE/ANSI 1059 definition [IEE94], software testing is the process of analyz-
ing a software item to detect the differences between existing and required conditions (that is
defects/errors/bugs) and to evaluate the features of the software item. Testing is performed by
running test cases against the system under test (SUT) and collecting their results. According
to the definition of the IEEE/ISO/IEC Systems and software engineering vocabulary [IEE10], a
test case is a set of inputs, execution conditions and expected results developed for a particular
objective, such as to exercise a particular program path or to verify compliance with a specific
requirement. The execution of a test case returns a result, that can be PASS (the system behaves
as required) or FAIL (the system does not behave as required). The set of test cases that validate
a system under test is called a test suite.

Software testing can be performed at different levels, usually represented using the pyramid of
testing, that we introduce in the next subsection.

2.2.1 The Pyramid of Testing

First introduced by Cohn [Coh10], the pyramid of testing, represented in Figure 2.3 is a useful
concept to understand the different levels at which software testing can be performed.

Figure 2.3: The pyramid of testing (picture from [Coh10])
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The pyramid of software testing consists of three levels, with each level representing a different
type of test, as follows:

• Unit tests are the foundation of the pyramid and form its base. These tests focus on
testing individual units of code, such as functions or methods, in isolation to verify that
they work correctly. Unit tests are typically written and executed by developers during the
development process to catch bugs and ensure that individual units of code are functioning
as expected. They are usually automated, fast to execute, and provide quick feedback on
the correctness of the code at a granular level.

• Integration tests sit in the middle of the pyramid. These tests focus on testing the integra-
tion and interaction between different units or components of the software. Integration tests
verify that different units or components of the software work correctly when combined
together and interact with each other as intended. Integration tests may involve testing
the interaction between modules, APIs, services, or databases, and can be automated or
manual depending on the complexity of the integration points.

• End-to-End (E2E) tests are at the top of the pyramid and form the smallest portion. These
tests focus on testing the entire software system as a whole, including the interactions
between all the components of the software, from the user interface to the backend systems.
E2E tests simulate real-world scenarios and user interactions to verify that the software
system behaves correctly from end to end. E2E tests are typically slower and more complex
to set up and maintain compared to unit and integration tests, and they may involve tools
and frameworks that can simulate user interactions and test across multiple components.

The pyramid of software testing promotes a testing strategy where the majority of tests are fo-
cused on the lower levels of the pyramid, i.e., unit and integration tests, as they are typically
faster, cheaper, and provide quicker feedback during the development process. E2E tests, al-
though important for testing the system as a whole, are typically fewer in number and more
time-consuming and expensive to execute. A well-balanced and effective testing strategy that
follows the pyramid of software testing helps catch bugs early in the development cycle, im-
proves software quality, and reduces the overall cost and effort of testing.

But as we said in the previous section, E2E testing is particularly important in the web testing
field, because is the one that can verify the actual behaviour of the application, the behaviour
that the user will see. Moreover, since E2E testing is the most time consuming level of testing, it
is also the one that benefits the most from testing techniques that enable reducing the execution
time of the test suite, such as test parallelization. Therefore, this is the testing level on which
our work focuses on. In the next section, we will provide an overview on how E2E testing is
performed in the web testing field.
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2.3 End-to-End Web Testing

End-to-End (E2E) testing is a black-box testing technique that aims to test a system as a whole,
as a human tester would. An E2E test case is composed by a sequence of actions performed
on the web application GUI in order to exercise the web application functionalities, and some
assertions used to assess if the application behaves as expected. A test suite is a collection of test
cases which is used to test the various functionalities of the web application under test (WAUT).
Different approaches and tools exist to implement and execute E2E Web test cases, such as
Capture-Replay Testing, Programmable Testing [LCRT16a], and more recently Natural Lan-
guage Testing [LRSM22]. In this thesis, we will focus on Programmable Testing. Programmable
web testing consists in writing test scripts in a general purpose programming language, like Java
or Python, relying on testing frameworks like Selenium WebDriver [GGGMO20]. These frame-
works offer functionalities to easily interact with a web application, e.g. functions to click an
element, enter text in an input field, read text from an element, wait for an element to be loaded
and much more.

Listing 2.1 shows a test script from an E2E test suite we used as experimental object. Such
test script exercises the page that is shown in Figure 2.4. After instantiating the driver (Line 1),
the test opens the homepage of the application under test (Line 2), clears the fields login and
password (in case some text is already present, respectively Lines 3 and 5), inserts the respective
values (Lines 4 and 6) and clicks the login button (Line 7). Finally, the assertion at Line 8
checks if the login was successfully by comparing the displayed username (the one returned by
the .getText() invocation) with the expected one (”Firstname001 Name001”). Web elements in
the web page are found using locators: strings used in E2E test scripts to identify the position
of elements of the web page [LSRT15] in the GUI. Common examples of locators are IDs,
CSS selectors and XPaths. In our example, locators are the first argument of the findElement
method calls. For example, the expression “By.id(”login”)” indicates that the test script is looking
for a web element in the page whose attribute “id” is equal to “login”.

1 WebDriver driver = getDriver();
2 driver.get("http://localhost/claroline11110/claroline/index.php");
3 driver.findElement(By.id("login")).clear();
4 driver.findElement(By.id("login")).sendKeys("admin");
5 driver.findElement(By.id("password")).clear();
6 driver.findElement(By.id("password")).sendKeys("admin");
7 driver.findElement(By.xpath("html/body/div[1]/div[2]/div[1]/div/form/fieldset/button")).click()

;
8 assertTrue(driver.findElement(By.xpath("//*[@id=’userProfileBox’]/h3/span")).getText().contains

("Firstname001 Name001"));

Listing 2.1: E2E test script portion for Claroline Login page (Java).

The choice of proper locators is fundamental for the maintainability of the test suite. Indeed, a
test suite for a modern web application has to be continuously maintained to stay aligned with
the current version of the web application. Structural changes in the application (i.e. changes
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Figure 2.4: Login page of the Claroline web application

that impact the page layout and structure) will often change the DOM of the web pages, and
this may require to change the locators used to interact with the page elements to reflect the new
DOM structure.

A good example of a widely used locator that must be carefully selected in order to be main-
tainable is the XPath [LSRT14]. XPaths are expressions used to locate an element in the DOM
of a Web page, and can be of two different types: absolute or relative. A relative XPath ex-
presses the position of an element relatively to other elements of the page (e.g. the XPath
//div[@class=’container’]/a selects an anchor element (a) inside a div element of
class container). An absolute XPath instead expresses the absolute position of an element,
starting from the root of the DOM. For example, /html/body/div[1]/div[2] is an ab-
solute XPath that selects the second div (div[2]) inside the first div (div[1]) in the body
(body) of the page (html). Both kind of XPaths can break if the DOM of the page changes,
but absolute XPaths are easier to break because any change in the DOM structure affects them,
while relative XPaths are affected only by changes of the near elements used to locate the target
one.

For what concerns test maintainability, a test script written like the example in Listing 2.1 suffers
of another serious problem that affects maintainability: the strong coupling and low cohesion
problem [RLS19]. As you can see, the code in Listing 2.1 includes locators, URLs and input
values hardwired as strings in the test code, i.e., the test code is strongly coupled with the web
page structure and input data. Such coupling has a major impact on the maintainability of the
test suite, since every change in the structure of the page that breaks some locators, requires
every occurrence of such broken locators to be manually replaced in the whole test suite. This
greatly increases the fragility of the test suite, makes the test suite prone to flakiness, and makes
finding the root cause of failures harder. Low cohesion means that logical aspects (what to test)
and technical aspects (how to test) are mixed: in this example, the test script has low cohesion
because it contains WebDriver calls in its body, worsening the readability of the code.
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A widely used solution to the strong coupling and low cohesion problem is the adoption of the
Page Object pattern, that we will present in the next subsection.

2.3.1 Page Object Pattern

In this subsection, we briefly describe the Page Object pattern [POm], a design pattern that aims
to reduce code duplication and improve test maintenance. It is a object oriented design pattern,
where there are classes that act like interfaces to the pages of the web application under test. For
example, let’s assume we have a simple login page with a form that contains a text box for the
username, a text box for the password and a Login button to submit the form and we want to test
it. A plain test code for the login page is given in Listing 2.2 (where we assume that the driver
object has already been initialized).

public class TestClass {
...
@Test
public void loginTest() {

driver.get("http://www.example.com/login");
driver.findElement(By.id("username")).sendKeys("yourUsername");
driver.findElement(By.id("password")).sendKeys("yourPassword");
driver.findElement(By.id("loginBtn")).click();
assertThat(driver.findElement(By.id("loginResult")).getText(), is("login successfull!");

}
...
}

Listing 2.2: Plain test code (i.e., without page objects) for our login page

This test code has several problems, and the biggest one is that locators (e.g., By.id(”username”))
are hardwired in the test code and duplicated among the test methods: if a locator changes due
to web application evolution, we have to manually change it in every point where it’s used (i.e.,
in every test method). By using the Page Object pattern, instead, we encapsulate all the code
that interacts with the page in a unique LoginPage class and we can reuse it. The refactored test
method using the Page Object pattern is shown in Listing 2.3.

public class LoginPO {

private WebDriver driver;

...

public LoginPO goToLoginPage() {
driver.get("http://www.example.com/login");
return this;

}

public LoginPO login(String username, String password) {
driver.findElement(By.id("username")).sendKeys(username);
driver.findElement(By.id("password")).sendKeys(password);
driver.findElement(By.id("loginBtn")).click();
return this;

}
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public boolean getLoginStatus() {
return driver.findElement(By.id("loginResult")).getText().equals("Login successfull!");

}

}

public class TestClass {
...

@Test
public void loginTest() {

boolean success = new LoginPO(driver)
.goToLoginPage()
.login("yourUsername", "yourPassword")
.getLoginStatus();

assertTrue(success);

}
...
}

Listing 2.3: Test code with page objects for our login page

In this way the test code is much more compact, and moreover the locators are incapsulated in
the page object classes, making test suite maintenance easier.

It is important to note that, in Listing 2.3, the lines driver.get(”http://www.example.com/login”);
and driver.findElement(By.id(”loginBtn”)).click(); send a request to the Web server of the WAUT,
and hence need to wait for the response. Without implementing any waiting strategy, this code
has a high probability to fail if the page is not loaded almost instantly. In the next subsection, we
will describe the different waiting strategies offered by the Selenium WebDriver framework.

2.3.2 Waiting Strategies for E2E Web Test Scripts

In this section, we provide an overview on waiting strategies used in E2E web testing, focusing
on the solutions offered by the Selenium WebDriver framework. In E2E web testing the simpler
mechanism to wait for asynchronous calls is the use of thread sleeps. Thread sleeps are com-
mands that stop the execution of the thread for a given amount of time and are used by Testers,
at certain specific points in test code, to wait for a page of the WAUT to load before taking the
next action or for managing asynchronous calls, often used in modern Web applications. The
usage of thread sleeps presents, however, two main disadvantages: a) they lengthen the execu-
tion times of the test code since they always wait the same amount of time, given a priori by the
Tester, even when the page is loaded more quickly, and b) they can cause flakiness themselves, as
testified for example in Luo et al. [LHEM14] and Ricca and Stocco [RS21] papers. Since thread
sleeps are not an optimal solution, a Tester may want to replace them with more reliable waiting
mechanisms. The Selenium WebDriver framework offers three ways for waiting the loading of
web elements: explicit waits, implicit waits and fluent waits.
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2.3.2.1 Explicit Waits

Explicit waits are a waiting mechanism offered by the Selenium WebDriver framework, that
allow to wait for a certain condition to be verified before proceeding with the execution of the
test script. Differently from thread sleeps, that wait for a fixed amount of time, explicit waits only
wait until the condition is verified, making them a more efficient solution. The developer defines
a maximum timeout, and if the condition is not verified until the timeout expires, the explicit wait
will throw an exception that, if not caught, makes the test fail. From a technical point of view, an
explicit wait is a Java object of class WebDriverWait, that can be used in combination with an
ExpectedCondition, that is a function that tells the explicit wait which condition should be
checked to stop waiting. From the Selenium documentation1 we can identify six main categories
of expected conditions that check for different conditions, such as:

• the visibility of an element;

• the clickability of an element;

• the presence of an element;

• the number of elements;

• the page’s URL;

• text comparison;

• DOM attributes.

Not only explicit waits are more efficient than thread sleeps, they are also more flexible, because
explicit waits allow to check for complex conditions: for example, if we have a text in a page that
can be dynamically changed via AJAX, and we want to wait for the text to assume a certain value,
it would be difficult to do it using thread sleeps. But with the textToBe expected condition,
this check requires just a single line of code.

Listing 2.4 shows an example of thread sleep from one of the test suites used to validate our tool
SLEEPREPLACER, while Listing 2.5 shows the code produced by SLEEPREPLACER to replace
that thread sleep.

driver.findElement(By.id("add_butn")).click();
Thread.sleep(1000);
driver.findElement(By.id("name")).clear();
driver.findElement(By.id("name")).sendKeys("Milestone001");

Listing 2.4: Example of thread sleep

1Documentation for the ExpectedConditions class
https://www.selenium.dev/selenium/docs/api/java/org/openqa/selenium/support/ui/ ExpectedConditions.html
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WebDriverWait wait = wait = new WebDriverWait(driver, 10);
...
driver.findElement(By.id("add_butn")).click();
wait.until(ExpectedConditions.elementToBeClickable(By.id("name")));
driver.findElement(By.id("name")).clear();
driver.findElement(By.id("name")).sendKeys("Milestone001");

Listing 2.5: Example of explicit wait

To replace a thread sleep with an explicit wait, we need some information about: a) the condition
that we need to wait for b) the web page element involved. This information can usually be
inferred from the test method code, although in some complex cases a page inspection may be
required. We can infer which condition should be waited by looking at the web page interac-
tion performed after the thread sleep: actions like clicks and writing text in fields can be waited
with the elementToBeClickable expected condition; actions that read text from an element
usually require that the element is visible, and so the expected condition visibilityOf can be
used. There are many other expected conditions to deal with JavaScript alerts (alertIsPresent),
frames (frameToBeAvailableAndSwitchToIt), text that can be changed dynamically
(textToBe), selection state of an element (elementToBeSelected) and many others.

When a WebDriverWait object is created (e.g., first line in Listing 2.5), the Tester must specify
the waiting timeout. If the expected condition did not happen before the timeout is passed, a
TimeoutException will be thrown, making the test to fail. As previously said, the Web-
DriverWait object stops waiting when the ExpectedCondition is verified, so it is a good practice
to set a timeout much larger than the usual waiting time: in this way, if some transient network
problem arises and an action requires more time than usual, the test method will not fail. More-
over, since the waiting stops when the condition is verified, increasing the timeout will not affect
the execution time of the test suite.

2.3.2.2 Implicit Waits

Implicit waits are another waiting mechanism offered by the Selenium WebDriver framework.
An implicit wait is set globally to the WebDriver object, and makes it wait a specific amount of
time before every interaction with the web page. The code that sets an implicit wait of 5 seconds
is shown in Listing 2.6.

driver.manage().timeouts().implicitlyWait(5, TimeUnit.SECONDS);

Listing 2.6: Example of implicit wait setting

When an implicit wait of 5 seconds is set, and an interaction with a page element is made,
the WebDriver will poll the DOM for 5 seconds waiting for the page element to appear. This
behavior may look similar to the explicit waits, but there are some important differences, well
explained for instance in the Chapter 10 of the book ”Python Testing with Selenium” [Rag21].
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One of the most important is that implicit waits are set globally, while explicit waits locally: by
using implicit waits we will use the same timeout for all interactions, while with explicit waits
it can be changed for each interaction. Moreover, even more important is that implicit waits
can only wait for the presence of an element, while explicit waits can wait for many different
ExpectedConditions. A Tester may think to use an implicit wait globally, and integrate it with
explicit waits when required, but this is discouraged in the Selenium documentation2: in fact,
mixing implicit and explicit waits can lead to unpredictable, potentially infinite waiting times
[Rag21]. That is why many academic and professional sources recommend to use explicit waits
as best practice in web testing.

2.3.2.3 Fluent Waits

Finally, fluent waits are a more customizable version of the explicit waits. In the Selenium
Java implementation, FluentWait is the superclass of WebDriverWait: the underlying polling
mechanism is the same, but FluentWaits allow the Tester to customize more parameters than
the WebDriverWait class (the one used for explicit waits) such as polling frequency, ignored
exceptions and error message to be displayed when the timeout expires. Listing 2.7 shows the
code required to use a FluentWait.

Wait<WebDriver> wait = new FluentWait<WebDriver>(driver)
.withTimeout(Duration.ofSeconds(30))
.pollingEvery(Duration.ofSeconds(5))
.ignoring(NoSuchElementException.class);

wait.until(ExpectedConditions.elementToBeClickable(By.id("name")));

Listing 2.7: Example of fluent wait

During the development of our tool SLEEPREPLACER, we preferred explicit waits over fluent
waits mainly because (1) explicit waits are well known and more used in the Web testing com-
munity, and (2) to fully exploit the potential of fluent waits, it is necessary to tune more pa-
rameters (e.g., polling time, ignored exceptions) than with explicit waits. For what concerns the
first point, a survey published in 2020 by Garcı́a et al. [GGGMO20] reported that the most used
waiting strategy in Selenium WebDriver are implicit waits (62.5%), followed by explicit waits
(12.5%). Fluent waits are the least used waiting strategy, used only by 4.17% of the survey’s
participants. For what concerns the second point, we did not find any reference in the scientific
literature to support our statement, but the fact that fluent waits require the tuning of more pa-
rameters is evident from the Selenium documentation. Moreover, as it will be clearer when we
will describe SLEEPREPLACER, trying different configurations for the parameters of the fluent
waits would largely increase the execution time of our tool. On the other hand, using fluent
waits with default polling time and no ignored exceptions is equivalent to use explicit waits.

2Selenium WebDriver documentation for waits https://www.selenium.dev/documentation/webdriver/waits/
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2.4 Test Dependencies

In general, a test suite T is composed of multiple tests, i.e., T = {t1, t2, . . . , tn} where the index
of each test i represents the order of execution of each test, as defined by the tester. If such
original order of execution is respected, all tests execute correctly (assuming the application
under test is correct); on the other hand, if, for instance, tj is executed before ti, with j > i, and
tj fails, then tj depends on ti, and this is a manifest dependency [ZJW+14a, GBZ18, BSM+19].
In the context of web testing, a test dependency happens when a test script relies on a state of the
web application created by other previously executed test scripts. For example, let us consider
two test scripts for a certain web application, i.e., AddUser and DeleteUser. The first one
tests the functionality of adding a user to the system, while the second exercises the delete user
functionality. A convenient way to design such tests is to execute them one after the other such
that the DeleteUser test deletes the user added by AddUser. However, in this way the second
test relies on the state produced by the first test (i.e., the presence of a user); as a consequence, it
fails if the order of execution changes.

Best practices in software testing prescribe that all test scripts in a test suite should be indepen-
dent [MSW11, ZJW+14a, GBZ18]. Such practice also applies to E2E testing [RS21], requiring
that the result of the execution of a test script should not be affected by other tests executed before
it. A test script is flaky when it non-deterministically passes or fails on the same version of the
WAUT, leading to different test results in different runs. Having independent tests can prevent
flakiness because, as reported by Luo et al. [LHEM14], test order dependency is one of the top
three category of flakiness reported in open-source projects. If a test suite contains dependent
test scripts, unpredictable failures may arise when the execution order of the test suite changes,
and if dependencies are not known by the developers finding the root cause of those failures
can be an hard task. As reported by Luo et al., a well-known example of dependency-induced
flakiness happened with the upgrade of Java 6 to Java 7. This upgrade changed the default or-
der that JUnit (a popular testing framework for Java) used to execute tests, resulting in many
unpredicted failures in dependent test suites. Such independence among test scripts is usually
achieved using methods called test fixtures, or Before/After methods, or Set-up/Tear-down meth-
ods. These methods are executed before (setup) or after (tear-down) the execution of a test script,
to prepare the state required by a test script (before) or undo the operations performed by a test
script (after), such that each test script is self-contained. Most testing frameworks, like JUnit and
TestNG [UZ19, GJG15], provide such functionality (the methods are called Before/After in JUnit
and Set-up/Teardown in TestNG). However, even if test fixtures are used in practice, developers
often find more convenient to write dependent test scripts to both simplify the implementation
and to reduce test execution times [BSM+19, ZJW+14a]. Indeed, executing test fixtures to make
each test script independent requires additional operations, as opposed to relying on the state
produced by other tests.
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2.5 Test Flakiness

In this subsection, we will briefly introduce the problem of test flakiness, and explain why it
particularly affects End-to-end Web testing. A test script is flaky when may non-deterministically
pass or fail on the same version of the WAUT, i.e. leading to different results in different runs
on the same AUT without any change in both the app and test code [EPCB19, ZPSH20]. The
flakiness problem is very insidious for companies because: (1) it makes lose confidence in the
results of the execution of the test suites with false alarms, (2) it increases deployment/release
times, and generally, (3) it increases development costs [ZPSH20]. Many big companies, such as
Google, Facebook and Microsoft are facing this problem [ZPSH20] and unfortunately effective
solutions that allow to reveal and resolve the flakiness do not exist yet. Most of the proposed
methods depend on test repetition, i.e. a test script is applied to the same WAUT for a given
number of times: if the results are different, then the test is marked as flaky [LHEM14]. Test
flakiness can affect all kinds of testing, but it is particularly present in E2E Web test scripts
since, given the distributed and asynchronous nature of E2E Web testing, there are many possible
causes than can make a test script fail. Here we present a non-exhaustive list of possible causes
of non-deterministic failures in E2E Web test scripts:

• network problems that delay the loading of a page or element [MAAB+20];

• rendering problems that may lead to an incorrect visualization of an element (e.g. an
element is covered by another element) [MAAB+20];

• issues related to the configuration of the machine executing tests (e.g. RAM and CPU over-
loading, different screen resolutions, configuration of the operating system) [MAAB+20];

• sub-optimal locators for an element, that may not be valid if other elements are displayed
on the page [PMHHS19]. A classical example for this problem is the use of absolute
XPaths;

• unknown dependencies between test scripts, that make the test execution fail when the
execution order is changed [SLO+19, LHEM14];

• incorrect waiting for elements to be loaded before interacting with them [RSG+21, LHEM14,
PHR+22].

Test dependencies and test flakiness are two intertwined problems that affect Web testing. De-
pendencies can become a root cause of flakiness if they are not known to the developer or not
managed properly (i.e. by only running test schedules that respect test dependencies). As re-
ported by Luo et al. [LHEM14] not respected test dependencies are one of the top three cause of
test flakiness. Moreover, test flakiness can have a greater impact on the execution of a dependent
test suite because if during the execution of the test suite a test script fails because of flakiness,
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other test scripts that depended on the failed test will fail too, because the WAUT will not be in
the state required by the dependent test scripts. Finally, test flakiness can also prevent the use of
dependency detection approaches. As we will explain better in Chapter 3, different approaches
for dependency detection have been proposed in scientific literature. Many of these approaches
require to execute the test scripts in different orders and check their results in order to detect de-
pendencies. But if test scripts may pass or fail non-deterministically because of flakiness (in this
case, hypothetically, with other root causes rather than broken dependencies), these dependency
detection approaches cannot produce correct results.

2.6 Parallel Execution of E2E Web Test Suites

Continuous integration is an established practice among web development teams, as it eases the
collaboration among team members towards the delivery of the web application. The web appli-
cation is built and tested continuously as code changes are made, in order to give timely feedback
to developers. However, the execution time of the test suites is a bottleneck in continuous inte-
gration, especially when executing an E2E test suite, as its sequential execution can last several
hours [BKMD15, GD13, Las05]. A solution to speed up the execution of E2E test suites and
make them compatible with the continuous integration setting, is to parallelize the execution of
the E2E test scripts, such that multiple functionalities of the WAUT can be tested on multiple
browsers in parallel.

Most testing frameworks, like TestNG and JUnit, provide support for parallelizing the execution
of test scripts. Such frameworks can be easily configured to run different tests in parallel, at
different levels of parallelism. In particular, parallelism in TestNG is managed using two pa-
rameters, namely thread-count and parallel. The thread-count parameter allows
the user to choose a maximum number of threads that will be used to run test scripts in parallel.
For instance, if the thread-count parameter is set to five a maximum of five tests can be
executed in parallel, while the remaining ones are put in a queue. The parallel parameter,
instead, allows to choose the parallel execution strategy to adopt. TestNG supports four different
parallel execution strategies3, namely:

• methods: all test scripts (called methods) are executed in separate threads

• tests: all test scripts grouped in a “<test>” tag are executed in separate threads;

• classes: each test suite (called class) is executed in a separate thread, where its test scripts
are executed sequentially;

3TestNG documentation, Parallelism section: https://testng.org/doc/documentation-main.html#parallel-running
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• instances: all test scripts in the same test class instance are executed in the same thread.
This option is equivalent to the previous one, unless there are multiple instances of the
same test class4.

Both TestNG and JUnit include options to run all test scripts in a test suite in parallel or all test
suites in parallel. However, such frameworks do not provide a mechanism to handle multiple
browsers, which is important when executing E2E test scripts in parallel. Without such feature,
managing multiple browsers should be done manually by developers in the test scripts, which
complicates the implementation and is prone to error.

2.6.1 Selenium Grid

Selenium Grid5 is a framework that allows parallel execution of Selenium WebDriver test scripts.
In particular, Selenium Grid manages the communication between the test scripts and multiple
browsers, allowing both the parallel execution of different tests in different browsers and of the
same tests on different browsers (e.g., for cross-browser testing). Selenium Grid has two core
components, that can be deployed on different machines:

• nodes, which handle the browsers on the machines where the nodes are running. Nodes
receive the commands from the hub and execute them on the browsers;

• hub, that is the central component of the grid. The hub receives requests to open a Web-
Driver session from the nodes, assigns an available browser to a session and keeps track of
which node is assigned to which session. These tasks are performed by different subcom-
ponents (i.e., Router, Distributor, Session Map, New Session Queue, Event Bus), described
in more detail in the Selenium Grid documentation.

Selenium Grid can be executed in a standalone configuration (the hub and the nodes are a single
entity) or in the classic hub and nodes configuration, where the hub and the nodes can be deployed
both on the same machine or on different machines, even with different operating systems. In
fact, since Selenium Grid is a Java software that can also be deployed in a Docker container, the
same grid may contain machines running different operating systems, which allows performing
cross-browser testing in ways that are not possible on a single operating system (for example the
browser Safari is available only on Mac OS, while Internet Explorer was available only on Win-
dows). When using Selenium Grid, the test scripts connect to the Selenium Grid hub, which acts

4Parallelization with TestNG - Accessed 2022-08-17: https://santiautomation.github.io/miscellaneous/2020/09/13/TestNG-
Parallelization.html

5Selenium Grid official website and documentation - Accessed 2022-08-17:
https://www.selenium.dev/documentation/grid/
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as a central controller to assign test scripts to available nodes. If there are nodes available the test
script is assigned to the first available node, otherwise the test execution is put into a queue. In
an ideal scenario where a test suite does not have dependencies, Selenium Grid can be employed
out-of-the-box by simply setting up the hub and nodes, and then launching the test suite using
the parallel execution features offered by the employed testing framework (e.g. TestNG, JUnit).
The number of test scripts running at the same time will be managed by the testing framework,
their mapping with the browsers running in Grid nodes will be managed by the Selenium Grid
Hub. But if the test suite does have dependencies, the developer must find a way to ensure that
during the parallel execution the dependencies are respected: we will present our solution in
Section 4.1.1. Docker is a containerization platform that allows to distribute applications in a
portable and efficient way by using containers, that can be seen as lightweight virtual machines
that include everything the contained application needs to work. In E2E software testing, Docker
can be used to run multiple instances of the WAUT on the same physical machine, enabling par-
allel testing without interferences. The Docker-based implementation of Selenium Grid6 offers a
functionality called Dynamic Grid, that can autonomously start and stop Docker containers that
run the browsers required by the tests, allowing a significant RAM saving. It is important to note,
in fact, that in the standard execution mode of Selenium Grid, browsers must be running before
test execution starts, and it can possibly require huge amounts of RAM depending on the number
of browsers needed (that is clearly related to the number of tests to execute).

6https://github.com/SeleniumHQ/docker-selenium
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Chapter 3

Related Work

This chapter presents an overview on existing works in scientific literature that are related to the
topics of this thesis. We will present most relevant works about test dependency, test flakiness
and test parallelization, and in some cases we will explain the differences between their work
and our two proposed tool-based approaches, namely STILE and SLEEPREPLACER.

3.1 Test Dependencies

The problem of test dependency started to be investigated in research only in recent years: older
works usually limit to prescribe test independence where required, but give no hints on how to
detect test dependencies in an existing test suite. The dependent test detection problem has been
formalized only in 2014 by Zhang et al. [ZJW+14a]. They studied 96 dependent tests from 5
issue tracker systems, formulated the problem and proposed four algorithms to address it.
To give a better comprehension, we’ll report Zhang’s definitions of test case, test suite, test exe-
cution and dependent test detection problem.

Definition 1 (Test) A test is a sequence of executable program statements and an oracle — a
Boolean predicate that decides whether the test passes or fails.

Definition 2 (Test suite) A test suite T is an n-tuple (i.e., ordered sequence) of tests (t1, t2, ..., tn)

Definition 3 (Environment) An environment E for the execution of a test consists of all values
of global variables, files, operating system services, etc. that can be accessed by the test and
program code exercised by the test case.
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Definition 4 (Test execution) Let T be the set of all possible tests and ENV the set of all pos-
sible environments. The function exec : T x E −→ E represents test execution. exec maps a test t
∈ T and an environment E ∈ ENV to a (potentially updated) environment E’ ∈ ENV .

Definition 5 (Test result) The result of a test t executed in an environment E, denoted R(t|E),
is defined by the test oracle and is either PASS or FAIL. The result of a test suite T (t1, t2, ..., tn)
executed in an environment E, denoted R((t1, ..., tn)|E), is a sequence of results (o1, ..., on) with
oi ∈ {PASS, FAIL}. We use R(T |E)[t] to denote the result of a specific test t ∈ T.

Definition 6 (Manifest order-dependent test) Given a test suite T, a test t ∈ T is a manifest-
order dependent test in T if ∃ two test suites S1, S2 ∈ permutations(T): R(S1|E0)[t] ̸= R(S2|E0)[t]

Definition 7 (Dependent test detection problem) Given a test suite T(t1, ..., tn) and an initial
environment E0, is t ∈ T a dependent test in T?

Definition 6 is particularly important because existing test dependency detection techniques can
be divided in two different categories: techniques looking for manifest dependencies and tech-
niques looking for data-dependencies. Techniques looking for data-dependencies search for test
scripts that read and write the same shared data, and hence are potentially in conflict. These tech-
niques analyze test scripts, statically or dynamically, searching for accesses for shared resources.
The upside of this techniques is that they usually have a by far shorter execution time with respect
to manifest dependency detection techniques, and that they can find all the data-dependencies in
a test suite. The downside of this approach is that they may return potentially many false depen-
dencies (i.e. dependencies that do not make the test fail if broken), since a common access to a
shared resource does not necessarily imply a manifest dependency. Moreover, another downside
of data-dependency detection approaches is that they are not suited for E2E Web testing, since
usually test dependencies in E2E test suites are not caused by accesses to shared resources in the
test code, but rather to the state of the web application under test.

Techniques looking for manifest dependencies, as per Definition 6, search for dependencies that
actually make the test fail if not respected. As we will describe more in detail later, there are dif-
ferent approaches to do that but they all rely in executing tests in different orders to detect failures
and infer the broken dependencies that lead to such failures. Differently from data-dependency
detection techniques, their results are more accurate since they report only the manifest depen-
dencies, the ones that enforce an execution order on the test suite. The major downside of this
kind of approaches is that the dependent test detection problem formulated by Zhang et al. is
NP-complete [ZJW+14b]: this means that we cannot find an algorithm that fully solves it in
a reasonable time, but only aim to approximated solutions through heuristic algorithms. In-
deed, manifest dependency detection techniques can have very high execution times even for
medium-sized test suites. The high execution time is the greatest limitation that affects manifest
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dependency detection techniques: some authors say that the use of such techniques to enable test
parallelization is impractical. [MSd21]

To find an approximate solution to the dependent test detection problem, Zhang et al. proposed
four algorithms that find a subset of all dependent tests

1. Reversal algorithm: given a test suite T and its expected result R, the algorithm executes
T in reverse order and checks wheter the result of any test differs from the expected result;

2. Randomized algorithm given a test suite T and its expected result R, the algorithm exe-
cutes T in random order for a fixed number of trials, and checks wheter the result of any
test differs from the expected result;

3. Exhaustive bounded algorithm given a test suite T and its expected result R, the algo-
rithm executes all k-permutations of T for a bounding parameter k, and checks wheter the
result of any test differs from the expected result;

4. Dependence-aware bounded algorithm the key idea of this algorithm is to avoid permu-
tations that cannot reveal a dependent test. Given a test suite S1, the algorithm determines,
for every resource read by a test in S1, which tests previously wrote on that resource. If a
permutation S2 has the same relationships, then S2 is guaranteed to pass and does not need
to be run. The algorithm is bounded by a parameter k:

• if k=1, the algorithm executes all tests in default order, detecting which tests does not
access any shared resource. Then excludes those tests and executes the remaining
ones in isolation: if any of them returns a result different from the expected, then it is
marked as dependent test;

• If k ≥ 2 the algorithm executes each test in isolation and records the fields that each
test writes and reads. It uses the isolation execution result of each test as a comparison
baseline. When generating all possible test permutations of length k, the algorithm
checks whether all global fields that each test (in the generated permutation) may read
are not written by any test executed before it. If so, all tests in the permutation must
produce the same results as executed in isolation, and the algorithm can safely discard
this permutation without executing it. Otherwise, the algorithm adds the generated
permutation to the result set. Finally, the algorithm adds all 1-permutations to the
result set to find all dependent tests that exhibit different results when executed in
isolation.

These algorithms have been implemented in the open source tool DTDetector [dtd].
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In 2015, Bell et al. [BKMD15] proposed an approach to detect data dependencies in test suites.
In their definition, given an ordered test suite T (t1, ..., tn) a test t2 depends on t1 if t2 reads some
value that was last written by t1; a test t3 has an anti-dependence on t2 if it writes the same
data that was last written by t1. Their approach has been implemented by a tool, ElectricTest,
that instruments the code of the system under test to track read-after-write and write-after-read
accesses. In this way, all data-dependencies in a test suite can be found by running it only once,
with a slowdown measured by author as 20% on average.
Note that two tests that are data-dependent may not have a manifest dependency: the definition
of manifest dependency given in Definition 6 involves test result, while data-dependency looks
only at accesses to shared resources.

In 2018, Gambi et al. [GBZ18] proposed Pradet, a tool that, in authors’ intentions, proposes to
combine the precision of DTDetector with the speed of ElectricTest. Like ElectricTest, Pradet
collects information about data-dependecies in a given test suite and stores them in a depen-
dency graph: a directed acyclic graph where the nodes represent tests and the edges represent
the dependencies between them. Data-dependencies stored in the dependency graph are then
refined to manifest dependencies through an iterative process: for each data-dependency, Pradet
schedules the execution of the tests such that all dependencies, except for the target one, are
satisfied. Next, it checks that tests produce the expected outcome albeit executed out-of-order. If
the outcome of the tests involved in the target data dependency does not change, Pradet removes
it from graph, otherwise it marks the corresponding edge as manifest dependency. This process
is repeated until all the data dependencies are removed or become manifest. This approach, as
the authors say, is comparable to the dependency aware bounded algorithm. A limitation of this
approach, besides the high execution time, is that it requires the test suites to be free from flaki-
ness or other non-deterministic behaviors ([GBZ18], page 9). This, however, is a limitation that
affects all manifest dependency detection approaches, and not only Pradet.

In 2019, Biagiola et al. [BSM+19] presented the first test dependency detection approach for
End-to-end (E2E) web test suites, implemented in a tool named TEDD. Differently from previ-
ous approaches and tools, that are mostly oriented for unit tests, TEDD can find dependencies in
test suites that use Selenium WebDriver to interact with the web pages of the application under
test through a browser. The approach is conceptually similar to Pradet [GBZ18] and DTDetec-
tor [ZJW+14a], although it brings significant improvements. The approach is composed by four
steps and takes in input an ordered Web test suite T (t1, ..., tn):

1. compute an initial test dependency graph (TDG) by analyzing values used as inputs in test
cases to find potential dependencies (this is a key difference with previous approaches, and
it will be explained more in detail in the next paragraph);

2. filter out potentially false dependencies from the initial dependency graph by using NLP
techniques on test names;
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3. refine manifest dependencies using the iterative process proposed by Gambi et al. [GBZ18]
and recover missing dependencies by checking, for each failing test schedule where a
dependency is inverted, if the failure is due to another missing dependency in the TDG.
This is done by adding to the TDG a candidate dependency to every test case preceding
the failing one in T and validating them;

4. recover dependencies from disconnected components in the TDG by executing in isolation
each test represented in the TDG by an isolated node or by a node with no outgoing edges
or with zero out-degree. For each failing test, the algorithm adds a candidate dependency
to all preceding test according to the original order, then proceeds to validate them.

Differently from previous approaches that discover data-dependencies by tracking accesses to
shared variables in tests [ZJW+14a] or in the SUT [BKMD15], TEDD infers such information
statically from test cases: in the first step, the algorithm retrieves the set S of input values sub-
mitted by the test, i.e. values submitted in the fields of the web application under test. Then, the
algorithm considers each test case tf following t and searches if, in any statement of tf , an input
value contained in S is used. If so, a candidate dependency tf −→ t is added to the TDG.
This approach enables TEDD to be used in the context of E2E testing for web applications,
where the inspection of the system under test could be impractical. Another important improve-
ment brought by TEDD is the recovery of missing dependencies: Pradet assumes that the initial
dependency graph contains all themanifest dependencies, thus it can only remove false depen-
dencies from the graph, not add them. TEDD, instead, can discover unexpected dependencies
through the recovery process.

More recently, Alakeel [Ala22] proposed WebTestRepair, an algorithm able to repair sequences
of E2E test scripts with broken dependencies. The algorithm takes as input a web application,
the test suite with a correct execution order and a prioritized version of the test suite in an order
that breaks test dependencies. WebTestRepair produces as output a list of test scripts that can
be executed without breakages. Differently from Pradet and TEDD, WebTestRepair does not
search for all the dependencies in a test suite, but only for those dependencies that break a certain
sequence of test scripts, potentially reducing the execution time of the approach.

Finally, another interesting work on test dependencies elimination comes from Shi et al. [SLO+19]:
their approach, implemented by a tool called iFixFlakies, finds patches for order dependent tests
to make them independent.
Note that it solves a different problem with respect to the previous approaches: iFixFlakies is not
a test dependency detection tool, order dependent tests must be provided as input: iFixFlakies
will only suggest patches (i.e. pieces of code that set up a state accepted by the dependent test).
It relies on different definitions with respect to DTDetector, Pradet and TEDD: iFixFlakies con-
siders dependent tests as a special case of flaky tests, and classifies test cases according to the
type of dependency they introduce.

32



3.2 Test Flakiness

The problem of flakiness in regression testing has been faced by many authors in the last years.
One of the most important and widely cited works has been published in 2014 by Luo et al. [LHEM14].
In this work, the authors classified the causes of flakiness by analyzing 52 open-source projects,
and found that the top causes of flakiness are asynchronous waits (45%), concurrency (20%)
and test order dependencies (12%). Their findings are confirmed by another study by Eck et
al. [EPCB19]: in this work, the authors confirmed that asynchronous waits, concurrency and de-
pendencies are the main causes of flakiness, but they found also other causes like too restrictive
ranges in test assertions, platform dependency, test case timeout and test suite timeout. More-
over, another work by Romano et al. [RSG+21] investigated flaky tests in the domain of Web
applications and mobile Android applications. They analyzed 235 flaky tests from web and An-
droid projects, to determine the most common root causes of flakiness and the most used fixing
strategies. Their study confirms that, in the web testing domain, the most common cause of flak-
iness is the improper waiting for asynchronous calls. They also found that flakiness caused by
layout differences between different platforms is more common in web tests rather than in mobile
tests, and that most common fixing strategies for flaky tests are refactoring logic implementations
(46%) and fixing delays (39.3%).

Our experience confirms the results by Luo et al., Eck et al. and Romano et al., in particular
on the high diffusion of the Async category as main reason of flakiness problems, that happens
when a test method performs async calls without waiting the result. The solution to the async
updates seems simple: sleeping the test for a bunch of milliseconds. This solution can make
working the test method because it gives the app the time to update itself. However, how much
the sleeping time should be it is totally unpredictable because it could depend on several factors,
e.g., the network state, the total amount of available machine resources (i.e., CPU, RAM). As
a consequence, every fixed delay can lead the test method to be more flaky and increasing its
duration. The difficult is finding a balance between false negatives i.e., when the test method
fails because of a too low sleep and exaggerate sleep times.

There are many works in literature that identify thread sleeps as a source of instability, espe-
cially when they are ill-used, such as [ALS19, CSEV21, Shu, PHR+22]. In particular, Pei et
al. [PHR+22] published in 2022 an empirical study about test flakiness in E2E test suites. Their
study analyzed a dataset composed by 62 flaky tests from 26 different projects, whose flakiness
was caused by improper waiting for asynchronous calls. Their study concluded that in most
cases (38 out of 62) flakiness was caused by waiting a fixed amount of time before perform-
ing actions on the web page, instead of checking the state of the DOM. Although their study
involves JavaScript test suites, that rely on different frameworks rather than the Selenium Web-
Driver framework on which our work focuses on, their conclusions can be generalized to E2E
Web testing in general, regardless of the specific testing framework used. In fact, when trans-
lated to the Selenium WebDriver domain, suggesting to check the state of the DOM instead of
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waiting a fixed amount of time equals to suggesting to use explicit/implicit/fluent waits instead
of relying on thread sleeps. However, in another work, Presler-Marshall et al. [PMHHS19] an-
alyzed different waiting strategies in Selenium E2E web tests, and concluded that thread sleeps
gave the lowest flakiness, while explicit waits gave the highest. This tells us that, although in our
experience explicit waits seems more reliable, they are not a silver bullet for resolving flakiness.
Malm et al. [MCLE20] recently published a short four-pages paper about automated analysis of
flakiness mitigating delays. In particular, they present an automated approach to classify delays
in test suites between sleeps of fixed duration (called thread sleeps in our work) and sleeps that
use a polling/event-based approach (similar to the explicit waits presented in our work). Differ-
ently from our proposed tool SLEEPREPLACER their approach: (1) does not perform automated
refactoring of the test suites to replace sleeps of fixed duration, but it performs only the analysis
of the type of delays already present in the test suites, and (2) is not focused on Web testing so
does not manage all the complexity required when interacting with a remote web system through
a browser, as our proposed tool SLEEPREPLACER does. From the analysis performed they con-
cluded that sleeps of fixed duration are the most used. This result further motivates our work.

For what concerns flakiness in web testing, Moran et al. [MAAB+20] proposed a technique to
locate the root cause of flakiness in test methods for web applications. This technique executes
the test in different environmental configurations (e.g. network bandwidth, computational re-
sources, screen size etc.) in order to find the aspects that impact the most on test flakiness.
Differently from our proposed approach, their technique does not aim to refactor test suites to
prevent flakiness, but instead it aims to find the root causes of flakiness in test suites that are
already flaky.

Some tool-based approaches to detect test flakiness has been proposed, such as DeFlaker by Bell
et al. [BLH+18], which uses code coverage to detect flaky tests: if a test changes its result, but it
does not cover the modified code, then it is marked as flaky. Differently from SLEEPREPLACER,
DeFlaker does not refactor test suites to prevent flakiness, but identifies flaky tests in a test suite.
Moreover, relying on code coverage rather than on test re-executions allows DeFlaker to reduce
its execution time. Another tool-based approach is iFixFlakies by Shi et al. [SLO+19]. This
approach is based on the idea that test suites composed of dependent test methods are flaky
and therefore points to automatically fixing order-dependent test methods. The key insight in
iFixFlakies is that test suites often already contain test fixtures methods that are executed before
a test method (or a test class) to set up the initial state, and after a test method (or test class) to
undo the test method actions with the goal of resetting the initial state of the application. Thus,
iFixFlakies searches in a test suite test fixtures that make the order-dependent test methods pass
and then use them for fixing the dependencies.
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3.3 Test Parallelization

Test parallelization is a well known research topic, with a rich literature. However, few works
face the problem of parallelizing E2E web test suites, a problem with peculiar characteristics,
e.g., slow test case execution, complex test case logic and interaction with a web application
composed of different subsystems.

For what concerns test parallelization in general, Candido et al. [CMd17] investigated the use
of test parallelization in open source projects. The authors analyzed a set of 468 popular Java
open source projects, and concluded that, considering only projects whose test suite took at least
a minute to run, only 19.1% of them used parallel testing. The authors reported that the main
reason for not using parallelization regards concurrency issues. Such issues are well-known and
reported in previous works [MSd21, PKHM21]. Indeed, running a test suite in parallel may
cause non-deterministic behaviours of tests (i.e., flakiness), consisting of tests passing or failing
non-deterministically. This is mainly due to the fact that running test scripts in parallel intro-
duces concurrency issues that are not present when the test suite is executed sequentially and,
depending on the characteristics of the application under test and the test suite, these concurrency
problems can introduce flaky behaviors.

In the literature, there are different approaches for parallel execution of test suites with depen-
dencies. For instance, Parsa et al. [PATP16] proposed an approach to parallelize test execution
subject to constraints on available resources, constraints between tests and constraints regard-
ing the runtime of such tests. They proposed to use the Ant Colony algorithm [DDCG99] to
build near-optimal schedules (from the execution time perspective) that can be executed in par-
allel. Differently from our work, their approach is only theoretical given that it focuses on static
scheduling of test sequences rather than on their execution. Moreover, such approach does not
target the parallel execution of E2E web test suites.

Another approach that studies how to automatically parallelize test suites with dependencies is
the one by Mondal et al. [MSd21]. Their approach relies on the assumption that, if the test suite
is divided into test classes in a meaningful way, e.g., each test class tests a different part of the
system under test, dependencies should arise only between test methods in the same test class.
The approach consists of three steps: in the first step the test suite is executed in parallel with a
level of parallelism chosen by the user. In the second step, tests that failed in the first step are
executed sequentially. Finally, if there are failed tests in the second step, the test classes to which
they belong are executed sequentially. In this way, if the cause of failure is a broken dependency,
such failures are fixed in the third step. Such work is related to ours but it also presents some
fundamental differences. First of all, their approach is not designed for E2E web test scripts
but for regression testing in general. Indeed, to validate their approach the authors used open
source Java projects from the Apache foundation. Since E2E web test scripts usually have longer
runtime w.r.t. unit tests, it is not guaranteed that such approach can reduce the execution time of
E2E test suites. Moreover, the approach requires that the test suite has a certain structure (i.e.,

35



test scripts need to be meaningfully divided into test classes), while our approach does not have
this constraint.

For what concerns the parallelization of E2E web test suites, Garg et al. [GD13] proposed an
approach for automatically prioritizing and distributing test cases on multiple machines, relying
on the functional dependency graph of a web application. In particular, they partition the test
suite into test sets and associate the test sets with each module of the functional dependency
graph. Differently from STILE, they rely on a test suite automatically generated from the UML
activity diagrams of the WAUT. Moreover, their work is more focused on the fault detection
capability of the test suite rather than on reducing its execution time.
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Chapter 4

STILE: Optimized Parallelization of
Dependent E2E Web Test Suites

In this chapter we will present our proposed tool-based approach for a optimized parallel execu-
tion of E2E Web test suites that have dependencies between their tests. In Section 4.1 we will
describe the challenges of parallelizing E2E Web test suites and the solutions we propose to deal
with them. In Section 4.2 we describe the baseline approach that we used to compare STILE with
a standard, non-optimized parallel execution of the test suites. In Section 4.3 we describe our
proposed approach and its implementation, and finally in Section 4.4 we provide the empirical
evaluation of our approach.

4.1 Challenges of Parallelizing Dependent Test Suites

In Section 2.6 we introduced Selenium Grid, which is a framework that enables parallel execu-
tion of E2E test scripts. As we anticipated, some aspects of test parallelization are not managed
directly by Selenium Grid. Indeed, the developer has still to manage (1) the dependencies be-
tween test scripts and (2) the state of the web application under test (WAUT). The first aspect is
problematic because the execution order needs to be taken into account when partitioning the test
scripts into test schedules. Secondly, running a dependent test suite in parallel, always requires
multiple instances of the WAUT (A instance of the WAUT is a copy of the application under
test, using its own URL and port). Indeed, even if the developer ensures that each test schedule
respects the dependencies, executing multiple test schedules concurrently against the same in-
stance of the WAUT may result in test failures, since the state of the application is accessed and
modified by multiple tests concurrently. In this section, we will describe the key concepts we
used to enable parallelization of dependent test suites.
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4.1.1 Test Dependency Graph and Warranted Schedules

As anticipated in Section 3.1, many dependency detection approaches produce a test dependency
graph as a result. A test dependency graph (or simply dependency graph) is a directed acyclic
graph that represents test dependencies in a test suite. Nodes represent test scripts belonging to
the test suite, while edges represent the dependencies between them. Specifically, an edge from
a node tj to a node ti indicates that ti must be executed before tj . Inferring the dependencies
in a web E2E test suite and the corresponding test dependency graph is a difficult and time-
consuming task, especially if conducted manually. Recently, the approach implemented in the
tool TEDD [BSM+19] has been proposed to automate this process. Figure 4.1 shows a portion
of the test dependency graph computed by TEDD. Such test suite exercises the Claroline web
application, a web-based learning management system. The complete test suite for Claroline is

Figure 4.1: Portion of the test dependency graph generated by TEDD for the test suite of the
Claroline Web application

composed by 40 test scripts. Correspondingly, its complete dependency graph is made of 40
nodes connected by 42 edges. In the Figure, the number reported in each node (below the test
script name) represents the position of the test script in the original order test suite. For instance,
the RemoveCourseEvent test is the 35th test script executed while the AddCourse test
is the third. Since the edges represent dependencies, we can see that the RemoveCourse
test depends on the AddCourse test. We can notice that, in this portion of the dependency
graph, all the test scripts depend on the AddCourse test either directly or transitively (e.g., the
RemoveCourseEvent that depends on the AddCourseEvent test which, in turn, depends
on the AddCourse test). To implement our approach, we relied on the test dependency graphs
computed by TEDD.

From the test dependency graph, it is possible to compute test schedules that respect the depen-
dencies represented in the graph. We will call these schedules warranted schedules.

Definition 1 (Warranted schedule) Warranted schedules are sequences of test scripts that re-
spect all dependencies in the dependency graph, preserving the original order of execution of
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the test scripts. More precisely, given a test script ti in a test suite T , its warranted schedule –
warranted (ti) – is the schedule that contains all test scripts transitively reachable from ti in the
test dependency graph, ordered as they appear in the original test suite T . By construction, these
schedules are unique for each test.

For instance, in Figure 4.2, we can see which test scripts (in faded orange) belong to the war-
ranted schedule of the RemoveCourseEvent test script (in orange).

Figure 4.2: Test scripts composing the warranted schedule (in faded orange) for the
RemoveCourseEvent test script (in orange).

The test script RemoveCourseEvent depends transitively on the AddCourse test through
the direct dependence on the AddCourseEvent test. The remaining test scripts (i.e., those
left blank), instead, depend only on the AddCourse test, hence they are not included in its
warranted schedule. As a result, the three test scripts AddCourse, AddCourseEvent and
RemoveCourseEvent, in this order, form the warranted test schedule of the RemoveCourseEvent
test.

Warranted test schedules can be used for test selection and test parallelization. Regarding test
selection, a test case ti can be executed without running the whole test suite T , by running
its corresponding warranted schedule, warranted (ti). Concerning test parallelization, multiple
warranted schedules can be executed in parallel, covering the entire test suite (i.e., executing all
test scripts in the test suite). In particular, to cover the whole test suite it is enough to consider all
test scripts in the test dependency graph that do not have any incoming edge (i.e., the test scripts
no other test script depends on) and compute the corresponding warranted schedules.

4.1.2 Managing the Web Application State

Another issue that prevents parallel execution of dependent E2E test scripts is the shared state of
the web application. In fact, if multiple test scripts are executed concurrently against the same
instance of the WAUT, they share the same state, which can be polluted, causing unexpected and
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unpredictable failures. We address this issue by deploying different instances of the WAUT using
Docker, one for each test schedule that is executed in parallel. In particular, when using Selenium
Grid, we make sure that each test schedule is executed against a different instance of the WAUT
by (1) deploying each instance of the WAUT on a different URL and (2) using parameterized
tests to pass such URLs to the respective test scripts. Parameterized tests are offered by most
testing frameworks such as JUnit and TestNG. They let the testers specify parameters at runtime
in order to avoid hardcoded values in the test scripts [KXL19].

4.2 Baseline Approach for Parallel Execution of Dependent
Test Suites with Selenium Grid

To compare our approach with a non-optimized parallel execution of a test suite, we need a
way to execute dependent test suites in parallel to be used as a baseline. We implement parallel
execution of warranted schedules with TestNG and Selenium Grid using the following workflow:

1. Generation of warranted schedules from the dependency graph: We generate a warranted
schedule for each test script with no incoming edge in the test dependency graph. In this
way, we will cover the whole test suite;

2. Generation of a TestNG XML file: we add a “<test>” tag for each warranted schedule
and set the parallelism level to test. Each “<test>” tag contains as parameter a URL
where the WAUT instance is listening. This way, each warranted schedule is executed in
parallel against a different instance of the WAUT;

3. Setting of the thread-count parameter: thread-count is set to the number of cores
available on the machine, in order to avoid flakiness. In fact, as we empirically verified in
this study, running too many tests on the same machine will inevitably produce flakiness if
the machine does not have enough computation power to manage all parallel requests. To
avoid this, a commonly used thumb rule is to run concurrently only as many tests as the
available cores on the machine.

If there are more warranted schedules than cores, the executions of some schedules are queued.
We prioritize the warranted schedules by execution time such that the schedules with the longest
runtime are executed first, hence potentially reducing the overall execution time of the test suite.

Figure 4.3 shows the architecture we use for the parallel execution of test scripts with Selenium
Grid. We use this approach as a baseline in our evaluation of STILE. We provision two virtual
machines hosted on Amazon Web Services, one for running test scripts (Test VM) and the other
for running the instances of the system under test (WAUT VM). We employ the Docker-based
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version of Selenium Grid, since, in our experience, it makes easier to deploy and run browsers
in Docker containers and provides better stability. As shown in Figure 4.3, the Test VM also
runs the Selenium Grid hub and nodes. We made this choice to reduce costs, but if necessary
Selenium Grid enables to run the test scripts and the nodes running the browsers on different
machines. Instead, the Docker containers running the instances of the WAUT are deployed on a
separate virtual machine (i.e., the WAUT VM), in order to reduce flakiness. Indeed, running both
browsers and instances of the WAUT in the same virtual machine could exhaust its computational
resources; as a consequence, some tests could become flaky since an instance is not able to
process all the requests. We have experienced this problem during our tests. The launch of
Docker containers, which run SUT instances, must be done before starting the test suite and is
automated with a Bash script that runs before the test scripts are started.

Figure 4.3: Architecture for parallel execution with Selenium Grid and TestNG

4.3 Our Proposal

Depending on the structure of the dependency graph of web the application under test (WAUT),
the approach shown in Section 4.2, that runs all the warranted schedules in parallel, may not
always be the most efficient solution. In fact, warranted schedules often share common prefixes
composed of the same test scripts. In particular, in web applications some operations often
require the execution of other operations to enable them. For instance, in our running example,

41



adding a course is a prerequisite for several other operations that are carried out on the added
course, e.g., searching a course or removing it.

Let us consider an example of a test suite T composed of 100 test scripts (see Figure 4.4).
By executing TEDD, we extract the dependency graph, which may consist of two connected
components: the first including the test scripts t1...t50 and the second the test scripts t51...t100,
with, for instance, four nodes having no incoming edges (i.e., t49, t50, t99 , t100). As a result,

Figure 4.4: Example of test suite, its associated dependency graph and warranted schedules.

we have the four warranted schedules shown at the bottom of Figure 4.4. Assuming a fixed
execution time for each test script, when running the four warranted schedules in parallel on four
machines, the execution time is halved w.r.t. the sequential execution of the test suite T .

However, almost all test scripts are executed twice (except t49, t50, t99 , t100 which are executed
once). Furthermore, if we consider a more constrained scenario of a single machine with less
than four cores (i.e., less than the number of warranted schedules), the reduction in the runtime
w.r.t. the sequential execution is not guaranteed. For example, with only three cores available,
the execution time of the parallel execution would be equal to the sequential execution time, since
one of the four warranted schedule would be left out from the initial parallel execution. Since
the number of warranted schedules that can be executed on the same machine is constrained by
the available computational resources, running the same test scripts in different test schedules
multiple times is a non-negligible waste of resources, including computation, time and energy.
The idea behind STILE is to reuse as much as possible the web application state created by the
execution of a single (prefix sub-) sequence of a test script, in order that such state is reused by
the other sequences that require it.
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4.3.1 The Main Phases of STILE

We implemented our approach in a tool called STILE (teST suIte paralLElizer). Our approach
takes as input an E2E web test suite, along with its test dependency graph, that can be either
computed by TEDD or manually produced by testers (if all the dependencies in the test suite are
already known). Our approach comprises four main steps, implemented by four main compo-
nents, represented in Figure 4.5. Here we summarize the workflow of STILE, before describing
each step in detail. STILE takes as input the test dependency graph of the target test suite and
computes from it a set of warranted schedules, i.e. schedules that respect test dependencies and
cover every test script in the test suite considering all the generated schedules. Then, the gen-
erated warranted schedules are represented in a prefix tree, in order to run the common prefixes
only once. At this point, the actual execution of the test suite begins: the Test Scripts Parallelizer
component visits the tree, running the test scripts and managing the instances of the application
under test accordingly to the prefix tree structure. When the execution of all the test scripts
is over, the Visualizer component produces a graphical representation of the prefix tree, with a
color code to represent the execution results. The full implementation and replication package
of STILE is publicly available at: https://sepl.dibris.unige.it/STILE.php.

Figure 4.5: Overview of the four main phases implemented in STILE within four specific mod-
ules.
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4.3.1.1 Warranted Schedules Extractor

The first step of our approach (step ❶ in Figure 4.5) takes as input the test dependency graph
of the test suite and extracts the warranted schedules covering every node (i.e., test script) in the
test dependency graph. To that end, the Warranted Schedules Extractor component generates
a warranted schedule for each node with no incoming edge in the test dependency graph. For
example, starting from the dependency graph shown in Figure 4.1, the extractor generates the fol-
lowing set of warranted schedules: {(AddCourse, AddCourseExercise), (AddCourse,
SearchAllowedCourse), (AddCourse, RemoveCourse), (AddCourse, AddCourseEvent,
RemoveCourseEvent)}. Considering the whole test suite for the web application Claro-
line, there are 28 warranted schedules. On average, each of the 40 test scripts is repeated
two times in such schedules. The most repeated test scripts are AddUser, AddCourse and
AddMultipleUsers respectively contained in 15, 10 and 6 warranted schedules.

4.3.1.2 Prefix Tree Builder

The second step of the approach (step ❷ in Figure 4.5) aims at reducing redundancy among the
test scripts to be executed. To this end, our approach stores such schedules in a prefix tree. First
proposed in 1959 by Renè de la Briandais [DLB59], prefix trees are data structures originally
intended to store and retrieve words by character prefixes in a computationally efficient way both
regarding space and time. A portion of the prefix tree for the Claroline test suite is reported in
Figure 4.6 (extracted from the graph shown in Figure 4.1).

Figure 4.6: Portion of the Prefix Tree for the Claroline test suite (corresponding to the depen-
dency graph shown in Figure 4.1)

The root of the prefix tree is a placeholder with no associated test script, while its children are
the test scripts that appear as the first elements of the warranted schedules. A path from the root
to a bifurcation represents a shared prefix between two or more warranted schedules, and the
bifurcation represents the test script where two or more schedules differ. Note that the prefix
tree may contain duplicated test scripts, depending on the topology of the test dependency graph.
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In particular, a duplicated test script is present in the prefix tree if, among all the generated
warranted schedules, it appears in different schedules with different prefixes. For example, in the
two warranted schedules [t1, t3, t5, t6, t8] and [t1, t3, t6], the test script t6 is present two times in
the prefix tree, and this is unavoidable as it is preceded by different prefixes in the two schedules.

In order to build a prefix tree, the Prefix Tree Builder starts from the root and, for each warranted
schedule, it appends all the nodes of the schedule starting from the first. If a prefix of a warranted
schedule is already present in the tree, only the nodes in its suffix are appended.

4.3.1.3 Test Scripts Parallelizer

The third step of the approach (step ❸ in Figure 4.5) executes the test scripts of the prefix tree in
parallel. To this end, the Test Scripts Parallelizer visits the prefix tree by executing Algorithm 4.1.

Algorithm 4.1: Visit algorithm used by the Test Scripts Parallelizer
Input : node – the root of the prefix tree of the test suite

container – an instance of the WAUT
Output: tree – the prefix tree of the test suite labeled with execution results

1 Visit(node, container):
2 run test script associated to node against container
3 n← number of children of node
4 if n > 1 then
5 for i = 0; i < n-1; i++ do
6 visit(node.children[i], container.clone())
7 end
8 visit(node.children[n-1], container)
9 end

10 else if n == 1 then
11 visit(node.child, container)
12 end
13 else
14 destroy container
15 return
16 end

The Test Scripts Parallelizer oversees the execution of the test scripts and manages the lifecy-
cle of Docker containers where the instances of the WAUT are executed. In particular, the Test
Scripts Parallelizer module is composed by three subcomponents, not represented in Figure 4.5
for space reasons. The core component is the Tree Parallelizer Manager, that performs the pre-
fix tree visit, running the tests against the proper instance of the WAUT following the previously
described algorithm. When the execution is over, the Tree Parallelizer Manager invokes the Re-
sults Manager to output the test suite execution results. To complete its task, the Tree Parallelizer
Manager relies on the following components:

• the Container Manager that starts, clones and stops the container encapsulating the WAUT
instances;
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• the Test Process Manager that manages the processes where test scripts are executed. At
the beginning of the test suite execution, the Test Process Manager creates a JVM process
for each node in the prefix tree. These processes then wait to receive a command from the
Tree Parallelizer Manager with the name of the test scripts to execute as well as the URL
the respective Docker container is listening on. When the execution of a test script ends,
the test process returns the result (along with details about the failure reason, if any) to the
Tree Parallelizer Manager.

The output of this step is the execution result of the test suite, represented by a labeled prefix tree
that contains the execution result for each test (i.e., passed or failed) along with details about the
occurred error (i.e., the stack trace), if any.

Let’s see more in detail how Algorithm 4.1 performs the visit. At line 2, we execute the test script
associated to the node against its container. Then we check how many children the current node
has: if it has more than one children, for each child except the last a new container is created
with the same state of the original container (container.clone(), line 6), then visit() is recursively
and asynchronously called on each child and container. For the last child, visit is called using
the same container as the current node. Otherwise, if the node has only one child (line 10), visit
is called on the only child and current container (line 11). Finally, if the current node has no
children, this means that it is a leaf, so the algorithm destroys the current container (line 14) and
returns.

4.3.1.4 Results Visualizer

In the last step (step ❹ in Figure 4.5) the results of the parallel execution are represented in a
visual format. To do that, the Results Visualizer component takes the labeled prefix tree, i.e., the
output of the previous step, and converts it to the DOT format, assigning a different color to each
node depending on the execution result of the corresponding test script (green for passed, red for
failed, orange for skipped). The DOT tree is then saved in a PNG file using Graphviz 1.

4.3.2 Implementation of STILE and Deployment

We implemented STILE as a Java application that relies on Docker to manage WAUT instances
and browsers. The deployment of STILE is represented in Figure 4.7. Similarly to the setup with
Selenium Grid, we employ two different virtual machines for running STILE. On the first virtual
machine, called Test VM in the figure, we execute the STILE core component, the test scripts
and the browsers. On the second virtual machine, called WAUT VM, we execute the Docker

1https://graphviz.org/
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containers with instances of the WAUT. Those containers are created and destroyed by STILE,
that controls the Docker instance running on the WAUT VM.

Figure 4.7: Architecture for the deployment of STILE.

Let us consider in more detail the role of the different components shown in Figure 4.7. STILE
implements the steps described in the previous subsection and as well as its main components
(i.e., the Warranted Schedules Extractor, the Prefix Tree Builder, the Test Scripts Parallelizer
and the Results Visualizer). At the beginning of its execution, STILE starts the JVM and test
processes. Indeed, we noted that starting the test processes on demand, besides increasing the
overall runtime of the given test suite, introduces flakiness by requiring additional computational
resources during the execution of existing test scripts. So we decided to start all the required
test processes at the beginning of the execution of STILE. After being started, those processes
listen to the standard input until STILE sends them two arguments, i.e., the name of the test script
a certain process is requested to execute and the URL of the Docker container the WAUT is
listening on.

Regarding the browser, we relied on the Docker-based Selenium Standalone Chrome; such image
contains a Google Chrome browser and a Selenium Grid instance to control it, as running the
browser in a Docker container gives, in our experience, more stability to the execution . We chose
Google Chrome as browser since it is the most used web browser in the world [bro], although
Selenium Standalone docker images are available also for Mozilla Firefox and Microsoft Edge.
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The choice of using Selenium Standalone Grid to manage the browser enables a more modular
execution of the tool: in fact, browsers in Selenium Standalone can be controlled by a remote
machine, allowing the execution of test scripts on a different machine than the one that runs
browsers. In our case, instead, we choose to locate the test processes and the browser on the
same virtual machine since, for the applications we used to evaluate STILE, running tests and
browsers on the same machine did not cause flakiness even at low numbers of core, so using two
different virtual machines for browsers and tests would have been a useless waste of resources
and money.

The WAUT VM runs only Docker containers with instances of the WAUT. No additional software
is required on the WAUT VM besides Docker and the Docker image of the WAUT. Containers
are created and destroyed by STILE, which communicates with the Docker application on the
WAUT VM via TCP.

In Figure 4.7 we can see that STILE executes M test processes on N instances of the WAUT. The
number of test processes M corresponds to the number of test scripts executions, which is equal
to the number of nodes in the tree (root excluded). On the other hand, the number of instances
of the WAUT N corresponds to the number of warranted schedules, i.e., the number of leaves in
the prefix tree. It is important to note that M is greater or equal to the number of test scripts in
the test suite since, by construction, our tree must contain every test script in the test suite. But,
depending on the structure of the warranted schedules, the tree may contain duplicated tests, as
already said in Section 4.3.1.2. Therefore, we have M test processes, M browsers and N WAUT
instances.

The static creation of M test processes and browsers is a sub-optimal, conservative choice that
we made to improve execution stability and to avoid the cost of dynamic process creation and
browser startup. Indeed, the M tests that compose the prefix tree are never executed at the same
time, hence it would be possible to reuse test processes and browsers to reduce RAM usage.
However, it is not possible to statically determine the optimal number of test processes and
browsers, equal to the maximum number of test scripts that are executed simultaneously in the
entire parallel execution of the test suite, as such number depends both on the actual execution
time of each test script and on how the operating system schedules the concurrent execution of
the test scripts. Hence, we opted for a conservative overestimation of the M needed resources
(processes and browsers), setting M equal to the total number of test scripts.

4.4 Empirical Evaluation

This section describes the design, experimental objects, research questions, metrics, procedure,
results and threats to validity of the empirical study that we conducted to evaluate STILE. We
followed the guidelines by Wohlin et al. [WRH+12] on designing and reporting empirical studies
in software engineering.
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4.4.1 Study Design

The focus of our evaluation of STILE is on both (a) the time saving due to the parallel execution
of the test scripts, in comparison with a sequential execution of the test suite, and (b) the time
and cost saving due to the prefix tree optimization of STILE, in comparison with the Selenium
Grid approach that we presented in Section 4.2

The results of this study can be interpreted from multiple perspectives: (1) Researchers interested
in an empirical comparison between different ways of parallelizing an E2E test suite; (2) Testers
and Project/Quality Assurance Managers, interested in the time and cost savings that can be
achieved by adopting STILE in their companies.

The experimental objects used to evaluate STILE are the E2E test suites of eight open-source web
applications that were already used in previous studies [BSM+19, LSRT16, LRT21, LSRT18].
Table 4.1 shows relevant information concerning the test suites of the eight considered web
applications. In particular it shows, for each test suite, the number of test scripts (column 2,
corresponding to the number of nodes in the test dependency graph), the total Lines of Code
(LOC) of the test suite (column 3), the number of edges in the test dependency graph (column 4)
and the number of nodes in the prefix tree (column 5). At first glance, the test suites considered in
this work may appear too simple to actually benefit from parallel execution. However, as we will
see later, they require up to almost 25 minutes when executed sequentially: not long in absolute
terms (e.g., in an overnight testing settings) but not negligible either. While STILE is aimed at
larger industrial-grade test suites, we believe these test suites are well suited for experimentally
proving its effectiveness (both in terms of cost and time).

Table 4.1: Experimental Objects.
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4.4.2 Research Questions, Metrics, and Experimental Procedure

To evaluate the benefits of STILE in a real setting and to compare it with the sequential and
the Selenium Grid (Grid, for short) executions, we used hardware resources supporting a high
degree of parallelism. In particular, for analyzing the executions of the test suites on machines
having different number of cores (i.e., 4, 8, 16, and 32 cores equipped with 4GB of RAM for
each core) we relied on the on-demand cloud computing platform provided by Amazon Web
Services2 (AWS). All the AWS machines are equipped with the same kind of CPU running at the
same frequency (i.e., 3.1 GHz). Each analysis has been executed three times to average over any
random fluctuation of the execution time.

Our study aims at answering the following research questions:

RQ1 (Time Saving w.r.t. Sequential): What is the time saving achievable with STILE w.r.t. the
sequential execution?

In this RQ the comparison is with respect to the sequential execution. More specifically, to an-
swer RQ1, we executed each test suite with STILE and with the sequential execution, measuring
the clock-time for each approach. Since the benefits from the parallel execution are more evident
when machines with higher number of cores are used, we executed each test suite with the two
approaches using machines with an increasing number of cores, i.e., 4, 8, 16, and 32 cores.

RQ2 (Time Saving w.r.t. Grid): What is the time saving achievable with STILE w.r.t. Grid?

The aim of this RQ is to compare the Grid approach to parallelization with our approach. To
answer RQ2, similarly to RQ1, we executed each test suite with STILE and with Grid and we
measured the clock-time for each approach. Also in this case, we used machines with differ-
ent number of cores (i.e., 4, 8, 16 and 32 cores) to analyze the difference in clock-time when
increasing the available computational resources.

RQ3 (Time Saving w.r.t. Theoretical): What is the time saving achievable with STILE com-
pared to the theoretical upper limit?

The goal of this RQ is to analyze to which extent our approach achieves the maximum time saving
(i.e., the theoretical upper limit). To answer RQ3, we measured, for each test suite, the time
required to execute the warranted test schedule with the longest runtime (measured on a machine
having 4 cores). Indeed, if all the test schedules could be parallelized, the overall execution time
of the test suite would be the time required to execute the test schedule with the longest runtime.
Therefore, such runtime represents the maximum time saving w.r.t. the sequential execution. We
compared the execution time of STILE and Grid with such runtime, i.e., the theoretical upper
limit. In this way, we can quantify the parallelization overhead of STILE and Grid.

RQ4 (Prediction of possible performance improvement): Is it possible to predict how much

2https://aws.amazon.com/
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the execution time of test suites using STILE will reduce when adding CPU cores? The goal of
this RQ is to predict how much the execution time of the test suites when using STILE will reduce
when more CPU cores are available. To answer RQ4, we compared the difference in execution
time reduction (with respect to the sequential execution time) when passing from 4 to 8 cores
with the difference in execution time reduction when passing from 8 to 32 cores. By using the
Pearson correlation coefficient [Kir08], we found that there is a strong correlation between these
two measures: this suggests that, if the execution time greatly reduces when passing from 4 to 8
cores, it will probably reduce further if we keep increasing the number of cores.

RQ5 (Energy Consumption): What is the reduction in energy consumption of STILE when
compared with Grid?

The objective of this RQ is to compare the total energy required for the execution of the test suites
with STILE and Grid. When running large industrial test suites, e.g., with hundreds test scripts,
the energy costs and the environmental impact are significant. To answer RQ5, we used the
CPU time as a proxy for the energy consumption. Indeed, modern CPUs drastically reduce their
energy consumption when in idle state. Thus, we measured the total CPU time when executing
the E2E test suites with STILE and Grid.

4.4.3 Results

RQ1 (Execution Time w.r.t. Sequential). Table 4.2 shows the average execution time (in sec-
onds) of the E2E test suite of each application using the sequential approach and STILE, using
different machine configurations. In particular, columns 2-5 show the execution time of the se-
quential (“seq”) run of the eight test suites employing machines having an increasing number of
cores (i.e., from 4 to 32), while the remaining columns 6-9 show the time to execute the same
test suites with STILE on the same machines. In the table, a red-yellow-green gradient has been
used to visualize the execution times. For each test suite (row), red is associated with the highest
execution time, green with the lowest and all the gradient colors represent all the other values
in between. From the table, it is evident that the execution times of the sequential runs do not
change significantly when considering different cores configurations (as expected by a sequential
process) and are always higher than those of the STILE-based runs (the only exception is Claro-
line sequential executed on a 32 cores machine vs. the execution with STILE on only a 4 cores
machine). It is interesting to note that, in the case of STILE, for most test suites increasing the
number of cores significantly reduces the execution times.

To better appreciate this trend, Table 4.3 explicitly reports the execution time savings when
considering STILE w.r.t. the sequential execution: (ETseq − ETSTILE)/ETseq, where ETseq

is the time for executing the test suite sequentially and ETSTILE is the time for executing the
test suite with STILE. For example adopting STILE with four cores allows to reduce the time
required to execute Addressbook of about 62% w.r.t. the sequential execution (492s vs 1309s
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Table 4.2: Time required (in seconds) to execute the E2E test suites with STILE, on different
machine configurations, compared to the sequential execution.

respectively). Clearly the saving was measured using the same machine configuration for each
of the two approaches (e.g., 16 cores for the sequential execution vs. 16 cores for STILE).

Table 4.3: Time saving (percentage) achievable with STILE thanks to the parallelization of the
E2E test suites w.r.t. the sequential execution. A higher time saving implies a shorter execution
time.

From Table 4.3 we can see that the time saving achievable with STILE ranges from 12% to up
to 75% (49%, on average). It is interesting to note that for some test suites the improvement is
already significant even with a limited number of cores. For instance, in Addressbook STILE
reaches a 62% saving when the test suite is executed in a machine with 4 cores (vs a 66% saving
when using a 32 cores machine), Similarly, MantisBT STILE reaches a 62% saving with 8 cores
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and ExpressCart 68% saving with only 4 cores. On the contrary, in other E2E test suites, the
time saving increases more consistently with the number of cores. For instance, in Claroline, the
time saving ranges from 12% with a 4 cores machine to 54% with a 32 cores machine; similarly
in MRBS, the time saving increases from 26% to 46%. In Collabtive, PPMA, and ExpressCart
the execution time seems to be relatively independent from the number of cores available, the
difference in time saving from a machine with 4 cores to a machine with 32 cores being quite
small (i.e., from 18% to 25% in Collabtive, from 68% to 75% in ExpressCart, while it is almost
constant in PPMA).

Discussion. The execution time obtained with a parallel execution cannot be lower than the war-
ranted schedule with the longest runtime. Since the runtime of warranted schedules depends on
the structure of the dependency graph, the time saving that can be achieved by any parallelization
technique (including STILE) varies in relation to such structure. In particular, if the dependency
graph contains a long-lasting warranted schedule, the advantages given by parallelization are less
pronounced. This is the case of Collabtive, whose test suite starts with a 18% time reduction at
4 cores, and ends with a 25% time reduction at 32 cores. Indeed, the longest warranted schedule
for the Collabtive test suite is sensibly longer than the longest warranted schedules of other test
suites: it takes 950 seconds, that is the 68% of the overall execution time of the test suite (1397
seconds). Such a long warranted schedule sets an upper limit to the achievable time reduction
when running the test suite using STILE: in fact, since each warranted schedule is executed se-
quentially, the overall execution time of the test suite can never be lower than the time of the
longest warranted schedule. However, the time saving cannot be predicted only by analyzing the
graph structure, since the execution time of the test scripts also has a strong influence. Indeed, a
warranted schedule composed of many test scripts with a low runtime may require less time than
a warranted schedule with few test scripts all with a high runtime. This fact can be observed in
Table 4.3, as the time saving in the execution of some test suites, does not increase consistently
with the number of cores. However, the improvements obtained using STILE are always signif-
icant, ranging, in the 32 cores configuration, from 25% in the worst case (i.e., Collabtive), up
to 75% in the best case (i.e., MantisBT and ExpressCart). On average, the adoption of STILE
allows to halve the execution time of a test suite w.r.t the sequential execution.

In conclusion, to answer RQ1 we can say that the time saving achievable with STILE w.r.t. the
sequential execution ranges from 12% to up to 75% (49%, on average). Adopting powerful
machines (32 cores in our experiment) allows STILE to reach the highest time savings.

RQ2 (Time Saving w.r.t. Grid). Table 4.4 shows the comparison of the execution time of
Grid and STILE. In detail, columns 2-5 show the time required to execute the test suites with
Grid employing machines with an increasing number of cores (from 4 to 32). As preliminary
observation, we can see that, differently from the case of STILE (see columns 6-9), the execution
time of Grid is not always lower than the one of the sequential execution considering machine
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with the same number of cores (as observed in the previous RQ for STILE, see Table 4.2). Indeed,
in four cases out of eight, the execution on a 4 cores machines with Grid requires more time
than the corresponding sequential execution, the reason being that Grid does not optimize the
execution of the schedules, repeating the execution of common prefixes in the test schedules.
Such overhead is substantial, especially on the machine configurations with less cores.

Table 4.4: Time required (in seconds) to execute the E2E test suites with Grid, on different
machine configurations, compared to the parallel execution using STILE.

Focusing on the comparison between Grid (columns 2-5) and STILE (columns 6-9) we can see
that, with configurations having 4 and 8 cores, the execution time of STILE requires (in several
cases significantly) less time (overall in 11 out of 12 cases), while with configurations having 16
and 32 cores, the two approaches are comparable (with a slight advantage for Grid).

To better analyze this aspect, Table 4.5 shows the comparison between STILE and Grid in terms
of execution time on the same hardware configurations. In particular, each cell reports the time
saving related to using STILE w.r.t. Grid. We can see that, when considering a hardware con-
figuration with a low number of cores (from 4 to 8), the time saving from the STILE adoption is
substantial in almost all test suites. In particular, when considering a 4 cores machine, the time
saving achieves 54% in MantisBT and an average of 36%. Similarly, STILE is still convenient
with an 8 cores machine for most test suites (on average, the time saving is 13%), even though
the time savings are less pronounced. When using machines with more than 8 cores, the two
approaches become comparable, with a slight advantage of Grid when using a 32 cores machine.

Discussion. The results show that STILE can reduce the execution time of the test suite w.r.t.
Grid when the available computational resources are limited (i.e., 8 cores or less). STILE executes
much less test scripts when compared to Grid, because all the common prefixes in each warranted
schedule are executed only once with STILE (this will be analyzed in detail also in Table 4.8 when
answering to RQ5). On the contrary, when the computational resources exceed the number of
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Table 4.5: Time saving achievable with STILE w.r.t. Grid.

warranted schedules (i.e., with 32 cores considering the complexity of eight test suites), executing
less tests does not significantly impact the overall execution time, as each warranted schedule can
be executed in isolation on a dedicated core. Rather, the overhead due to prefix tree optimization
in STILE becomes significant and negatively affects the execution time. However, the difference
between STILE and Grid at high number of cores is always very small, with an average of -8%
with 32 cores.

In conclusion, to answer RQ2 we can say that the time saving achievable with STILE w.r.t.
Grid is variable and depends on the machine configuration used (and the complexity of the
test suite). We observed savings up to the 54% on 4 cores machine with STILE up to a slight
increase in time when considering 32 cores machines.

RQ3 (Time Saving w.r.t. Theoretical). Table 4.6 shows the comparison between STILE and
Grid w.r.t. the execution of the warranted schedule with the longest runtime. In particular, col-
umn 2 shows the average execution time, in seconds, required to execute the complete sequential
run (tcomp) of the eight test suites (on a 4 cores machine). Column 3 shows the average time, in
seconds, required to execute the warranted schedule with the longest runtime (tlong) for each test
suite. Thus, in column 4 we computed the theoretical maximum time saving achievable with a
parallelization technique, i.e., preduction = (tcomp − tlong)/tcomp (the value is reported as a per-
centage). Columns 5 and 6 show the time saving achievable with STILE and Grid respectively,
when both are executed on a machine with 32 cores.

Except for Addressbook, in all cases, as indeed it should be, the best time saving is the theoretical
one. STILE achieves a comparable time saving than Grid in six cases out of eight while in two
the savings are slightly lower (i.e., PPMA and Collabtive cases).
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Table 4.6: Comparison of the time required to execute the warranted schedule with the longest
runtime, w.r.t. the test suite execution with STILE and Grid using a machine with 32 cores.

Discussion. The results show that STILE and Grid often achieve slightly lower time saving w.r.t.
the theoretical maximum time saving. In Addressbook the maximum theoretical time saving is
lower than the time saving achieved by Grid. This can be explained with the different hardware
in which the warranted schedule with the longest runtime and Grid have been executed (i.e.,
respectively on a 4 cores and on a 32 cores machine): probably the parallelization within each
test script execution, which is out of the scope of our analysis, might be slightly facilitated in the
Selenium Grid framework.

Regarding the difference in time savings, in seven cases out of eight, both STILE and Grid are
close to the theoretical upper bound, with a maximum difference of 7 and 6 percentage points
and an average difference of 4 and 2 percentage points, respectively. Only in the case of PPMA
the differences are more significant, i.e., a difference of 27 and 20 percentage points respectively
for STILE and Grid. One possible explanation is that the dependency graph of PPMA has many
warranted schedules that are very short (i.e., only three test scripts), diminishing the performance
of STILE and Grid and hence their time saving.
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In conclusion, to answer RQ3 we can say that both STILE and Grid are able to achieve time
savings quite close to the theoretical maximum time saving (average difference of 4 and 2
percentage point respectively). In some cases the differences can be higher depending on the
specific test suites’ properties: an example is the number of leaves in the prefix tree, derived
from the test suite, that strongly influences the possibility of effectively parallelizing the test
suite execution.

RQ4 (Prediction of possible performance improvement). In previous research questions we
have shown how STILE performs against 1) the sequential execution of the test suite, 2) a parallel
non-optimized execution of the test suite using Grid and 3) the theoretical limit. But previous
research questions do not help in understanding if a test suite, when parallelized with STILE, will
reduce its execution time if the number of cores increases.

Figure 4.8: Reduction of test suite execution time when increasing the number of cores.

Figure 4.8 shows how the execution time reduction changes when increasing the number of
cores. We can see that some test suites (Claroline, MantisBT, MRBS and Joomla) significantly
reduce their execution time up to 16 cores, while others (Addressbook, Collabtive, PPMA and
ExpressCart) approach the maximum improvement already at 4 cores, and offer a modest time
reduction for higher number of cores.

The fact that a test suite does not reduce its execution time when increasing the number of cores
is not necessarily a downside, it can also be an advantage: if a test suite reaches its maximum
improvement at 4 cores, this means that it is not necessary to buy powerful hardware (or virtual
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machines in the cloud) to execute it, since a less powerful machine will require the same time
to execute the test suite. A test suite like Addressbook is better suited to be executed in parallel
with STILE with respect to Claroline: the Addressbook test suite reaches a 62% time reduction at
4 cores, while for Claroline we reach a 50% time reduction only at 16 cores. But how can we tell
if a test suite will have a constant improvement, or if it will reach the top at low number of cores?
We do not know if it is possible to answer this question without executing the test suites, since we
did not find any meaningful relation between the obtained improvement and various properties
of the test suites, their dependency graphs and their prefix trees. But we found a way to answer
with only two execution of the test suites, respectively using 4 cores and 8 cores: in 2023, at
the moment of writing this paper, we can assume that most businesses that may be interested
in using STILE for test suite execution will have at least a 8 core machine, therefore doing this
experiment to evaluate the opportunity of buying powerful hardware or cloud services will not
have any cost.

Table 4.7: Difference in execution time reduction from 4 to 8 cores and from 8 to 32 cores

Table 4.7 shows the difference in execution time reduction respectively from 4 to 8 cores (first
column) and from 8 to 32 cores (second columns). The original values of time reductions are
reported in Table 4.3. It is evident that there is a strong correlation between the achievable
improvement when switching from 4 to 8 cores, and the achievable improvement when switching
from 8 to 32 cores. This is also confirmed by the high Pearson correlation coefficient [Kir08],
and can be observed in Figure 4.9 where the regression of the points of Table 4.7 is presented.

Discussion. The results show that different test suites show different behaviours when more
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computational resources are employed. Although we cannot statically predict how much the
execution time will decrease when adding more cores, we noted that test suites that benefit from
more computational power (like Claroline, MantisBT and Joomla) show a high time reduction
even when passing from 4 to 8 cores, and that this reduction positively correlates with the time
reduction from 8 to 32 cores. Therefore, if a tester wants to know if it would be valuable to buy
more resources to run a test suite using STILE, the tester may check how much the execution time
decreases when passing from 4 to 8 cores: if there is a significant reduction, it may be convenient
to run the test suite using higher number of cores.

In conclusion, to answer RQ4 we can say that if a test suite shows a great reduction in
execution time when switching from 4 to 8 cores, it will likely show a great reduction in
execution time when switching from 8 to 32 cores.

RQ5 (Energy Consumption). In Table 4.8 we report the number of test scripts in the given
test suites executed for each technique, i.e., sequential (“seq”), Grid and STILE. In particular,
column 2 shows the number of test scripts executed when running the test suite sequentially,
which corresponds to the number of test scripts in the test suite. On the contrary, when running
the test suites with Grid the number of executed test scripts drastically increases (i.e., columns 3–
4), since the various warranted paths share the same test scripts. Specifically, the number of
test scripts executed by Grid are, on average, more than twice as much (i.e., an increase of
107%). In some specific cases such as Joomla the increment can be less drastic. This is mainly
due to the length of the common prefixes of the warranted schedules: longer common prefixes
result in a higher number of tests to be executed with Grid, while STILE executes these common
prefixes only once. This applies both for the number of tests (Table 4.8) and for their CPU time
(Table 4.9). Considering STILE (i.e., columns 5–6), we can see that the number of executed test
scripts is by far lower than the test scripts executed with Grid, approaching the same number
of test scripts executed with the sequential execution. Indeed, in three out of eight cases (i.e.,
MantisBT, MRBS, and ExpressCart), the number of test scripts executed by STILE is the same as
the number of test scripts executed by the sequential execution, while in the remaining five cases,
there is a slight increase, ranging from 10% to 32% (on average, the increase in the number of
executed test scripts is 11%).

Column 7 shows the percentage reduction in the number of executed test scripts that can be
obtained by using STILE instead of Grid. Such reduction ranges from 40% to 56% (on average,
STILE requires to execute -45% test script compared to Grid).

Table 4.9 reports the CPU time required to execute each test suite using sequential (column 2),
Grid (columns 3–4) and STILE (columns 5–6). From the table we can see that the CPU time
increases considerably when using Grid, as the number of tests to be executed increases. In
particular, the increment, w.r.t. the sequential execution, varies from 52% to 390%, with an
average of 158%. On the contrary, the CPU time has a more modest increase when using STILE
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Figure 4.9: Linear regression of the differences in time reduction between 4-8 cores and 8-32
cores

w.r.t. the sequential execution. This is in line with the fact that STILE executes less test scripts
than Grid while being comparable with the sequential execution. Specifically, the CPU time
increment reaches a maximum of 49% while being 20% on average.

Regarding the comparison between STILE and Grid, Column 6 of Table 4.9 shows the percentage
decrease in CPU time. We can see that, in all case studies, STILE uses less CPU time than Grid,
with a reduction ranging from 20% to 75% with an average of 48%. Using less CPU time
for executing the same test suite, implies less energy and, consequently, a lower environmental
impact.

Discussion. These results show that STILE can greatly reduce the CPU time required to run a
dependent test suite in parallel, with respect to the baseline approach using Grid. CPU time can
be seen as a proxy for energy consumption [FWB07], although in recent years more precise met-
rics have been proposed [BW20, DCH10]. Even if CPU time is not a precise proxy for energy
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Table 4.8: Number of test scripts executed with sequential (“seq”), Grid and STILE.

Table 4.9: CPU time (in seconds) required to execute a test suite with sequential (“seq”) Grid
and STILE.

consumption, different studies [FWB07, MV05] found that there is a positive linear correlation
between CPU utilization and energy consumption. We were not able to perform more precise
measurements since we ran our experiments on the cloud, and thus we did not have access to
the hardware Modern CPUs change their clock and voltage accordingly to the workload through
Dynamic Frequency and Voltage Scaling (DFVS) [KGWB08], and this implies that the heavier
the workload, the faster the clock goes, the more energy is used. Even without accounting for
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dynamic frequency and voltage scaling, merely reducing the wall-clock time required to com-
plete a task reduces the time that the machine running the task must stay on, therefore reducing
energy consumption. In 2005, Mahesri and Vardhan [MV05] conducted an empirical study about
the energy consumption of a laptop, and found that energy consumption of the CPU and other
components is always higher when they are running a task than when they’re idle.

In conclusion, to answer RQ5 we can say that the reduction in energy consumption of STILE

when compared with Grid is significant, ranging from 20% to 75% with an average of 48%.

4.4.4 Summary of the Findings

On 32 core machines, our results suggest that STILE and Grid show comparable clock time
savings, although STILE requires by far less CPU time and correspondingly uses less energy. In-
deed, under the hypothesis of an execution environment with unlimited computational resources,
the time required by STILE to complete the execution of a test suite is comparable to the time
required to execute the warranted schedule with the longest runtime. However, in more realistic
scenarios, i.e., when computational resources are limited, our experiments show that STILE can
significantly reduce the time required for executing the given test suite w.r.t. Grid, by avoid-
ing repeated executions of the same test scripts. These results are particularly interesting in a
multitude of scenarios, depending on where the E2E test suite is executed:

• off premise, i.e., in a cloud computing environment. Indeed, cloud solutions often associate
costs to the use of computational resources. Our results show that STILE requires less
CPU time (see Table 4.9) than Grid to execute the same test suite when both approaches
are executed on the same hardware configuration (i.e., on average a saving of 48%), hence
reducing costs significantly;

• on premise, i.e., on a local server. In this case the computational resources are limited and
cannot be easily added as in the previous scenario. Our results show that, when work-
ing with machine having a limited processing power (in relation to the needs of the test
suite), STILE can reduce the execution time of a given test suite by up about the 54% w.r.t.
Grid. In the industry assuming to have limited computational resources on a local server
is reasonable since rarely companies invest in (or upgrade to) expensive hardware unless
absolutely necessary. In that on premise scenario, differently from the off premise scenario
where computational resources (i.e., cores) can be added easily, adopting STILE can help
to drastically reduce the execution time w.r.t. Grid since we can consider the number of
cores available as a bounded resource (adding more cores requires to upgrade/replace the
hardware resources and it cannot be easily done). In this case, we can have a situation
close to the one seen in the 4-8 cores cases, where STILE provides by far better results
than Grid. Although our experiment does not show it, we can surmise that these good
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results may scale as the size of the test suites increases. Indeed, considering complex in-
dustrial test suites, requiring more computational resources and composed by hundreds of
tests, such good results could be probably obtained also with more powerful configurations
(e.g., on 16-32 machines) and so STILE could be useful to reduce costs.

Moreover, both on and off premise, STILE reduces the overall energy consumption and conse-
quently the environmental impact. When running large industrial test suites, e.g., with hundreds
of test scripts, the benefits in terms of reduction of energy costs and environmental impact are
significant. Indeed, the energy consumption of modern CPUs can vary drastically between the
idle (low frequency) and full load (high frequencies) modes.

4.4.5 Threats to Validity

Internal validity threats concern possible confounding factors that may affect dependent vari-
ables, i.e., the time saving (RQ1, RQ2, RQ3), the magnitude of the time saving per additional
core (RQ4), and the CPU time reduction (RQ5). The main confounding factor that could have
influenced our measurements is the overhead due to the execution of other processes on the
machines used for the experiment. Indeed, in a physical machine there are always several back-
ground processes that are active when executing the experiments. Such processes can affect the
availability of computational resources and slow down the execution of the test suites. To miti-
gate this threat, we make use of cloud computing resources that are dedicated to the execution of
the test suites. Moreover, we execute each test suite three times, such that fluctuations in the ex-
ecution time are filtered out. Another threat to internal validity are flaws in our implementation:
although we are sure that there are no bugs that could lead to failure, it is surely possible that we
did not code our implementation in the most efficient way.

External validity threats are related to the generalization of results. To mitigate this threat, in our
empirical evaluation, six out of the eight E2E test suites that we choose have already been used
in previous studies [BSM+19, LSRT16, LRT21, LSRT18] and that belong to different domains.
Further experiments on additional subjects would be desirable to corroborate our findings. The
AWS machines employed for the experiments cover a wide range of configurations from a small
workstation (4 cores and 16GB or RAM) to a large enterprise server (32 cores - 128GB RAM).
Therefore we have no reason to think that the results cannot generalize to other apps and test
suites. The results obtained on the considered machines show a clear advantage of STILE on the
less powerful configurations and a substantial par on the more powerful ones: we speculate that
the advantages deriving from the adoption of STILE compared to Grid increase when adopting
more complex test suites (thus more test cases and a more complex dependency graph). Thus,
the positive results obtained in our experiments could be amplified in real contexts replicating on
the 16-32 cores scale the results we observed in the 4-8 one. Clearly, a comprehensive empirical
evaluation with industrial-grade complex test suite is required to confirm this conjecture.
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Construct validity threats concern the relationship between theory and observation. In the context
of our study such threats are related to the way the execution time of the different approaches is
measured. To mitigate this threat, we collected the execution time for each approach in the same
way by analyzing the execution logs. Another possible threat concerns the involvement of the au-
thors in manual activities conducted during the empirical study and the influence of the authors’
expectations about the empirical study on such activities. To mitigate this threat we used existing
E2E test suites [BSM+19, LSRT16, LRT21, LSRT18] to evaluate STILE: these test suites were
created long time before the development of STILE and contain many dependencies between
the tests as they were designed to be executed sequentially. Thus, clearly, the structure of these
test suites was not designed to benefit from any kind of parallelization. For this reason, they
are good experimental objects to compare STILE with Grid and allowed us to analyze different
kind of outcomes; for example note the variability of the results between the various test suites,
some benefit a lot from the parallelization already with few CPU cores (e.g., Addressbook) while
others require more computing power to have an appreciable effect in terms of execution speed
(e.g., Claroline). Since the six applications of the original dataset (Addressbook, Claroline, Col-
labtive, MantisBT, MRBS, PPMA) are quite old, we added two modern applications (Joomla and
ExpressCart) to ensure that our approach is not limited to older web applications, but can also
deal with more modern interfaces.
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Chapter 5

Test Flakiness Prevention:
SLEEPREPLACER

In this chapter, we will present our proposed tool-based approach SLEEPREPLACER that aims to
replace thread sleeps with explicit waits without introducing novel flakiness.

5.1 Motivation

In the previous chapters we introduced key concepts for E2E Web testing, focusing in particular
on the parallel execution of test suites in presence of dependencies. In Sections 3.1 we intro-
duced existing dependency detection techniques, and in Chapter 4 we presented our tool-based
approach for running dependent test suites in parallel.

Manifest dependency detection approaches and STILE share a common requirement: the test
suite must be free from flakiness, i.e., test scripts should always pass or fail in a deterministic way.
If we use a manifest dependency detection approach such as [GBZ18] or [BSM+19] on a flaky
test suite the produced test dependency graph will not be accurate, because the test execution
results used to build it are distorted by flakiness. If we use STILE to run a flaky test suite, failures
in flaky test scripts may lead to the failure of entire branches of the prefix tree associated to
the test suite, since usually if a test script fails, also other test scripts that depended on it will
fail. Note that this limitation is not strictly related to STILE, but affects dependent test suites in
general: the same thing will happen if there are failures in a sequential execution of a dependent
test suite. However, running test scripts in parallel, particularly if the computational resources
are limited, may worsen existing flakiness problems in a test suite.

For this reason, we consider flakiness as a major impediment for the parallel execution of depen-
dent Web test suites, and in the following sections we propose a tool-based approach to prevent
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it.

5.2 The Role of Waiting Strategies in E2E Test Flakiness

Regression testing is playing an increasingly important role in the industrial context [AET+19],
in particular in software development processes as DevOps [ZBCS16] where continuous inte-
gration, continuous testing, and continuous delivery are adopted. This is mainly due because
regression testing, if well conducted, ensures that changes to the system under test during soft-
ware evolution do not break existing functionality.

However, for regression testing to be cost-effective, the test suite must be efficient [EE15, HDE14]
and reliable. This is particularly true in the Web environment [ED19] where testing is conducted
not only at the unit and integration level, but also at the system level applying E2E testing frame-
works such as Selenium WebDriver. In fact, in this context the Testers often execute a very large
number of automated test cases (implemented as E2E test methods) since Web applications are
often very complex and modified frequently [ED19].

Delays due to inefficient test suites and flaky tests are two big problems, often coupled, that can
cause cost increases. Concerning the first aspect, the cost is twofold: both in the time that Testers
spend waiting for tests to finish running, and in the monetary cost of running tests on computers.
Instead, flaky tests are even more insidious and dangerous [LHEM14]. The fact that a test can
non-deterministically pass or fail when executed on the same version of the Application Under
Test (AUT), without any change in both the app and the test code, can waste a lot of time for
Testers trying to debug a non-existent fault in the code [LMST20].

The two aspects above mentioned are inherently interrelated because most of the proposed meth-
ods to deal with flakiness rely on multiple test repetitions, i.e. a test method is executed against
the same version of the AUT for a given number of times, and if it produces different results the
test is considered flaky. In this way, potentially inefficient test code can be run multiple times
to verify the absence of flakiness thus increasing the overall execution time of the test suite and
associated cost.

Often these two problems, in the E2E Web Testing context, derive from a common cause: a
bad practice often used by Web Testers, namely the use of thread sleeps [RS21]. Thread sleeps
are commands that stop the execution of the thread for a given amount of time and are used by
Testers, at certain specific points in test code, to wait for a page of the AUT to load before taking
the next action or for managing asynchronous calls, often used in modern Web applications. The
usage of thread sleeps presents, however, some disadvantages, that we explained in Section 2.3.2.
From several years, the Selenium testing framework is offering a better solution to synchronize
test code and AUT, called explicit waits. Explicit waits are more efficient than thread
sleeps, because they automatically stop waiting when the expected condition is verified, instead
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of waiting the fixed amount of time defined by the Tester during test development. On large test
suites requiring an extensive use of waits, adopting explicit waits instead of thread sleeps can
lead to great time savings. Explicit waits are also more flexible and reliable than thread sleeps,
because they allow to check for complex conditions and if used well they can also drastically
limit the problem of flakiness.

For a more detailed description of the different waiting strategies employed in Selenium Web-
Driver E2E Web test scripts, please refer to Section 2.3.2.

5.3 Our Proposed Approach

In this section, we present a novel tool-based approach named SLEEPREPLACER able to auto-
matically replace thread sleeps with explicit waits in a Selenium WebDriver test suite adopting
(or not) the Page Object (PO) pattern [POm] without introducing novel flakiness and thus saving
Tester’s precious time and reducing costs.

To the best of our knowledge, this is the first tool in literature capable of performing this task.
Carrying out this replacement in automatic way is not trivial because the Selenium framework
provides several explicit waits and to select the suitable one is necessary to take in account the
type of interaction performed by the test code after the thread sleep to be replaced.

Our approach aims to remove thread sleeps in a Selenium WebDriver test suite and to replace
them with explicit waits when possible. The main goal is to reduce the execution time of the
entire test suite without introducing novel flakiness. To avoid introducing or augmenting flaki-
ness, our approach prescribes to proceed step-by-step, validating each change applied to the code
immediately, by running the modified test method for a given amount of times and observing that
the change did not introduce side-effects. This mechanism is conservative, because in this way,
each time a validation fails, we know that the cause of failure can only be the last change in-
troduced in the code. Because of this conservative mechanism, the test suite in input must not
be flaky. In fact, having flakiness in the original test suite makes identification of the root cause
of failures harder: if the original test suite is not flaky, every time we find a flakiness behavior
we are sure that is due to the last change made to the code, but if the initial test code can fail
non-deterministically this assumption is no longer valid.

Unfortunately, our approach is not able to remove existing flakiness in test suites. Removing
flakiness is a very hard task, which strictly depends on the characteristics of the test suite and
the application under test, and for which is not easy to give general guidelines. However, some
approaches to identify the root cause of flakiness [MAAB+20] or fixing flaky tests exist in lit-
erature [SLO+19]: the first one is oriented to end-to-end web testing, while the second one is
limited to resolving flakiness caused by order-dependent tests. If, instead, the test suite is af-
fected by a small amount of flakiness (e.g. it shows only in few tests, always in the same points),
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the Tester can try to fix it by adding a thread sleep where required, that will be lately replaced
with an explicit wait by the tool implementing our approach.

We thought our approach to be capable of working whether the test suite is designed with the
PO pattern or without. We have decided to manage both possibilities (PO yes and PO no) to
increase the usage scenarios of our approach. As described in Section 2.3.1, a page object is
an object-oriented class that serves as an interface toward a Web page of the application under
test [POm]. Test methods use the methods offered by PO classes whenever they need to interact
with an element of the web app user interface.

The workflow of our approach is represented in Figure 5.1 and can be summarized as follow:

1. build the model of the test suite

2. for each thread sleep in the test suite:

(a) replace the thread sleep with an explicit wait with the appropriate expected condition
(or remove it)

(b) validate the modified code: if it is OK move to the next thread sleep, otherwise before
moving restore the removed thread sleep at the previous step

Figure 5.1: Workflow of our approach

In the next subsections, we will describe in detail the steps of our approach.

5.3.1 Step 1 - Model Building Phase

In order to automatically refactor the test suite, SLEEPREPLACER needs to build a model of the
test suite, that is a object-oriented representation of the test suite structure, containing informa-
tion about thread sleep locations, page access locations and type of page access performed. Step
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Algorithm 5.1: BuildModel procedure for building the model of the test suite
Input : TSuite – a test suite with thread sleeps
Output: TSuiteM – a model of the test suite

1 BuildModel(TSuite):
2 TSuiteM ← new TestSuiteM() // creates a new model instance representing TSuite
3 foreach test class TClass in TSuite do
4 TClassM← new TestClassM() // creates a new model instance representing TClass
5 foreach test method TMethod in TClass do
6 TMethodM ← new TestMethodM() // creates a new model instance representing TMethod
7 add TMethodM to TClassM

8 end
9 add TClassM to TSuiteM

10 end
11 // at this point the model TSuiteM represents the structure of the entire test suite in terms of a hierarchy of TClassM and

TMethodM but without information on the thread sleeps (TSleep) and page accesses (PA). Such info are added in the next
steps depending on whether the test suite TSuite adopts or not the Page Object pattern

12 // Case TSuite is PO-based
13 if TSuite is based on the Page Object pattern then
14 foreach page object PO in TSuite do
15 POM ← new PageObjectM() // creates a new model instance representing PO
16 foreach method POMethod in PO do
17 POMethodM← new PageObjectMethodM() // creates a new model instance representing POMethod
18 usages← all test methods that call POMethod
19 add usages to POMethodM
20 foreach thread sleep TSleep in a line L of POMethod do
21 TSleepM ← new ThreadSleepM() // creates a new model instance representing TSleep
22 TSleepM.location← L
23 if there is a page access PA of type PAType at line PALine after TSleep then
24 TSleepM.pageAccess← new PageAccessM(PALine, PAType);
25 end
26 add TSleepM to POMethodM

27 end
28 add POMethodM to PageObjectM
29 end
30 add PageObjectM to TSuiteM

31 end
32 end
33 // Case TSuite is not PO-based
34 else
35 foreach test class TClass in TSuite do
36 foreach test method TMethod in TClass do
37 find TMethodM corresponding to TMethod in TSuiteM
38 foreach thread sleep TSleep in a line L of TMethod do
39 TSleepM ← new ThreadSleepM() // creates a new model instance representing TSleep
40 TSleepM.location← L
41 if there is a page access PA of type PAType at line PALine after TSleep then
42 TSleepM.pageAccess← new PageAccessM(PALine, PAType);
43 end
44 add TSleepM to TMethodM

45 end
46 end
47 end
48 end
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Figure 5.2: Test suite meta-model. Our tool generates, for each test suite taken in input, a model
complaint with this class diagram

1 is required to enable automated interaction with the test suite: in fact, in order to perform its
tasks, our tool must know where thread sleeps and web page interaction commands (i.e., page
accesses) are located in the test code. Thanks to the model, the tool implementing our approach
can know where the thread sleeps are located and which type of page access is performed after
them. Indeed, to correctly replace a thread sleep with an explicit wait it is necessary to know
which expected condition use and which page element to wait for: our tool performs the replace-
ment relying on the information stored in the model. The procedure that implements Step 1 is
described in Algorithm 5.1. The structure of the model depends on the adoption of the PO pattern
(or not) by the test suite. If the test suite employs the PO pattern, the model must represent the
location of thread sleeps and page accesses in page objects, and the use of PO methods in test
methods. Otherwise, if the test suite does not adopt the PO pattern, the model must only repre-
sent the location of thread sleeps and page accesses directly in test methods. The class diagram
representing the structure of the instance (i.e. meta-model) generated by our tool of the test suite
model is represented in Figure 5.2. The {and} relationships in the class diagram mean that if an
entity exists, also the other must exist; the {xor} relationships mean that if an entity exists, the
other must not exist. In this way, we can have a single diagram for both PO based and non-PO
based test suites.

5.3.2 Step 2.(a) - Thread Sleep Replacement Phase

Step 2 is the fundamental one of our approach and is described in Algorithm 5.2. The Step 2.(a)
is performed by looking at the type of access to the web page made after the current thread sleep.
In our context, a page access is a Selenium WebDriver command that reads information from
the page (e.g. getText(), getAttribute()) or actively interacts with it (e.g. click(), sendKeys()).
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Algorithm 5.2: ReplaceSleep procedure for replacing a thread sleep with a explicit
wait

Input : TSuite – a test suite with thread sleeps
TSuiteM – a model of the test suite
{R} – replacement rules
iterations – number of validation runs

Output: TSuiteNew – the test suite T with explicit waits in place of thread sleeps
1 ReplaceSleep(TSuite, TSuiteM, {R}, iterations):
2 if the test suite TSuite has page objects then
3 foreach page object PO in TSuite do
4 foreach method POMethod in PO do
5 foreach thread sleep TSleep in a line L of POMethod do
6 find TSleepM corresponding to TSleep in TSuiteM
7 // TSleepM.pageAccess is null if there is no page access after TSleep or if we have no rule to replace the

page access after TSleep
8 if TSleepM.pageAccess is not null then
9 apply the correct rule from {R} to replace TSleep with an explicit wait

10 end
11 else
12 remove TSleep
13 end
14 if validate(POMethod, TSuiteM, iterations) then
15 continue
16 end
17 else
18 remove the last inserted explicit wait (if any) and restore TSleep
19 end
20 end
21 end
22 end
23 end
24 else
25 foreach test class TClass in TSuite do
26 foreach test method TMethod in TClass do
27 foreach thread sleep TSleep in a line L of TMethod do
28 find TSleepM corresponding to TSleep in TSuiteM
29 // TSleepM.pageAccess is null if there is no page access after TSleep or if we have no rule to replace the

page access after TSleep
30 if TSleepM.pageAccess is not null then
31 apply the correct rule from {R} to replace TSleep with an explicit wait
32 end
33 else
34 remove TSleep
35 end
36 if validate(TMethod, TSuiteM, iterations) then
37 continue
38 end
39 else
40 remove the last inserted explicit wait (if any) and restore TSleep
41 end
42 end
43 end
44 end
45 end
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The choice of the expected condition, in fact, strictly depends on the type of page access that is
made. For example, accesses that only read information from the page (accessType = READ in
Figure 5.2), without actively interacting with it, usually require an expected condition to wait for
an element to be visible. Instead, interactions with the page such as clicks or writing text to a
field (accessType = WRITE in Figure 5.2), usually require an expected condition that waits for
an element to be clickable.

To decide which expected condition should be used depending on the page access that it will
protect, our approach relies on a heuristic expressed by means of a set of replacement rules. A
replacement rule is a function R : {A1, A2, ..., An} −→ EC that maps a set of accesses A to an
expected condition EC.

5.3.3 Step 2.(b) - Validation Phase

Algorithm 5.3: Validate subprocedure for validating a novel inserted explicit wait
Input : Method – a test method or page object method

TSuiteM – a model of the test suite
iterations – number of validation runs

Output: res – boolean result of validation
1 Validate(Method, TSuiteM, iterations):
2 validationSet← {}
3 if Method is a page object method POMethod then
4 validationSet← all test methods that call POMethod by analyzing TSuiteM
5 end
6 else if Method is a test fixture TFixture then
7 validationSet← the first test method in the TClass of TFixture by analyzing TSuiteM
8 end
9 else if Method is a test method TMethod then

10 validationSet← TMethod by analyzing TSuiteM
11 end
12 for i = 0; i ¡ iterations; i++ do
13 if the test suite TSuite has dependencies then
14 (1) load the state required by method Method to run correctly or (2) execute the warranted path of the test(s) that are

in the validationSet (if no state is available)
15 end
16 result← run the validationSet if result == failure then
17 return false
18 end
19 end
20 return true

Finally, the Step 2.(b) requires to run the refactored code for a given amount of executions ’X’,
decided by the Tester, to be sure that the change did not break the test or introduce novel flakiness.
The procedure that implements this step is described in Algorithm 5.3. To validate a replacement,
multiple runs of the modified test may be necessary since, given the non-deterministic nature of
flakiness, a single run may not be sufficient to verify if the test is flaky [Pal19]. However, the
number of validation runs has a relevant impact on the approach execution time: a high number
of runs can heavily increase the execution time of SLEEPREPLACER, especially if the original
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test suite is large and employs the Page Object pattern (see below). On the contrary, using
an insufficient number of validation runs may introduce novel flakiness during the refactoring,
therefore the decision of this parameter is critical. The Testers should decide the number of
validation runs according to their experience and to the history of stability of the test suite: if
the test suite already manifested flakiness in the past, a higher number of validation runs may be
appropriate.

5.3.3.1 Effect of Test Suite Structure on the Validation Process

The way in which the validation is performed strictly depends on how the test suite code is
organized: in particular, it depends on the use of the PO pattern. If the target test suite relies on
the PO pattern, thread sleeps are located in the page object’s methods. But these methods are
usually called by more than one test method and so, to be sure that the refactored code did not
introduce regressions or novel flakiness, we must run all the test methods that call the modified
page object method (lines 3 and 4 of Algorithm 5.3). In a test suite without the PO pattern,
instead, all the interactions with the web application are in the test methods, including thread
sleeps. Therefore, to validate a replacement in this context, it is sufficient to run the modified test
method (lines 7 and 8 of Algorithm 5.3).

5.3.3.2 Dealing with Test Dependencies during Validation

As shown in the validation Algorithm 5.3, our approach manages both dependent and non-
dependent test suites. A test method is called dependent when its execution result (pass or fail)
depends on the order in which the test method is run in the test suite. If the test suite is always ex-
ecuted in the same, correct order, such dependencies may go unnoticed, but if we run a subset or
a reordering of the test suite that breaks the dependencies, we will encounter failures. Thus, the
presence of dependencies in the test suite to be refactored by SLEEPREPLACER prevents from
running a single test method for validation, since it requires other test methods to be executed
before. To manage dependencies during the validation step, we employed one of the following
two strategies, as appropriate:

1. Using the warranted schedule. A warranted schedule for a dependent test method t is
a schedule that respects all the dependencies for t. Such schedules, if not known a priori,
can be extracted from the dependency graph of the test suite, that can be computed, e.g.,
with tools like TEDD [BSM+19]. Our tool, when it comes to validate a dependent test t,
will have to run its warranted schedule, instead of t alone, to avoid failures due to lack of
previous test methods runs. Clearly, this strategy can significantly increase the execution
time of SLEEPREPLACER. On the contrary, if the dependencies are not known and running
a dependency detection tool like TEDD on the target test suite is impractical, a Tester can
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choose a conservative approach and, when a test method t has to be validated, he/she can
run every test method that precedes t in the original order of the test suite.

2. Saving the application state. if the characteristics of the system under test allow it, it is
possible to save the application state required by each test method t, and restore it when
it needs to run t for validation. This is the same solution we employed to replicate the
instances of the WAUT in STILE

5.3.3.3 Effect of the Thread Sleeps Position on the Validation Process

Another aspect that is important to consider in the validation step is the presence of thread sleeps
in test fixtures. Test fixtures are utility methods named in the Selenium testing framework before
methods and after methods. Before and after methods are mainly used to execute a portion
of code before and after test methods. These are used to basically set up some variables or
configuration to prepare the state of the application required for a test method and then to cleanup
the state after the test execution ends. Lines 5 and 6 of Algorithm 5.3 manage this aspect: if the
current thread sleep is located inside a test fixture, the validation set will contain the first test
method of the containing class. Since usually in most testing frameworks (e.g. JUnit, TestNG)
test fixtures can be executed before every method, after every method, before the whole class or
after the whole class, by running a single test method from the containing class we are sure that
also the test fixture is executed.

5.4 SLEEPREPLACER: Approach Implementation

This section describes SLEEPREPLACER, the tool that implements our approach. We imple-
mented it as a Java application, built with the build automation tool Maven. It takes as input
a Java test suite that uses the Selenium WebDriver framework to interact with web pages and
TestNG1 as unit testing framework. The tool, along with the three open source test suites, is
available at https://sepl.dibris.unige.it/SleepReplacer.php. We will now describe how we imple-
mented each phase of the tool with a corresponding software component: the Model Builder, the
Thread Sleep Replacer and the Validator.

5.4.1 Model Builder Component

The Model Builder is the tool component that takes as input the original test suite and produces as
output a model that contains information about thread sleep’s locations, page accesses locations

1https://testng.org/doc/
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and their use in test methods. The model is represented using Java classes, and it is an instance
of the meta-model expressed in Figure 5.2. The Model Builder recovers the structure of the test
suite classes (e.g. test classes and their methods, page objects and their methods) using reflection,
and the location of thread sleeps and page accesses adopting static textual searches. If the test
suite is not PO-based, all the information needed to build the model is already available. If, on
the contrary, the test suite relies on the PO pattern, information about the usage of PO methods in
test methods has to be collected: this is required because the Validator must know all the usages
of an explicit wait in order to validate them. This is done by running an instrumented version
of the test suite that generates a trace containing every test method and PO method execution
in chronological order. From this trace, the Model Builder can reconstruct precisely which PO
methods are used by the test methods.

To better clarify how the Model Builder component works, we provide a short step by step
description of the underlying algorithm, both for PO-based and non PO-based test suites.
Page object version:

1. running an instrumented version of the test suite that prints the names of the test methods,
page object methods, and position of the thread sleeps. The output of this step is the
execution trace;

2. by using reflection, building a model of the structure of the test suite’s classes: for each
class in the test suite (both page object classes and test classes) a corresponding class in
the model is created, with its methods;

3. adding information about thread sleep locations in the model’s classes;

4. for each thread sleep, searching in the code of the containing page object method the
following page access, and add its location and type to the model;

5. relying on the execution trace built in step 1., creating the mapping of page object methods
usages: we associate to each test method the list of page object methods it uses and vice
versa.

No page object version:

1. creating a list of thread sleep positions inside test methods;

2. by using reflection, building a model of the structure of the test suite’s classes;

3. adding information about the position of thread sleeps in the model’s classes;

4. for each thread sleep, searching in the code of the containing test method the following
page access, and add its position and type to the model.
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5.4.2 Thread Sleep Replacer Component

The Thread Sleep Replacer is the core part of the tool, that performs the substitution of thread
sleeps with explicit waits. To do its work, the Thread Sleep Replacer component relies on a
set of replacement rules to decide which expected condition should be used depending on the
type of page access is going to protect. As anticipated in the previous section, a replacement
rule is a function R : {A1, A2, ..., An} −→ EC that maps a set of accesses An to an expected
condition EC. There are two main categories of accesses to a web page: accesses that only
read information from the page, and accesses that actively interact with the page. In our ex-
perience, accesses of the first type can be managed with a visibilityOf expected condi-
tion, accesses of the second type can be managed with a elementToBeClickable expected
condition. Indeed, our years-long experience in E2E web testing [RT01, LCRT16a, OLR21a,
LRT21, LSRT16, LSRT15], and the results of our industrial previous work [OLRV21] tell us
that the great majority of web page interactions in a test suite can be managed using just two ex-
pected conditions: visibilityOf and elementToBeClickable. In our previous work,
where 192 thread sleeps were replaced with explicit waits in a large, industrial test suite, the
elementToBeClickable expected condition was used the 92% of the times. There are
many other possible page accesses and corresponding expected conditions (for a more compre-
hensive list, please refer to Section 2.3.2.1), but they are designed to manage specific cases (e.g.
the presence of frames) which rarely happen. So for this work, we have applied the Pareto prin-
ciple and limited ourselves to implement only a limited subset of rules, but with the awareness
that these rules are able to eliminate a big portion of thread sleeps. The subset of rules we have
implemented in SLEEPREPLACER is the following:

1. R1 : {getText, isEnabled, isDisplayed, getAttribute} −→ ExpectedConditions.visibilityOf

2. R2 : {click, clear, sendKeys, selectByVisibleText, selectByIndex} −→ ExpectedCondi-
tions.elementToBeClickable

3. R3 : {switchTo().alert()} −→ ExpectedConditions.alertIsPresent

We added the last rule (R3) because, even if we did not meet them very frequently in our last
refactoring work [OLRV21], JavaScript alerts are quite common in Web applications to manage
error notifications, that is an important aspect in web testing. Moreover, JavaScript alerts are
not part of the DOM, so it is impossible to wait for them with any other expected conditions.
It is also important to point out that SLEEPREPLACER is parametric on the number and type of
applicable rules, i.e., the set of rules used by SLEEPREPLACER is extensible in case the test suite
contains Web page accesses that can be managed with other expected conditions.

The Thread Sleep Replacer navigates the test suite model and, following the original order of
execution of the test methods in the test suite, and the order in which thread sleeps are located
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inside single test methods, it applies the replacement rules to substitute each thread sleep with
the appropriate explicit wait. After that, it saves the modified version of the file in the test
suite project, compiles the project with Maven and calls the Validator component to check that
the change in the code did not break the test method: if the validation fails, the Thread Sleep
Replacer component will undo the last change in the code, restoring the initial thread sleep. We
said that explicit waits, besides the expected condition, require also a maximum timeout to be
waited for the expected condition to be verified. We used a default timeout of 10 seconds, based
on our previous experiences, and never had problems caused by a too short timeout. We did not
find a reference that precisely motivates the 10 seconds timeout but, besides our experience, we
think it is safe to assume that 10 seconds are more than enough time to wait for a response from
the server: it is very rare that a functioning Web application, in absence of network problems,
requires more than 10 seconds to reply to a request. Moreover, the 10 seconds value for the
maximum time out for explicit waits is used in different examples, like the ones in the official
Selenium WebDriver documentation 2 and in several books about Selenium WebDriver. [Gar22,
Rag]

5.4.3 Validator Component

Finally, the Validator is the component that runs the refactored code to check test methods that
always fail and flakiness problems. The amount ’X’ of validation executions is decided by the
Software Tester. In case the Tester has no clues on the stability of the test suite, a possible solution
is to base this choice on estimates: some authors reported that anecdotal evidence suggests to run
tests 10 times [Pal19].

On the contrary, the number of times a specific test method is executed depends on the presence
of the PO pattern: if the test suite employs POs, the Validator will run every test method that calls
the modified PO method, otherwise it will run only the test method that contains the removed
thread sleep.

In Section 5.3.3.2, we said that the presence of dependencies in the test suite should be man-
aged, and we presented two different options: running all the test methods required to satisfy
the dependencies in the original order (first option), or saving the application’s state required by
each test method and restore it when a test method needs to be executed (second option). Con-
cerning the first option, our tool, when it comes to validate a dependent test t, will have to run
its warranted schedule (i.e. a schedule that contains t and all the other tests required to satisfy
t’s dependencies), instead of t alone, to avoid failures due to lack of previous test methods runs.
If the dependencies between test methods are known it is sufficient to run the test methods in
sequence. Otherwise, the right order of test methods to execute, can be calculated using TEDD

2Selenium WebDriver documentation: Explicit Waits - https://www.selenium.dev/documentation/webdriver/waits/explicit-
wait
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[BSM+19]. On the contrary, if the dependencies are not known and running a dependency de-
tection tool like TEDD on the target test suite is impractical, a Tester can choose a conservative
approach and, when a test method t has to be validated, he/she can run every test method that
precedes t in the original order of the test suite. Concerning the second option, our tool relies
on Docker to create images of the state and running instances of the application under test. With
respect to the previous option (i.e., warranted schedule execution), this solution is much more
efficient from a performance perspective, but on the other hand is more complex to implement.
In fact, it may not always be possible to save and replicate the state of the application under test:
in some cases, the Software Tester may not have complete access to the application under test,
but only to the test suite. In some other cases, the application may be distributed among different
computational nodes, and saving and restoring its state may not be easy or possible.

To save the state required for a test method tn, we run all the tests t1, t2, tn−1 that precede it in the
original order of the test suite, and we run them against an instance of the application under test
executed in a Docker container. Then, we save a snapshot of the container state. When, during
the validation step, we have to run tn, we just need to launch a new Docker container with the
state saved in the previous snapshot. To summarize, the first option is always applicable but less
efficient. The latter is more efficient, since avoids to waste time in running test methods only
to satisfy the order of dependencies, but it may not always be applicable, e.g., for applications
whose state depends on many distributed components.

Finally, to validate thread sleeps used in test fixtures, the validator component runs the first test
method in their containing class: in this way, we are sure that both the fixture and a test method
that uses it have been validated.

5.4.4 Replacement Example

To better explain our tool, let’s present an example of how a thread sleep is detected, replaced
and validated. We will use a snippet (Listing 5.1) from the test method AddUserTest from the
Collabtive test suite, one of the test suites used in our experimental study (see next Section),
which does not employ the PO pattern.

driver.findElement(By.id("add_butn_member")).click();
Thread.sleep(1000);
driver.findElement(By.id("name")).clear();

Listing 5.1: Code snippet from the Collabtive test suite

The first line of code in Listing 5.1 clicks on the button ”Add user” in Figure 5.3, then waits 1000
milliseconds for the form in Figure 5.4 to be loaded. During step 1 of our approach, the Model
Builder component stores in the model the line number of the thread sleep, along with the line
number and type of the subsequent page access. The action performed is a clear, that clears the
content of a text box, and so its page access type is WRITE.
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Figure 5.3: Screenshot from the Collabtive web application

Figure 5.4: Screenshot from the Collabtive web application

Subsequently, the Thread Sleep Replacer component will consider the page access after the
thread sleep, and will select an appropriate expected condition among the available ones. Since
the action clears a text box, our tool will replace the thread sleep with an explicit wait that uses an
elementToBeClickable expected condition (see Subsection 4.2). The resulting code is given in
Listing 5.2. (note that the wait object has already been initialized in the Before method associated
to the test).

driver.findElement(By.id("add_butn_member")).click();
wait.until(ExpectedConditions.elementToBeClickable(By.id("name")));
driver.findElement(By.id("name")).clear();

Listing 5.2: Refactored code snippet from the Collabtive test suite

After the replacement, the Validator component compiles the modified test suite and tries to run
the modified test method for a given amount of times. The Collabtive test suite has dependencies,
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and we already saved the state required for each test method to correctly run, so the Validator
will launch the Docker container with the state required by AddUserTest before running it. After
each correct execution, the container will be destroyed and recreated with the initial state (since
the execution of the test method modifies it). If all the executions passes, the change is accepted
and our tool moves to the next thread sleep. Otherwise, the change is reverted by restoring the
thread sleep.

5.5 Empirical Study

This section describes the design, experimental objects, research questions, metrics, validation
framework, procedure, results and threats to validity of the empirical study conducted to evalu-
ate SLEEPREPLACER. We follow the guidelines by Wohlin et al. [WRH+12] on designing and
reporting empirical studies in software engineering. To allow the replication of the study, we pub-
lished the tool along with the three open source test suites at https://sepl.dibris.unige.it/SleepReplacer.php.

5.5.1 Study Design

The goal of the empirical study is to measure the overall effectiveness of SLEEPREPLACER in
replacing thread sleeps with a particular focus on assessing: (1) the percentage of thread sleeps
replaced by SLEEPREPLACER, (2) the time required by SLEEPREPLACER to complete such task,
and (3) the human effort reduction deriving from its adoption.

The results of this study can be interpreted from multiple perspectives: Researchers, interested
in empirical data about the effectiveness of a tool able to replace thread sleeps from existing
Selenium WebDriver test suites; Software Testers and Project/Quality Assurance Managers, in-
terested in evidence data about the benefits of adopting SLEEPREPLACER in their companies.

The experimental objects, used to experiment SLEEPREPLACER are four test suites associated to
four web applications described in the next section.

5.5.2 Experimental Objects

To validate the proposed tool, several web applications and the corresponding test suites have
been used. We used a large, medical web application (PRINTO) and three small open source
web applications (Addressbook, Collabtive, PPMA). Table 1 summarizes the main properties of
the considered test suites. All the test suites are written in Java, use TestNG as testing framework
and Selenium WebDriver to interact with the AUT.
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Application Test classes test methods Thread sleeps Lines of code
PRINTO 17 169 146 10166
Collabtive 40 40 69 3108
Addressbook 27 27 10 2155
PPMA 23 23 82 2449

Table 5.1: Properties of the experimental objects

The PRINTO test suite has been developed in the context of a joint academia-industrial project
by several junior Testers [OLRV21]. It has been also carefully refined so the source code quality
is quite high. Moreover, it is executed automatically, every night, from several months without
presenting significant problems. On the contrary, the other three test suites, have been devel-
oped/refined by PhD students in the context of academic research (in particular the preliminary
versions have been developed in the context of an empirical study [LCRT13] and then refined
in further works such as [OLR+21b]). They are also of good quality but they have not been so
refined over time, as in the case of the PRINTO test suite. Let us provide some additional details
on the web applications under test and the corresponding test suites.

The Paediatric Rheumatology INternational Trials Organization (PRINTO)3 is an international
academic research network that co-ordinates international clinical trials in children with rheumatic
and auto-inflammatory diseases. To collect information about patients from more than 500 cen-
ters worldwide, PRINTO has developed a large multi-page web application, written in PHP and
JavaScript (approximately 100k PHP lines of code), mostly composed of forms that must be
filled by the user (i.e., typically medical researchers). PRINTO test suite is composed by 169
test methods and 82 test fixtures, for a total of 251 test methods, and it is designed following the
Page Object pattern. Moreover, some of the test methods are parametric: this means that they
are executed multiple times with different input data during a single execution of the test suite.
In total, 551 methods are executed for each run of the test suite. The original test suite we used
in this experiment contains 146 thread sleeps.

Addressbook4 is an open source web application for contact management, that allows to store
phone, address and birthday of user’s contact list. It is written in PHP, uses MySQL as database
and its test suite is composed by 27 test methods. The test suite contains in total 10 thread sleeps.

Collabtive5 is an open source web application for project management for small to medium sized
businesses. It enables to manage the lifecycle of a project, that can be divided in tasks assigned
to the different users. It is written in PHP and its test suite is composed by 40 test methods, that
contain 69 thread sleeps.

3PRINTO https://www.printo.it/
4Addressbook https://sourceforge.net/projects/php-addressbook/
5Collabtive https://sourceforge.net/projects/collabtive/
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PPMA (PHP Password Manager)6 is an open source web application, written in PHP, that allows
to store passwords for different services. Its test suite is composed by 23 test methods, that
contain 82 thread sleeps.

5.5.3 Research Question, Metrics, and Procedure

Our study aims at answering the following four research questions:

RQ1: How many thread sleeps can SLEEPREPLACER replace?

To answer our research question RQ1, it is necessary to count the original number of thread
sleeps contained in each test suite associated to the selected web applications. Then, we have
to count how many of them are replaced by SLEEPREPLACER with explicit waits relying on the
rules R1, R2, and R3 described in Section 5.4.2. Finally, we compute the proportion of thread
sleeps replaced by SLEEPREPLACER out of the original total. Thus, the metric used to answer
this question is the percentage of thread sleeps replaced.

RQ2: How long does it take SLEEPREPLACER to replace the thread sleeps?

To answer our research question RQ2, it is necessary to measure the execution time required by
SLEEPREPLACER for replacing the thread sleeps. As a final measure, we provide the average
time (expressed in minutes) for each test suite required by SLEEPREPLACER to complete each
individual thread sleep replacement.

RQ3: How much is the reduction of human effort using SLEEPREPLACER?

To answer our research question RQ3, it would be necessary to have the time required for a
human Tester to perform the replacement of the thread sleeps with and without SLEEPREPLACER
and computes the percentage of reduction. Unfortunately, not having available these data and not
being able to design an experiment with experienced Testers specifically to answer this research
question, we decided to provide an estimate-based answer. Basically, based on historical data we
computed the average time a Tester takes to replace a single thread sleep. Since the execution
of our tool takes place with negligible human effort (in background), we considered as human
effort only that deriving from the thread sleeps that SLEEPREPLACER was unable to replace.
Subsequently, we computed the percentage of reduction comparing it to the total time calculated
by multiplying the estimated time of a single replacement by the total number of thread sleeps
contained in the original test suite.

RQ4: What is the effect of the STILE thread sleeps replacement on the overall test suite execution
time?

To answer our research question RQ4, it is necessary to measure the execution time (in min-

6PPMA https://github.com/pklink/ppma
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utes) of each test suite before and after the thread sleeps replacement (i.e., before and after the
execution of SLEEPREPLACER). In this way, we can appreciate any benefits in terms of time
reduction.

5.5.3.1 Settings for each Web Application

To run the experiment, we simply provided the four test suites as input to SLEEPREPLACER and
waited for the run to finish.

In the PRINTO case, the large industrial test suite, it was sufficient just one validation run since
we knew that the test suite was stable (as detailed in the answer to RQ3, we asked an independent
Tester to replace all the thread sleeps for a previous version of PRINTO, and he rarely reported
flakiness problems due to replacing the thread sleeps with explicit waits), thus we were able to
run the tool and produce a valid test suite, without flakiness (note that a single run, when adopting
the PO pattern, often implies multiple thread sleep validations as described below).

However, this was not the case for the other test suites since we did not have insights about the
flakiness behavior of the test methods when the thread sleeps are replaced. In real industrial
cases, this info is generally known (at least as an estimate) as human Testers have an idea of the
flakiness behavior of their test suites. We tried to derive this information by manually eliminating
about 10% of each application’s thread sleep. The results are described for each web app in the
following.

In the case of Collabtive, we needed 20 validation runs, since the replacement of some thread
sleeps caused some test methods to fail non deterministically, and this happened very rarely. For
Addressbook we decided to do 20 validation runs, even if we did not expect flakiness problems,
since its execution time and number of thread sleeps is very low. Indeed, we have been able
to run the tool with 20 validation runs for each thread sleep in just 37 minutes. Finally for
PPMA, since it had many more thread sleeps (82) and a longer execution time, we decided to set
SLEEPREPLACER with only 10 validation runs.

Two reasons that can explain the difference in terms of number of validation runs, between
PRINTO and the open source web applications, are the following: a) the test suite quality is
different, indeed as already said, the PRINTO test suite was carefully developed during a joint
industrial project and is executed daily while the other three test suites were produced only for
scientific purposes; b) the PRINTO test suite adopts the PO design pattern while the other Web
applications do not. Thus, in the case of the PRINTO test suite the thread sleeps are validated
multiple times (even with a single test suite run), since the thread sleeps are inside the methods
of the POs and there are multiple test methods calling them, while for other applications only
once.

As a general guideline, given that the execution time is machine time (and not by far more costly
human time), it would be advisable to repeat the validation as many times as possible, in order
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to minimize the probability of introducing flakiness.

For what concerns dependency management, PRINTO, the large, industrial test suite did not have
dependencies, while the other three test suites did. We said that we have two options to run a
dependent test method t during validation: 1) we can run all the test methods required to satisfy
dependencies or 2) save the state required by t to run correctly, and restore it when the tools
needs to run t. Since we had all the three applications under test installed in Docker containers
and it is a more efficient solution, we opted for the second choice to manage dependencies in
Collabtive, Addressbook and PPMA test suites.

Finally, we ran all the experiments on a laptop running Windows 10 with Intel Core i3 10110U
CPU (maximum clock 4.10 GHz), 16 GB of RAM and SSD hard drive.

5.5.4 Results

RQ1: SLEEPREPLACER Effectiveness in Replacing the Thread Sleeps

Table 5.2 shows: (1) the number of thread sleeps present in the various test suites for the four
considered web applications (column Total), (2) the number of thread sleeps successfully re-
placed by SLEEPREPLACER (column Replaced #), and finally (3) the percentage of the replaced
thread sleeps with respect to the total number of thread sleeps (column Replaced %).

In two cases out of four (i.e., for the Addressbook and PPMA web apps), the tool was able
to successfully replace all the thread sleeps with the appropriate explicit wait. The minimum
effectiveness of SLEEPREPLACER was reached in the case of Collabtive where 56 out of 69
thread sleeps were replaced (corresponding to a still satisfying 81%). Finally, looking at the
complex industrial PRINTO case study, SLEEPREPLACER was able to manage 133 thread sleeps
out of 146 (91%).

Application Total Replaced
# %

PRINTO 146 133 91%
Collabtive 69 56 81%
Addressbook 10 10 100%
PPMA 82 82 100%
Total 307 281 92%

Table 5.2: Number of thread sleeps replaced by SLEEPREPLACER on the four considered apps

Let us now analyze why in two applications SLEEPREPLACER was not able to replace all the
thread sleeps. In the case of PRINTO, we observed 13 cases in which the tool was not able to
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complete the replacement. We analyzed the various cases and discovered that in most of the cases
the problem was caused by dynamically loaded page elements via JavaScript: in these cases, the
explicit wait inserted by SLEEPREPLACER automatically are useless because they should have
waited for another element rather than the one accessed directly by the test method. We give, in
the following, a description of one of those cases, in our opinion, is the most interesting case. In
PRINTO test suite, we have a test method that compiles a form with wrong values, tries to send
it and checks if the web application responds with a specific error message, that is generated by
a client-side script that checks the validity of the inserted data. SLEEPREPLACER replaced the
original thread sleep with an explicit wait waiting for the submission button to be clickable, and
this change broke the test method because the obtained error message was different from what
expected. This happened because the thread sleep gave the client-side validation script enough
time to complete, while the explicit wait, since the submission button is already clickable when
the form is compiled, submitted the form before the validation script has finished. This resulted
in a server-side error, that was different from the one expected by the test method, and thus the
test method failed.

Similarly in the case of Collabtive, 13 thread sleeps remained after the execution of SLEEPRE-
PLACER. In this case, differently from PRINTO, most of the remained thread sleeps did not
fail the test methods deterministically if replaced, but rather their replacement introduced some
flakiness. A common situation is the one represented in Listing 5.3: we have a click on a web
element, that causes the loading of another page, and we wait for it with a thread sleep. Then,
we have some interactions that write some text in a form (the text ”Task001”), and then another
click on the form submission button.

driver.findElement(By.xpath("//div[3]/div/a[1]")).click();
Thread.sleep(1000);
driver.findElement(By.id("title")).clear();
driver.findElement(By.id("title")).sendKeys("Task001");
driver.findElement(By.xpath("//fieldset/div[6]/button[1]")).click();

Listing 5.3: Code snippet from the Collabtive test suite

Our tool, as it was built, replaced the thread sleep with an explicit wait that waits for the element
located by the id ”title” to be clickable, but during the validation the test occasionally failed on
the last line (the click on the submission button). This happened because the form is loaded with
an animation that makes it appear from top to bottom, and sometimes, when the ”title” element
is ready the animation is not ended yet, so the submission button is not clickable, and clicking it
causes an ElementNotInteractableException to be thrown.

Thus, to answer RQ1, we can say that our tool SLEEPREPLACER is effective in managing the
automated migration — from thread sleeps to explicit waits — in the four considered test suites,
since it was able to complete the replacement in the 92% of the cases, on average.

RQ2: Time Required for Replacing the Thread Sleeps
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Table 5.3 shows the time required for replacing the thread sleeps using SLEEPREPLACER. In the
second column is reported for each web application the total time expressed in minutes required
by a complete execution of SLEEPREPLACER. Then in columns 3-4 and 5-6, we respectively
analyze the time required for replacing each thread sleep considering respectively all the thread
sleeps in the test suite and only the thread sleeps that SLEEPREPLACER successfully replaced.

Application
Total Total Replaced

Time # Time for # Time for
thread sleeps thread sleep thread sleep thread sleep

PRINTO 1396 146 9.56 133 10.50
Collabtive 261.2 69 3.79 56 4.66
Addressbook 36.6 10 3.66 10 3.66
PPMA 232.6 82 2.84 82 2.84
Total 1926.4 307 6.27 281 6.86

Table 5.3: Time required (in minutes) for replacing the thread sleeps using SLEEPREPLACER

By looking at the table, it is evident that the thread sleeps contained in the three smaller test
suites (i.e., the ones for the apps Collabtive, Addressbook and PPMA) required similar average
times to be processed (i.e., in the order of three minutes each). Indeed, the execution time of
SLEEPREPLACER computed considering all the thread sleeps is in the range of 2.84-3.79 minutes
for thread sleep; focusing only on the thread sleeps successfully replaced the time increases in the
range 2.84-4.66 minutes for thread sleep. The lower range value is stable on the 2.84 value since
corresponds to the case of PPMA where all the thread sleeps were successfully replaced. On the
other hand, for Collabtive the value increases from 3.79 to 4.66 since about the 19% of the thread
sleeps of the corresponding test suite are not replaced by SLEEPREPLACER (note that Collabtive
represents the worst case from this point of view, as described previously in Table 5.2).

On the contrary, in the case of the complex industrial PRINTO case study the time required
to replace each thread sleep is higher: indeed it ranges from 9.56 minutes for thread sleep,
when considering all the thread sleeps in the test suite, to 10.50 minutes for thread sleep when
considering only the successfully replaced thread sleeps. This can be explained for three reasons:
(1) the PRINTO test suite is based on the PO pattern and thus each thread sleep is contained in
the PO methods; this leads to higher validation time since multiple test methods can use such PO
methods and thus are executed; (2) the test methods are by far more complex than the ones of the
other three web applications, so their execution time is by far higher; (3) unlike the PRINTO test
suite, for the three open source web applications (Addressbook, Collabtive, PPMA), we saved
the application state required by each test method as explained in Section 5.5.3.1.

Thus, to answer RQ2, we can say that the time for successfully replace a thread sleep ranges
in the interval 2.84-10.50 minutes with an average value of about 7 minutes. The actual values
strongly depends by the complexity of the validation step (see Section 5.5.3.1), needed for assur-
ing that the test suite provided in output by SLEEPREPLACER do not present flakiness. This is
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true since the source code replacement executed by SLEEPREPLACER (step 2.(a), Figure 5.1) is
clearly really fast. However, we can say that the obtained execution times are absolutely accept-
able, since the transformation performed by SLEEPREPLACER has to be done only once, when
the test suite is restructured.

RQ3: Percentage of reduction of human effort using SLEEPREPLACER

Since we have not the manual thread sleeps replacement times, i.e. how long it would take
an independent Software Tester to manually complete the thread sleeps replacement task for
each web app, we decided to estimate such value using previous historical data. We have this
information only for a previous version of the PRINTO test suite (the one with 196 thread sleeps).
In that case, we asked to an independent Tester with three years of experience in Web testing to
substitute all the thread sleeps with explicit waits while recording both: (1) the time required for
actually replacing the thread sleeps (i.e., the time he actually worked on the test suite code) and
the validation time (i.e., the time spent to re-execute the test suite in order to check the absence of
flakiness). To substitute the 196 thread sleeps, the Tester spent: (1) 556 minutes on the code (i.e.,
2.84 minutes per thread sleep) and (2) 1309 minutes for the validation step (i.e., 6.68 minutes per
thread sleep). In total, the overall time required to replace the thread sleep from that version of
the PRINTO web app amount to 1865 minutes (i.e., 9.52 minutes per thread sleep).

In Table 5.4, we have used such computed values to estimate, and give an indication of, the
human effort required to execute manually the thread sleeps replacement for the four considered
applications (including PRINTO itself, since in this study we applied SLEEPREPLACER to a
different subsequent version).

Application Total Replacement Validation Total
thread sleeps Time Time Time

PRINTO 146 414.64 975.28 1389.92
Collabtive 69 195.96 460.92 656.88
Addressbook 10 28.40 66.80 95.20
PPMA 82 232.88 547.76 780.64

Table 5.4: Estimated Time required (in minutes) by a human Tester for executing the thread sleep
replacement task

In the case of the version of the PRINTO test suite used in this study, the total estimated is of
about 23h hours (1390 minutes); however since for a human Tester is by far more relevant to
assess the actual time required while working on the test methods source code (since the valida-
tion process can be mainly done in background while working on other tasks; this is particularly
true in case of longer and consecutive validation times), we can see that the time actually spent
decreases to about 7 hours (414 minutes). For the other applications the values are proportional
and still relevant: about 3 hours for Collabtive and 4 hours for PPMA, while Addressbook gets
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the shorter time of 28 minutes (but however, it is important to remember that it has only ten
thread sleeps).

Thus, to answer RQ3, we can say that from the estimate performed with an independent Tester
we found that replacing each thread sleep from the test code required, on average, about 3 min-
utes; while 10 minutes including also the validation time. In RQ1, we have said that SLEEPRE-
PLACER was able to replace overall 281 threads sleeps of 307 present in the four considered test
suites. The replacement has been carried out fully automatically, without human intervention.
Considering an average time required for a human of 3 minutes per thread sleep to replace (the
most conservative estimate reported before), we have that: 307 * 3 = 931 minutes (where 307
is the total number of threads sleep in the four considered apps) represents the time required by
a Tester to execute the complete thread sleep replacement task, fully manually, on the four test
suites; 26 * 3 = 78 minutes is instead the time required by a Tester to replace only the thread
sleeps that SLEEPREPLACER was unable to replace. So even if this estimate is rough, we can
conclude that the human effort reduction is very high (i.e., about 92%). Note that since in indus-
trial test suites the number of thread sleeps could be in the order of hundreds or even thousands,
the human effort savings due to the adoption of SLEEPREPLACER in that contexts would be
extremely relevant.

RQ4: Effect of the SLEEPREPLACER thread sleeps replacement on the overall test suite
execution time

Table 5.5 shows the execution time of the four considered test suites before and after replacing
the thread sleeps using SLEEPREPLACER. Columns 2 and 3 provide the total execution times
(measured in minutes), respectively, for the original test suites with thread sleeps and for re-
structured one. Column 4 gives the percentage of reduction achieved thanks to the explicit wait
adoption. From the table, it is evident that it is always advantageous to replace thread sleeps with
the explicit waits: however, the magnitude of such positive effect is quite different considering
the various web applications. The lower value has been observed in the case of Addressbook
with a reduction of the 13%, while the complex industrial PRINTO case study benefited more,
reaching a relevant 71% reduction. Note that having a 50% reduction (as in the case of PPMA)
means halving the execution times.

Application Time before replacement Time after replacement Reduction
PRINTO 126.23 37.11 71%
Collabtive 2.57 2.02 21%
Addressbook 0.72 0.63 13%
PPMA 2.13 1.02 52%

Table 5.5: Effect of SLEEPREPLACER on the Test Suites execution time (in minutes)
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The reason why the percentage reductions are so different lies probably in the fact that the number
and frequency of the thread sleeps (i.e., number of thread sleeps per LOCs) in the considered test
suites is not constant. Indeed, for instance Addressbook required only 10 thread sleeps to run
properly, while others like PPMA, even if of comparable complexity, required by far more thread
sleeps (in that specific case 82). Thus, assuming that the human Tester tuned optimally all thread
sleep values, clearly having replaced more thread sleeps led to a more relevant reduction in the
execution time. Indeed, explicit waits minimize automatically the time to wait, while when
adopting thread sleeps, it is necessary to leave a small additional time margin that allows to
manage any flakiness problems.

Thus, to answer RQ4, we can say that SLEEPREPLACER is able to produce test suites that
run always faster than their original counterparts. The benefits can vary a lot and depends on
thread sleeps frequency; in our experiment from a 13% to a 71% reduction. More in detail, the
magnitude of the percentage reduction, heavily depends on the initial impact of thread sleeps
time on the total execution time: the % of thread sleeps time with respect to the total execution
time of the test suite represents an upper bound for SLEEPREPLACER. Thus, in the cases where
the total sleep time is only a small fraction of the total test suite execution time, clearly, the
benefits of using SLEEPREPLACER are limited.

5.5.4.1 Discussion

In this subsection, we discuss the results obtained in our study, in order to highlight the benefits
that the adoption of SLEEPREPLACER can bring to the end-to-end testing process.

Results from RQ1 show that SLEEPREPLACER is able to replace automatically from 81% to
100% of the thread sleeps in a test suite. This is a strong point in favor of the adoption of
SLEEPREPLACER, since it tells us that the absolute majority of thread sleeps in a test suite can
be replaced automatically. Moreover, we obtained such results using only three replacement
rules; this has been done to maintain the approach as general as possible and to avoid ad-hoc
solutions tailored for the test suites used in the empirical evaluation. But in a real world scenario,
the Testers can easily add new replacement rules based on their specific knowledge of the test
suite, in order to reach a even higher replacement rate. However, the results from RQ4 show that
even the test suite with the lowest replacement rate (Collabtive, 81%) obtained a significant time
reduction (21%) from the use of SLEEPREPLACER.

Results from RQ2 highlight that the time to replace a thread sleep lies in the range of 2.84-10.50
minutes, with an average time of 7 minutes. The total times for replacing all the thread sleeps
in a test suite range from 1396 minutes (approximately 23 hours, for the PRINTO test suite) to
36.6 minutes. The high variability of total times depends on 1) the number of thread sleeps in
the test suite, 2) the presence of the Page Object pattern, and 3) the number of validation runs
required. If Testers want to employ SLEEPREPLACER to improve a test suite, they must keep
in mind these factors and try to estimate what the total time would be. However, even if the
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use of SLEEPREPLACER may become infeasible on very large, test suites, with this study we
shown that SLEEPREPLACER can be used not only on small test suites, but also on real-world,
medium-large sized test suites, as the PRINTO case.

Results from RQ3, although they are slightly hindered by the fact that the human time is only es-
timated, show that the adoption of SLEEPREPLACER can lead to great time savings with respect
to manual replacement of thread sleeps, when this task is faced. In fact, excluding validation
time (that can be done in background while doing other tasks), every test suite in our study re-
quires a human replacement time that goes from 28 minutes to 414 minutes. Moreover, besides
the reduction of the execution time of the test suite, another point in favor of the adoption of
SLEEPREPLACER is that manual work is error-prone, while our approach guarantees to produce
a working test suite even when SLEEPREPLACER is not able to replace some thread sleeps: in
fact, if the validation of a explicit wait fails, the original thread sleep is restored..

Finally, results from RQ4 tell us that SLEEPREPLACER achieves its goal, that is the reduction of
the test suites execution time. In fact, comparing the execution time of the original versions of the
test suites, with the time of the versions refactored by SLEEPREPLACER, it is possible to observe
a time reduction that goes from 13% to 71%. In our opinion, this is the strongest point in favor
of the adoption of SLEEPREPLACER, because even if the time-execution of SLEEPREPLACER
can be relevant, it is a ’one-shoot’ task, while the reduction of the execution time of the test suite
can be appreciated every time the test suite is executed and can bring to substantial savings in
developing environments where test suites are executed often.

5.5.5 Threats to Validity

The main threats to validity affecting an empirical study are: Internal, External, Construct, and
Conclusion validity [WRH+12].

Internal Validity threats concern possible confounding factors that may affect a dependent vari-
ables: in this experiment the number of replaced thread sleeps (RQ1), the time required to replace
them by SLEEPREPLACER (RQ2), the time required by a human Tester for executing the thread
sleep replacement task (RQ3), and the total test suite execution time (RQ4). Concerning RQ1
and RQ2, our tool is able to replace the thread sleeps with the explicit waits more used in prac-
tice. However, having test suite that requires different explicit waits would require to extend
SLEEPREPLACER to support them: note that SLEEPREPLACER supports this kind of extension
(basically it is sufficient to extend the rule list R), but this would impact on both RQ1 and RQ2
results. Concerning RQ3, as previously described, the whole calculation is based on an estimate
and therefore is an approximation of the true value. We were forced to do an estimation because,
in order to do a fair comparison, we could not replace the thread sleeps on our own, since we
already well knew the test suites in study. In order to perform a real comparison with fair data,
we would have needed experienced Testers but with no knowledge of our experimental objects.
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Concerning RQ4, as already describe in Section 5.5.3.1, the results are heavily related to the
level of optimization adopted by the Tester during the definition of the thread sleeps times. In
general, extending the wait times improve test suites stability but impact on the execution time.
The values found in the four considered test suite are, in our opinion, reasonable, therefore the
results obtained are generalizable to standard test suites.

External Validity threats are related to the generalisation of results. All the four test suites for
the web applications employed in the empirical evaluation of SLEEPREPLACER are realistic
examples covering a good fraction of the functionalities of the respective web apps. Moreover,
the test suite for PRINTO has been developed in the context of an industrial project and includes
251 test methods: so its complexity is in line with standard test suites for web applications of
average size.

Construct validity threats concern the relationship between theory and observation. Concerning
RQ1, RQ2, and RQ4, they are due to how we measured the effectiveness of our approach with
respect to the corresponding metrics. To minimize this threat, we decided to measure them
objectively, in a totally automated way. Concerning RQ2 and RQ4 that can be influenced by the
load of the computer executing respectively SLEEPREPLACER and the test suite, to minimise
any fluctuation, we averaged the obtained value three times. We have estimated that three times
is sufficient since we noticed that the variance is minimal. Concerning RQ3, the threat is that
the answer, being based on an estimate, could be prone to error. Another possible Construct
validity threat is Authors’ Bias. It concerns the involvement of the authors in manual activities
conducted during the empirical study and the influence of the authors’ expectations about the
empirical study on such activities. To make our experimentation more realistic and to reduce
as much as possible this threat, we adopted four test suites containing thread sleeps developed
independently from other people, and existing before the development of SLEEPREPLACER.
Moreover, such test suites were not used during the development of SLEEPREPLACER but only
for its validation, in order to avoid any influence on the SLEEPREPLACER implementation (e.g.,
including in SLEEPREPLACER ad-hoc solutions).
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Chapter 6

Conclusions

In this thesis, we faced the problem of test quality assurance in two different directions: 1)
enabling the parallelization of E2E Web test suites in presence of dependencies and 2) preventing
flakiness by using the proper waiting strategies for page elements loading.
In this chapter, we will summarize the achievements we reached and possible future works for
each research direction.

1. for the first research direction, we have presented STILE, a novel approach that parallelizes
the execution of E2E web test suites, minimizing their execution time while respecting
their dependencies. We evaluated STILE by comparing it against the sequential execution
baseline and an existing parallel strategy (i.e., Selenium Grid), using eight E2E test suites
of eight open source web applications. Experimental results show that STILE is able to
reduce the execution time of up to 75% w.r.t. sequential execution. When compared
with the Grid implementation, STILE outperforms it when the computational resources are
limited (i.e., 4 and 8 cores) while being comparable when more computational resources
are available (in relation to the complexity of the test suites to execute). Moreover, our
results show that STILE uses up to 54% less CPU time than the parallel execution based
on Grid, enabling a reduction in energy and computation costs as well as environmental
impact.

2. for the second research direction, we have presented SLEEPREPLACER, a tool-based ap-
proach able to automatically replace thread sleeps with explicit waits in E2E Selenium
WebDriver test suites without introducing novel flakiness. The effectiveness of the pro-
posed approach has been empirically evaluated using four test suites: one large industrial
test suite and three smaller test suites built for open source web applications. The empir-
ical evaluation conducted to validate our approach showed that SLEEPREPLACER is able
to replace from 81% to 100% of thread sleeps in a test suite, resulting in a reduction of the
execution time of the test suite that goes from 13% to 71%. The time required to replace a
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single thread sleep goes from 2.84 minutes to 10.50 minutes, and since this is a completely
automated process, the use of SLEEPREPLACER can lead to great savings of human work.

These two research directions aim at the main goal of improving efficiency and reliability of E2E
Web testing. In particular, the first research direction aims to enable test parallelization in pres-
ence of dependencies, a goal that we consider particularly important since, according to existing
literature, test parallelization is heavily underused [CMd17] although it can give significant im-
provements in reducing the execution time of the test suites. Moreover, since E2E Web testing
can be very time consuming [BKMD15, GD13, Las05] we believe it is a kind of testing that can
particularly benefit from parallelization.

With the second research direction we try to prevent test flakiness, a serious problem that affects
automated testing and in particular E2E Web testing. Other than the main goal of improving the
stability of the execution of the test suites, with this research direction we intend to enable the
use of dependency detection techniques that require to execute the test scripts and check their
result, and that cannot work correctly in presence of flakiness.

6.1 Future work

In this section, we present some possible future works for the projects presented in this thesis.
A future work that involves both projects is to make the implementations more generalizable,
i.e. to develop tools that can support test suites written in different languages. In fact, both
STILE and SLEEPREPLACER at the moment only support Java test suites that use the Selenium
WebDriver framework. But in recent years, JavaScript-based testing, supported by frameworks
such as Cypress1 is becoming more and more used for testing modern web applications.

In the remainder of this section, we will now present some possible future works specific for
each research direction:

1. for the first research direction, we will consider the problem of estimating the optimal num-
ber of computation units required for a given test suite execution, in order to allow further
optimization of the parallel test suite execution. Moreover, we also want to try STILE with
business-grade, large test suites, to see if the benefits seen with relatively small test suites
can scale to higher levels. Another interesting possibility for a future work is to apply our
approach to different kinds of testing other than E2E Web testing. In fact, although we
explained in this thesis that the benefits of STILE (enabling test parallelization in presence
of dependencies and reducing the execution time of the test suite) are particularly needed
in the E2E Web testing field, the key idea behind STILE can also be applied to different

1Cypress: https://www.cypress.io/
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kinds of testing. Finally, we want to further investigate the relation between the depen-
dency graph of the test suite and the execution time required to run it, in order to more
accurately predict such execution time. Although in Research Question 4 we give an esti-
mated prediction of possible performance improvement, our methodology requires to run
the test suite in parallel using STILE at least twice, in two different hardware configurations
(4 and 8 cores). It would be useful to be able to produce an estimate of the execution time
of a test suite using STILE before running it in STILE, but only looking at the properties of
the test dependency graph of the test suite, its corresponding prefix tree and the sequential
execution time of the test suite (that we think it is fair to assume it is already known to the
developers). During the empirical evaluation of STILE, we tried to perform a multivariate
regression to understand how and if properties of the test suites (i.e., the independent vari-
ables) provide a significant contribution to the time saving (i.e, the dependent variable) that
can be achieved with STILE. As dependent variable, we used the angular coefficient of the
regression line passing through the execution time of the test suite at different number of
cores (i.e., 4, 8, 16 and 32 cores). As independent variable, we used different properties of
the test suite, the test dependency graph and the prefix tree, such as the number of nodes
in the prefix tree, the number of leaves in the prefix tree, the execution time of the longest
warranted schedules and many others. Unfortunately, the results of the multivariate re-
gression we performed were not statistically significant, but we hope that in the future, by
using more test suites in the empirical evaluation and considering different properties of
the test suites, we will be able to statically estimate the execution time of a test suite using
STILE.

2. for the second research direction, we plan to add page inspection capabilities to SLEEP-
REPLACER, enabling it to try some additional refactoring attempts. In fact, a limitation of
SLEEPREPLACER is that it relies only on the information available in the test suite code,
that in some cases is insufficient to correctly replace a thread sleep. Furthermore, we would
like to empower SLEEPREPLACER with a mechanism that allows to reach a certain pre-
defined level of stability in the final test suite produced by SLEEPREPLACER. Indeed, as
seen in the empirical study section, the higher the number of validation runs, the greater
is the guarantee that the novel version of the test suite is free from flakiness. The idea
would be to add an estimation mechanism to SLEEPREPLACER able to estimate the time
required for running the validation reaching a certain desired stability threshold (e.g., no
flakiness in at least the 99% or 99.9% of the executions). Finally, another possible exten-
sion of SLEEPREPLACER could be to add the functionality that allows to calculate also the
maximum timeout required by explicit waits.
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