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Abstract

This thesis presents a comprehensive study of tactile sensing, particularly the problem
of active texture perception. It includes a brief introduction to tactile sensing technology
and the neural basis for tactile perception. It follows the literature review of textural percep-
tion with tactile sensing. I propose a decoding and perception pipeline to tackle fine-texture
classification/identification problems via active touch. Experiments are conducted using a
7DOF robotic arm with a finger-shaped tactile sensor mounted on the end effector to per-
form sliding/rubbing movements on multiple fabrics. Low-dimensional frequency features
are extracted from the raw signals to form a perceptive feature space, where tactile signals
are mapped and segregated into fabric classes. Fabric classes can be parameterized and
simplified in the feature space using elliptical equations. The results of experiments with
various control parameters are compared and visualized to show that different exploratory
movements have an apparent impact on perceived tactile information. It implies the possi-
bility of optimizing robotic movements to improve the textural classification/identification
performance.



Contents

List of Figures vii

List of Tables x

Nomenclature xi

1 Introduction 1
1.1 Human Touching Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Neural Basis of Texture Perception . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 High-Threshold Mechanoreceptors . . . . . . . . . . . . . . . . . . 5
1.2.2 Low-Threshold Mechanoreceptors . . . . . . . . . . . . . . . . . . 5

1.3 Tactile Sensors for End-effectors . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Piezoelectric Sensors . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Piezoresistive Sensors . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Capacitive Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.4 Optical Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Texture Recognition and Material Classification . . . . . . . . . . . . . . . 16

2 Related Works 25
2.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Spatial Features as Images . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Temporal and Frequency Features . . . . . . . . . . . . . . . . . . 30

2.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Decoding Tactile Signals 34
3.1 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



Contents vi

3.1.1 Discrete Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Fourier Basis Representation . . . . . . . . . . . . . . . . . . . . . 37

3.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Classification Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Ellipsoid Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Robotic Sliding Experiment 44
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 CPM-Finger Capacitive Tactile Sensor . . . . . . . . . . . . . . . . 44
4.1.2 Robotic Sliding Experiments . . . . . . . . . . . . . . . . . . . . . 44
4.1.3 Fabric Slide Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Analyses and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Conclusion 69
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Final Verdict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Bibliography 73



List of Figures

1.1 Representative 3D images of sinusoidal-patterned surfaces used in the exper-
iments of [1]. The astonishing results show that the minimum amplitude that
can be distinguished by the human finger is merely 13nm. It seems veridical
that with the coarse fingerprint structure in the sub-millimetre scope, the fin-
ger can dynamically detect micro-structures many orders of magnitude finer
and nano-tech can be very promising in haptic and tactile technology. . . . 4

1.2 Two graphs from [2] show the lamination of mammal skin and the locations
of several major types of LTMRs. . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Experimental scheme [3] of tactile data collection when objects are grasped.
A data acquisition board (DAQ; NI9229, National Instrument Co., Ltd USA)
is used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 A sample of time response and frequency response of a cup in hold when
sweeping the input signals to the actuator-sensor pair [3]. . . . . . . . . . . 13

1.5 [4] presented a soft robot hand capable of grasping different objects with
tactile feedback from the tactile sensors installed on the fingertips. . . . . . 19

1.6 Graphs of (a) force versus resistance from 0 N to 10 N and (b) the resistance
under constant force [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7 Asynchronously Coded Electronic Skin (ACES) is a neuromorphic (event-
driven) skin-like tactile sheet [5] that generates spiking signals with a de-
coding system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.8 CPM-Finger tactile sensor . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.9 Tactile signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.10 GelSight [6] is a vision-based optical tactile sensor. It provides high spatial

resolution and is capable of measuring both normal and shear force. . . . . 23
1.11 The iteration of TacTip (from left to right) [7]. It is another implementation

of a vision-based tactile sensor. . . . . . . . . . . . . . . . . . . . . . . . . 23



List of Figures viii

1.12 SynTouch BioTac® is a multi-modal tactile sensor using an incompressible
liquid as an acoustic conductor to convey vibrations from the skin to a wide
bandwidth pressure transducer [8]. It excels in detecting vibration (as small
as a few nanometers at 3̃30Hz). . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 Texture images captured by a GelSight sensor for 40 material in [9]. . . . . 28
2.2 An example from [9] illustrates that two textures that resemble microstruc-

tures can differ drastically in macrostructures. (a) and (b) are two textures
and (c) and (d) are their histograms of LBP values respectively. . . . . . . . 29

2.3 Illustration of the CNN-LSTM structure [6]: (a) The multi-label classifi-
cation network for recognizing different properties from a single GelSight
image. (b) The neural network for recognizing different properties from
GelSight video. (c) The network for evaluating whether the gripping point
would generate effective tactile data. . . . . . . . . . . . . . . . . . . . . . 30

2.4 The experimental setup for fabric recognition in [10]. . . . . . . . . . . . . 32
2.5 Comparison of surface texture recognition methods with different tactile

sensors and recognition algorithms [10] (SVM, support vectormachine; MLP,
multilayer perceptron; RDF, random decision forest; ELM, extreme learn-
ing machine; LSTM, long short-term memory; PSD, power spectral density;
FFT, fast Fourier transformation; AUC, the area under the curve). . . . . . 32

3.1 A graph of weight function 𝑤 = 𝑒−𝑑(q′,q′
𝑖 ) with a threshold 𝑊 = 0.2. In-

creasing 𝑊 will drastically shrink the cluster of the textural class in the
feature space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Fabric samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Robot experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Feature space with 3 textural classes. . . . . . . . . . . . . . . . . . . . . . 54
4.4 Feature space with 4 textural classes. . . . . . . . . . . . . . . . . . . . . . 55
4.5 Feature space with 5 textural classes. . . . . . . . . . . . . . . . . . . . . . 56
4.6 Feature space with 6 textural classes. . . . . . . . . . . . . . . . . . . . . . 57
4.7 Feature space with 7 textural classes. . . . . . . . . . . . . . . . . . . . . . 58
4.8 Number of (IPCA) features VS. Classification accuracy . . . . . . . . . . . 59
4.9 Confusion matrix of 7-fabric classification . . . . . . . . . . . . . . . . . . 60
4.10 Classification accuracy with different parameters . . . . . . . . . . . . . . 61



List of Figures ix

4.11 The feature space with samples captured at pressure value 120 (the average
reading of all capacitive taxels on the tactile sensor, not the physical pressure). 62

4.12 The feature space with samples captured at pressure value 150 (the average
reading of all capacitive taxels on the tactile sensor, not the physical pressure). 63

4.13 The feature space with samples captured at pressure value 180 (the average
reading of all capacitive taxels on the tactile sensor, not the physical pressure). 64

4.14 The feature space with samples captured at pressure value 210 (the average
reading of all capacitive taxels on the tactile sensor, not the physical pressure). 65

4.15 The feature space with samples captured at pressure value 250 (the average
reading of all capacitive taxels on the tactile sensor, not the physical pressure). 66

4.16 Feature space with different pressures . . . . . . . . . . . . . . . . . . . . 67
4.17 Fabric distributions of varied pressures . . . . . . . . . . . . . . . . . . . . 68



List of Tables

1.1 These four primary types of cutaneous mechanoreceptors, innervated in dif-
ferent layers of skin, combine together to provide tactile perception. . . . . 7

3.1 The first column shows the confidence region, and the 2rd and 3nd columns
show the approximated 𝑘. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Table of sliding parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 48



Nomenclature

Acronyms / Abbreviations

ACES Asynchronously Coded Electronic Skin

ANN Artificial Neural Network

CDC Capacitance-to-Digital Converter

CNN Convolutional Neural Network

SD Standard Deviation

HTMR High-Threshold Mechanoreceptor

IPCA Incremental Principal Component Analysis

k-NN k-Nearest Neighbour

LBP Local Binary Pattern

LSTM Long Short-Term Memory

LTMR Low-Threshold Mechanoreceptor

DFT Discrete Fourier Transform

PDF Probability Density Function

PVDF Polyvinylidene Fluoride

RA Rapidly Adapting (Receptors)

SA Slowly Adapting (Receptors)

SNN Spiking Neural Network

SVM Support Vector Machine



Chapter 1

Introduction

This introductory chapter provides a brief overview of tactile sensing and its techno-
logical background. It starts with a general review of the human touching sense and how
robotic tactile sensing takes reference from it. Then it focuses on the sensing technology
that provides the implementation of tactile sensors. Several types of tactile sensors are pre-
sented and compared to illustrate their pros and cons, along with a concise introduction to
mechanical and electronic mechanisms so that readers can have a better understanding of
how the sensors capture contact information and how physical properties are represented by
tactile data. At the end of this chapter, some common use cases of tactile sensing in robotic
applications are highlighted. A preface to the usage of tactile sensors in texture recognition
and object identification follows to provide an intuition of the potential advantages and the
complementary roles of touch with respect to vision.

1.1 Human Touching Sense
Coincidentally 2021 Nobel Prize in Physiology and Medicine was awarded to David

Julius of the University of California, San Francisco and Ardem Patapoutian of Scripps Re-
search in La Jolla, California, ”for their discovery of the fundamental ion-channel sensors for
temperature and pressure”. This highly condensed tribute reveals the essence of touch to per-
ceive the contact properties: temperature and pressure. The nature of detecting the physical
properties of contact environments differentiates touching from the visual, auditory, olfac-
tory, and taste senses. To better understand the uniqueness of touch and to investigate the
significance and necessity of touch, we raise the following questions:

1. What does touch really sense?
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2. Why do we need the sense of touch?

3. How do robotic systems benefit from touch?

Answering these three questions begins to form a clearer picture of touch and the biological
background of tactile sensing.

Touch refers to the process where the mechanoreceptors receive external stimuli and
generate electric signals in the body. Several types of tactile afferents transmit the encoded
signals into the cortex for perception. Touch perception signifies the process of organizing
and interpreting the incoming sensation information, mainly in the brain. One should find
no difficulty distinguishing touching from other senses like vision, hearing, smell, and taste
as they respond to different forms of stimuli. Vision detects light, hearing deals with sound
(fundamentally mechanical vibration of air), and smell and taste are responsive to chemical
inputs in the long-range and short-range, respectively. Touch instead converts the physical
properties including temperature, pressure, and vibration into biological electrical signals
[11]. These properties are mostly not directly viable to other senses, yet are critical in our
interaction with external environments.

Touch, as its dictionary definition suggests, brings a bodily part into contact, especially
to perceive through the tactile sense and mainly refers to the part covered with skin. Skin
exposed to air and water can feel ambient warmth and coolness in terrestrial and marine
environments. Fingertip sliding on the fabrics, metals, and wood can distinguish different
textures beyond visibility. Sharp objects that punch into the skin can cause pain; meanwhile,
the sensation of pain helps us avoid severe damage in many cases. These experiences exem-
plify the uniqueness and indispensibility of the touching sense, but they are reticent to the
constant mutual effect of the percipient and the touched during the sensing process. When
we are touching to feel, the object is consistently altered physically by our sensory unit (the
bodily part covered with skin) and vice versa. For example, when we press the finger against
the fabrics and slide onto the surface, the feelings of texture vary with both the pressing force
and the sliding speed[12]. This is because both the skin and the fabrics are deformed during
the pressing and sliding interactions, and hence different tactile signals are generated accord-
ingly. In addition, sliding with sufficiently fast speed and sufficiently large normal pressure
raises the temperature of both the finger skin and the fabric surface, leading to a temporary
sensation of warmth. Such indestructible and tight connectivity between the sense of touch
and the touching action differs from other senses. Vision only brings in the light reflected
from the objects, which indicates that there is no direct interaction between the observant
and the observed at the moment of seeing. The same is true for the auditory sense, and our
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hearing of the sound does not require a mutual effect between the ears and the source. This
characteristic is one of the roots of complexity in understanding touch, but inversely opens
a new gate for active touch perception, which I will discuss later.

The above discussion leads us to two keywords of the sense of touch: contact and in-
teraction. Contact is the physical condition necessary to activate the touching sense, and
interaction is the actual object we feel. Here, it needs to be highlighted that it is the entire
interaction rather than merely the substance in contact that we are feeling. This statement
implies that what we feel by touch is strongly dependent on how we interact with the objects,
and the properties we perceive by touch are not directly mapped from the physical properties
of the objects in contact.

Being able to feel fine-geometry-induced vibration also extends a human’s capability
of perceptual dimension. Experiments [1] showed that humans could detect unwrinkled ref-
erence surfaces with a wavelength of 760 nm and the pattern amplitude was only 13 nm. In
comparison, objects 0.04mmwide (about the diameter of a fine human hair) are barely distin-
guishable by sharp eyes. More recent research [13] came to the more astonishing conclusion
that by adapting normal force and sliding velocities, untrained individuals can discriminate
surfaces that differ only by a single layer of molecules.

Although secrets of human touch are far from fully uncovered, these preliminary dis-
coveries about the sense of touch greatly inspired robotic scientists to mimic the capability of
touching. Touching as an interactive sensing modality provides an alternative to circumvent
some technical difficulties of visual sensors including vulnerability to poor and extreme im-
minence and unresponsiveness to monochrome scenes, and moreover, opens a gate of acute
and meticulous manipulation, particularly for robotic hands (or other dexterous manipula-
tors). Advanced robot systems such as humanoids require the ability to control more intricate
interactions (e.g. whole hand or whole arm grasping and manipulation, gait stability control,
etc.) [14]. Such tasks require constant monitoring of the robot’s contact with the physical
surroundings, in both expected and unforeseen positions and forms. Skin-like sensors, not
only on the end effectsors/executors but also throughout the body, are beneficial to dealing
with such complex conditions of physical contact to allow more intelligent, effective, and
safer interactive strategies.

1.2 Neural Basis of Texture Perception
The perception of touch sensations depends on specific mechanoreceptors that fall into

two general categories: low-threshold mechanoreceptors (LTMRs) responding to innocuous
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Figure 1.1 Representative 3D images of sinusoidal-patterned surfaces used in the experi-
ments of [1]. The astonishing results show that the minimum amplitude that can be dis-
tinguished by the human finger is merely 13nm. It seems veridical that with the coarse
fingerprint structure in the sub-millimetre scope, the finger can dynamically detect micro-
structures many orders of magnitude finer and nano-tech can be very promising in haptic
and tactile technology.
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mechanical stimulation and high-threshold mechanoreceptors (HTMRs) reacting to harmful
mechanical stimuli [15].

1.2.1 High-Threshold Mechanoreceptors
HTMRs are also known as nociceptors, uniquely tuned to stimuli that cause damage

or tend to cause damage. Nociceptors are part of the protective mechanism of the sensory
system, responding to noxious heat or cold stimuli and noxious pressure. Since the sensation
of pain is beyond the scope of this thesis, readers interested in HTMRs can find a detailed
review in [15, 16].

1.2.2 Low-Threshold Mechanoreceptors
As suggested by their names, LTMRs are mainly active when weak and innocuous

stimuli are presented to the skin. Some LTMRs are activated by thermal/cooling stimuli.
Other LTMRs firing patterns to sustained mechanical stimuli vary from slow (SA) to rapidly
adapting (RA). Slowly-adapting (SA) mechanoreceptors detect light touch, skin stretch, and
warmth. Rapidly adapting (RA) mechanoreceptors are mainly responsible for nociception,
(relative) temperature perception, and light touch. Four major types of LTMRs are listed
in the table 1.1. Merkel’s disks are unencapsulated and detect light touch. Meissner’s cor-
puscles, Ruffini endings, Pacinian corpuscles, and Krause end bulbs are all encapsulated.
Meissner’s corpuscles are mostly responsive to low-frequency vibration. Ruffini endings are
mainly activated for stretch, deformation within joints and warmth. Pacinian corpuscles are
primarily sensitive to transient pressure and high-frequency vibration. The bulboid corpus-
cles (end-bulbs of Krause) respond to coldness. Figure 1.2 shows the anatomical structure
of the mammal skin and the locations of these four major types of LTMR in the skin layers.

Slowly Adapting Receptors

Slowly adapting receptors refer to the LTMRs that retain firing during sustained inden-
tation. They can be further categorized into 2 subgroups, slowly adapting type I and II (SAI
and SAII), differentiated mostly by their regularity of the firing rates. SAI fibres show a
more erratic inter-spiking interval than SAII. Other differences include the sizes of receptive
fields, tuning properties and tonic firing rates [17].

SAI-LTMRs, innervating both hairy and glabrous skin, are activated by forces exerted
on the skin with sustained and graded dynamic response followed by bursting at irregular in-
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(a) This is an anatomical illustration of mammal skin, which contains 3 layers:
an epidermis, a dermis and a hypodermis.

(b) This simplified graph shows several major types of LTMRs and their corre-
sponding locations in the skin.

Figure 1.2 Two graphs from [2] show the lamination of mammal skin and the locations of
several major types of LTMRs.
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Physiological subtype LTMR subtype Location Sensitive
Stimulus

SAI Merkel’s disks Epidermis Indentation
SAII Ruffini’s ending Dermis (also in

ligaments and
tendons)

Strech

RAI Meissner’s
corpuscles

Dermal papillae Low-frequency
vibration (circa

30-50Hz)
RAII Pacinian

corpuscles
Deep dermis High-frequency

vibration (circa
250-400Hz)

Table 1.1 These four primary types of cutaneous mechanoreceptors, innervated in different
layers of skin, combine together to provide tactile perception.

tervals proportional to indentation depths [18]. They are maximally responsive to geometric
shapes like corners, edges and curvatures of objects with a very low threshold of skin defor-
mation of less than 15 𝜇m for humans. Besides, the high spatial resolution of up to 0.5mm
makes the SAI fibres very perceptive to the position and velocity of the stimuli. When the
skin is not in contact with objects, SAI-LTMRs exhibit almost no responses and they are
rather blunt to skin stretch. Such characteristics allow for the transmission of an acute image
of tactile stimuli through SAI-LTMRs.

In 1875, the German anatomist Friedrich Sigmund Merkel first provided a histologi-
cal description of an epidermal touch cell connecting with afferent fibres in vertebrate skin.
Subsequently, they were named after him to be Merkel cell/disk. These cells cluster together
to form a Merkel cell-neurite complex as the cellular substrate of SAI-LTMRs [19, 20, 21].
In fact, the Merkel cell-neurite complex shows some characteristics reminiscent of chem-
ical synapses, implying that the Merkel cell serves as a sensory receptor passing signals
through synaptic contact with SAI-LTMRs [22]. The latest research [23] finds that Merkel
cells are active in tuning mechanosensory responses to facilitate high spatiotemporal acuity.
Moreover, there exists a division of labour in the Merkel cell-neurite complex: Merkel cells
respond to static stimuli, including pressure, while sensory afferents convey dynamic stimuli
like moving gratings.

SAII-LTMRs, similar to SAI-LTMRs, keep firing spikes with a sustained indentation
on the skin. However, their interspike intervals are much more regulated than SAI-LTMRs.
SAII-LTMRs are less populated in skin than SAI-LTMRs but their receptive fields are circa
5 times larger. SAII-LTMRs’ sensitivity to skin indentation is only about 15% as the SAI-
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LTMRs’ but they aremore active when the skin is stretched. [24] discovers that SAII-LTMRs
convey a response to skin stretch with negligible interference from the textures of the object
in the hold. These unique features suggest that SAII-LTMRs mainly play two roles in tactile
perception: hand shape and finger conformation detection, and perceiving the motion of
objects in hold when it causes skin stretch.

Unlike the well-describedmorphology ofMerkel cell-neurite complex for SAI-LTMRs,
there is only a hypothesis that SAII responses are generated fromRuffini endings, also known
as bulbous corpuscles, lacking solid evidence to verify.

Rapidly Adapting Receptors

Another type of physiologically defined mechanoreceptor is the rapidly adapting (RA)
receptor. Contrary to SA receptors, they react well to objects moving along the skin but
less well to static indentation. Similar to SA-LTMRs, RA-LTMRs also have two subgroups:
RAI- and RAII-LTMRs. In brief, their responsiveness to vibrations combines into a contin-
uous frequency spectrum, with RAI covering relatively smaller receptive fields and sensitive
to low-frequency vibrations (1–10 Hz), including those generated by tapping and rubbing;
while RAII is related to larger receptive fields and activated mainly by high-frequency vibra-
tions (from 80–300 Hz) [15, 25]. One signature of RA-LTMRs is that they only fire action
potentials when the physical contact initiates and finalizes.

RAI-LTMRs innervating the hand was initially associated with the feeling of rapid
skin movement, i.e. ”flutter”, and therefore the first function ascribed to RAI-LTMRs was
detection and scaling of low-frequency vibrations [26]. However, RAI-LTMRs possess other
response properties likely to be specialized for a unique function in grip control. Compared
to SAI-LTMRs, RAI-LTMRs are about four times more sensitive, yet respond with much
less spatial acuity to stimuli moving across their receptive fields. RAI-LTMRs also respond
consistently and with very short latency to skin stimulation. These properties entitle RAI-
LTMRs to respond very quickly to subtle motions, which may be essential for sensing when
a gripped object slips. Lastly, their relative insensitivity to static force and low-frequency
vibration may enable RAI-LTMRs to extract signals related to object movement and distin-
guish them from stimuli related to the forces required to grip the object [15]. Physiological
profiles of SAI- and RAI-LTMRs suggest that these afferents play complementary roles in
discriminating tactile stimuli. SAI-LTMRs, activate with high spatial resolution but exhibit
relatively low sensitivity. On the other hand, RAI-LTMRs, exhibit greater sensitivity but
sparser spatial resolution [24]. It is therefore likely that SAIs and RAIs combine to encode
a more complete picture of tactile space.
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RAII-LTMRs features extreme sensitivity and congruent firing to high-frequency vi-
bration transmitted through objects held in the hand. RAII-LTMRs are extremely sensitive,
with amplitude thresholds lower than those of RAI-LTMRs, often responding to motions
in the nano-meter range [27]. RAIIs are known to be associated with Pacinian corpuscles.
Because Pacinian corpuscles are located deep in the dermis, their receptive fields are quite
large, often encompassing the entire hand, which, coupled with their extreme sensitivity,
renders the Pacinian afferents unable to resolve objects with any degree of spatial acuity.
RAII-LTMRs help us discriminate the temporal structure of high-frequency vibratory stim-
uli, almost as well as our auditory system discriminates sound waves [28]. Therefore, RAII-
LTMRs are likely to mediate the perception of transmitted vibrations as we manipulate ob-
jects in our hands.

1.3 Tactile Sensors for End-effectors
This thesis mainly focuses on tactile sensors for robotic end-effectors. These sensors are

usually structured in a form similar to a human fingertip which can be mounted on the robotic
hands, and used solely as a terminal sensing unit. In many cases, the amount of such sensors
deployed on a single robot, e.g., a robotic arm, or a humanoid robot, is less than or equal to
10, similar to its biological counterpart of a human. Though the essential mechanism mostly
resembles that for sensor arrays developed as robotic skin, the implementations can diverge
drastically due to the technical requirements for large-scale deployment, massive power/data
transmission, and volumetric limitation. The tactile sensor array for robotic skin usually
appeals to a flexible and thin mechanical design as a covering layer to adhere to the surfaces
of different robot geometry. Fine spatial resolution and high-frequency response are not as
critical to the skin as they are to the end-effector sensors due to their different functionality.
In most scenarios, robot skin is only expected to report contact area and its magnitude in a
passive way, while the detailed vibration and fine microgeometry might be redundant. It can
serve as a feedback unit to guarantee safety under interactive operations with humans on the
spot and provides regional information to confirm the presence of obstacles. On the contrary,
we emphasize more on the performance in active sensing for the end-effector tactile sensors.
They are frequently used as active units to provide information about the environment and
objects in hold that directly affect the decision-making to perform certain tasks. Instead of a
rough estimation of contact areas, coarse shapes, and forces, tactile fingertips are supposed
to differentiate much finer geometry that forms textures and recognize the subtle variation
of contact shape. Their usage mainly lies in dexterous and fine manipulation.
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There are many types of tactile sensors, including piezo-electric/resistive sensors, ca-
pacitive sensors, triboelectric sensors [29], inductive sensors, optical/optic sensors, acoustic
sensors, magnetic sensors [30], etc. A tactile sensor can be mono-modal or even integrated
with several different technologies. Most of them can be used for both the skin or the finger-
tip differing only in the implementations with the vision-based optical sensor being a rare
exception as a typical camera requires significantly more vertical space compared to other
technologies, which will greatly increase the size of the robot and hence not suitable for robot
skin. A detailed comparison and review of different types of tactile sensors can be found in
[31, 32], where the authors briefed the technologies and listed the suitable applications for
each type of sensor. This section only provides some typical instances for several types ready
for end-effector sensing and introduces the literature and potential in textural recognition.

1.3.1 Piezoelectric Sensors
The previous paragraph mentioned piezo-electric/resistive sensors (they are put to-

gether only for lexical reasons). Piezoelectric sensors convert the mechanical energy to
electric energy in the presence of contact vibrations, while piezoresistive sensors respond to
deformation only by varying the resistance, without changing electric potential. This section
provides more technical details about the piezoelectric sensors and leaves the piezoresistive
ones in the next section.

The piezoelectric sensor generates a voltage when there is a deformation due to the
accumulation of charges on one surface of the piezoelectricmaterial to resist the deformation.
To maintain the electric potential, vibration is necessary. This direct piezoelectric effect can
be briefly described by the strain-voltage coupled equations. If we denote S as the linearized
strain, D as the electric flux density, E as the electric field strength and T as the stress, then
the equations can be written as

S = 𝑠T + 𝑔𝑇D (1.1)
E = −𝑔T + 𝜖−1D (1.2)

where 𝑠, 𝜖 and 𝑔 refer to the compliance coefficient, the electric permittivity and the piezo-
electric voltage coefficients. If we have knowledge of the mechanical properties of the piezo-
electric material, the strain and stress can then be computed.

The piezoelectric sensors work in a dynamic way reminiscent of the RA-LTMRs, they
are highly sensitive but only respond to dynamic stimuli. They can detect high-frequency
vibrations but are poor in spatial resolutions. In reality, interactions usually include both



1.3 Tactile Sensors for End-effectors 11

static and dynamic contacts, and so the obsession with dynamic stimuli makes piezoelectric
sensors very hard to be deployed alone mostly. However, a recent study [3] presents a clever
design that couples an actuator with the piezoelectric sensor, enabling the sensor pair to
detect static contact. The idea is to provide a sinusoidal input voltage with frequency sweep
to the actuator and output the sensor signal transferred from the actuator simultaneously.
The novel design includes a thin layer of polyvinylidene fluoride (PVDF) as the piezoelectric
material which greatly increases the flexibility of the actuator-sensor pair. Along with the
flexible printed circuit board (FPCB), the compact form factor of the tactile sensor is easily
integrated into a Robotiq 3-finger Adaptive Robot gripper.

To demonstrate the capability of the design, they propose a the multilayered neural
network to classify 17 grasped objects with an accuracy up to 95.9%. Instead of raw signal
input, they first transform the time response of the tactile sensor into the frequency domain
and filter the computed frequency spectra to remove the harmonic noise from the actuator.
And then a multi-layered neural network is trained to classify the objects in grasp. However,
the classifier network has the size of 1000 × 400 × 100 × 50 × 17, which is not a trivia
to train and reach convergence. The considerable size of the network also leads to a long
computation time for both training and classification. After grasping the objects, it takes
another 10s to output the prediction on a system on a PC with an Intel Core i7-8750H CPU.
Though the paper claims the real-time capability of the recognition system, the noticeably
long computation time seems to leave a large room for improvement.

This particular tactile sensor design embeds a waveform generator to overcome the lim-
itation of the insensitivity to static touching of piezoelectric sensors. But it also introduces
extra noise and data processing procedures. It only measures the vibration of the objects in
contact without caring about the detailed tactile map, which shows another typical drawback
of the piezoelectric types: low spatial resolution. In general, I would conclude that piezoelec-
tric tactile sensors are mostly suitable for applications of dynamic vibration sensing without
excessive requirements for spatial acuity.

1.3.2 Piezoresistive Sensors
In terms of spatial and frequency characteristics, the piezoresistive sensors are almost

like the complimentary geminae of the piezoelectric sensors. The piezoresistive sensors can
be implemented in a very similar form factor as the piezoelectric sensors, whereas higher
spatial resolution and lower frequency response are accessible. Meanwhile, unlike the piezo-
electric counterpart only sensitive to dynamic stimuli, piezoresistive sensors can naturally
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Figure 1.3 Experimental scheme [3] of tactile data collection when objects are grasped. A
data acquisition board (DAQ; NI9229, National Instrument Co., Ltd USA) is used.

measure static stimuli, as a proper electronic analogue to the SAI-LTMRs; they typically con-
sist of a semiconductor or metal element whose resistance varies when different mechanical
strains are applied. Contrary to the piezoelectric effect, the piezoresistive effect only causes
a change in electrical resistance instead of electric charge or field strength. Within a certain
range of strain, the mechanism can be simply summarized by the equation

𝜕𝑅
𝑅 = 𝜌𝜎𝜖 (1.3)

where 𝑅, 𝜌𝜎 and 𝜖 are the resistivity, the piezoresistive coefficient and the strain.
A recent study [4] demonstrated an implementation in the form of a flexible tactile

sensor as a thin membrane (see Figure 1.5a) composed of an 8×8 array of resistive carbon
material that can cover dexterous robot hands. In this work, authors revealed the potential of
the sensors via a series of grasping tasks (see Figure 1.5c). These sensors maintain response
under indentation and by studying the characteristic curve (see Figure 1.6) it is possible to
infer the grasping force continuously. We can observe decent repeatability from the graphs
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Figure 1.4 A sample of time response and frequency response of a cup in hold when sweeping
the input signals to the actuator-sensor pair [3].

and the decay (or using the neurological term, adaptation) of the sensory signals is consistent
and subtle after a certain time constant (circa 70 seconds). These properties in addition to
their robustness to noise make piezoresistive sensors a good candidate for mesh configura-
tions to detect low-frequency and static contacts and possibly measure the pressure/force by
looking up the characteristic curve of the sensors.

Normally, piezoresistive sensors suffer from hysteresis and tend to have lower frequency
response compared to other mechanisms. Their performance and popularity in the applica-
tions of active perception are limited. To make matters worse, their relatively higher spatial
resolution (compared to piezoelectric sensors) is still insufficient for fine geometry detec-
tion, incomparable to the pixel-level spatial resolution of the optical sensors that started to
prevail in the recent decade. These disadvantages prevent most piezoresistive sensors from
a good solution to the problem of texture recognition.

However, a very recent research [5] explored a neuro-inspired communication approach
to show a promising implementation of piezoresistive tactile sensors. Their sensors called
the Asynchronously Coded Electronic Skin (ACES) are event-driven, with a readout circuit
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trying to mimic the functionality of earlier mentioned SA- and RA-LTMRs. It puts a much
smaller burden on bandwidth and allows for a very high-frequency response in the scenario
of sparse sensing. In fact, the neuromorphic readout circuit can also be applied to other
sensingmechanisms. Although this type of neuro-inspired sensor is still in the early stage, its
outstanding performance is attracting more attention. One difficulty though is that different
from the conventional clock-based sensors, the neuro-inspired sensors output spikes instead
of absolute values. This entirely different format of signals renders most of the previously
successful decoding methods useless. Researchers probably have to seek new methods, e.g.,
spiking neural networks (SNNs), for neuromorphic tactile perception.

1.3.3 Capacitive Sensors
Another type of tactile sensor in a very similar physical form to the piezoelectric and

piezoresistive sensors is the capacitive sensor [33, 34, 35, 36]. The capacitive sensors usually
contain two parallel conductive plates with a deformable dielectric material like a sandwich.
The capacitive sensors combine the advantages of the previous two types with a good spatial
resolution (still not comparable to the optical type though), compatibility with both static and
dynamic detection and high-frequency response (likely to be limited by readout electronics
though). Usually, a capacitive sensory unit is composed of several sub-capacitive taxels,
where each reports the change in capacitance according to the equation

𝐶 = 𝜖 𝐴
𝑑(𝑃 ) (1.4)

where 𝜖, 𝐴 and 𝑑(𝑃 ) are the permittivity of the dielectric middle layer, the overlap area
of two parallel plates and the distance between the two plates as a function of the applied
pressure 𝑃 , assuming a no-pressure distance 𝑑0 = 𝑑(0) of the capacitor.

We hereby use the implementation [37] from our lab as an example to illustrate the
structure of capacitive sensors (see Figure 1.8). The sensor contains 16 small pressure sen-
sory units (see Figure 1.8b) as taxels that convert the physical deformation of the elastomer
(acetate membrane) to the variation of capacitance. The contact surface is covered by Span-
dex (a.k.a. Lycra) as a protective fabric. Figure 1.9 shows a typical measurement when the
sensor is in contact with a cotton fabric, sliding at a constant speed and a constant normal
pressure.

The excellent sensitivity also makes the capacitive sensors susceptible to noise and the
complexity of measurement electronics can potentially introduce multiple bottlenecks, e.g.,
in our implementation [37], the limited bandwidth and sampling rate of the capacitance-to-
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digital converter (CDC) greatly restrained the real performance of the sensor. These prop-
erties of capacitive sensors set lots of requirements and burdens on the actual design and
implementation to fully tap the potential.

1.3.4 Optical Sensors
The optical, or vision-based tactile sensors have been gaining a growing spotlight in

the last decade along with thriving development in computer vision. Several practical im-
plementations including [6, 7, 38] ready to be deployed on the end-effectors as robotic finger-
tips differ very little in terms of the structures. They contain a camera circuit, a light source
and an elastomer cover (usually gel or rubber) to convert mechanical deformation to the
change in optical flow, displacement of markers, etc. The greatest advantage of this sensing
technology is obviously that most methods of processing images can be directly transferred
to decode tactile signals. Thanks to the prosperity in the camera industry, optical sensors
have a very high spatial resolution and decent sampling rate, making them excel in texture
detection and other tasks requiring fine geometry sensing. However, at the current stage,
optical sensors are only suitable for applications where dimensional restraint is not critical.
As illustrated in Figure 1.10a and Figure 1.11, between the elastomer and the camera, con-
siderable spacing is necessary for a sufficient view angle; otherwise the area of the receptive
field can be greatly reduced. This technical requirement of spacing increases the difficulty of
further reducing the overall dimensions of the sensor, particularly the vertical one (along the
camera-elastomer axis). Another requirement for the elastomer to achieve higher sensitivity
is its elasticity and friction coefficient. Higher elasticity allows for better imaging and higher
sensitivity to exquisite geometry, and a larger friction coefficient enhances the capability to
detect shear force, however, both at the cost of the durability of the elastomer cover.

Since image processing and machine learning methods originally developed for com-
puter vision can be applied directly, at first glance the problem of tactile decoding seems to
ease greatly. However, the essential differences between vision and touch render the results
erratic. General methods for visual object recognition deal with a global vision including a
holistic image (even with occlusion or in different view angles), in which the tactile images
aremostly regional and local that is only a (small) part of the original objects, andwhether the
local/regional features suffice to signify the texture/object remains an open question. Hence,
decoding the tactile images involves a process of fusing the perception at each time step
within a time window to have a stable understanding of the scenario unless prior knowledge
about the scene is fetched or assumed. In summary, methods and techniques for vision can
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be adapted to tackle tactile images easily, but piecewise tactile perception at each time step
has to be fused to compose a comprehensive tactile perception in both spatial and temporal
fields.

Another practical issue relates to the physical properties of the elastomer. Due to the
aforementioned technical requirement for elasticity and fraction, the elastomer tends to be
unfriendly for the control of touching motions. Higher elasticity and friction coefficient can
abruptly change the magnitude and direction of the force during sliding motion when the
sensor is in constant contact, making the control of the end effector more complicated and
less stable. This is probably the reason why most literature using optical sensors involves
very few sliding motions.

1.3.5 Summary
Several types of tactile sensors have been introduced, and some of their corresponding

implementations are detailed in this section. The previous section reviewed some advantages
and suitable application scenes for each type of sensor. So far, readers may have a general
picture of the technology for tactile sensing and how they are coupled with the decoding
techniques needed for tactile perception. Again this is a very different situation from that of
vision, tactile processing and decoding methods that are closely bonded to the technology
used for the sensors. In other words, the processing procedure can be very specific and lacks
expandability to different tactile sensors.

There are also somemultimodal tactile sensors like [8] in the market that try to combine
the pros and alleviate the cons of multiple types of sensors. They even raise the complexity
in signal processing and the difficulty in generalizing to a higher level. Until we have a con-
sensus on the format of tactile data and find a de facto standard for tactile sensing technology,
this probably undesired sensor-processing coupling is likely to continue.

1.4 Texture Recognition and Material Classification
Tactile sensing is fundamental for robots to understand the space surroundings by re-

vealing some contact features not directly accessible to visual and acoustic sensors, including
pressure, vibration, and temperature. The essence of tactile sensing is a measurement of the
mechanical interaction between the tactile sensors (along with the robotic system to which
they are mounted) and the environment. Tactile sensors are specifically designed to con-
vert instant changes in these physical properties into electrical signals. Unlike visual and
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acoustic sensing, tactile sensing involves, and probably only involves, the direct mechanical
interaction between the sensor and the object in contact. In the majority of cases, external
environmental conditions like illumination, acoustic noise, humidity, and temperature do
not affect the capability of tactile sensing. Despite its robust performance in different sce-
narios, tactile sensing is a very limited instrumental modality that only captures the regional
stimulus around a sensor. Fortunately, the limitation can be alleviated by pairing the sensing
with exploratory robotic motions to enlarge the contact area, which requires both spatial and
temporal decoding to interpret the signals. The process of decoding signals to comprehend
the space environment is the core of tactile perception. Unfortunately, in the current stage,
there is no such uniform and standard format of tactile sensor and tactile data, and therefore
tactile perception is closely related to the specific sensing technology being used [39].

With the advancement in interactive control for robotics, tactile sensing is gaining grow-
ing attention in recent decades. Since robotic tasks with physical contacts are very likely to
introduce visual occlusion, more studies are popping up using tactile sensing to perceive the
shape / textures of objects [40, 41, 42] and perform dexterous manipulation [43, 44]. The
results show that tactile sensing has great potential, especially in handling soft materials like
fabrics, considering its instant response to tiny variations of the stimulus.

A better understanding of the objects with which the robot interacts helps adjust the
control strategy and control parameters, leading to more efficient and possibly safer motions.
Among all objects for interaction, fabrics are of particular interest to us, as they are not
only one of the most common soft materials in daily life, but also intrinsically challenging
to distinguish. Textures of fabrics vary a lot and are usually so subtle and complex that
sometimes even human beings can barely distinguish (e.g., canvas, denim, and linen) with
nondestructive methods. Vision alone frequently encounters difficulty in identifying fabrics
dyed in different colors.

In fabric classification, active motions are usually necessary to acquire a holistic tac-
tile sample of the texture since tactile sensors only capture regional stimuli. Manfredi et
al.[45] found that the vibrations elicited during the interaction carry information about the
micro geometry of the fabric surface and the mechanical properties of the tactile sensor
itself. [8, 40, 41, 46] conducted sliding motions in different manners to collect vibration
signals about fabric textures. In particular, Fishel et al.[8] show that changing exploratory
actions can affect received tactile signals and leads to different classification performance.
However, how changing motion parameters affect the performance of perception and fabric
classification has not been thoroughly investigated.
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Since tactile decoding and perception are closely correlated with the specific sensors
used, one of the very first objectives is to construct a robust perception system that could
extract certain tactile features from the tactile signals. The tactile features are desired to em-
bed some peculiar information of the fabrics, independent of variations of sliding parameters
during the acquisition stage. The study [47] on the tactile perception of human beings indi-
cates that certain invariant tactile features can be retrieved by touching and sliding/rubbing.
Our research serves to verify the feasibility of a similar idea in a robotic system.

In reality, it is ideal to have the capability of adapting the robotic behavior to com-
pensate for the limitation of the sensing technology (e.g., bandwidth, resolution, geometric
structures) and the perception algorithm since the mechatronic system itself is usually un-
modifiable. Adaptation first requires an overall understanding of the correlations between
motion and tactile signals. Our study aims to provide a general picture so that in the fabric
classification task through sliding, performance can be improved simply by adjusting the
motion parameters.

We will also testify to the expansibility and scalability of the algorithm. Expansibility
suggests that the algorithm applies to textures other than fabrics on the classification task,
while scalability means that the system can incorporate tactile information from new fabrics
in an iterative approach.

Beyond the classification task, another purpose of the research is to search for a potential
parametric representation of the textures in the feature space that can be used further in a
more complex system for fabric handling and manipulation.
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(a) An 8×8 array of the flexible tactile sensor.
(b) Cutaway view of the finger
placement sensor.

(c) Demonstration of the soft robot hand grasping different objects.

Figure 1.5 [4] presented a soft robot hand capable of grasping different objects with tactile
feedback from the tactile sensors installed on the fingertips.
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Figure 1.6 Graphs of (a) force versus resistance from 0 N to 10 N and (b) the resistance under
constant force [4].

(a) The working procedure of the ACES system (from left to right) [5]. It conveys spikes
to the decoder and estimates the contact force via its SA and FA units.

(b) The layer structure and the corre-
spondent biomimetic models of ACES.

(c) An example of force estimation based
on the ACES-FA and ACES-SA signals.

Figure 1.7 Asynchronously Coded Electronic Skin (ACES) is a neuromorphic (event-driven)
skin-like tactile sheet [5] that generates spiking signals with a decoding system.
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(a) The assembled view and the cross-section illustration of a CPM-finger capacitive tactile sensor.

(b) The top and bottom view of the sensor circuit board. The side with the pressure sensors is in
contact with the objects during experiments.

Figure 1.8 A CPM-Finger tactile sensor introduced in [37].
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Figure 1.9 A sample of the multichannel tactile signals in (A) space domain and (B) fre-
quency domain.
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(a) Structure and components of a GelSight Sensor.

(b) Image samples and applications of GelSight tactile sensors.

Figure 1.10 GelSight [6] is a vision-based optical tactile sensor. It provides high spatial
resolution and is capable of measuring both normal and shear force.

Figure 1.11 The iteration of TacTip (from left to right) [7]. It is another implementation of
a vision-based tactile sensor.
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(a) Cross-sectional schematic and a
photo of an assembled SynTouch
BioTac. (b) Signals of BioTac during several common tasks.

Figure 1.12 SynTouch BioTac® is a multi-modal tactile sensor using an incompressible liq-
uid as an acoustic conductor to convey vibrations from the skin to a wide bandwidth pressure
transducer [8]. It excels in detecting vibration (as small as a few nanometers at 3̃30Hz).



Chapter 2

Related Works

2.1 Outline
Inspired by how humans try to identify fabrics by touching, via mostly three different

interactive modes: tapping, sliding and rubbing the fabrics, researchers have been trying to
endow the robots with the textural/material recognition capability with tactile sensors on the
end-effectors. Several attempts [8, 41, 46] of textural identification fix the inspected material
on a motorized platform where the sensor in contact is stationary to acquire tactile signals.
Collected data are then processed offline to train fabric classifiers. This data collection pro-
cess minimized the variation in contact such that tactile signals are mostly captured in a
consistent condition in terms of contact force/pressure distribution. The dataset acquired
under stable and consistent conditions provides a solid foundation for post-processing and
data analysis. However, in real-world applications such ideal conditions of data acquisition
can hardly be replicated.

More complex and realistic robotic setups to study textural identification are conducted
by [48, 49]. They allow certain degrees of variation of fabric bending and deformation, and
robots can have non-perfect contact with the fabrics, like tilted touch. These cases resemble
the daily scenarios where humans touch to feel distinctive fabrics which vary in elasticity,
friction, etc.

During the robotic experiments, tactile signals are acquired as multidimensional time
series. In some early works [8, 46] attempting to identify different textures, researchers
hand-picked features based on physical intuition and data statistics, that can be computed
directly from the original tactile signals. While recent researches [10, 50, 51] apply trendy
machine learning methods including artificial neural networks (ANN) to learn latent features
that are not directly linked to any physical meaning. Tactile features extracted either from a
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pre-defined procedure or learnt with ANNs are then used to train classifiers. While this the-
sis presents a frequency feature extraction algorithm based on functional data representation
[52] and incremental principal component analysis (IPCA) method [53]. In terms of flexi-
bility and training efforts, it lies between the hand-picking extraction and the model-agnostic
ANNmethods. It learns tactile features from the raw signals with a presumption of frequency
dependency. Little data are required for bootstrap and the training time is much faster than
ANN. In the meantime, it remains more flexible compared to manually engineered feature
extraction.

To lay the foundation of this thesis and have a comprehensive understanding of the topic,
this chapter includes a literature review of the recent advances in textural classification and
object recognition with tactile sensing. It aims to update the readers with the state of the art,
reveals the limitations of existing solutions and points out how this thesis work fits into the
gaps and contributes to the field.

2.2 Literature Review
The problem of discriminating textured objects or materials with the support of tactile

sensing has been widely investigated in the literature. Most of the previous works integrate
tactile sensors into robot end-effectors which are controlled to interact with the objects of
interest. Tactile data collected during the interaction are then processed to extract features
for texture classification using machine learning techniques.

The type of features extracted from tactile data usually depends on the sensing technol-
ogy adopted. There are two major trends of methods in the task of texture classification. The
first either employs a high-resolution vision-based sensor [6, 9, 54] or crops the time-series
data [49] to construct tactile images and directly encode the spatial textures by ANNs. While
the second type of method collects the tactile signals using sensors sensitive to vibrations.
Tactile signals are first transformed into the frequency domain and then both temporal and
frequency features are extracted to identify textures as in [8, 41, 46, 55].

2.2.1 Spatial Features as Images
A widely used vision-based tactile sensor, the GelSight sensor, captures a detailed

height map of the contact surface (see Figure 2.1 for examples), in the form of an implicit sur-
face function 𝑧(𝑥, 𝑦), where the (𝑥, 𝑦)-tuple is the point coordinates in the sensor frame. The
map reflects the static geometry via the deformation of the gel installed on the sensor. The
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map represented as a high-resolution image benefits directly from the existing techniques
and algorithms developed for computer vision. In static sensing scenarios, methods for the
task of texture recognition by touching have little difference from the visual counterpart.

In [9] researchers use a GelSight tactile sensor to classify 40 different types of material
by computing a specially designed tactile feature. The authors propose an improved version
of the Local Binary Pattern (LBP) [56], called Multiscale LBP (MLBP), that caters for both
microstructures and macrostructures as the texture signature. It features a local structure of
the texture image by observing a small circularly symmetric neighboring set of 𝑃 members
on a circle of radius 𝑅. The circular neighbourhood of the grey scale image is filtered by a
threshold into a binary pattern, which is then weighted by a binomial coefficient and summed
up to obtain an LBP value defined as

LBP𝑃 ,𝑅 =
𝑃 −1

∑
𝑝=0

𝑠(𝑔𝑝 − 𝑔𝑐)2𝑝 (2.1)

where

𝑠(𝑥) =
⎧⎪
⎨
⎪⎩

1 𝑥 ≥ 0,
0 𝑥 < 0.

and 𝑔𝑐 is the grayscale value of the central pixel of the circular neighborhood, 𝑔𝑝 with
𝑝 = 0, 1, ..., 𝑃 − 1 representing the gray values of 𝑃 equally spaced pixels in the circle
of radius 𝑅 > 0 [56]. The values of 𝑃 and 𝑅 determine the scale of the structures con-
cerned. The larger the 𝑅, the larger the pattern is investigated and a smaller 𝑅 signifies a
microstructure. The conventional LBP method is limited by the choice of 𝑃 and 𝑅 as they
are practically limited by the requirements of efficient implementations and generally it may
not handle macrostructures effectively for 𝑅 > 3. The proposed MLBP method excels by in-
cluding statistics of both micro- and macrostructures (see Figure 2.2 for illustration) without
increasing the values of 𝑃 and 𝑅. MLBP first reduces the dimensions of the original textural
images using the Gaussian pyramid approach [57] and then applies the same values of 𝑃 and
𝑅 to compute the LBP features. Reducing the image dimensions approximates the effect of
increasing the 𝑃 and 𝑅 values in terms of normalized LBP histograms, while it circumvents
the technical difficulties and is relatively light on the computation payload. Normalized LBP
histograms serve as tactile features extracted from original images, and can then be directly
compared with each other by calculating the Hellinger distance [58].

Experiments are conducted on both the Outex databases [59] and GelSight images.
The results show fascinating correction classification rates as high as 99.79% for 40 texture
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Figure 2.1 Texture images captured by a GelSight sensor for 40 material in [9].
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Figure 2.2 An example from [9] illustrates that two textures that resemble microstructures
can differ drastically in macrostructures. (a) and (b) are two textures and (c) and (d) are their
histograms of LBP values respectively.

classes. However, this method is only applicable when there are no relative motions be-
tween the sensor and the material. In real robotic applications with dynamic interactions,
the method may find it hard times to acquire clear images, and thus whether the near-perfect
performance can maintain is questionable.

With the dominance of deep learning in the literature on computer vision, researchers
are naturally attracted by the power of deep neural networks to decode tactile images. In-
stead of classifying the exact type of material, the work proposed by [6] aims to recognize
11 different properties from 153 varied pieces of clothing using a convolutional neural net-
work (CNN)-based architecture. These properties are both physical (softness, thickness,
durability, etc.) and semantic (e.g., washing method and wearing season). In addition, a
Kinect RGB-D camera is also used to help with autonomous clothing manipulation and ex-
ploration. The results showed great potential in the application of domestic help in clothes
management.
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Figure 2.3 Illustration of the CNN-LSTM structure [6]: (a) The multi-label classification
network for recognizing different properties from a single GelSight image. (b) The neural
network for recognizing different properties from GelSight video. (c) The network for eval-
uating whether the gripping point would generate effective tactile data.

Alternatively, [49] proposed an interaction strategy that alternates static touches and
sliding movements with controlled force, exploring the possibility of extracting spatial fea-
tures from a capacitive sensor using a CNN-LSTM (long-short-term memory) architecture.
Experiments are carried out on 23materials using a capacitor-based skin covered on the iCub
forearm, reaching 98% classification accuracy. Capacitive tactile sensors are usually more
suitable for dexterous manipulations compared to vision-based sensors due to their compact
sizes and less deformable contact surfaces. The possibility to apply a vision-based tactile
perception method eases the usage of capacitive sensors.

Another interesting research [48] in this category explored the possibility of few-shot
learning. The proposed method makes use of trendy transfer learning techniques to enable
n-shot learning for the task of texture classification. The capability of learning from very
few samples by taking advantage of a pre-trained dataset can be very handy for deploying
tactile sensing systems on new robotic systems.

2.2.2 Temporal and Frequency Features
[8] conducted extensive research on texture classification using BioTac. Unlike most

of the other works, their features are computed with specific physical meanings, including
traction, roughness, and fineness. Several combinations of sliding speeds and normal forces
are also tested to enable Bayesian inference.

[46] described a similar experiment with hand-crafted statistical features to identify tex-
tures. The research uses a custom finger-shaped capacitive tactile sensor, which is mounted
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on the probe of a 5-axis machine and controlled to slide on a platform covered with the fab-
ric. Both applied pressure and velocity are controlled for the sliding motions. The statistical
features, computed both in frequency and time domains, are used to train a support vector
machine (SVM) classifier to discriminate 17 different fabrics.

Another similar work [41] follows by training PCA-based features using the original
tactile sequences. It experiments on a similar dynamic touching scenario. Both pressing and
sliding motions are applied to acquire data and several different classifiers are evaluated.

A recent work [55] tries not only to identify textures, but also to detect slip and estimate
the speed of sliding, using an accelerometer installed on the fingertips of the robotic gripper
to record vibration. This work combinedmultiple deep-learning techniques to achieve decent
classification accuracy. The combination of slip detection and textural classification leads to
the research towards the application of garment manipulation in the future.

The latest work [51, 60] seeks to exploit the potential of cutting-edge techniques in deep
learning. Methods including bidirectional long-short-term memory (LSTM) [61], Gaussian
prototype learning, etc. are explored to enable more robust texture / fabric recognition of tac-
tile signals as time series. Compared to traditional methods, these novel methods are much
easier to adapt to different data formats and multi-modality data streams. However, com-
pared to traditional methods, NNs require delicate hyperparameter engineering and a longer
period of training time depending on the amount of data. However, fortunately, several pa-
rameter tuning and feature engineering automation [62, 63] have emerged to help accelerate
the NN-based machine learning training and tuning process.

Another recent literature [10] compared several tactile sensors for surface texture recog-
nition. It included several popular and trendy recognition algorithms such as SVM, multi-
layered perception (MLP) [64] and LSTM, with which the recognition accuracy ranges from
91% to 99%. However, these algorithms are concerned only with a fully fixed fabric sample
and the contact between the tactile sensor and the surface is very consistent Figure 2.4. Such
a set-up may not be able to fully reveal the complexity of fabric deformation during sliding
motion in real robotic applications.

2.3 Contribution
Compared to some of the literature, this thesis contributes mostly in the following as-

pects:
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Figure 2.4 The experimental setup for fabric recognition in [10].

Figure 2.5 Comparison of surface texture recognition methods with different tactile sensors
and recognition algorithms [10] (SVM, support vector machine; MLP, multilayer percep-
tron; RDF, random decision forest; ELM, extreme learning machine; LSTM, long short-
term memory; PSD, power spectral density; FFT, fast Fourier transformation; AUC, the
area under the curve).
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1. The design of the experiments simulates a realistic application scenario where very
few constraints are applied to the fabrics and the robotic ”finger”. Fabrics are allowed
to twist and blend in response to robotic sliding.

2. The perception system is very lightweight computationally and can be implemented on
a modern quad-core consumer PC; it tries to extract some intrinsic frequency features
without the necessity to train on a large dataset (in contrast to other NN-based deep
learning frameworks).

3. The feature extraction algorithm is iterative and allows the incorporation of new sam-
ples to gradually improve the representability of the features.

Finally, this work presents a parameterization technique to represent fabric classes based on
the extracted frequency features. Fabrics are parametrized as hyper-dimensional ellipsoids in
the feature space. Such a representation enables very efficient tactile knowledgememory that
can be used to directly classify tactile data and compare the similarity of different textures.



Chapter 3

Decoding Tactile Signals

This chapter details signal decoding and perception algorithms. We describe the pipeline
of signal processing and feature extraction that maps the original tactile signals in the form
of matrices to low-dimensional vectors in the feature space. A weighted k-NN classifier is
introduced to identify fabrics in the feature space.

A tactile sensor usually consists of several taxels (the minimal tactile sensing unit like
pixels for cameras) that only perceive local stimuli and generate multichannel signals over
time. We follow a feature extraction method based on incremental principal component
analysis (IPCA) to gradually extract frequency features during the process of sliding and
touching different types of fabrics. The feature extractor first transforms a tactile time se-
ries into a multi-channel frequency spectrum in the format of a matrix and resamples the
frequency spectrum to a fixed size. After that, the frequency spectrum (as a matrix) is vec-
torized (flattened). After collecting multiple tactile measurements and transforming them all
into resampled vectorized frequency spectra, we stack them together to form a large data ma-
trix. Then we apply IPCA to project the data matrix to lower-dimensional vectors. With the
condensed representation of tactile measurements, a k-nearest neighbors (k-NN) classifier
can be trained to identify different textures.
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3.1 Signal Processing
A tactile measurement, M-channel time series 𝑋 within N sampling cycles, represented

in the matrix form

𝑋(𝑡)|𝑁−1
𝑡=0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥1(0) 𝑥2(0) ... 𝑥𝑀 (0)
⋮ ⋮ ... ⋮

𝑥1(𝑡) 𝑥2(𝑡) ... 𝑥𝑀 (𝑡)
⋮ ⋮ ... ⋮

𝑥1(𝑁 − 1) 𝑥2(𝑁 − 1) ... 𝑥𝑀 (𝑁 − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ𝑁×𝑀 (3.1)

is first normalized to

�̂�(𝑡)|𝑁−1
𝑡=0 =

⎡
⎢
⎢
⎢
⎣

𝑥1(0)−�̄�1
𝜎1

𝑥2(0)−�̄�2
𝜎2

... 𝑥𝑀 (0)−�̄�𝑀
𝜎𝑀

⋮ ⋮ ... ⋮
𝑥1(𝑁−1)−�̄�1

𝜎1

𝑥2(𝑁−1)−�̄�2
𝜎2

... 𝑥𝑀 (𝑁−1)−�̄�𝑀
𝜎𝑀

⎤
⎥
⎥
⎥
⎦

∈ ℝ𝑁×𝑀 (3.2)

= [�̂�1 �̂�2 ... �̂�𝑀 ] (3.3)

using the column mean �̄�𝑖 and SD 𝜎𝑖 computed by

�̄�𝑖 = 1
𝑁

𝑁−1

∑
𝑡=0

𝑥𝑖(𝑡)

𝜎𝑖 =
√√√
⎷

1
𝑁

𝑁−1

∑
𝑡=0

(𝑥𝑖(𝑡) − �̄�𝑖)2

Normalization scales the sensor signals acquired with different pressure settings into a stan-
dard score. The next step is to convert the signals into the frequency domain. The most
commonly usedmethod in digital signal processing is discrete Fourier transformation (DFT).
However, with increasing length of time series, complex Fourier coefficients also increase
in size. Hence, the frequency features represented by the Fourier coefficients become incon-
sistent in their sizes due to different sampling duration. New samples also require additional
processing, i.e., resampling, to append to the existing dataset. An alternative method to con-
vert the time series into their frequency spectrum is basis expansion. Using Fourier basis
functions, the original tactile signals can be transformed into the frequency domain without
resampling, while the resultant coefficients remain the same dimensionality regardless of the
original length.
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In the next sections, DFT is first reviewed in detail to see where the problems of variable
length can occur and why it is not the optimal solution to domain transformation in this task.
And the section afterwards describes how the tactile signals can be transformed into the
correspondent frequency domain via basis expansion to avoid the aforementioned difficulty.

3.1.1 Discrete Fourier Series
Recall that the original tactile signals have been processed to form zero-mean samples,

represented in the matrix form �̂� (as a shorthand of �̂�(𝑡)|𝑁−1
𝑡=0 ). DFT can be applied channel-

wise to gain the coefficients as

𝑦𝑖(𝑘) =
𝑁−1

∑
𝑡=0

�̂�𝑖(𝑡)𝑒−𝑖2𝜋𝑘 𝑡
𝑁 . (3.4)

and by stacking coefficients of all the channels the complex-valued matrix 𝑌 can be defined
by

𝑌 =
⎡
⎢
⎢
⎢
⎣

𝑦1(0) 𝑦2(0) ... 𝑦𝑀(0)
⋮ ⋮ ... ⋮

𝑦1(𝑁−1) 𝑦2(𝑁−1) ... 𝑦𝑀(𝑁−1)

⎤
⎥
⎥
⎥
⎦

∈ ℂ𝑁×𝑀 (3.5)

For the purely real-valued input, the output is Hermitian-symmetric, and the negative-frequency
terms are the complex conjugates of the corresponding positive-frequency terms and are re-
dundant for frequency signatures. Therefore, only the real part of the Fourier coefficient
matrix is kept and the magnitude spectrum is computed as ̂𝑌 ∈ ℝ([ 𝑁

2 ]+1)×𝑀 . It can be
seen that the dimension of the resultant frequency magnitude spectrum matrix depends on
the size of the initial tactile measurement, which is proportional to the sampling duration.
Without further processing, the frequency magnitude spectrum matrices obtained can vary
in dimensions due to the variable sampling duration. To apply PCA of multiple samples by
their spectrum matrices, we define a uniform size 𝐾 to resample the frequency magnitude
spectrum. It guarantees that each matrix ̂𝑌 transformed from the original tactile sequences
can be vectorized (flattened) into a vector 𝑦 ∈ ℝ𝐾𝑀 . Now each sample of tactile signals can
be transformed into a 𝐾𝑀 dimensional vector regardless of the original dimension.

Multiple tactile measurements acquired in sliding motions, as vectors of the same size
now, can be collected and stacked together to construct a new observation matrix

𝑂 = [𝑦1 𝑦2 ... 𝑦𝐿] (3.6)
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containing all the frequency magnitude vectors, where 𝐿 is the total number of measure-
ments. The observation matrix becomes our tactile data set for further analysis. We can
resort to IPCA on the observation matrix 𝑂 for reduction of dimensionality and extraction
of features.

3.1.2 Fourier Basis Representation
The Fourier basis expansion tries to represent each column �̂�(𝑡) of the measurement

matrix �̂�(𝑡) as

�̂�(𝑡) =
𝐾

∑
𝑗=1

𝑐𝑗𝜙𝑗(𝑡) (3.7)

where 𝜙𝑗(𝑡) are the Fourier basis functions of increasing frequency

1, sin(𝜔𝑡), cos(𝜔𝑡), sin(𝜔2𝑡), cos(𝜔2𝑡), ..., sin(𝑚𝜔𝑡), cos(𝑚𝜔𝑡) (3.8)

and the constant 𝜔 = 2𝜋
𝑃 defines the period 𝑃 of oscillation of the first sine/cosine pair. The

coefficient matrix 𝐶 ∈ ℝ𝐾×𝑀 can be estimated using the least square equation

̂𝐶 = (𝛷𝑇 𝛷)−1𝛷𝑇 �̂� (3.9)

The best estimation ̂𝐶 ∈ ℝ𝐾×𝑀 of the Fourier basis coefficients is now a Fourier basis
representation of the frequency spectra derived from the normalized measurement matrix
�̂�. Notice that the correspondent basis representation �̂� always has the same dimensions
for any measurement matrix ̂𝐶 .

3.2 Feature Extraction
PCA as an unsupervised method is suitable for dimensionality reduction to extract use-

ful features from the huge data set. It preserves asmuch as possible the information contained
in the original data matrices by minimizing the loss of reconstruction. In particular in our
scenario, we apply an incremental PCA (IPCA) [53] method to enhance the efficiency of
incorporating information from a new dataset and alleviate the computational burden. This
section only presents the key steps to apply the IPCA method to expand the feature matrix
𝑄, while readers interested in the details may consult the original paper.
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Denoting the mean-deviated form of the observation matrix 𝑂 as �̂�. The goal is to find
a feature matrix 𝑄 ∈ ℝ𝐷×𝐾 with 𝐷 ≪ 𝐾𝑀 such that the the total reconstruction error

||�̂� − 𝑃 𝑄||𝐹 (3.10)

is minimized. Frobenius norm is chosen considering its fast and easy computation, while
other similar matrix norms also function the same for this optimization setup. Here 𝑃 ∈
ℝ𝑁𝑟𝑀×𝐷 is a projection matrix that maps a frequency-spectra vector 𝑦 ∈ ℝ𝑁𝑟𝑀 to a new
feature vector 𝑞 ∈ ℝ𝐷.

Given 𝑛 new measurements pre-processed and vectorized, formatted as a matrix

𝐴 = [ ⃗𝑦𝐾+1 ⃗𝑦𝐾+2 ... ⃗𝑦𝐾+𝑛] (3.11)

A brutal update for these 𝑛 new data requires the computation of singular-value-decomposition
(SVD) for the mean-deviated form of the augmented data matrix 𝑂𝐾+𝑛 = [𝑂 𝐴], which
is not ideal for online applications. In the presence of more tactile measurements, the data
matrix keeps expanding, and traditional IPCA will slow down drastically.

IPCA differs from traditional IPCA in handling new data. Instead of re-computing the
SVD for the entire augmented data matrix

�̂�𝐾+𝑛 = [�̂� ̂𝐴] (3.12)

where ̂𝐴 is the mean-deviated form of 𝐴, only the SVD of the horizontal concatenation of
the original and the additional data matrix, and one additional vector √

𝐾𝑛
𝐾+𝑛 (�̄� − ̄𝐴) are

needed. To obtain the SVD for the augmented data matrix �̂�𝐾+𝑛, first we define

𝐵 = [ ̄𝐴 √
𝐾𝑛

𝐾 + 𝑛(�̄� − ̄𝐴)] (3.13)

and compute
̃𝐵 = orth(𝐵 − 𝑈𝑈 𝑇 𝐵) (3.14)

where orth performs orthogonalization and

𝑅 =
(

𝛴 𝑈 𝑇 𝐵
0 ̃𝐵(𝐵 − 𝑈𝑈 𝑇 𝐵))

(3.15)



3.3 Classification Rule 39

via QR decomposition [𝑈 ̃𝐵]𝑅 𝑄𝑅= [𝑈𝛴𝐴]. Then we apply SVD to 𝑅 as 𝑅 𝑆𝑉 𝐷= �̃� ̃𝛴 ̃𝑉 𝑇

and finally the equivalent SVD of �̂�𝐾+𝑛 = 𝑈 ′𝛴′𝑉 ′𝑇 is given by 𝑈 ′ = [𝑈 ̃𝐵]�̃� and 𝛴′ = ̃𝛴;
while 𝑉 ′ is not directly used in IPCA, it is not calculated explicitly.

Considering that those tactile measurements are acquired incrementally, the feature ex-
tractor can be trained on known data. During the procedure where more new tactile measure-
ments are presented, the IPCA-based feature extractor can first map the new data matrices to
feature vectors to perform classification, and then partially fit the newly sampled data to in-
corporate the information and improve the performance. The application of the incremental
method enables the feature extractor to adapt to the growing database fast and efficiently.

3.3 Classification Rule
One of the most common nonparametric regression methods for the classification prob-

lem is the rule K-nearest neighbor (k-NN) [65, 66, 67]. The idea is to assign a sample point
𝑥 to a class that is more present among its 𝑘 closest neighbors. In a sparse space, it is rea-
sonable to assume that the observations closer to each other under certain metrics share the
same classification. Therefore, a properly improved version of the ordinary k-NN classifi-
cation rule is to specify a weighting function which varies with the distance between the
sample point and the considered neighbor in such a way that the output value is reversely
proportional to the sample-to-neighbor distance. This rule is defined as weighted k-NN clas-
sification rule by [68].

Normally, the k-NN classification rule performs best with features of a lower dimension,
and it suffers from the curse of dimensionality. For the task of texture classification, our
tactile features extracted from the original matrix-formmeasurements, represented in a lower
dimensional space, benefit from the k-NN classification rule. To classify the textural class of
a tactile measurement following the weighted k-NN classification rule, we detail the process
as follows.

Given a query sample q ∈ ℝ𝐷 representing a tactile feature extracted from the original
matrix-form measurement, denoting N(q) as the set containing its 𝑘 nearest points q′

𝑖 along
with their class indices 𝜇′

𝑖 where 𝑖 = 1, 2, 3, ..., 𝑘, we compute its class index 𝜇 following

𝜇 = argmax
𝜇𝑗

∑
q′

𝑖 ∈N(q)
𝑤𝐼𝑗 (3.16)
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And the weight function is defined as

𝑤 = 𝑒−𝑑(q′,q′
𝑖 ) (3.17)

Its value decreases with the increasing Euclidean distance between the two samples q and
q′

𝑖 , and 𝐼𝑗 is the indicator function

𝐼𝑗 =
⎧⎪
⎨
⎪⎩

1 if 𝜇′
𝑖 = 𝑗,

0 otherwise.

The training process is semi-supervised as the only required prior knowledge is the
number of training classes, and the correct tag of each training sample is not presented.

In the case that tactile features belonging to a new textural class are presented, to enable
the classifier to incorporate the new classes, we introduce a threshold parameter 𝑊 such that
when

∑
q′

𝑖 ∈N(q)
𝑤𝐼𝑗 < 𝑊 ∀𝑗 (3.18)

the classification rule considers the samples belonging to a new class such that the training
process can reboot. The added threshold value 𝑊 in accordance with the reverse exponential
weight function ensures that each textural class gathers the sample points sufficiently close.
By setting 𝑊 to an appropriately small value, the classifier can properly adapt to the sample
points located densely in the feature space.

Figure 3.1 A graph of weight function 𝑤 = 𝑒−𝑑(q′,q′
𝑖 ) with a threshold 𝑊 = 0.2. Increasing

𝑊 will drastically shrink the cluster of the textural class in the feature space.
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3.4 Ellipsoid Representation
In statistics, an error ellipse [69, 70] is commonly used as a performance measure to

depict the accuracy of a stochastic system where all variables follow Gaussian distributions.
The elliptic representation requires a constant number of parameters to signify a data class in
the variable space, independent of the number of samples presented. The presumption is that
all random variables follow Gaussian distributions with known covariance. For simplicity,
we first derive the error ellipse of a 2D zero mean Gaussian random variable x = [𝑥1 𝑥2]𝑇 .
If the random variable has a probability density function (pdf)

𝑝(x) = 1
2𝜋√|𝐶𝑥|

𝑒𝑥𝑝(−1
2x

𝑇 𝐶−1
𝑥 x) (3.19)

with the covariance matrix as

𝐶𝑥 =
[

𝜎2
1 𝜌𝜎1𝜎2

𝜌𝜎2𝜎1 𝜎2
2 ]

(3.20)

Then we can rewrite the pdf in terms of the two separate variables, for a constant value
𝑝∗ = 𝑝(𝑥1, 𝑥2) as

𝑝∗ = 1
2𝜋𝜎1𝜎2√1 − 𝜌2

𝑒𝑥𝑝(− 1
2(1 − 𝜌2)

[ 1
𝜎2

1
𝑥2

1 − 2𝜌
𝜎1𝜎2

𝑥1𝑥2 + 1
𝜎2

2
𝑥2

2]) (3.21)

and it can be reorganized to have the elliptic form

𝑘2 = 1
1 − 𝜌2 [ 1

𝜎2
1

𝑥2
1 − 2𝜌

𝜎1𝜎2
𝑥1𝑥2 + 1

𝜎2
2

𝑥2
2] (3.22)

where 𝑘2 = −2𝑙𝑛(𝑝∗2𝜋𝜎1𝜎2√1 − 𝜌2) controls the size of the ellipse. Moreover Equa-
tion (3.22) can be simplified into a matrix form as

𝑘2 = x𝑇C−1x (3.23)

and for a chosen value of 𝑘, the point collection {x ∶ 𝑘2 = x𝑇C−1x} is exactly the error
ellipse. For the extension (error ellipsoid) in the 3D space used in this thesis or even the
higher-dimensional space, the readers can refer to [71, 72] for a detailed explanation. The
correlation between the error/confidence ellipse/ellipsoid (𝑛 = 2 corresponds to the 2D el-
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𝑃 (x𝑇C−1x < 𝑘2) 𝑛 = 2 𝑛 = 3
50% 1.177 1.538
90% 2.146 2.500
95% 2.448 2.795
99% 3.035 3.358

Table 3.1 The first column shows the confidence region, and the 2rd and 3nd columns show
the approximated 𝑘.

lipse and 𝑛 = 3 is the 3D ellipsoid) with respect to the selection of 𝑘 is briefly illustrated in
Table 3.1.

The elliptic equation provides a straightforward computational method to represent the
(fabric) classes and to testify to the quality of the acquired samples. By inserting the new
query point into the elliptic equation, we can also verify if it belongs to a certain class. The
ellipse (or ellipsoid in 3D) aids in visualizing the feature space of tactile data.

Combining equations Section 3.1.1, Section 3.2, and Equation (3.22), we consider cases
with 3PC feature extraction for easier visualization. In the 3D feature space, the parametric
representation using an error ellipsoid requires 7 parameters: the coordinates of the centroid,
the 3 directional vectors of the axes, and the 3 lengths of the (semi-)axes. These 7 parameters
describe a volumetric space in the tactile feature space that corresponds to a textural/fabric
class.

There are several forms to define an ellipsoid in space, and we apply the quadratic form
for its intuitive connection with eigencomposition, which naturally implies an approach to
compute the parameters. If v is a point and A is a real, symmetric, positive-definite matrix,
then the x satisfying the following inequality defines a general ellipsoid and its internal.

(x − v)𝑇A(x − v) ≤ 1 (3.24)

This ellipsoid is centred at v and the eigenvectors of A are the principal axes with the eigen-
values of A as the reciprocals of the squares of the lengths of the semi-axes: 𝑎−2, 𝑏−2 and
𝑐−2. This beautiful quadratic representation already indicates the procedures for obtaining
the ellipsoid representation given a group of data o ⊂ 𝑂 ∈ ℝ3×𝑛 that belong to the same
fabric class.

The centroid of the ellipsoid is simply denoted by the mean 𝜇 ∈ ℝ3 of the data matrix
o. We then compute the covariance matrixC of the data matrix o, and obtain the eigenvalues
𝛬 and eigenvectors V by:

C = V𝛬V−1 (3.25)
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where the eigenvalues are simply written as

𝛬 =
⎛
⎜
⎜
⎜
⎝

𝑎−2 0 0
0 𝑏−2 0
0 0 𝑐−2

⎞
⎟
⎟
⎟
⎠

(3.26)

Hence the transformation matrix T of the ellipsoid can now be computed by

T = 𝑉 𝛬
1
2 (3.27)

The transformation matrix is only useful to transform points from a sphere onto the points
of the ellipsoid for the purpose of visualization. It is not necessary as the parameters of the
ellipsoid. For a set of points x ∈ ℝ3×𝑚 that satisfies the spherical equation x𝑇 x = 𝐼 , they
can be converted to the points on the surface of the ellipsoid with the centroid at 𝜇 and the
transformation matrix T by the linear equation 𝑥′ = T𝑥, ∀𝑥 ∈ x.

Finally, the elliptic parameters as a compressed representation of the textural/fabric
classes can be collected in the forms of 1 vector and 2matrices: the coordinate vector 𝜇 ∈ ℝ3

locating the centroid, the full rank matrix V ∈ ℝ3×3 containing 3 directional vectors of the
axes and the diagonal matrix 𝛬− 1

2 ∈ ℝ3×3 whose diagonal entries are the lengths of the
semi-axes. Making use of elliptic parametrization, the consistency of the tactile signals can
be quantified by themagnitude of the lengths of semi-axes, and the similarity among different
classes can be measured by their centroid distance and overlapping volumes.



Chapter 4

Robotic Sliding Experiment

4.1 Experimental Setup

4.1.1 CPM-Finger Capacitive Tactile Sensor
Our research employs a capacitive tactile sensor CPM-Finger (see Figure 1.8) intro-

duced in [37], developed for the detection and manipulation of fabrics. At a sampling rate
of 32 Hz with 16 taxels, that is, 16 signal channels, the sensor signals in one second can be
arranged in a matrix 𝑋 ∈ ℝ32×16 (see Figure 1.9 for an example). For each capacitor, there
is a baseline value output from the capacitance-to-digital converter (CDC) at zero pressure.
The value has been subtracted from the sensor reading at the firmware level such that the
output sensor signals share the same value ranges and rest at 0 without pressure. For that
reason, the sensor signals do not convey an exact physical meaning, and we can comfortably
omit the unit 𝜇𝐹 and carry the values around for simplicity.

4.1.2 Robotic Sliding Experiments
The sliding experiments are implemented with a Franka Emika Panda 7DOF robotic

arm with a two-finger gripper as an end effector. A CPM-Finger tactile sensor is installed
on the gripper to replace the original rubber fingertip.

For the textural identification task, seven types of fabrics are used for the experiments.
We name them as BeigeCotton, BrownCotton, Linen, Canvas, Denim, DenimFlex and Wo-
venFabric as shown in Figure 4.1. They are cut into 65 cm × 10 cm strips with both ends
clipped onto an aluminum rack. Fabrics are roughly tensioned to guarantee a vertical po-
sition (see Figure 4.2), but not overstretched, so they can still be bent and twisted during
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the robotic sliding motion. Precise measurement of the fabric tension is not necessary and
beyond the research scope of our experiments due to the following considerations:

1. It is not always possible to measure the exact tension of the fabrics in real applications
given the broad usage of fabrics in all scenarios, e.g., non-fixed clothes on aworkbench
and garments attached to a human body;

2. Variable tension along the fabric stripes serve as a testimony of the robustness of our
model agnostic methods;

3. Due to the friction between the protective fabric Spandex of the tactile sensor and
the inspected fabric strip, bending, stretching and twisting happen during sliding in
a rather random way, preset tension has little indication to the actual varying tension
during the interaction as it is very hard to model, especially for higher sliding pressure
settings.

The robot gripper is controlled to grip the fabric stripe with constant pressure and slide
vertically at a constant speed to collect one set (3 samples per set) of tactile signals for
each parameter setting (sliding up and down at the same velocity are considered as two
speeds). Grip pressure is maintained through PID control on the closing distance between
the fingertips. We capture the average value of the 16 sensor readings as an indicator of grip
pressure (pressure).

The control command is computed and sent to the robot host controller through a Linux
operating system patched with a real-time kernel.

4.1.3 Fabric Slide Dataset
Notice that some fabrics are not isotropic in terms of textures, including (Figure 4.1)

(B) BrownCotton, (C) Canvas,(D) Denim and (G) WovenFabric. The experiment contains
2 cropped strips for each of the fabric types in two perpendicular orientations in terms of
textures. However, the test bench and the fabric fixture are exactly the same as shown in
Figure 4.2. The tactile data acquired on two oriented textures for each of the fabrics are
considered to be from the same class, and hence grouped together. Possibly it increases the
covariance of the samples as indicated in the plots of Section 4.3.

The data acquisition proceeds as follows:

1. The robot closes the gripper till a desired pressure is reached, and holds the pressure.
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Figure 4.1 Fabric samples (A) BeigeCotton, (B) BrownCotton, (C) Canvas, (D) Denim, (E)
DenimFlex, (F) Linen, (G) WovenFabric, (H) Board2mm, (I) Board10mm. Labels of the
fabrics are only for identification in the experiments and are not related to the exact material
or any trademark.
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Figure 4.2 Illustration of the experimental setup. The original rubber fingertip of the gripper
is replaced with a CPM-finger sensor. 5 fabrics are fixed on an aluminium rack at one time.
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2. The robot moves the gripper vertically with a constant speed downward and then up-
ward for a distance of 50 cm, respectively, in the same velocity. The tactile signals as
time series are captured during the process and stored in the format of a matrix.

3. Each pair of sliding parameter settings is repeated 3 times. The robot then releases the
gripper, moves horizontally away from the currently tested fabric stripes, and shifts to
the next fabric, until all fabrics are tested with the current sliding speed and holding
pressure.

4. The robot repeats the whole sliding experiment from step Item 1 to Item 3 with differ-
ent pairs of control parameters, i.e., speeds and pressure as listed in Table 4.1, on all
fabrics.

Sliding Parameters
Speed (mm/s) Pressure
10 120
20 150
50 180
100 210
120 250
150 N/A

Table 4.1 Combinations of sliding parameters are chosen from this table.

Two types of denim, i.e., Denim and DenimFlex in our nomenclature, fabrics failed the
sliding experiment with pressure 250, and WovenFabric failed both pressure 210 and 250,
as in these cases, the torques required to carry out the sliding motions exceed the maximum
payload of the robot due to over-stretching and over-twisting of the fabric strips caused by
large frictional force and high elasticity. With all the other available pressure settings, sliding
motions at all 6 speeds are executed. All samples are collected as matrices in the shapes of
𝑁 × 𝑀 where 𝑁 is dependent on the duration of the sliding motion and 𝑀 is the number
of signal channels, that is, the number of taxels, which is 16 for our CPM-finger sensor.

4.2 Analyses and Results
Our methods are tested on a specific capacitive tactile sensor, but the algorithm per se

is generic and applies to any mono-modality multichannel tactile sensor to extract frequency
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features. With the extracted features, fabric textures can be classified by training a simple
k-NN classifier.

We show that the proposed method is capable of decoding tactile signals and classify-
ing fabrics under different sliding pressures and speed settings. Very few frequency features
suffice to represent the perceived fabric textures. An incremental IPCA method is applied to
allow iterative updates of the feature extractor so that tactile information from new fabrics can
be fused to improve classification performance. The results imply that the distinguishability
of fabrics depends not only on their microgeometry textures but also on physical proper-
ties including elasticity and friction coefficient that can only be perceived during a dynamic
interaction. In cases of ambiguity in classifying certain fabrics, it is possible to increase
confidence and accuracy by adjusting the sliding speed and pressure to an optimal setting
specific to those fabrics.

To simulate the scenario where new fabric classes are presented, we follow an iterative
process to update the feature extractor and test the classifier:

1. We first randomly select two fabrics, e.g., Canvas and DenimFlex as prior knowledge,
i.e., initial training classes, to fit the IPCA feature extractor.

2. Measurements from the two training classes are transformed into the feature space by
the feature extractor just trained on them.

3. Tactile measurements of all other (unfitted) fabric classes serve as a test data set. They
are transformed into feature vectors to testify to the classifier.

4. Randomly pick one unfitted fabric class as a newly presented class to update the IPCA
feature extractor with the partial fitting method. Add the class to the training classes.

5. Project the data from training classes into the feature space.

6. Repeat from Item 3.

The feature space and the projected data points of our randomly selected training classes,
Canvas and DenimFlex, in the 3D space (see Figure 4.3). Fabric classes segregate, very
likely due to their intrinsic difference in textures, elasticity, and friction, which can also be
perceived and discerned with human touch with ease.

Then a new fabric BeigeCotton is presented as a testing class. The tactile measurements
of the first test class are transformed to 3D feature vectors by the IPCA feature extractor
trained solely in the first two training classes, to join the feature space where now 3 fabrics
are presented (see Figure 4.3). The first test fabric BeigeCotton intertwines with Canvas
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in the feature space as they are both in plain knit. The minor resemblance in textures put
them in a similar region in the feature space. After observing the visualization of our new
3-class feature space, we reuse the original tactile measurements of BeigeCotton to partially
fit our incremental IPCA feature extractor. In the presence of the next new fabric, the feature
extractor has already been updated to include the fabric class BeigeCotton.

Similarly, Figure 4.4 show feature spaces associated with the incremental process of
incorporating more testing fabrics into the IPCA feature extractor. The visualization of the
feature space gives a hint that BrownCotton and BeigeCotton can be hard to distinguish under
some circumstances; Canvas lies in the large common region of otherCottons but it responds
to different pressure settings in its ownway that deviates fromBeigeCotton andBrownCotton.
Linen demonstrates some essentially different features that stand out from other fabrics. The
elasticity is much greater than Cotton and Canvas. Although the textures on the surface are
not as smooth and even as other fabrics, it could be the reason that Linen scatters irregularly
in the feature space. The embrace ofDenim andDenimFlex in the feature space is consistent
with the similarity of the two Denims in textures and elasticity, which can again be verified
by human touch.

With all tactile measurements projected into the feature space, we split the feature vec-
tors of all classes into halves as one training dataset and one testing dataset to fit and test
a k-NN classifier taking 𝑘 = 10. First, we show how the number of features 𝐷 extracted
by the IPCA method affects the classification performance on the test set (see Figure 4.8).
The trends in classification accuracy are consistent with the change in the ratio of variance
explained by 𝐷 principal components. When 𝐷 ≥ 7 the classifier reaches its limit in our
experiments, where the classification performance ceases to improve.

To be consistent with all 3D visualization, we use a feature extractor of the principal
components (PCs) of 𝐷 = 3. We first show the confusion matrix (see Figure 4.9) using half
of the samples as a training data set and the other half as a testing dataset, to have a rough
picture of the classification performance. Entries with higher confusion rates match well to
the fabrics classes that are tangled in the feature space in Figure 4.7.

All of the above results combined the feature vectors sampled with all the different
sliding parameters specified in Table 4.1. To check how the fabric classes separate for each
pressure setting, we first show the feature spaces corresponding to only one pressure (while
the speeds are still mixed) at a time. With the same feature extractor trained on 𝐷 = 3
PCs, the classifier shows a performance fluctuation under different pressure settings (see
Figure 4.10). The sweet spots fall at pressure 180 and pressure 210 where the classifier
shows significantly better performance. The results coincide with the better segregation of
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the fabric clusters as in Figure 4.16. We also show the confidence ellipsoids 95% to help
visualize the clustering change along with the pressure change.

Since only 4 fabrics can be sampled under pressure 250, the results shown in Figure 4.16
are only for reference purposes and are not directly comparable to other pressure settings.
And hence it is plausible to infer that higher holding pressure contributes to better classifi-
cation of fabrics in the sliding motion. Moreover, the slightly better, yet negligible improve-
ment in classification in the range of pressures from pressure 180 to pressure 210 indicates
a potential saturation of grip pressure, which refers to a sufficiently (maybe fully) stretched
or even over-stretched condition of the fabric stripes, where fabrics textures are severely dis-
torted or even flattened out. Whether a fabric stripe is stretched enough for identification
and classification might also be closely related to the resolution and sensitivity of the tactile
sensor itself. As can be seen in Figure 4.16 data points of different classes remain close to
each other, which implies that under low pressure the extracted features carry insufficient
information about the fabric classes.

To better illustrate the effect of grip pressure, we show in Figure 4.17 the data points
sampled under different pressures with marks ×, l, : and F sequentially, in ascending
order. Data points are more scattered under larger pressures, which confirms our conclusion
in the last paragraph that larger holding pressures help to extract more information from
the fabrics. However, another notable phenomenon is that the characteristics are also less
consistent (more scattered) under larger pressures. This is very likely caused by the very
strong interaction between the sensor and the fabric stripes, where the sliding motion is
not as smooth as it is under lower pressure settings due to augmented frictional forces. In
the experiments, because of gravity, the anisotropic ”fingerprint” of the sensor, and fabric
folding and shifting, the sensor stutters during the sliding motion.

Finally, we show the effect of different sliding speeds on classification in Figure 4.10.
Classifications are conducted with a one-speed setting (only the magnitudes of the speeds
are considered). The sliding speeds seem to be irrelevant to the features extracted under our
experimental setup. Increasing or decreasing the sliding speed alone shows no major impact
on the classification performance.

Given the results shown above, mostly the visualization of the feature space with clus-
ters and the analysis of classifier performance concerning the parameters of sliding motions,
we make a statistically sound inference that a low-dimensional (circa ≤ 7 D) vector is suf-
ficient to feature the tactile measurement of textures sampled from our CPM-Finger tactile
sensor. The feature vector is essentially a condensed form of the frequency spectrum that
not only represents the frequency signature of a fabric texture, but also embeds some char-



4.3 Summary 52

acteristics of the tactile sensor itself. Even at a relatively low sampling frequency of 32 Hz,
we can still reach a considerable classification accuracy of 96% for 7 fabrics by using a 7D
feature extractor.

The fact that the same processing pipeline has significantly different performance on
fabric classification when varying sliding motion parameters supports the assertion that tac-
tile sensing as a contact perceptive technique is conceptually very different from visual and
auditory perception. Tactile sensors capture the information in the interaction with the en-
vironment during which the interactive modes (i.e., the relative motion between tactile sen-
sors and the objects in contact) and parameters are also reshaping the environment, which
reversely affects the tactile measurement itself. For visual and auditory perception, move-
ments of the sensory system are not mandatory to acquire signals and have no direct impact
on the observable most of the time.

For a specific sensing technology, varying the parameters of the exploratory motions
not only serves to enlarge the perceptive field and gain more information, but also helps to
seek the best interactive conditions of the tactile sensors regarding the object. The essence
of tactile sensing is a capture of the deformation generated during the mechanical interaction
between the sensor and the surface of the object. Changing the motion parameters for better
classification performance can be viewed as a robotic adaptation to maximize the efficacy
of the sensors and the perception system, given that the specifications of the sensors (e.g.,
sampling rate, resolution) and the physical properties of the object are likely unalterable.

4.3 Summary
In this study, we focus on the problem of fabric classification only. However, it is

natural to ask whether the same methods apply to the classification of general materials.
Some preliminary results of the experiments on a 3D printed polylactic acid (PLA) board
with two types of boards (with 2mm and 10mm grilles, respectively; see Figure 4.1 H and
I) show that using the feature extractor proposed in Section 3.2, trained on all fabric sam-
ples, the tactile measurements of the PLA board can be transformed into the same feature
space (see Figure 4.16). Therefore, it seems that our proposed methods may also be promis-
ing in classifying non-fabric materials. The first step to extend our research will be adding
more materials in forms suitable for the same sliding motions. In that case, we can reach a
more comprehensive understanding of whether for capacitive tactile sensors, the frequency
spectrum alone suffices to feature a general texture. From the results of classification and
visualization of the feature space, it is indicated that even a mono-modality tactile sensor at a
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low sampling frequency is already capable of classifying fabric materials by using a simple
sliding motion, to a reasonable good accuracy (90% - 96%) with no more than 7D feature
vectors. Also, it is apparent that the contact conditions, which in this work are contact pres-
sure and sliding speed, have positive/negative effects on tactile perception. Although this
thesis did not quantify the correlation between contact parameters and perception, that is,
the accuracy of textural classification, Figure 4.16 implies that there exist better pressure
settings in terms of sliding to distinguish fabrics.

The feature spaces Figures 4.11, 4.12, 4.13, 4.14 and 4.15 with the error ellipsoids of
the confidence region 99% Table 3.1 illustrate how well the fabric classes are clustering,
based on 3PC feature extraction in each of the pressure settings (120-250). These ellipsoids
serve as a parameterized geometric representation of the fabric classes, and the degree of
separation actually matches the classification performance. It is visually recognizable that
under pressure 210, the ellipsoids separate from each other better than under the other pres-
sure settings. Besides an intuitive visualization of the segregation, the size of the ellipsoids
also implies how consistent the sliding is. For fabrics with greater friction and better stretch-
ability, the ellipsoids tend to be more elongated, because more stuttering occurs during the
sliding motion, and the fabric strip has more deformation and twisting. The grouping phe-
nomenon indeed matches the weaving/material difference, as two denim fabrics are located
next to each other while far away from other materials. Different cotton classes are closer
to each other while the linen class is slightly away from the cotton classes. The separation
fits the sense of human touch of these fabric materials. Hence, it can be concluded that the
separation distance is proportional to the difference in tactile perception.



4.3 Summary 54

(a) view angle 1

(b) view angle 2

Figure 4.3 Feature space with 3 textural classes.
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(a) view angle 1

(b) view angle 2

Figure 4.4 Feature space with 4 textural classes.
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(a) view angle 1

(b) view angle 2

Figure 4.5 Feature space with 5 textural classes.
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(a) view angle 1

(b) view angle 2

Figure 4.6 Feature space with 6 textural classes.
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(a) view angle 1

(b) view angle 2

Figure 4.7 Feature space with 7 textural classes.
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Figure 4.8 Number of (IPCA) features VS. Classification accuracy of a k-NN classifier, with
𝑘 = 10 using half of the dataset as a test set. The black line follows the ratio of variance
explained by the principal components.
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Figure 4.9 Confusion matrix of 7-fabric classification using a k-NN classifier with 3 IPCA
features.
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Figure 4.10 (A) Sliding pressure (as the average value of the 16 taxel signals, unitless) vs.
Classification accuracy (B) Sliding speed vs. Classification accuracy
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Figure 4.11 The feature space with samples captured at pressure value 120 (the average read-
ing of all capacitive taxels on the tactile sensor, not the physical pressure).



4.3 Summary 63

Figure 4.12 The feature space with samples captured at pressure value 150 (the average read-
ing of all capacitive taxels on the tactile sensor, not the physical pressure).
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Figure 4.13 The feature space with samples captured at pressure value 180 (the average read-
ing of all capacitive taxels on the tactile sensor, not the physical pressure).
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Figure 4.14 The feature space with samples captured at pressure value 210 (the average read-
ing of all capacitive taxels on the tactile sensor, not the physical pressure).
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Figure 4.15 The feature space with samples captured at pressure value 250 (the average read-
ing of all capacitive taxels on the tactile sensor, not the physical pressure).
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Figure 4.16 Feature spaces (A)-(E) correspond to sliding pressure settings of 120, 150, 180,
210 and 250 of only fabrics. (F) is the feature space of all fabrics and PLA boards with all
different speed and pressure settings. The 95% confidence ellipsoids are shown to illustrate
the intra-class dispersion.
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Figure 4.17 Samples of Denim and DenimFlex in the feature space. Markers of ×, l, : and
F correspond to sliding pressures 120, 150, 180 and 210 respectively.



Chapter 5

Conclusion

This chapter summarizes the contents of the thesis and concludes with insights into the
results and findings of texture perception with active tactile sensing. This paper suggests
some potential topics for future research in the field of tactile sensing technology and tactile
perception. And the final verdict restates the purpose of the study and some insights beyond
tactile sensing.

5.1 Summary
The first chapter is a general introduction to tactile sensing. The motivation for develop-

ing robotic tactile sensing systems starts with a biomimetic attempt to reproduce the tactile
sense of human beings. We review the neural basis for touching and see that some electron-
ics and mechatronic designs try to replicate the functions of certain neural structures. The
next section is a concise introduction to different types of tactile sensor and some recent im-
plementations. With a comparison of their characteristics and examples of suitable sensing
scenarios, the section aims to provide a brief picture of the status quo in tactile sensing tech-
nology. This chapter also highlights the tangled relationship between sensing technology
and perception methods. Such a coupling confines the generalizability and transferability of
the research in tactile sensing and perception, making it hard to deploy the sensing technol-
ogy in practical and industrial usage on a larger scale.

The second chapter reviews some recent work on texture/material recognition and clas-
sification. The research can be mainly separated into two schools, with the first focusing on
decoding the spatial signals, i.e. the tactile image; and the second attempting to interpret the
temporal sequences, which puts more stress on the frequency spectra. The choice of methods
is highly dependent on the type of tactile sensor used and whether tactile sensing is active
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or passive. This study is based on a capacitance array tactile sensor and falls into the active
sensing category with temporal decoding.

The third chapter details the methods for decoding the raw tactile signals in the form
of matrices. It includes the mathematical fundamentals to transfer spatial signals to the
frequency domain and extract temporal features from the training data. It features an incre-
mental PCA procedure that efficiently incorporates the information of new data to enhance
the performance of the feature extractor. A parametrization based on the error ellipsoid is
introduced for a compact representation of the textural classes in the temporal feature space.

The fourth chapter shows the robotic experiments and the experimental results. The
experiments contain multiple sets of small trials with different settings to verify the role of
active touching (particularly sliding) in texture perception. The results prove the feasibility
of the proposed decoding methods, and by comparing the classification performance, I con-
clude that the active touching mode, i.e. the sliding parameters, does affect the accuracy of
perception, i.e. textural classification. The results show that there is an optimal pressure that
can maximize classification accuracy and perception confidence (represented by the volume
of the textural ellipsoid in the feature space). However, the insensitivity to sliding speed can
be due to the rather low sampling frequency of the sensor, which is not verified in this thesis
(see detailed discussion in Chapter 4 Section 4.2).

Combing the experimental results with the observations during the experiments, several
conclusions can be reached.

1. For a low-resolution, low-speed (sampling rate and bandwidth) tactile sensor, active
touch can drastically increase its perceptual capability.

2. It is possible to adapt the active behavior, e.g., sliding speed and pressure, to improve
the classification accuracy of textures.

3. The sensor actually captures the artifacts generated by the mutual interaction between
the sensor and the fabrics, and the fabrics generate more unique features by twisting
and stretching due to friction and elasticity.

4. Active touch with the optimal parameters is equivalent to a circumstance in which the
artifacts are generated consistently and stably.



5.2 Discussion 71

5.2 Discussion
There are still many interesting topics missing in this research that could help us better

understand touch and develop better tactile sensors. These topics include

• How do the fingerprints, i.e. the patterns of the elastomer, affect the sensing?

• How can robots explore and adapt to different motions autonomously based on sensory
feedback?

• What is the quantitative rule that relates the sensing signals and the optimal motion
parameters?

They are a natural extension of this study and can be seen as some building blocks to a more
intelligent sensory-motion-coupled robotic system.

5.3 Final Verdict
This study is based on a particular capacitive tactile sensor, but the whole decoding

procedure and methods are generally applicable to different types of tactile sensors (pre-
sumably with some tweaks and adaptations). Experiments with multiple sliding parameters
aim to show the relationship between sensing motion and perception. In the literature on
textural recognition and classification, many different methods have been explored and pro-
posed, but most of the study cases focus on ideal data acquisition, which takes very little
consideration of fabric deformation and varying contact conditions. Instead, this thesis aims
to provide insights into a more intuitive and incremental algorithm for texture identification
and memorization by studying a more realistic robotic sensing scenario. The proposed ellip-
tic parameterization enables an efficient representation of the perceived fabric classes that
could later be used to compare the similarity among different classes and to measure the
quality of the acquired tactile signals.

Indeed, there have been lots of doubts about whether such a tactile sensor with a rel-
atively low spatio-temporal resolution can really detect different textures, i.e. very fine ge-
ometry. The results show that with proper active touching motions, it is possible to achieve
decent perceptive results. The inspiring findings suggest that exploratory motions may be a
good complement to the limitations of sensing technology. There are always situations where
sensors reach their limits, but with proper exploratory motions, it is possible for robots to
circumvent perceptive blind spots. Although the properties of the sensors and objects in
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contact are most of the time inaccessible, by varying the parameters of exploratory motions,
robots can potentially learn the optimality and limitation of their sensory and motion system.
This can also be a key to the realization of robotic self-awareness.
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