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Abstract

Objective: Traditional theories in neuroscience state that tactile afferents present in the glabrous

skin of the human hand encode tactile information following a submodality segregation strategy,

meaning that each modality (eg. motion, vibration, shape, ... ) is encoded by a different afferent

class. Modern theories suggest a submodality convergence instead, in which different afferent

classes work together to capture information about the environment through tactile sense.

Typically, studies involve electrophysiological recordings of tens of afferents. At the same time,

the human hand is filled with around 17.000 afferents. In this thesis, we want to tackle the

theoretical gap this poses. Specifically, we aim to address whether the peripheral nervous system

relies on population coding to represent tactile information and whether such population coding

enables us to disambiguate submodality convergence against the classical segregation.

Approach: Understanding the encoding and flow of information in the nervous system is one of

the main challenges of modern neuroscience. Neural signals are highly variable and may be

non-linear. Moreover, there exist several candidate codes compatible with sensory and behavioral

events. For example, they can rely on single cells or populations and also on rate or timing

precision. Information-theoretic methods can capture non-linearities while being model

independent, statistically robust, and mathematically well-grounded, becoming an ideal candidate

to design pipelines for analyzing neural data. Despite information-theoretic methods being

powerful for our objective, the vast majority of neural signals we can acquire from living systems

makes analyses highly problem-specific. This is so because of the rich variety of biological

processes that are involved (continuous, discrete, electrical, chemical, optical, ...).

Main results: The first step towards solving the aforementioned challenges was to have a solid

v



i
i

“output” — 2023/6/13 — 12:18 — page vi — #7 i
i

i
i

i
i

Abstract

methodology we could trust and rely on. Consequently, the first deliverable from this thesis is a

toolbox that gathers classical and state-of-the-art information-theoretic approaches and blends

them with advanced machine learning tools to process and analyze neural data. Moreover, this

toolbox also provides specific guidance on calcium imaging and electrophysiology analyses,

encompassing both simulated and experimental data.

We then designed an information-theoretic pipeline to analyze large-scale simulations of the

tactile afferents that overcomes the current limitations of experimental studies in the field of

touch and the peripheral nervous system. We dissected the importance of population coding for

the different afferent classes, given their spatiotemporal dynamics. We also demonstrated that

different afferent classes encode information simultaneously about very simple features, and that

combining classes increases information levels, adding support to the submodality convergence

theory. Significance: Fundamental knowledge about touch is essential both to design human-like

robots exhibiting naturalistic exploration behavior and prostheses that can properly integrate and

provide their user with relevant and useful information to interact with their environment.

Demonstrating that the peripheral nervous system relies on heterogeneous population coding can

change the designing paradigm of artificial systems, both in terms of which sensors to choose and

which algorithms to use, especially in neuromorphic implementations.

Keywords: information theory · neural coding · population coding · touch · peripheral nervous

system · calcium imaging
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Introduction

1 Preface

The human brain is one of the most complex and enigmatic structures in the known universe.

Comprised of approximately 100 billion neurons and trillions of supporting glial cells, the brain is

responsible for regulating our most basic physiological functions and for enabling us to experience

the world around us through our senses, think, feel, and make decisions. Despite decades of

research, scientists are still grappling with many of the mysteries of the brain and how it works.

Neurons, the basic building blocks of the brain, are the primary cellular components responsible

for transmitting information from one part of the brain to another. They are specialized cells

that receive and transmit signals via their dendrites, which receive inputs from other neurons, and

their axons, which send outputs to other neurons. Neurons communicate with each other through

chemical signals called neurotransmitters and electrical signals known as action potentials.

Over the past few decades, advances in technology and techniques have made it possible to study

the brain and its functions at an unprecedented level of detail. However, despite this progress,

there is still much that we do not understand about the workings of the brain and its neurons.

For example, the mechanisms behind learning and memory, the generation of conscious thought,

and the way in which populations of neurons integrate and process information for perception are

still largely unknown. The computations and information processing steps needed for perception

can be broken into several elementary computations throughout the nervous system. The most

important ones are sensory coding and choice coding [1].

Sensory coding is essential for organisms to perceive their environment, since it is the

1
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1. PREFACE

computational process that translates external stimuli into neuronal language. It consists of three

different essential subtasks: reception, transduction, and coding. Reception occurs when a

receptor is stimulated by some kind of physical energy such as tactile pressure or a photon

delivering energy in the retina. Reception is followed by transduction, in which the physical

energy is then converted into electrochemical energy. Finally, the coding part corresponds to a

mapping between the attributes of the stimuli and the attributes of neural activity (e.g firing rate).

Choice coding is the second elementary computation related to the perception process. In this

procedure, neurons carry information in the shape of action potentials (APs), which is then

transformed into actions. As it happens with the sensory coding process, there also exists a

mapping between the neural code and the behavioral choice that the organisms finally execute.

How and how well neural sensory coding informs behavioral choices also has a remarkable

importance. Our senses can capture a lot of information from the external world, but not all that

information is actually processed by the central nervous system. However, what we can say is

that not only the brain, but also individual or groups of neurons, can be understood as a

communication system that sends and process information coming from the senses to shape

actions.

1.1 The sense of touch

Humans and animals perceive their environment through five different senses: sight, taste, touch,

hearing and smell. The sense of touch is a fundamental aspect of human experience and plays a

critical role in our perception of the world around us. From the sensations of pressure, temperature,

and texture, to the emotional and social aspects of touch, this sense provides us with a wealth

of information that helps us interact with our environment and others. Despite its importance,

the scientific understanding of touch has lagged behind that of other senses, such as vision and

hearing. However, in recent years, there has been a resurgence of interest in this field, driven by

advances in neuroscience, psychology, and engineering.

The sense of touch begins with the activation of sensory receptors in the skin, which send signals

to the central nervous system to create the perception of touch. In this section of the thesis, we

will examine the neural mechanisms underlying touch perception, by investigating the structure

2
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1. PREFACE

and function of sensory receptors, the pathways that transmit touch signals from the skin to the

brain, and the neural circuits involved in processing touch information. Touch perception is not

just a simple matter of sensory signals from the skin to the brain. It is also influenced by a variety

of cognitive, emotional, and cultural factors, which shape our experiences of touch.

Despite its importance, the scientific understanding of touch has lagged behind that of other senses,

such as vision and hearing. This might have happened for limitations on how we study the sense

of touch. Unlike other senses, touch is not isolated in compact structures within the body. The

sense of touch is present in our whole skin [2]. Plus, it does not only depend on the receptors on

the skin, but also receptors located in the muscles, joints, tendons, and on the surface of internal

organs [3]. However, in recent years, there has been a resurgence of interest in this field, driven

by the potential applications that can be done in the fields of robotics and prosthetics due to the

advances in engineering and technology.

Richard Feynman said once: What I cannot create, I do not understand. At the present time, we

cannot say that we have been able to produce robots exhibiting a tactile sense like humans, neither

a prosthetic device that perfectly replaces and integrates a body limb. My personal interpretation

of this sentence implies that, for being able to produce such devices, we really need to dig in the

biological principles underlying touch, to understand which of them are enough relevant to be used

in artificial. And all this starts with the understanding of the encoding mechanisms of the tactile

afferent innervating the skin.

1.2 Information Theory

Information theory (IT) has emerged as a powerful tool in the field of neuroscience, providing a

mathematical framework for understanding the complex processes of sensory processing, coding,

and decision making in the brain. Information theory was originally developed by Claude Shannon

in 1948 as a way to quantify the amount of information transmitted in communication systems

[4]. However, the principles of information theory have since been applied to a wide range of

fields, including physics, biology, and psychology. In neuroscience, information theory has been

key to analyze the properties of neural signals, to understand the mechanisms of sensory coding,

sensation, spatial navigation, and to study the process of decision making in the brain [5–8].

3
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2. RESEARCH GOALS

One of the key ideas in information theory is the concept of entropy, which measures the

uncertainty or randomness of a system. In the context of neuroscience, entropy has been used to

analyze the distribution of neural firing rates, to quantify the variability of sensory responses, and

to assess the information content of neural signals. Another important concept in information

theory is mutual information, which measures the amount of information that is shared between

two variables. In neuroscience, mutual information has been used to study the relationship

between neural activity and behavioral responses (or given stimuli), to analyze the structure of

functional networks in the brain, and to explore the dynamics of neural interactions.

Information theory is then one of the disciplines that can help to shed light on how neural

systems integrate, encode and compute information, and it is and ideal candidate to understand

the nervous systems for being statistically robust, mathematically well-grounded, and model

independent, meaning that analyses on how neurons (or brain areas, among others) encode and

transmit information can be done in an assumption-free way. Additionally, IT can capture both

linear and non-linear interactions that can define coding mechanisms [1, 9].

2 Research goals

The main objective of this thesis aims at understanding the sensory encoding mechanisms of the

tactile afferents present in the skin of the human hand by means of applying information theoretic

methods. Such question brought us to divide the development of this project into two to different

stages based on more defined and bounded questions that are written below.

The advantages that make information theory a powerful an ideal candidate to analyze neural

signals were clearly stated in the previous section. Even if the methods can be generally applied

to any kind of data, its application remains very problem specific due to the huge types of neural

data we can record [9]. There exist several methods that can be used to understand the flow of

information and that can be combined with both supervised and unsupervised machine learning

techniques to deal with very large datasets [7, 10, 11]. Precisely listing the advantages and

limitations of the different methods implies a proper definition of the adequation of each of them

based on the type of neural data we need to analyze. For this reason we defined a first Research

Question (RQ) as follows:
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RQ1: Which are the most useful information theoretic methods depending on the type of neural

signals we record and what are their limitations and advantages?

Once having defined a proper methodology to deal with different types of neural signals, we can

focus on the understanding of the sensory coding strategies of the tactile afferents. Two types of

data can be used for such a purpose.

First, neurophysiological recordings, that suffer from strict limitations in terms of the time required

to prepare participants and typically only a handful of afferents can be recorded simultaneously,

while we do know that the human hand gathers around 17.000 [12]. Second, computational models

[13], that can be less precise or constrained to the specific conditions in which the data for the

training was obtained. The main advantage of computational models is that they are not subject to

the experimental limitations. Literature has focused on describing the coding mechanisms based

on such recordings. However, population coding has been rarely investigated [14], discarding

the possibility of tactile afferents relying on population strategies to encode stimulus information

[7, 15]. On the other, hand, the fact of using a small sample of the whole population might have

led experimental studies to biased conclusions about the sensory coding procedure. Considering

this gap, we defined the second research question as:

RQ2: Do tactile afferents rely on population coding strategies to encode stimulus information?

3 Contributions

Two different self-standing studies have been gathered in this manuscript and the specific scientific

contributions to this thesis are broadly discussed in the corresponding chapters.

Both studies together add knowledge the study of neural coding. The first study adds knowledge

about very powerful methods (information theory) to understand neural coding in general,

independently of the type of neural signal that can be recorded from the nervous system, and

providing guidance are suggestions under specific conditions that scientists can find during their

experiments. This study not only added theoretical knowledge about neural coding, but also a

publicly available toolbox that aims to facilitate the use of computational methods to

neuroscientists (in particular, experimental ones). The second study scaled the methods included
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An information-theoretic approach to understanding the neural coding of 
relevant tactile features

RQ1: Which are the most useful information theoretic 
methods depending on the type of neural signals we 

record and what are their limitations and advantages?
RQ2: Do tactile afferents rely on population coding 

strategies to encode stimulus information?

Population coding strategies in human tactile afferentsNIT: an open source tool for information 

theoretical analysis of neural population data

Approach
Review of information theoretic methods 


Simulation of electrophysiology and calcium imaging data to 
compare information theoretic strategies on both types of 
data to find informative neurone and groups of neurones


Validation of the analyses on experimental data


Real use case example

Simulation of the spiking activity of a large number of human 
tactile afferents undergoing naturalistic stimulation similar to 
the ones used in experimental research


Information theoretic analyses combined with advanced 
machine learning techniques to address population coding 
capabilities in terms of neural coding

Main Outcomes and Contribution to this Thesis
Provide the scientific community with a rel iable, 
comprehensive and open toolbox for information-theoretic  
analysis of neural data 


2P calcium imaging data can be used effectively to recover 
the underlying stimulus information present in the spike train


Guidance on analysis of both types of data (discrete and 
continuous) 

Intersection information can be used to reveal pure choice 
information

Evidence about same-class afferents work together to gather 
information that is not available with single units


Heterogeneous populations of afferents provide the highest 
information content due to non-negligible complementary 
information


Evidence on population coding relying on temporal resolution 
(as demonstrated for single units) and spatial activation


Fig. 1: Overview of the research questions, approaches, and contributions of the manuscript. Two questions constitute
the objective of the thesis, the diagram provides an overview of the approaches and the resulting scientific contributions.

in the toolbox to analyze the encoding of information by the human tactile afferents from a

population coding perspective, that was rarely investigated, probably due to the large number of

afferents that we can find only in the hand, unveiling basic knowledge about tactile coding that

can guide the design of future neuromorphic-embedded systems on prosthetics and robotics

In Figure 1, we offer an overview of the research questions, the studies’ approach and the main

scientific contributions.
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Technologies for touch

Neural coding representation 
of behaviorally relevant 

tactile features

Learning to find and operate 
switches

Grasping and manipulation

Memory-based tactile 
perception and task-relevant 

action selection in robots

Active touch  
and behavior

Spiking neural networks for 
information representation 

and decoding

Neuromorphic embedded 
processing for touch

Neural nanowire  
based tactile skin

Mutli-transduction 
neuromorphic skin

A spiking model of realistic 
human tactile interaction

Sensory feedback 
for prosthetic devices 

Soft electrodes 
for tactile feedback

Optimization and integration 
of spiking tactile sensors on 

prosthetic devices
Characterization of spiking 
activity of tactile afferents

Active sensing strategies and 
perceptual coding

Touch for prosthetics

Touch for robotics

Fig. 2: Neutouch organization in working packages including the contributions of the researchers.
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4 Research in context

The research presented in this manuscript was performed within the Innovative Training Network

(ITN) of NeuTouch, a project supported by the European Union’s Horizon 2020 Marie

Skłodowska-Curie Actions (grant agreement 813713). 15 Early Stage Researchers (ESR) and 16

principal investigators build NeuTouch, including 9 different institutions across such as:

universities, research institutes, and industrial companies.

The objective of Neutouch is improving artificial touch perception and hand prostheses by

designing systems with bioinspired electronic circuits, known as neuromorphic computing.

Artificial systems have reached even better results than structures that evolution has been shaping

for millions of years, and the simplest example are the planes. However, we know that one of the

optimisation that evolution performs is energy consumption, or what is the same, efficiency. If we

want to produce systems that work well and with a low energy consumption, looking at

biological systems is the most straightforward way to reach such objective. Following this

insight, we may be able to create not only robots that achieve a more human behavior, but also

prostheses exhibiting a better human-machine integration providing then the user with a more

realistic and intuitive experience (e.g. in terms of perception or feedback), which could be crucial

to improve the user’s abilities and precision.

With this aim Neutouch was organized as a multidisciplinary project divided into three different

overlapping topics that give rise to three different working packages: Technologies for Touch,

Touch for Robotics, and Touch for Prosthetics (see Figure 2).

Technologies for Touch aims at developing neuromorphic tactile sensors with low-energy

consumption that can still correctly mimic the function of tactile afferents together with spiking

neural networks that can encode information in following the neural codes of the peripheral

nervous system. More specifically, this working package aims at developing nanowires and

materials for smart transduction that are able to reproduce the dynamics of the human tactile

afferents to integrate them in neuromorphic circuits. Then, understanding the neural encoding of

tactile features is essential for such investigations.

The neural encoding of tactile features and their neural representations are also basic to define
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robotic behavior policies. Touch for Robotics is precisely focused in generating autonomous

grasping and object recognition algorithms, among other active touch related actions, by

integrating the information obtained from the neuromorphic mechanoreceptors. The close-loop

between sensory perception and behavior, makes the understanding of tactile encoding a crucial

step to define proper decision-making and behavior policies. In this context, the aim of the

working package is to define algorithms that perform proper object grasping and manipulation

with the information provided by the tactile sensors.

Touch for Prosthetics is the working package that is focused more on the health field, aiming at

developing functional replacement of missing limbs in humans. Some preliminary results showed

how, by means of surgical implants in the peripheral nerves, the flow of tactile information could be

restored such that it could arrive from a hand prosthesis to the central nervous system. Following

this insight, the questions that Neutouch wants to address in this context is how to define more

natural stimulation strategies for the proper encoding of tactile features and the development of

biocompatible and resistent active materials that can act as a neural interface between artificial

systems and the peripheral nervous system.

As mentioned before, these three different areas overlap between each other. This is the main

reason causing for the knowledge generated in each of them being of the utmost importance for

the remaining two. In fact, the research project producing this manuscript, is at the core of the

three different research topics (see Figure 2), being a key part for Neutouch, and providing with

useful tools and insights to other fellows’ projects.

The second chapter in this manuscript gathers the work in the paper "Population coding strategies

in human tactile afferents" and arises from the collaboration with Giulia Corniani and her

supervisor, Hannes P Saal, from the Active Touch Laboratory in Sheffield. The valuable

knowledge they had about existing literature in tactile coding for the peripheral nervous system in

combination with the knowledge we provided to extract information about neural signals, we

managed to produce a novel study characterizing population coding strategies of human tactile

afferents. This study served as a basis for working on neuromorphic tactile sensors that

significantly rely on fundamental understanding about the underlying biological processes.

Neutouch was also an environment providing ESRs with several training opportunities and
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resources. During the development of the project, three international summer schools were

organized and soft-skills courses addressing transversal needs for science were provided to the

PhD students. Additionally, we were involved in the organization of the events of a Horizon

project and the planification of deliverables and plans that have to be delivered to the EU,

providing the students not only with theoretical soft-skills knowledge, but also with an important

pragmatical part that can help us both in industry or academia.

5 Manuscript structure

This manuscript gathers the investigation carried in a manuscript format. Therefore, the

following chapters consist of papers in a form suitable for publication in a peer-reviewed journal.

The current chapter connects the three works and discusses their coherence and significance.

Each of the following chapters is a complete and self-standing piece of work. The last chapter of

this manuscript is focused on the impact of the research and the questions that should be

addressed in future work.

Paper 1 addresses the RQ1 and consists of the preprint “NIT: an open-source tool for information

theoretic analysis of neural population data” which was published currently available in biorxiv

[16]. An alternative version of this manuscript is currently being prepared for the submission

to the journal PLOS Computational Biology as a Software Article. In parallel, this research has

produced both an information theoretic toolbox [17] and a calcium imaging simulator [18] hat are

currently publicly available to download for the scientific community. This work was carried as

an internal collaboration with Roberto Maffulli, a PostDoc in the Neural Computation Laboratory.

Preliminary results of this work were presented as a poster in the FENS Forum 2022 in Paris.

Paper 2 addresses RQ2 and consists of the journal paper “Population coding strategies in human

tactile afferents” which has been published in the journal PLOS Computational Biology the 7th

December 2022 (the first submission in the same journal was on the 15th of June 2022). Note that

the article is open-access. This work is the result of a close collaboration with Giulia Corniani

(ESR of the NeuTouch ITN) and Prof. Hannes P Saal. The study started in November 2020

with a two months secondment of Giulia Corniani at the Laboratory of Neural Computation and

finished with the secondment of the author of this manuscript to the Active Touch Laboratory

10
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in the University of Sheffield, led by the Prof. Hannes P Saal. Partial or preliminary results of

this work were presented at several international conferences and workshops (IEEE NER2021,

50th annual meeting of the Society of Neuroscience, BARCCSYN 2021, and Neuromatch 2021

conference).

6 Covid-19 statement

The PhD project summarized in this manuscript was started in November 2019. The Covid-19

pandemic outbreak occured less than 6 months after, affecting the project management of the

whole Neutouch network, including this project.

Neutouch launched a contigency plan to facilitate the PIs and students the development of their

work minimizing the impact and avoiding significant delays due to the effect of restrictions

limiting traveling to other laboratories and perform collaborations. To do so, online meetings and

training events were organized to embrace the collaborations between different partners and

facilitate the discussion of main topics that Neutouch was focused on.

The main limitation caused to this project is from the experimental point of view. The data

majority of data included in this manuscript is either simulated or old datasets. However, due to

the restrictions, experimental partners in Neutouch were not able to provide the rest with novel

experiments that could be analyzed on time.

As soon as most travel restrictions were lifted and in-person events started to be organized again,

we also embraced all the opportunities to engage with the scientific community and disseminate

the work. This included the participation in the BARCCSYN 2021 (Barcelona, Spain), European

Researchers Night (September 2021, Genova, Italy), FENS Forum 2022 (July 2022, Paris, France),

International School on Technologies for Touch (September 2022, Arenzano, Italy) and other

NeuTouch training and local events.
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1. INTRODUCTION

Abstract

Information theory provides a popular and principled framework for the analysis of neural data.

It allows to uncover in an assumption-free way how neurons encode and transmit information,

capturing both linear and non-linear coding mechanisms and including the information carried by

interactions of any order. To facilitate its application, here we present Neuroscience Information

Toolbox (NIT), a new toolbox for the accurate information theoretical analysis of neural data.

NIT contains widely used tools such as limited sampling bias corrections and discretization of

neural probabilities for the calculation of stimulus coding in low-dimensional representation of

neural activity (e.g. Local Field Potentials or the activity of small neural population).

Importantly, it adds a range of recent tools for quantifying information encoding by large

populations of neurons or brain areas, for the directed transmission of information between

neurons or areas, and for the calculation of Partial Information Decompositions to quantify the

behavioral relevance of neural information and the synergy and redundancy among neurons and

brain areas. Further, because information theoretic algorithms have been previously validated

mainly with electrophysiological recordings, here we used realistic simulations and analysis of

real data to study how to optimally apply information theory to the analysis of two-photon

calcium imaging data, which are particularly challenging due to their lower signal-to-noise ratio

and temporal resolution. We also included algorithms (based on parametric and non-parametric

copulas) to compute robustly information specifically with analog signals such as calcium traces.

We provide indications on how to best process calcium imaging traces and to apply NIT

depending on the type of calcium indicator, imaging frame rate and firing rate levels. In sum, NIT

provides a toolbox for the comprehensive and effective information theoretic analysis of all kinds

of neural data, including calcium imaging.

1 Introduction

Information theory (IT), is the principled mathematical theory of communication [19]. Its use as

analysis tool to measure how neurons encode and transmit information has been key to

understanding brain functions such as sensation, spatial navigation, and decision-making. Mutual

information (MI), the key quantity of IT, measures how well variables important for cognitive
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1. INTRODUCTION

functions, such as sensory stimuli, are encoded in the activity of neurons, and how information is

transmitted across brain regions. Its use has many advantages [20–26]. It provides a single-trial

measure of information encoding and it is thus more relevant for single-trial behavioral or

perceptual functions than trial-averaged measures of discriminability. It quantifies information in

units of bits, a meaningful and interpretable uncertainty-reduction scale. It allows largely

hypotheses-free measures of information encoding that place upper bounds to the performance of

any decoder, and that can potentially capture the contributions of both linear and non-linear

interactions between variables at all orders. Because of its generality, it can be applied to any

type of brain activity recordings. Also, because neural systems may need to maximize

information encoding for evolutionary reasons, applications of IT to empirical data allows a

direct comparison between the predictions of normative neural theories and real neural data [5,

9]. Because of these advantages, information theory has deeply influenced neuroscience over

many years [23, 25, 27–31].

Earlier work using information theory to analyze empirical neuroscience data has focused on

low-dimensional measures of neural activity such as single neurons, small neural populations or

aggregate measures such as LFPs/EEGs (because of the systematic errors in estimating

information with the small numbers of trials that can be collected empirically are exacerbated

with high-dimensional neural responses [32]). It has also focused mostly on information

encoding, regardless of the downstream use of the encoded information. Seminal studies of this

kind have used electrophysiological recordings of neural activity to demonstrate the role of

single-neuron spike timing for the encoding of sensory information [24, 25, 33–35]. Other

studies have provided the foundations of how trial-to-trial correlations between neurons shape the

encoding of information and create redundancy and synergy in pairs of neurons [36–38]. Further

studies have examined how information is encoded in the neural oscillations found in aggregate

measures of neural activity such as Local Field Potentials (LFPs) [39, 40]. Several algorithms

have been proposed for the application of IT to these low-dimensional neural data [24, 41, 42].

Their ability to provide accurate and data-robust information estimates has been extensively

validated and demonstrated on electrophysiological recordings, including on spike trains of small

populations and on LFPs and EEGs [42–45], and their use and dissemination has been aided by

software toolboxes [43, 46–49].
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Over the last decade, due to major progress in the simultaneous recording from many neurons

and/or brain areas, and in the measure and quantification of behavior [50], neuroscience

research [51–53] – and consequently neuroscientific IT – has evolved to investigate how behavior

and information processing emerge from the interaction and communication between neurons

and across brain areas. For example, recent work has coupled IT with dimensionality-reduction

techniques to study how information is encoded in populations of tens to hundreds of

neurons [54–63], and of how patterns of synergy between pairs of neurons are organized within

larger networks [38]. Studies have also characterized the transfer of information between neural

populations [64, 65] and between brain areas [66–68]. Importantly, neuroscientific IT has also

been used to measure the information carried by neural activity not only about sensory stimuli, as

in traditional studies, but also about behaviorally relevant signals such as choice and reward [62].

Moreover, Partial Information Decompositions (PID) [69] has extended Shannon’s IT to quantify

how much of the information encoded in neural activity is used to inform behavioral choices

during perceptual discriminations [70, 71] and synergistic or redundant transfer of information

across brain regions [66]. However, progress in using latest IT advances in neuroscience to

address large populations, behavioral relevance and information transmission, synergy and

redundancy with PID, has been slowed by the absence of comprehensive toolboxes including all

or most these recent tools.

Key to the recent progress in understanding the relevance of neural population activity for

behaviors has been the application of 2-Photon (2P) fluorescence microscopy [72–74] to image

the activity of populations of neurons in animals performing cognitive tasks [75–80], even over

days or months [81–85]. However, applying information theory to 2P imaging recordings is

particularly challenging. 2P calcium imaging measures neural activity only indirectly (by the

optically recorded fluorescence signal changes that originate from changes in calcium

concentrations related to changes in neural activity), and it generally has low SNR and limited

temporal resolution. Understanding how to optimize the use of information theory to analyze

large-scale recordings of populations with 2P imaging during behavior would greatly aid

progress in studying neural population coding.

Here, we introduce the Neuroscience Information Toolbox (NIT) to specifically address both the

need of having a single open-source toolbox including many recent advances in IT tools for
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neuroscience and of optimizing its use for 2P calcium imaging. NIT provides a comprehensive

set of IT tools (including MI, directed communication measures, PID tools, binned and copula

probability estimators, and limited sampling bias corrections) applicable to both discrete and

continuous measures of neural activity. It thus can be used with both direct electrophysiological

recordings of action potentials and with indirect measures of neural activity, such as LFP, EEG,

fMRI and 2P imaging. Algorithms that we implemented and optimized in NIT were already

validated on electrophysiological recordings [43–45]. However, here we study extensively, both

with realistic simulations and with analysis of real data, how best to extract from 2P imaging data

information about variables of interest (sensory stimuli, behavioral choice, and/or the underling

firing levels of neurons) and how best to tune algorithms for information measures and for

calcium imaging processing depending on factors including imaging frames, calcium indicators,

signal-to-noise ratio of fluorescence and neural firing regimes.

2 Results

2.1 NIT: a complete toolbox for information theoretical analysis of neural data

We present NIT, the Neuroscience Information Toolbox. NIT is a comprehensive package of open-

source tools for information-theoretical analysis of neuroscience data. NIT is fully documented,

and its MATLAB interface allows easy integration with custom built analysis pipelines.

Features and structure of NIT are shown in Figure 3. At the core of the software sits a set of

modules for the calculation of information theoretic quantities. The software consists also of a

set of routines for applying dimensionality reduction and neural decoding strategies. Some of the

computations are performed through ad-hoc developed interfaces to external libraries which are

distributed with the code, making NIT a self-contained toolbox. The key features and functions of

the software are briefly described in the following sections.

In the following, we first list and explain the various information theoretic functions and features

included in the toolbox. We then introduce the detailed simulations of 2P calcium imaging

recordings together with the results of the parametric study used to discuss the limitations of

extracting information from those data as opposed to electrophysiology. Finally, we apply NIT to

19



i
i

“output” — 2023/6/13 — 12:18 — page 20 — #34 i
i

i
i

i
i

2. RESULTS

Plug-in direct binned methods for:

- Mutual Information
- Information breakdown

- Entropy
- Transfer Entropy
(Magri et al. 2009)

Dimensionality Reduction

and Decoding
Information Calculation External Libraries

PCA

Lasso and Elastic-Net
Regularized Generalized

Linear Models

Support Vector

Classification

Non-negative Matrix

Factorization

Copula-based Methods for:
- Bi-variate MI

(Safaai et al. 2018)

Copula-based Methods for:
- Multi-variate MI

(Onken et al. 2016)

Plug-in direct binned methods for:
- Partial Information Decomposition

- Intersection Information
- Feature Information Transfer

GLMnet

(Friedman et al. 2010)

LIBSVM

(Chang et al. 2011)

Spatiotemporal and
space-by-time NMF

(Onken et al. 2016)

Bivariate Partial
Information Decomposition

(Makkeh et al. 2018)

Null-hypothesis testing:
- Non-parametric permutations

- Non-parametric conditioned
permutations

Bias correction:
- Panzeri-Treves

- Linear/quadratic extrapolation

- Bootstrap correction
- User defined

Binning:
- Equally populated

- Equally spaced
- User defined

Main methods

Tools

SMGM approximation

(Skaggs et al. 1993)

Fig. 3: Structure of Neuroscience Information Toolbox (NIT). The toolbox comprises modules (black boxes) for
calculation of information-theoretic quantities and dimensionality reduction. External libraries (green boxes) are
interfaced (arrows) with some of NIT native modules to integrate their functionalities.

experimental data, first to validate what we have observed on synthetic data, as well as to

illustrate how the methods implemented in NIT can be effectively used to reveal a higher level of

detail of the information processing principles in the brain.

2.2 Information theoretic algorithms and functions implemented in NIT

2.2.1 Mutual Information

MI between two random variables R (in this example the neuronal response) and S (in this

example an external stimulus) measures how well a single-trial knowledge of one variable

reduces our uncertainty about the value of the other variable is defined as follows [19]:

MI(R;S) =
∑

r∈R,s∈S
p(r, s) log2

(
p(r, s)

p(r)p(s)

)
(1)
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where p(r, s) is the joint probability of observing in a given trial stimulus s and response r, and

p(s), p(r) are the corresponding marginal probabilities. MI(R;S) is measured in units of bits,

it is non-negative, and it is zero if and only if S and R are statistically independent. One bit

of information means that the knowledge of one variable halved the uncertainty about the other

variable. R can be either univariate (e.g. time-averaged single neuron activity) or multivariate (e.g.

neural population activity, with each dimension of R quantifying the activity of each neuron in a

population). NIT accepts either univariate or multivariate entries for both responses and stimuli

(useful when several stimulus features are varied across trials). The value of MI is computed

once these probabilities are measured from the data over repeated experimental trials and inserted

into Equation 1. Different methods to compute MI from real data typically differ depending on

how these probabilities are estimated from the data. Three different MI calculation methods are

provided in NIT.

The first one, the direct or plug-in method, consists in estimating the probabilities in Equation 1

by simply counting the number of occurrences of the discrete values of both R and S across

repeated presentations of the stimulus. The plug-in method does not make assumptions on the

shape of the probability distributions and has a low computational cost. To make the plug-in

method applicable to cases in which R and/or S are continuous (e.g. R will be continuous if is

extracted from unprocessed 2P calcium traces or from LFP traces), NIT has two built-in

discretization functions, that bin data in equally-populated or equally-spaced classes.

Equally-populated binning maximizes the entropy available in the neural response for a given

number of bins and thus often leads to larger information values, whereas equally-spaced binning

preserves the shape of the original probability distribution. An interface is provided for inserting

into the workflow other user-defined binning methods.

A second method, applicable only when the underlying distributions of the data are Gaussian,

relies on fitting a Gaussian probability density function to the data. This method, suitable for

continuous data not discretized in post-processing, is less prone to limited sampling bias (see

below) than the direct plug-in method. However, it is applicable only when signals are

approximately Gaussian. This may hold in specific instances for aggregated electrical signals

(LFP, EEG, MEG) [39, 43, 47], but it does not hold for 2P calcium traces of individual cells [86].
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Finally, NIT implements also a Copula estimator, including both parametric Copulas [47, 87] and

Non-Parametric Copula (NPC) MI estimation [88]. Joint multi-dimensional probabilities

distributions can be expressed in terms of marginal probabilities and a copula, a mathematical

term that specifically describes the statistical dependences between the variables (see Materials

and Methods). The MI between two variables depends on the copula but not on the marginal

probabilities. This allows to estimate MI without calculating the latter [47, 87, 88]. In the NPC

approach, copulas are estimated non-parametrically with Kernel methods rather than with

parametric forms, allowing largely assumption-free information estimations and avoiding

potential mis estimations of information due to wrong parametric assumptions being used [88].

Estimating MI with NPC has a much higher computational cost compared to the direct plug-in

method, at the advantage of being more accurate and not requiring the discretization of

continuous variables (although it can be applied also to discrete variables). As an alternative, we

also implemented parametric copula estimator, which use parametric assumptions for the joint

probability density estimators. This has an advantage in terms of computational costs but it may

become highly inaccurate when the Gaussian assumptions are not met [88]. For continuous

margins, we provide implementations of the normal and the gamma distributions. For discrete

margins, we provide the Poisson, binomial and negative binomial distributions. As bivariate

copula building blocks, we provide the Gaussian, student and Clayton families as well as rotation

transformed Clayton families [87].

2.2.2 Mutual Information breakdown to quantify the information content of neuronal

correlations

The information about the stimulus encoded in the activity of a population of individual neurons

depends on the strength and structure of correlations among neurons [26, 52]. NIT allows to

quantify how correlations affect neural population encoding of the stimulus by using the

Information Breakdown formalism [37]. The MI between the stimulus and the neuronal

population response R (a multi-dimensional vector containing the activity of each neuron in a

given trial) is divided in components that capture the different ways in which correlations affect

neural population information, as follows:
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MI(R;S) = MIlin +MIsig sim +MIcorr-ind +MIcorr-dep (2)

where MIlin, the linear term, is simply the sum of the MI about the stimulus carried by the

individual neurons. The other terms, capturing the differences between MI(R;S) and MIlin

reflect the effect of the statistical dependencies between neuronal responses. Such dependencies

are traditionally conceptualized as signal correlations (correlations of the trial-averaged neural

responses across different stimuli, quantifying the similarity of tuning to stimuli of different

neurons) and noise correlations (correlations in trial-to-trial variability of the activity of different

over repeated presentations of the same stimulus, quantifying functional interactions between

neurons after discounting the effect of similarities in stimulus tuning), see e.g. [52, 89, 90]. The

term MIsig sim, always less than or equal to zero, quantifies the reduction of information (or

increase in redundancy) due to signal correlations (that is, because neurons have partly similar

response profiles to the stimuli). MIcorr-ind, a term that can be either positive or negative,

quantifies the increment or decrement of information due to the relationship between signal

correlation and noise correlation. The term is positive (providing synergy) if signal and noise

correlations have opposite sign, while is negative (providing redundancy) if signal and noise

correlations have the same sign [19]. MIcorr-dep is a non-negative term that quantifies the

information added by the stimulus modulations of noise correlations [37]. The information

breakdown includes as a sub-case other types of decomposition and quantifications of the effect

of correlations in population activity. For example, MIcorr-ind + MIcorr-dep quantifies the total

effect of noise correlations on stimulus information and equals the quantity ∆Inoise defined

in [91]. Similarly, MIlin + MIsig sim quantifies the information that the population would have if

all single neurons properties were the same but noise correlations were absent, and equals the

quantity Ino-noise of [74]. Finally, MIcorr-dep equals the quantity ∆I introduced in [92] as an upper

bound to the information that would be lost if a downstream decoder of neural population activity

would ignore noise correlations. The information breakdown formalism and the related quantities

that can be obtained from it have been used in many studies to empirically characterize the effect

of correlations [26, 34, 38, 55, 93–96].
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2.2.3 Partial Information Decomposition

Other methods to decompose the contributions of multivariate dependencies between neurons to

information carried by populations include the Partial Information Decomposition (PID) [69].

In the form implemented in NIT, PID is applied to three stochastic variables (R1, R2, S) (e.g.

two neurons with responses R1 and R2 respectively, and a stimulus variable S). The method

decomposes the information that two of them (called source variables, in the example above the

two neuronal responses) carry about the third one (called target variable, in the example above the

stimulus), in four non-negative and well-interpretable terms called “atoms”, as follows:

MI((R1, R2);S) =SI((R1, R2);S) + CI((R1, R2);S)

+ UI((R1\R2);S) + UI((R2\R1);S)
(3)

In Equation 3: SI((R1, R2);S) is the shared (redundant) information that R1 and R2 carry about

S; UI((R1\R2);S) is the unique information about S that is carried by R1 but is not carried

by R2; UI((R2\R1);S) is the unique information about S only present in R2 but not in R1;

and CI((R1, R2);S) is the complementary (synergistic) information about S that is available

only when R1 and R2 are measured simultaneously. NIT calculates the above PID three-variate

decomposition using the so-called BROJA definition [97] through a specifically designed interface

to the BROJA-2PID algorithm [98].

2.2.4 Intersection Information

One application of PID is the measure of Intersection Information (II , see [99, 100]). II applies to

tasks such as perceptual decisions in which in each trial a stimulus (S) is presented, neural activity

(R) is recorded and the subject’s perceptual report of which stimulus was presented is measured

as a behavioral choice (C). II measures, in bits, how much of the stimulus information carried by

neural activity MI(R;S) is used to inform the behavioral choice, and is defined in terms of PID

as follows [100]:
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II(S;R;C) = min (SI((S,R);C), SI((C,R);S)) (4)

As shown in Ref [100], this expression quantifies the part of information carried by neural

activity that is shared between stimulus and choice, and that at the same time is part of the overall

information between stimulus and choice. II is non-negative, is bounded by the stimulus and

choice information carried by neural activity, and by the information between stimulus and

choice. II has been used in several studied to determine the behavioral relevance of aspects of

neural population codes (e.g. [56, 71, 100]). NIT has a specifically built module for the

calculation of II with the plug-in probability estimation method.

2.2.5 Measures of directed information transfer between neurons or brain regions

NIT implements also the most used information-theoretic measure of directed information transfer

between different brain regions or neurons: Transfer Entropy (TE) [101], equivalent under the

definition we use to Directed Information [102]. TE is an information-theoretic measure of the

causal dependency between the time series of a putative sender X and the time series of a putative

receiver Y . It is based on the Wiener-Granger causality principle, stating that a signal X is causing

Y if the knowledge of the past of X reduces the uncertainty about the future of Y . Given the time

series X and Y of two signals simultaneously recorded over time from different neurons or brain

regions, TE is defined as:

TE(X → Y ) = MI(Ypresent;Xpast|Ypast) (5)

Where Ypresent is the value of signal Y at the present time, and Ypast and Xpast are the values of

Y and X at a set of k past times. TE computes the MI information that the past values of X

carries about the present value of Y , discounting the information that the past of Y carries about

its own present value. These measures of directed information transfer have been widely used to

characterize communication between brain regions (see e.g. [64, 65, 67, 103]).

NIT allows calculating TE using the direct plug-in method. It allows to define the set of k past

value used to compute TE. In most applications, TE is computed using one past value for X and Y,
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defined by the delay between the selected past value and the present [65, 104, 105]. However, NIT

allows to include past values over a range of different delays from the present. NIT features also

an optimized routine for fast calculation of TE on spike trains, taking advantage of the reduced

probability space deriving from binary signals [106].

Note that NIT implements also other more recent extensions of directed information calculations

derived from the PID. For example, it implements also the recently introduced Feature-specific

Information Transfer (FIT) [107]. FIT extends the previously described TE by computing not

only the total amount of directed information that is transmitted from the putative sender X and

receiver Y , but quantifying how much of this total transmitted information relates to a specific

stimulus feature of interest S. Conceptually, FIT quantifies how much of the MI encoded by the

present activity of Y was shared (redundant) with information about S present already in the past

of Y while being unique with respect to the stimulus information that was encoded by past activity

of Y [107].

Importantly, NIT allows computing also other more refined directed information transfer measures

derived from PID which can be expressed in terms of appropriate combinations of MI quantities,

such as those introduced in Refs [66, 108].

2.2.6 Limited sampling bias correction

Accurate estimation of information quantities depends on accurate estimation of probabilities.

Measuring probabilities from a limited number of experimental trials leads to statistical

fluctuations in the estimated probabilities, which in turn leads to both statistical and systematic

errors in information measures. The systematic error, or limited sampling bias, is due to the

non-linear dependence of the information on the probabilities [32]. In most conditions, the

limited sampling bias is positive, meaning that limited sampling tends to overestimate the

MI [32, 109]. Intuitively, this is because differences of stimulus-specific neural response

probabilities generated by random fluctuations due to limited sampling result through the MI

equation as genuine, information-bearing features. The amount of bias is typically higher for less

informative variables, and it decreases approximately linearly with the number of trials [32, 110].

Thus, although the limited sampling bias is present in all calculations of MI, it is particularly
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prominent for neuroscience experiments because of the limited number of trials that can be

collected and because of the relatively small information values of neural activity (in our

experience, in typical experiments with subjects performing tasks while recording brain activity,

it is extremely rare than more than ∼ 10 − 20 trials per stimulus or task condition are available,

and information values of individual neurons are usually much smaller than one bit).

Fortunately, several bias correction procedures have been developed, which reduce substantially

the limited sampling bias from neural measures. In case of stimulus-response information

MI(S;R), Equation 1, most measures work well when the number of trials per stimulus is at

least 4-10 times larger than the number of possible values of response R [32, 41, 46]. This is a

rule of thumb that is useful to set the number of bins used to discretize the neural response R.

NIT is equipped with a sets of well-used for limited sampling bias correction in MI measure:

Panzeri-Treves [41], linear and quadratic extrapolation [111], the shuffling procedure [32], the

Best Upper Bounds (BUB) estimator [112], and the bootstrap correction [113]. An analytical bias

correction method is specifically available for the Gaussian method [43]. Interfaces for easy

plug-in of user-defined bias correction routines are available. A complete list of the compatibility

between information-theoretic measures, bias correction strategies and information estimation

methods implemented in NIT is provided in Table 5.

One point of interest that we found while running the NIT on simulated data is that, while the

size of the limited sampling bias for mutual information follows well the analytical predictions

of analytical polynomial expansions of the bias in terms of the inverse of the numbers of trial

(e.g. [32]), the bias of II (which is not a mutual information quantity, but only a part of a mutual

information quantity) was in general smaller than that predicted for mutual information with the

same numbers of trials and response binning. In measures comparing mutual information with

PID or II quantities, we thus recommend (as we did in Figure 10) to evaluate and compare the bias

of PID and mutual information quantities in stretches of data in which we know information must

be null (e.g. pre-stimulus time windows for stimulus information or II) and use those as estimates

of bias values.

When analyzing multi-dimensional data (e.g. the simultaneous responses of neurons in a

population), the number of possible responses of the population increases exponentially with the
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size of the population. For example, the binary activity of a population of 10 neurons recorded

simultaneously can take 210 states, which would require an unrealistic number (∼ 10000) of

trials for accurate limited sampling correction. This makes it impossible to compute directly

information from large populations [32, 110]. Dimensionality reduction and neural decoding

algorithms, several of which are embedded as modules in NIT (Figure 3) embedded in NIT allow

to analyze highly multi-dimensional data with a limited amount of trials.

2.2.7 Dimensionality reduction and neural decoding

Dimensionality Reduction (DR) methods are a precious tool for performing

information-theoretical analyses of multi-dimensional neural data, as they allow to reduce the

dimensionality of the response space R in a meaningful way at the expenses of small information

losses.

Within NIT we implemented, and coupled with the information theoretic calculation, many such

DR methods that have been popular in the analysis of neural activity. The pipeline first maps

the multi-variate neuronal response R to a lower-dimensional space R̂, then NIT computes the

mutual information MI(R̂;S) between the reduced neural variables R̂ and S. The compression

of the neural response space cannot increase the information and may lead to some information

loss because of the data processing inequality [114]. However, it allows a more reliable sampling

of the probability space with the limited number of experimental trial available.

The first class of DR methods implemented in NIT can be described as supervised decoding

methods. These methods predict in each trial the most likely value of the stimulus S that was

presented given the observation of the neural response R in that trial. This data compression for

information calculations is popular [55, 56, 61] as effectively it reduces the response R to the

smallest space that can in principle preserve all information about S (that is, the S space itself).

Two modules for neural decoding, implementing high popular decoding methods in

neuroscience, are provided in NIT. The first one is based on linear, logistic or multinomial

regression through elastic-net penalized Generalized Linear Models (GLM). The core of the

GLM regression functionalities are provided by the GLMnet [115] library, directly interfaced

with NIT. This ensures fast and reliable decoding on large datasets characterized by sparse
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neuronal activity. Such types of decoders have been popular for neural activity

analysis [56, 116, 117]. A second method for neural decoding applies a Support Vector Machines

(SVM) for multi-class classification, which is also popular in neuroscience [118–120]. The

back-end for SVM classification in NIT relies on the LIBSVM [121] package, providing fast

implementation for multi-class Support Vector Classification and Regression.

NIT contains two modules for applying dimensionality reduction strategies that compress the

space of neural responses in an unsupervised way without relation to the structure of the

stimulus. The first one performs Principal Component Analysis (PCA), often used in

neuroscience [78], through a custom-built fast MATLAB implementation. A second method is

based on a Space-Time Non-negative Matrix Factorization (STNMF) [122]. The method,

specifically designed for the analysis of spike trains, allows to decompose the neuronal response

through a space-by-time tensor factorization. Moreover, it identifies ensembles of simultaneously

active neurons and the temporal profiles of their activity. STNMF has been successfully used to

extract information-rich features from the neural activity [122].

2.2.8 Hypothesis testing

NIT also provides algorithms to test the hypothesis that the measured information values are

significantly different from a null hypothesis distribution of null information. While plug-in

values of information for asymptotically large number of trials follow a chi-square distribution

and their significance could be tested parametrically, no parametric null hypothesis distribution is

known for finite number of trials (as it always the case in real calculation) and for methods

different from plug-in. The well-established method to test for the significance of mutual

information is the non-parametric permutation test in which all or part of the data structure is

randomized to remove its information content [43, 47, 55, 123, 124]. This test computes, from

many different random permutations of the data, a null-hypothesis distribution and a significance

threshold to test the hypothesis that a measured value of information (which could be non-zero

because of sampling bias or statistical fluctuations even if the data contain no information) for

significance of information given the number of trials available and computational method used.

Significance for the value of MI(R;S) is computed by randomly permuting (or “shuffling”) the
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neural response R across experimental trials to destroy all information they carry about S. When

computing multivariate information measures, it is sometimes of interest to test the significance

of values of information between two variables conditioned on the value of other variables. For

example, whether the activities of two neurons R1 and R2 have statistical dependencies beyond

the one induced by the common tuning to the stimulus S, can be tested by computing the

significance of MI(R1;R2|S), the conditional mutual information between R1 and R2 given S.

Whether R2 carries stimulus information not carried already by R1 can be tested by computing

the significance of MI(R2;S|R1), the stimulus information of R2 conditioned on R1 [125].

Significance testing of information values conditioned or partialized on values of other variables

can be more precisely done by shuffling the statistical relationship between the variables we

compute information about at fixed value of the variables we condition upon [125, 126]. This

conditioned shuffling destroys the relations between the variables we compute information about

while preserving the relationship that each of them individually has with the variables we

condition upon.

In NIT, we implemented routines that easily create null-hypothesis distributions and significance

thresholds for both standard and conditioned mutual information values, performing shuffling of

any variable possibly at fixed values of other variables, with the number of different shuffles

created a parameter of the analysis.

2.3 Extensive validation of NIT on simulated 2P data

NIT is a general-purpose toolbox, usable on any kind of neuroscientific data. The above-described

algorithms implemented for computing information from neural activity have been extensively

used and highly validated over the years with electrophysiological recording of spiking activity

of single neurons and populations and with aggregate electrical measures of neural activity such

as LFPs and EEG [32, 43, 44, 127–130]. As a result, we know well how to set the parameters of

information theoretic calculations with such signals. However, studies of how best to apply these

methods to 2P calcium imaging data are still limited, and no systematic validation is available.

Thus, we next validated the capabilities of NIT to extract stimulus information from 2P calcium

imaging experiments through extensive simulations of synthetic 2P traces. In the analysis, we
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strived to cover a wide range of experimental conditions, relating both to the neuronal response

and its modulation by the stimulus as well as the experimental apparatus. We first detail the

model for the generation of imaging traces, followed by testing the algorithms in NIT in an

extensive parametric sweep across all conditions examined. Aim of this effort was to offer a solid

validation on how to analyze 2P data using information theory, highlighting the difference

between the information content in imaging data compared to traditional electrophysiology

analysis, as well as the advantages of non-parametric copula over binned estimators when applied

to imaging data.

2.3.1 Forward model for the generation of synthetic fluorescence traces

To quantify the extent to which we can extract, from 2P imaging data, all or most neural

information available in the underlying spike trains, we first implemented a realistic forward

model for the generation of synthetic fluorescence data from ground truth spike trains. This

forward model is available within NIT and can be used by users to perform their own simulated

experiments to match their own experimental conditions. We implemented and compared two

models for the generation of synthetic two-photon calcium imaging traces.

The first one (Figure 4A, left panel) defines the spike to fluorescence transfer function through a

linear convolution with a double-exponential kernel [131–133]. This model is a good

approximation of the fluorescence evoked by action potentials in a low spike rate regime, but fails

to account for non-linear effects present at high firing rates [134].

The second model (Figure 4A, right panel) is based on a single compartment model (SCM) of

calcium dynamics in the cytoplasm [135]. Generation of fluorescence from a given spike train is

obtained in three successive steps. The first step models the concentration of unbound calcium

within the cell membrane. Every action potential elicits a step influx of calcium ions. The free

calcium intake accounts, in a non-linear way, for the effects of both endogenous and exogenous

(indicator) calcium buffers in the cytoplasm. The extraction of free calcium from the cell is

modelled through a linear leak term combined with a non-linear extrusion term for the membrane

calcium pumps. Non-linear effect of the release of free calcium from internal buffers in the cell is

also included in the model. A second step in the model allows to calculate the fraction of calcium
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indicator that is bound to calcium to the one that is not. This is performed through integration of

the indicator binding/unbinding kinetics. A linear model converts the fraction of bound and

unbound indicator to fluorescence values. This biophysically plausible model for fluorescence

generation includes four forms of non-linearity, which cannot be obviously present in the linear

convolution model. Those are related to: calcium intake after every action potential, free calcium

release from endogenous and exogenous buffers, calcium extraction from membrane pumps and

saturation of calcium indicator. A sample train of action potential and the resulting traces for free

cytoplasmatic calcium, indicator-bound calcium and fluorescence is shown in Figure 11.

In both models, we added Gaussian white noise to the generated fluorescence to account for

experimental noise and manipulate the SNR of simulated recordings (see Materials and Methods

for details). We assessed the accuracy of the two methods in generating realistic calcium imaging

traces by comparing synthetic traces with experimental ones. The experimental dataset we

used [136, 137] contains simultaneous calcium imaging time series and juxtasomal

electrophysiological recording in neurons expressing both GCaMP6f and GCaMP6s. We used the

experimentally recorded action potentials as inputs for both forward models. The levels of noise

in the synthetic traces were tuned so that each synthetic ∆F/F signal had the same

signal-to-noise ratio (SNR) than the corresponding experimental trace. The sample experimental

and synthetic ∆F/F traces, on both indicators, are reported in (Figure 4B).

For each acquisition in the dataset, both Root Mean Square Error (RMSE) (Figure 4C) and

Pearson’s correlation coefficient (Figure 4D) between experimental and synthetic ∆F/F traces

were calculated. The single compartment model showed significantly better performance than the

linear convolution model, both in terms of RMSE and correlation for both considered calcium

indicators. To further compare the performance of the two methods, we assessed their

performance in reproducing realistically high levels of fluorescence. To this end, we compared

the distribution of synthetic ∆F/F values against real values reported by experimental 2P

calcium imaging traces (Figure 4E). The SCM shows a longer tail of high ∆F/F values –

especially evident for GCaMP6s – which is closer to the distribution of the experimental data.

This shows that the SCM model allows to generate synthetic 2P calcium imaging traces covering

a broader part of the dynamic range of the indicator with respect to a linear convolution kernel.

Overall, these results show that the SCM generates more realistic synthetic calcium imaging
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Fig. 4: Comparison of methods for the generation of synthetic GCaMP6 traces given a spike train. (A) Schematics
of the two methods considered: a linear convolution of the spike train with a double exponential kernel (left) and
a biophysically plausible Single Compartment Model (SCM) of calcium dynamics (right). The SCM considers the
presence of endogenous (orange) and exogenous (green) calcium buffers in the cytoplasm to predict the concentration
of free calcium within the cell membrane. Binding/unbinding dynamics of free calcium to the indicator is simulated to
generate time traces of bound and unbound fluorophore concentrations. Synthetic GCaMP6 fluorescence traces are then
generated through a linear combination of the concentration of bound and unbound indicator concentrations. (B) Sample
two-photon GCaMP6 experimental traces (red) recorded with simultaneous loose-seal cell-attached electrophysiology
(black scatter). Experimental data from [136, 137]. The panel also shows synthetic traces generated using both a linear
convolution (light blue) and SCM (dark blue) given the experimentally recorded spike train, under the same SNR than
the experimental GCaMP6 trace. (C) RMSE of synthetic Vs experimental GCaMP6 traces for both models considered
(**: p < 0.01, one-tailed Kruskal-Wallis test). (D) Correlation coefficient of synthetic Vs experimental GCaMP6
traces for both models considered (***: p < 0.001, one-tailed Kruskal-Wallis test). (E) Distribution of the upper 30th

percentile of ∆F/F values across all frames in experimental data and both linear convolution and SCM models.
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traces. Thus, in all subsequent NIT information algorithm testing, we used calcium traces

generated with the SCM.

2.3.2 Effect of neuronal firing and experimental conditions on information available from

calcium imaging traces

Recording somatic calcium concentration in neurons through fluorescent two-photon imaging is

widely used to infer the neuronal supra-threshold activity [137–143]. However, we still lack a

systematic appreciation of the consequences of the limitations of calcium imaging for information-

theoretic measures of neural activity and of how best to deal with them. For this reason, we

investigated the effect of a series of variables on calculations of information from 2P calcium

imaging traces. These include factors related to the underlying neurobiology, such as the shape

of post-stimulus time histogram (PSTH), mean spiking rate (SR) to different stimuli, or technical

characteristics of the experimental setup, such as imaging frame rate (FR), signal-to-noise ratio

(SNR), and calcium indicator. We performed a parametric sweep over those parameters as follows.

We simulated activity in response to two different categorical “stimuli” (the variable S, s = 1

or s = 2, in the MI calculation, Equation 1). These simulated stimuli elicit a different neuronal

response over a 1 second post-stimulus window. Differences in stimuli are modeled as differences

in the strength and time pattern of the neural responses they elicit, as explained next. The two

stimuli could elicit a time-averaged spike rate (SR) along the trial of either 1 or 2 Hz (we termed

those cases as Low MI, low SR), 12 Hz and 13 Hz (Low MI, high SR) and 2 Hz and 12 Hz

(High MI). For each mean firing rate response, we considered two different temporal shapes of

elicited Post-Stimulus-Time-Histograms (PSTHs): tonic (i.e. uniform over time) and phasic (i.e.

Gaussian-shaped time dependency, peaking at 0.25 s, standard deviation 0.01 s). Given a time-

averaged SR, both phasic and tonic responses have the same integral over time, i.e. the same

expected number of spikes. The shapes of the PSTH are plotted Figure 5A, top panels. Spike

trains were generated through an inhomogeneous Poisson process with an instantaneous rate equal

to stimulus-evoked PSTH. We simulated situations with three different frame rates for the imaging

set-up: 5 Hz (representative of galvanometric imaging with raster scanning), 30 Hz (representative

of imaging with resonant scanners) and 100 Hz (representative of alternative high acquisition

frequency methods, e.g., smart line scanning imaging [141]). Spike trains and ∆F/F traces were
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always generated at a sampling rate of 1 kHz, and the latter were then subsampled to the desired

sampling rate. SNR was varied systematically across simulations by varying the amplitude of the

noise added to the calcium imaging traces.

Sample spike trains and ∆F/F traces (30 Hz frame rate, SNR = 15, two sample trials per each

mean firing rate) for both GCaMP6f and GCaMP6s are shown in Figure 5B. In this part of the

analysis, information calculation parameters were as follows. We used the plug-in direct method,

discretizing these neural responses in 4 equi-spaced bins. We used peak ∆F/F over the trial as

response R, as it is a widely used approach for the analysis of two-photon imaging data [81, 144].

For each combination of parameters (SNR, FR, calcium indicator, PSTH and levels of stimulus-

modulated firing rate), 50 independent MI calculations (each with 400 trials per stimulus) were

performed. No limited sampling bias correction was used, because the number of trials was large

enough for the MI to be bias-free [32].

We first investigated the effect of varying the imaging FR and SNR on the mutual information

computed from the somatic calcium imaging signal for phasic and tonic PSTH shapes (Figure 5C,

results of the statistical tests are summarized in Table 6). In Figure 5C we used peak ∆F/F of

GCaMP6f to compute information from the calcium traces, but we obtained similar results (not

shown) using other calcium imaging metrics (e.g. mean ∆F/F ). Both FR and SNR have a limited

effect size on the information contained in the peak ∆F/F . The notable exception was the case of

phasic PSTH shapes and high neural information, in which case increasing SNR led to a notable

increase of stimulus information with SNR (Figure 5C and Table 6). The effect of using either a

slower (GCaMP6s) or faster (GCaMP6f) calcium indicator is explored in Figure 5D and Table 7

(with SNR = 15 FR = 30 Hz). In most cases the information obtained from the calcium traces

with peak ∆F/F was approximately the same with either indicator, with the exception of the

high information, phasic PSTH case. In this case using the GCaMP6s led to higher information

extracted from the calcium traces, due to its slower dynamics and higher dynamic range compared

to GCaMP6f.

Because calcium imaging measures indirectly the neural activity, with a lower SNR and lower

temporal resolution than direct electrophysiological recording of spikes, it is commonly assumed

that the information reported by a calcium indicator will be smaller than that encoded in neural
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activity. To evaluate this information loss we computed, the average fraction of information

present in peak ∆F/F , relative to the one present in a spike rate code. We found that the

percentage of spike rate information extracted on average from the calcium traces varied widely,

from 50% to 100% (Figure 5E), depending in particular on the features of neuronal firing. More

stimulus information is lost when computing it from the calcium traces rather than from the spike

rate when the simulated neuron fires tonically than when it fires in a phasic way. This is because,

as apparent from the individual traces in Figure 5B, the phasic PSTHs with a stronger and more

concentrated spike rate elicit more repeatable and less noisy calcium traces than those obtained

with the tonic PSTHs having a similar number of spikes randomly distributed over time.

In sum, our simulations suggest that the NIT information theoretic analysis of calcium traces

recovers a good fraction (between 50% and 100%) of the information encoded in

electrophysiological spike rates, with the extraction being particularly efficient for high-rate

phasic responses and high dynamic range indicators.

Spike rate information is not an upper bound for stimulus information contained in ∆F/F traces.

Since as discussed above calcium imaging reports an indirect measure of neural spiking activity,

the information about stimuli computed from ∆F/F traces will miss out on some of the

information carried by the temporal spike pattern as measured from electrophysiology

recordings. However, this does not necessarily imply that in all cases the information computed

from the calcium traces will be lower than the information carried by the underlying spike rate

code.

From the mathematical point of view, the data processing inequality [114] ensures that stimulus

information cannot be increased, but can only be lost or remain equal, every time a

transformation of R not dependent on S is applied to the data. This implies that information in

the spike rate is always lower than or equal to the information contained in the full spike train.

However, because the transformation that maps the spike train into a calcium trace is not a direct

consequence, in Markovian terms, of the transformation that links a spike train to spike rate, the

stimulus information in the calcium trace may either be higher, equal or lower than the stimulus

information in a rate code.

From the intuitive neurobiological point of view, the fluorescence traces can have more
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Fig. 5: Effect of neuronal firing regime and experimental conditions on stimulus information retrieved from
calcium imaging signals. (A) Instantaneous neuron spiking rate (SR) for phasic and tonic post-stimulus time histogram
(PSTH) responses (top row), average firing rates over the trial duration are identical between the two conditions at fixed
stimulus. Corresponding Poisson spike rasters for two sample trials per each stimulus (bottom row). (B) Synthetic
GCaMP6f (top row) and GCaMP6s (bottom row) traces (SNR 9, frame rate 30 Hz) relative to spike rasters in panel
(A). (C) Distributions of stimulus information in GCaMP6f ∆F/F traces at various information levels and for both
tonic and phasic PSTH. Effect of SNR and imaging frame rate on stimulus information. All calculations of MI consider
two stimuli. In Low MI, low SR the neuron responds to the two stimuli with 1 Hz and 2 Hz average spiking rate
(blue and green curves panel (A)). In Low MI, high SR the neuron responds to the two stimuli with 12 Hz and 13 Hz
average spiking rate (orange and violet curves panel (A)). In High MI the neuron responds to the two stimuli with 2 Hz
and 12 Hz average spiking rate (green and orange curves panel (A)). Each box plot reports data from 50 simulations.
Results of the statistical analysis for the data in this panel are reported in Table 7. (D) Effect of calcium indicator on
stimulus information at different PSTH shapes and information levels. Each box plot reports data from 50 simulations.
Results of the statistical analysis for the data in this panel are reported in Table 7. (E) Percent of stimulus information
in max ∆F/F with respect to MI encoded in spike rate at the same conditions. Values are average values over 50
simulations. All data in the figure refer to simulated traces. Mutual information is evaluated using plug-in method. All
MI calculations consider max ∆F/F across the trial as a metric of neuronal response.
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information than the spike rate in cases in which the latter loses some of the information encoded

in the spike timing that the former captures. Indeed, owing to the slow dynamics of the indicator,

∆F/F traces contain not only information about how many spikes are emitted by a neuron, but

also how close they are in time. The contribution of this effect to the information content of

calcium traces is amplified as the ratio between the decay constant of the indicator and the

stimulus-modulated inter-spike interval increases, and as the informative content of a spike-rate

code alone decreases. As such, it becomes particularly evident for phasic PSTH when stimulus

information is encoded at high mean firing rates and rate information is low (Figure 6A). Data in

Figure 4 are from a limited portion of the full parametric sweep (FR = 5 Hz, SNR = 15,

GCaMP6f), but similar conclusions can be drawn when considering the full range of parameters

investigated (Figure 14). As an example, we have considered one of the points (green scatter in

Figure 6A, central panel) showing more information in peak ∆F/F than in SR.

In this case, because of the different stimulus-modulated inter-spike interval, even when the two

stimuli elicit an identical spike rate in two different trials, the ∆F/F traces will still show

stimulus-related differences (e.g. different peak activity as show in Figure 6B, top row) similar to

their trial-averages (Figure 6B, bottom row). Additionally, for the case of a phasic PSTH, the

only stimulus informative spikes are time located in the narrow window around the peak of

phasic activity (Figure 6C). All other spikes emitted in the baseline activity period (baseline

firing rate set at 0.5 Hz in all simulations reported) are non-informative and thus degrade the SR

information. On the contrary, given the high stimulus-modulated firing rate of the neurons, and

the slow dynamics of calcium indicators, spikes outside of the stimulus-modulated window have

little effect on ∆F/F traces, contributing to increase its stimulus information compared to a

spike rate code.

Thus, an ideal decoder of neural activity would use the spike times to consider only those spikes in

the informative window and discard the others, together with weighting spikes in the informative

window proportionally to the instantaneous inter-spike interval. We implemented such decoder

by projecting the neural activity in each trial on a template based on the difference between the

trial averaged PSTH when responding to the two stimuli (Figure 6C, bottom). We have then

used the GLM decoder implemented in NIT to calculate the MI between the real and decoded

stimulus when using peak ∆F/F , spike rate (SR) or the template projected activity and spike
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Fig. 6: Information in ∆F/F can be higher than spike rate informations. (A) Scatter plots of stimulus information
in SR vs stimulus information in peak ∆F/F . Each scatter results from one over 50 MI calculations across the
following parametric sweep: SNR = 15, FR = 30 Hz, GCaMP6f, phasic PSTH. Red lines are the quadrant
bisectors. The green scatter point refers to the point analyzed in panels (B-D). (B) Top: stimulus-evoked spike rasters
and corresponding ∆F/F traces for two specific trials with an identical trial-averaged spike rate (10 Hz) but responding
to two different stimuli (color-coded). Bottom: trial-averaged stimulus-evoked ∆F/F traces. (C) Top: trial-averaged
PSTH for the response to the two stimuli. Bottom: spike-timing template used in the decoding analysis in panel (D).
(D) Values of MI between true and decoded stimulus calculated when considering: max ∆F/F , SR and simultaneous
contribution of SR and spike timing (ST). The analysis is performed on the data corresponding to the green point in
panel (A). Box plots report 100 cross-validated runs of GLM decoder (*: p < 0.05, ***: p < 0.001, Bonferroni
corrected Kruskal-Wallis multiple comparison test). All data in the figure refer to simulated traces. Mutual information
is evaluated using plug-in method.
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rate (SR+ST), to compare their information content. Results are summarized in Figure 6D. Each

box plot in the figure shows the distributions of MI between the real stimulus and the decoded

one across 100 cross-validated runs of the GLM classifier. While the stimulus information in the

calcium trace is lower than the one present when considering both spike rate and spike timing,

it is significantly higher than the mere SR information. This shows how the calcium dynamics

captures some properties of the optimal spike timing decoder and that spike timing contributes to

the informative content represented in ∆F/F .

While cases like the above example – in which more information is available in the calcium traces

than in the time-averaged spike rates – may not happen frequently with real data, it should be

noted that calcium traces will always contain a mix of spike rate and spike timing information,

which is important to keep in mind when interpreting empirical results.

2.3.3 Dependence of stimulus information on the metric used to quantify single-trial

calcium fluorescence responses

In the previous sections, we quantified information from calcium traces using the peak ∆F/F as

a metric of single-trial responses based on two-photon fluorescence. This measure is widely used

in the analysis of calcium imaging data [81, 144–146], but is not the only possible choice.

Several other metrics are commonly used to quantify single-trial activity in a post-stimulus

window from calcium imaging signals. These metrics include: mean ∆F/F [81], integral

∆F/F [147–149], linear deconvolution using an exponential kernel [150], and spike inference

algorithms [142, 151–153]. Among spike inference methods, we focused on OASIS [151] due its

competitive performance [132].

To inform future information-theoretic analyses of calcium imaging traces, we investigated on

simulated data how well the different metrics listed above performed in extracting stimulus

information. All listed metrics have advantages and disadvantages. The peak ∆F/F captures the

strength of the calcium transient responses but can be heavily influenced by noise and does not

capture the temporal structure of the fluorescence. Mean and integral ∆F/F are less influenced

by noise, but they are less effective in capturing the strength of transient activations. Both linear

deconvolution and OASIS quantify aspects of calcium signal potentially closer to spiking activity
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but assume a linear relation between spikes and measured fluorescence. In addition to the

methods listed above, we propose a novel non-linear metric, that we termed estimated calcium,

that inverts the biophysically plausible non-linear forward model to estimate the concentration of

intracellular free calcium from ∆F/F traces (see Materials and Methods).

We have thus used the same five-dimensional sweep of simulation parameters (FR, SNR,

indicator, PSTH shape and stimulus modulation of SR) used in Figure 5 to calculate the levels of

stimulus information contained in each of the above-mentioned measures of neural activity in the

1-second-long post-stimulus window. We computed stimulus MI in both SR and ∆F/F metrics

using the direct method with equally-spaced binning in 4 bins. Fifty independent runs are

performed in each of the coordinate points of the parametric sweep. The distribution of ∆F/F

metrics showing the highest mean amount of stimulus information across the parametric sweep is

shown in Figure 7A (actual levels of MI across all conditions in the parametric sweep are

reported in Figure 7B, together with the value of stimulus information in the spike rate code).

Overall, peak ∆F/F extracts most stimulus information when the stimulus is encoded at high

rates, mostly when the neuronal response has a tonic PSTH. In these conditions the stimulus will,

in fact, modulate mostly the amplitude of the calcium imaging response. In other conditions,

most of the stimulus information contained in the calcium imaging response was retrieved by

estimated calcium. OASIS shows good performance at high imaging frame rates, though it

suffers particularly low rates (Figure 13). When looking at the absolute levels of information

retrieved across all conditions Figure 7B, estimated calcium performs on average better than the

other metrics considered by recovering about 65% of the underlying SR code.

Statistical significance of the results was assessed through Kruskal-Wallis test with Bonferroni

correction for post-hoc comparisons. In all conditions of the parametric sweep, the best

performing calcium imaging metric, together with the others being non statistically different

from it (p > 0.05), were marked as best for that condition (stars in Figure 13). Figure 7C reports

the percentage of cases, across all the conditions examined, where each metric was part (light

grey) – or was the only component (dark grey) – of the best performing group. Both the linear

deconvolution and the newly proposed estimated [Ca] showed to be the most versatile spiking

activity metrics based on ∆F/F . Estimated [Ca] is among the best performing metrics in more

than 80% of the conditions examined in our parametric sweep and is the only best performing
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Fig. 7: Appropriate processing of ∆F/F signal increases the retrieved stimulus information from calcium
imaging traces. (A) Best performing metric based on ∆F/F signal for each of the conditions explored in the
parametric sweep. Best performing metric at each condition is defined as the one retrieving the highest value of
stimulus information. See Materials and Methods for detailed definitions of each of the metrics. (B) Distributions of
values of stimulus information reported by each metric (left) and by a spike rate code (right) across all the calculations
performed in the parametric sweep shown in panel (A). (C) Percent of cases, across the whole parametric sweep shown
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best performing one (dark grey bars). Best metrics are defined as the ones recovering the highest amount of stimulus
information (p < 0.05 Bonferroni corrected Kruskal-Wallis multiple comparison test). Full data for this figure are
reported in Figure 13. (D) Distributions of values of spike rate information reported by each metric across all the
calculations performed in the parametric sweep shown in panel (A). (E) Scatter plot of stimulus information in Inferred
[Ca] against spike rate information carried by the same metric. Data in this panel include All data in the figure refer to
simulated traces. Mutual information is evaluated using plug-in method using 4 equally-spaced bins do discretize spike
rate and the calcium metrics.
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one in around 25% of cases considered. Linear deconvolution works well in retrieving stimulus

information in around 60% of conditions. Mean/integral ∆F/F and OASIS, on the other side,

are only among the best performing groups in around 25% of the cases, showing poorer

performance in reconstructing spiking information. (Note that the poorer performance of OASIS

was not due to incorrect set-up of the algorithm as we have verified (Figure 12) that the

deconvolved activity we obtained through OASIS had similar correlation with ground-truth spike

recordings as reported previously using this algorithm on the same dataset we use here for

validation, see [154]). Linear regression of the average z-scored deconvolved activity using

OASIS and the underlying ground truth SR shows, however, how the levels of z-scored

deconvolved activity predicted by OASIS have a relatively high variability that cannot be

explained by a linear fit ( R2 = 0.52 GCaMP6f, R2 = 0.34 GCaMP6s). This suggests that, while

OASIS matches the timing of neuronal activity with reasonable accuracy, the magnitude of the

deconvolved calcium trace reflects less well the underlying firing rate, limiting the applicability

of the method for information-theoretic measures of neuronal activity. The poorer performance

of OASIS becomes especially noteworthy given that spike inference algorithms are typically

performing better on synthetic data than in real experimental conditions, and the assumption of

Poisson spiking used in our synthetic data should favor the method’s accuracy [151].

In addition to considering which calcium metrics are better for computing single-trial

information about external stimuli, we consider another, and perhaps equally important question,

of which metric of calcium activity best reconstructs the underlying spike rate of the same cell.

We computed the mutual information between the spike rate during the 1s post-stimulus window

in our simulated trials and the calcium metric. This result (Figure 7D) confirms that estimated

calcium and a linear deconvolution are, on average, carrying more information about the spike

rate code than the other calcium metrics analyzed.

An explanation of why calcium metrics that carry higher stimulus information also carry higher

information about the spike rate is that stimulus information is carried by the spiking activity

of neurons and these calcium metrics reconstruct its value well. In support of this explanation,

we found that the levels of stimulus information extracted from the ∆F/F activity with a given

set of simulation parameters correlated with the levels of information present between the calcium

imaging signal and the electrophysiology in the same simulation, as shown by the scatterplot of the
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two information values across different simulations for the case of the estimated calcium (Figure

7E).

2.3.4 A comparison of non-parametric copula and binned plug-in methods for computing

information from calcium imaging traces

All above examples computed information using the plug-in binned methods, a choice that has

been widely used due to its ease of implementation, robustness and fast computational time [43,

44, 55, 71]. However, other more computational demanding but potentially more accurate methods

are also available to compute information from limited experimental samples. NIT implements

the recently developed Non-Parametric-Copula information estimation [88]. Here we test the

advantages for computation of information from calcium imaging of this more computationally

expensive method.

We first investigated whether the NPC offers advantages in terms of reduction of limited

sampling bias in case limited datasets are available. To this end, we introduced, in the

multidimensional sweep over the simulation parameter space outlined in the previous sections, a

further parameter: the available number of trials per stimulus (here varied in the range 5 to 400).

We found (Figure 8A) that, for both copula and direct plugin method, and consistent with

previous studies [32], the information had a big upward bias for low numbers of trial per stimulus

(5 to 20), and then converged to the asymptotic value for larger number of trials (several tens). To

quantify how quickly the information estimate in individual simulations reached the asymptotic

values across methods, we repeated the above analysis over a large number of simulations with

different parameters according to our 5-dimensional parameter sweep. For each individual set of

simulation parameters, we compared the distribution of calcium information values for different

numbers of trials against the asymptotic (400 trials per stimulus) distribution. The lowest number

of trials giving a distribution not significantly different from asymptotic (t-test, p < 0.05) was

considered the minimum required by the method to provide a bias-free estimate of MI. We

repeated the process for the whole parametric sweep, computing the ratio between the trials

needed by the copula and by the binned methods. The distribution of the ratio is shown in Figure

8B. In this figure, values lower than 1 imply that the copula method is performing better than

binned methods for bias free information estimations, while values higher than 1 imply that the
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binning method works better. For the vast majority of simulations, the non-parametric copula

needed less trials to reach asymptotic values of information. Thus, the non-parametric copula

should be favored when analyzing smaller datasets.

Non-parametric copula is particularly suited to be applied on continuous variables. This suggests

that larger amounts of information can be extracted from calcium signals, which are continuous,

with non-parametric copulas than with binned estimators for MI. We thus examined the asymptotic

information values provided by the copula against binned methods for both simulated spike trains

and calcium imaging traces (Figure 8C). For the electrophysiology, the non-parametric copula

performed better than binned methods only in the cases which information content is not high.

However, for calcium imaging, the advantage of the copula was accentuated and was also present

in high information cases. This underlies the specify usefulness of the non-parametric copula for

calcium imaging. Note that we did not find comparably high performance when using parametric

Gaussian copulas (also implemented in NIT), rather than non-parametric copulas. This is because

responses of individual neurons carry non-gaussian dependencies with the stimulus (statistics is

of neurons approximately Poisson, which differs from Gaussians for low spike numbers typically

observed in a trial) and this translates in non-gaussian dependence between stimuli and calcium

traces, which make the use of Gaussian copulas not generally applicable.

Despite the advantages that the copula has compared to the binned methods, there also exist

drawbacks. The main limitation is the computational time required to fit the copula based on the

data. As an example, the computations reported in Figure 8A required approximately 200 more

CPU time with the non-parametric copula than the direct plug-in method.

2.4 Analysis of experimental data validates findings on synthetic traces

Our information theoretic analysis of realistic simulations of calcium imaging traces generated

by neural spiking activity indicates that the calcium imaging traces are able to extract sizeable

amounts information about both external stimuli and about the levels of the underlying spike

rates. It also suggests that certain metrics of single-trial activity for calcium traces are better than

others for extracting such information. Here, we tested some of the above predictions from

simulated activity on real empirical data. We used NIT to analyze four independent datasets with
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Fig. 8: Comparison between binned methods and non-parametric copula. (A) MI values (mean ± SD) for a single
coordinate point in the considered parametric sweep (GCaMP6f, FR = 5 Hz, SNR = 5, Low MI, High SR, tonic
PSTH) using NPC and binned direct method with an increasing number of trials per stimulus. The dotted horizontal
line represents the y-axis value of one (when the information estimation reaches its asymptotic value). (B) Distribution
of ratio between number of trials needed by the copula and binned method to reach asymptotic information values. Note
that a ratio lower than 1 implies that the copula retrieves asymptotic values with less trials than binned method. (C)
Information values provided by the copula against values given by the binned method for three different information
levels (Low MI, low spike rate; Mid MI, high spike rate; and High MI) and both electrophysiology and calcium data.
All data in the figure refer to simulated traces. Note that the samples included in this figure correspond only to the
deconvolved calcium.

simultaneous cell-attached electrophysiological and two-photon imaging recordings from both

GCaMP6f and GCaMP6s-labelled neurons during spontaneous activity [134, 137, 155, 156]. We

focused on using NIT to compute how much information about the spike rate each calcium

metric provides. We divided the experimental time traces in padded windows of 0.5s, and then

computed the mutual information between the spike rate in a considered window and the calcium

metric in the given window. We used the NPC information calculation method as it performs

more reliably as shown in the previous section. Similar conclusions, however, would have been

reached using the direct binned method (not shown).

Results of this information calculation on all neurons with calcium traces with SNR higher than 9

are reported in Figure 9. These results confirm that, as with the simulated data, sizeable amount

of information about the underlying spike rate can be obtained from the underlying traces. These

information values are of the order of 0.2 bits, which corresponds with significant but far from

perfect spike train reconstruction from the calcium metrics. Comparison of how the amount of
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information varies between ∆F/F (Figure 9) confirms the results emerging from the parametric

sweep on simulated traces. Estimated calcium and linear deconvolution were, on average, better

at reconstructing spike train information that other calcium imaging metrics.

The publicly available datasets were designed to test the correspondence between spike rates and

calcium traces and not to study sensory coding, thus had no or insufficient data with responses to

sensory stimuli to study sensory information. However, as shown by our simulations (Figure 7E),

metrics that are appropriate for inferring spike rate values are also expected to be appropriate to

extract stimulus information.

Fig. 9: Validation of performance of spiking activity metrics based on ∆F/F in recovering stimulus information
on experimental data. (A) Box plots of mutual information between different spiking activity metrics based on
∆F/F and spike rate. Data in this panel refer to simultaneous cell-attached electrophysiology and two-photon imaging
recordings from previous publications [134, 137, 155, 157]. Traces in the original datasets have been filtered for
SNR > 9.

2.5 Examples of use of intersection information to find pure, stimulus unrelated

choice signals as markers of preparatory activity

We finally exemplify, on real data, possible uses of the PID tools within NIT. In particularly, we

exemplify possible and novel uses of Intersection Information (II) [99, 100], a formalism

developed specifically for the analysis of neural recordings in perceptual decision tasks. As

reviewed in the Intersection Information section above, II measures that amount of information
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carried by neural activity that is shared by both stimulus and choice. Thus, II can be interpreted

as the part of stimulus information carried by neural activity that is also choice information. In

this interpretation, II has been applied to sensory neuron to investigate the extent to which the

information encoded in sensory areas is relevant to form behavioral choices [56, 71, 100]. For

example, it has been used to investigate whether in primary and secondary somatosensory

cortices the behavioral discrimination of texture of surfaces is supported by the texture

information encoded in millisecond-precise spike times or in spike rates [100, 158]. The authors

found that on average similar amounts of texture information were encoded by the millisecond

precise spike times and by the spike rate of neurons. However, the behavioral discrimination

performance of the rat was higher when spike times provided correct texture information than

when spike times provided incorrect information, whereas behavioral performance did not

depend much on the correctness of the information provided in spike rates [158]. As a

consequence, the amount II carried by spike times was 3 times larger than that carried by spike

rates [100], demonstrating that the texture information carried by spike timing has a much larger

impact on forming correct behavioral choices than the information carried by spike rates. This

type of reasoning is helpful informing hypotheses about the neural code used for sensory

perception [99], as it takes into account not only the amount of information encoded in neural

activity but also its impact on trial-to-trial behavioral discriminations.

Here, to demonstrate the usefulness of this approach also in contexts different from sensory

perception, we use II implemented in NIT to uncover the presence of preparatory motor activity

in motor cortices. We applied NIT to a publicly available dataset [159] of 2P calcium-imaging

recordings in anterolateral (ALM) and medial motor (MM) cortex of Thy1-GCaMP6s transgenic

mice collected during a tactile delayed two alternative forced choice (2AFC) discrimination task

(see Figure 10A and B). Mice were trained to discriminate a pole in an anterior or posterior

location using their whiskers. The stimulus was presented for 1.2 seconds during the Sample

epoch, followed by a Delay epoch of 3s for the mice to plan the action. A Go Cue indicated the

Response epoch for mice to report their guess. In the original publication [159], the authors

analyze these recordings with a 3-way ANOVA, including as factors selectivity to the sensory

stimulus, the choice reported by the animal, and the trial outcome (correct vs incorrect

discrimination). The authors found earlier choice signal in ALM than in MM, suggesting
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therefore that preparatory motor activity arises first in ALM than in MM. The ANOVA analysis

does not include non-linear tuning effects, and does not per se provide a quantification of the

values available for single trial discrimination. These issues can be better addressed with

information theory. We first computed, using Shannon Information (Equation 1), the amount of

stimulus and choice information carried by the activity of each neuron in short time windows (1

imaging frame, 70 ms) as function of time during the task. Such information values, averaged

over all neurons imaged in each area, are reported in Figure 10C. We were particularly interested

in signals at the beginning of the trial, because they inform more about preparatory activity. In

the initial part of the trial (the end of the sample period and the early delay phase), neurons in

both areas carried information about both stimulus and choice, with comparable values of

stimulus and choice information in ALM and much higher values of stimulus information in

MM. Neural activity related to movement preparation can be identified as an early genuinely

choice-selective neural signal. However, given that choice and stimulus in each trial are

correlated (because the animal performed the task 74% correct, it is possible to predict choice

from stimulus), the presence of choice information in neural activity may reflect in full or in part

the fact that neurons are actually selective to the stimulus and this in turns make neurons choice

selective. To establish the presence of preparatory activity it is thus important to compute

presence of pure choice information that cannot be explained by the tuning of stimuli. The

formalism of II allows a principled and powerful definition of such pure choice information. II,

as explained above, quantifies the amount of information carried by neural activity that is shared

by both stimulus and choice. Thus, it quantifies the part of choice information carried by neural

activity that is also stimulus information. As a consequence, the difference between II and choice

information can be taken as a pure choice information measure, that is a measure of the amount

of choice information in neural activity that cannot be explained by the tuning of neurons to

stimulus. Figure 10D plots the time course of the average amount of instantaneous pure choice

information carried on average by the activity of a neuron in a short time window. These results

show that, compatible with the results of [159], the pure choice information is present (that is,

larger than zero) at approximately 2 s after the pole removal in ALM, but it is not present until 2

seconds later (end of delay epoch) in MM. These results confirm those reported by [159] in a new

way that also incorporates the effect of possible non-linearities of tuning of individual neurons.
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Fig. 10: Identifying pure choice information with intersection information. Validation of performance of spiking
activity metrics based on ∆F/F in recovering stimulus information on experimental data. (A) Sketch of task.
Mice had to lick the right port when the pole was in a posterior location while when in an anterior location, they had
to lick the left pole. (B) Trial was structured into three different epochs. During the sample epoch (1.2 seconds),
the stimulus was provided to the mice. A subsequent delay epoch (3 seconds) without stimulus preceded the Go Cue
auditory signal, that initiates the response epoch, in which the mice must report by licking. (C) Stimulus, choice, and
intersection information over time averaged across neurons computed using 2 bins. Values are bias corrected. Note
that we estimated the bias using the average information values found in the pre-stimulus window. (D) The difference
between choice and intersection information is reported as a proxy of pure choice information measure. Panels (A) and
(B) redrawn from Ref [159].

3 Discussion

The high relevance of information theory for the analysis of neural data calls for open-source,

comprehensive, and well documented software packages tailored for neuroscience applications.

Here we provide a new such toolbox, NIT, constructed to meet the requirements of the

contemporary systems-level neuroscience community. In what follows, we discuss the specific

advances of NIT with respect to existing toolboxes and the implications and relevance of our

work for neuroscience.
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3.1 The breadth of algorithms implemented in NIT can address timely questions

in systems neuroscience

Analysis of activity of populations of neurons recorded during the presentation of sensory stimuli

and/or performance of cognitive tasks is central to the study of neural coding. Over the last decade,

the emphasis of neural coding has shifted from considering purely encoding of sensory information

to studying how the encoded information informs choices and behavior [99]. Other prominent

current area of investigation include the study of the transmission of information between different

brain areas, and the investigation of how functions of the brain emerge from interactions among

neurons in larger and larger populations [52]. Compared to current information toolboxes, our

toolbox adds several important elements to tackle these problems.

NIT supports research on the relevance of neural activity to inform behavioral choices by

implementing measures of Intersection Information (II) [99, 100]. II has been proposed and used

principally as a measure of how much of the sensory information encoded in neural activity is

used to inform choices [56, 71, 99, 100]. This has led to redefine the concept of neural code as

the set of features not only carrying sensory information, but also used to drive appropriate

behavior [99]. Here, in our application to calcium imaging data (Figure 10), we showed how II

can be used to address more questions about neural coding than originally proposed. We showed

how II can be used to individuate pure choice signals which are not related to stimulus coding.

This is of importance in tasks in which sensory signals are associated with the request to executed

specific motor programs, such as turning or licking in a certain direction upon the presentation of

a certain sensory stimulus.

NIT supports research on transmission of information across areas by implementing directed

measures of information transfer, including both Transfer Entropy and Directed

Information [101, 102] and it allows the computation of more refined recent measures based on

PID [107, 108].

NIT supports research on the emergent properties of population codes by implementing tools that

quantify the role of correlations for creating redundancies and synergies, such as those based on

interaction information and the information breakdown [37, 91, 92] and those based on PID [66,

160]. Moreover, NIT implements tools that make analyses scalable to large populations, including

51



i
i

“output” — 2023/6/13 — 12:18 — page 52 — #66 i
i

i
i

i
i

3. DISCUSSION

unsupervised and supervised advanced dimensionality reduction tools, such as regularized GLM

classifiers [56, 115, 116], regularized SVM classifiers [118, 121], and space-by-time Non-Negative

Matrix Factorization [122, 161]).

Our public, open source, release of the full NIT code will also contribute to the broad effort

towards more effective and reproducible neuroscience, through standardization of tools and

methods [162] of which open source analysis software is a core component [163, 164]. In this

respect, the integration of NIT with other well established analysis pipelines is facilitated by the

MATLAB front-end, which can be directly interfaced with Python through the MATLAB Engine

API for Python.

3.1.1 Comparisons with existing information theoretic toolboxes for neuroscience

The breadth of use of information theory in neuroscience have been supported by several

excellent and impactful toolboxes. It is thus of interest to discuss what NIT adds to this existing

toolset. Recent work by Timme and Lapish [46] offers an extensive review of existing IT analysis

software packages. We have further complemented their work with an updated overview (Table

1). Of the 12 packages reviewed in Timme and Lapish [46], none satisfied simultaneously the

following requirements: being applicable to both discrete and continuous data, providing means

for significance testing and correction for limited sampling bias, and implementing calculation of

information-theoretic measures beyond MI and transfer entropy (e.g., those based on PIDs). NIT

simultaneously implements all these features.

The NITT Neuroscience Information Theory Toolbox [46] is, among those previously available,

one of the most complete in terms of information quantities offered. However, like others listed

in Table 1, it lacks limited sampling bias correction. This is not a problem when considering

quantities that do not require the computation of stimulus specific distributions of neural responses,

such as entropy and TE. Lack of bias corrections instead becomes a major problem for studies of

coding of sensory or choice variables, as they require estimation of stimulus-related information

variables that are based on calculations of stimulus-specific response probabilities. In such cases,

stimulus-specific information values are dominated by the bias, if not bias corrected. A lack of

bias corrections makes it impossible to meaningfully compare the amount of information carried
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by neural representations with different dimensionality such as spike times vs spike rates [35, 165]

or single neurons vs population responses. The JIDT toolbox [48] also offers extensive sets of IT

measures, although (like the NITT) it lacks methods for dimensionality reduction that are useful

e.g. to apply IT to large populations. Other toolboxes [106, 166] are specialized on transfer

entropy and are thus suitable for study information communication but not information encoding.

Finally, some other toolboxes [47] are effective for specific distributions of neural activity, such as

the case of Gaussian interactions which are relevant for mass measures of activity, but are difficult

to apply to measures with single cell resolution for which statistics and interactions are not well

described by Gaussian distributions.

We made an effort to improve computational performance in NIT, designing it to maximize

efficiency and scalability. This optimized design strategy resulted in fast computational times

compared with other state- of-the-art open access codes. We benchmarked our toolbox against

NITT [46] on a single MI calculation, with bootstrap null distribution estimation, obtaining on

average 50 times faster computation times with NIT compared to NITT.

NIT does have limitations, which we plan to address in ongoing and future updates. NIT still

lacks computation of useful quantities, such as maximum entropy (ME) models, which are useful

to determine the order of interactions among neurons [52, 167]. ME models are present in some

specialized toolboxes [168]. Further, NIT includes standard and widely used non-parametric

hypothesis testing methods, but does not yet include group statistics, which to the best of our

knowledge among information theoretic toolboxes has been only implemented in FRITES [49].

However, the output of NIT analyses can be easily used as input to group statistics

toolboxes [49]. Further, the study of PID is a burgeoning field with many measures and advances

being elaborated [66, 97, 167, 169]. While NIT implements some of the most established PID

quantities, it will be important to keep it updated to include more PID developments and to

interface with new PID software.

3.1.2 Validations and recommendations for the analysis of calcium imaging

The methods presented in NIT are applicable to any kind of neuroscience recordings, both discrete

and continuous. Given that the plug-in binning estimators presented here have been extensively
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Toolbox Information Measure Data Types Significance Testing
Probability
Estimation Methods

Bias
Correction

Dimensionality
Reduction
Methods

Language

NIT – this paper

Entropy
Mutual information
Transfer entropy
Information breakdown
Partial information decomposition
Intersection information
Feature information transfer

Discrete and
continuous

Non-parametric

Binning (several methods)
Gaussian fit
Parametric copula
(Gaussian, Clayton, student)
Non-parametric copula

Yes Yes

MATLAB front-end
interfaceable with Python
through MATLAB Engine
API for Python

Information Breakdown
Toolbox [43]

Entropy
Mutual information
Transfer entropy
Information breakdown

Discrete and
continuous

Non-parametric
Binning (several methods)
Gaussian fit

Yes No MATLAB

Gaussian copula
mutual information [47]

Entropy
Mutual information

Discrete and
continuous

No Gaussian Copula Yes No MATLAB and Python

Neuroscience information
theory toolbox [46]

Entropy
Mutual information
Transfer entropy
Partial information decomposition
Information transmission

Discrete and
continuous

No Binning (several methods) No No MATLAB

JIDT [48]
Entropy
Mutual information
Transfer entropy

Discrete and
continuous

Non-parametric
Binning
Kernel-based
Gaussian fit

No No
JAVA (with Python
and MATLAB wrappers)

FRITES [49]
Entropy
Mutual information
Transfer entropy

Discrete and
continuous

Non-parametric
Group stats

Binning (equi-spaced)
Gaussian copula

Yes No Python

Inform [170]
Entropy
Mutual information
Transfer entropy

Discrete No Binning (several methods) No No
C (with Python, Julia, R
and Mathematica wrappers)

Transfer entropy
toolbox [106]

Transfer entropy Spike trains No No No No MATLAB

TRENTOOL [166] Transfer Entropy Continuous
Non-parametric
Group stats

Kernel-based Yes No MATLAB

MuTE [171] Transfer Entropy Continuous Non-parametric
Binning (equi-spaced)
Gaussian fit
Kernel-based

Yes No MATLAB

ToolConnect [172]
Entropy
Transfer entropy

Spike trains No No No No C

STAToolkit [173]
Entropy
Mutual information

Spike trains Non-parametric Binning Yes No
MATLAB (with
.mex files)

PyEntropy [168]
Entropy
Mutual information
Maximum entropy models

Discrete and
continuous

No
Binning (several methods)
Shrink estimator

Yes No Python

ITE Toolbox [174]
Entropy
Mutual information

Discrete and
continuous

No Kernel-based No No MATLAB and Python

DIT [175]
Entropy
Mutual information
Partial information decomposition

Discrete No No No No Python

Climer and Dombeck [23] SMGM Information [87]
Discrete and
continuous

No No No No MATLAB

Table 1: Comparison with existing information theoretic toolboxes. If the toolbox computes quantities that are
defined as simple linear combinations of entropies or mutual information, for brevity we list them under entropy or
mutual information.

and successfully validated on electrophysiological data (from spike trains, to LFP and EEG), in this

study we focused on validating the information-theoretical analysis of 2P calcium imaging data.

2P imaging signals are potentially more challenging than electrophysiological ones to analyze with

information theory, because of the lower SNR and temporal resolution. Moreover, the problem of

how to recover from calcium traces as much information as possible about external stimuli or

about the underlying spiking activity of the imaged neurons has not been systematically studied

yet.

We addressed these issues using a thorough analysis of synthetic calcium imaging traces,

generated through a biophysically plausible single-compartment model of cytosolic calcium

dynamics. Specifically, we assessed the effect of the calcium indicator (GCaMP6f vs GCaMP6s),
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imaging frame rate, SNR, response profile shape, and spike rate modulation by the stimulus on

the stimulus information computed from the simulated calcium signal. We found that estimates

of MI from the ∆F/F signal depended relatively weakly on the imaging frame rate and SNR.

However, the amount of MI that could be obtained from calcium fluorescence traces is the

temporal shape of the neuronal response. A tonic neuronal response transfers more information

in the calcium signal compared to a phasic one, particularly when using an indicator with slow

decay time and high dynamic range (GCaMP6s). We have further observed that, when the neuron

encodes the stimulus in a phasic way at high firing rates, the calcium signal can occasionally

encode more stimulus information than the time-averaged spike rate (Figure 6). The reason for

this counterintuitive finding is that in this condition spiking activity is concentrated within a

limited time interval and thus knowledge of when spike times are more informative adds

information, and that the nonlinearities of calcium dynamics emphasize the signal in this

high-firing high-information region and deemphasize the signal in the low-firing low information

region, thereby achieving more information than the time-average spike rate which instead

weighs all spikes equally regardless of when they were fired.

Furthermore, we have proposed a new single-trial calcium metric, based on the inversion of the

forward model that we have used for the generation of synthetic calcium traces, for the estimation

of calcium concentration in the cell given a ∆F/F trace. This approach was inspired previous

work [176] inferring action potentials by building an inverse model of membrane potential from

calcium imaging signals. We assessed the performance of this single-trial calcium metric for

computing information from calcium data, and we compared it with other widely used strategies

for quantification of single trial ∆F/F responses. We found that, across all simulation conditions

examined, the newly proposed estimated calcium and the linear deconvolution of the ∆F/F

trace with a decaying exponential were the two single trial calcium response quantification that

allowed to extract more information (about external stimuli or about the underlying spike rates).

Other considered quantifications of single trial calcium responses (max ∆F/F , mean/integral

∆F/F , OASIS) extracted less information. These results were confirmed on experimental data

coming from four independent datasets – including both GCaMP6f and GCaMP6s signals

simultaneously acquired on individual cells together with juxtasomal electrophysiological

recordings. Careful choice of single-trial quantifications of calcium signals can, thus,
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significantly increase the amount of information retrieved, and we propose a new and efficient

metric to do so. Importantly, we compared different information computation methods, all

implemented in NIT, to compute information from calcium data. We found that the

non-parametric copula-based estimator for mutual information [88] was the one working best,

outperforming both binned estimators and parametric Gaussian copulas in terms of data

robustness and accuracy of the estimation. While the non-parametric copula comes at the

expense of major increase of computing time, it should be recommended for calcium data

whenever its computation is practically feasible.

A result of importance of our simulations and real data analysis was that, when proper

quantification and algorithms were applied, we could recover surprisingly large amounts of

information from calcium imaging. In simulations, the amount of stimulus information obtained

from realistically simulated calcium imaging traces was > 50% of the stimulus information

encoded in the simulated spike trains when effective single-trial calcium metric were applied (Fig

7B). In both simulated and real data, a relatively large amount of information about the

underlying spike rate could be recovered from the calcium traces when using appropriate calcium

metrics and algorithms (Figs 7D,9). These results illustrate the power of calcium imaging for

studying population activity and the importance of coupling it with advanced information

theoretic and signal extraction methods.

Climer and Dombeck [23] have recently discussed the application to calcium imaging of a

specific information metric termed SMGM. This metric has been first introduced by Skaggs et

al. [87] for electrophysiological data and is often used in the literature for hippocampal place

field quantification. It has been shown [177] that, when applied to spike trains, the SMGM metric

approximates well the full information content of a spike train only when the average number of

spikes per trials is much smaller than 1 (i.e. very low firing rates or very short time windows) and

that the correlations between spikes are small enough so that the firing statistics is close to that of

a Poisson process. Using the SMGM metric with the ∆F/F signal as a proxy of the information

carried by the underlying spike rates rate additionally assumes that a constant proportionality

exists between the firing rate and fluorescence signal for a given indicator. However, there are

known non-linearities between spike rate and fluorescence. Using MI to extract information from

calcium traces as a proxy of information from spike rates does not require the assumption of a
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linearity between spike rates and calcium fluorescence, because MI is insensitive to monotonic

non-linearities in the transformation between variables, and it does not require the assumption

that neuron fire at very low rates with Poisson statistics. Based on these considerations, we

recommend application of SMGM to estimate information from calcium imaging data only when

there is an expectation of linearity between spike rates and calcium responses and of very low

firing rates of neurons. Estimations made using MI are instead valid and applicable under more

general circumstances.

4 Materials and Methods

4.1 Details of the performed parametric simulation sweep

Below are listed the values considered for each of the variables considered in the parametric sweep

of simulations of neural activity and calcium imaging traces.

• Imaging frame rate: 5, 10, 100 Hz.

• SNR: 5, 9, 15.

• PSTH shape: Tonic (gaussian-shaped with peak at 0.25s over a 1s trial duration, standart

deviation 0.01 s), phasic (uniform distribution over time).

• Stimulus modulation of neuron mean firing rate:

– 1Hz–2Hz: LowMI, LowSR

– 12Hz–13Hz: LowMI, HighSR

– 2Hz–12Hz: HighMI

• Indicator: GCaMP6f, GCaMP6s.

• Number of trials per stimulus: [5, 10, 20, 30, 40, 50, 60, 80, 100, 200, 400].

4.2 Mutual Information (Direct plug-in method)

MI(S;R) has been calculated using Equation 1, where the marginal and joint probabilities have

been calculated by simply counting the number of occurrences of the discrete values of R and S
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across repeated presentations of the stimulus. If variables R and S were continuous, they were

discretized using binning routines. The binning strategy and number of bins used for each specific

analysis using direct plug-in method are reported in the main text, together with the use of bias

correction method used for the specific analysis.

4.3 Mutual Information (Non-parametric copula)

We estimated the mutual information between two variables R and S using the non-parametric

copula approached presented in [88]. Copula is defined as the probability function between the

CDF’s of the marginal variables UR ∼ CDF(R) and US ∼ CDF(S) and it captures the general

correlation structure of the joint density function between variables. To compute the mutual

information MI(S;R), we use the fact that it is related to the copula entropy as:

MI(R;S) = −H(C(UR, US)) (6)

Where C(UR, US) is the joint density function of CDF variables UR and US . To compute the

copula density, we used the same analytic solution for a local likelihood kernel estimation of the

CDF values after optimizing the bandwidth using a genetic optimization developed in Safaai et

al. [88].

We then estimated the copula density over the whole space of CDF’s (UR, US) using the optimized

kernels and on a grid of size k which defines the resolution of density estimation. We normally

used k = 50 or k = 100 in our calculation and the change did not make significant difference on

our results.

After estimating the copula density on the grid, we generated correlated samples of data by first

computing the conditional cumulative copula density by integrating the copula density over the

grid:

C(UR|uS) =
∫ uS

0
C(v, uS)dv (7)

Which is a uniform distribution. Using the fact that the marginal distribution of a CDF distribution
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is uniform, the 2-dimensional correlated samples can be generated as follows:

uS = vS (8)

UR = C−1(vR|vS) (9)

Where vR and vS are independent samples from the uniform distribution (vR, vS) ∼ U .We then

used these samples to estimate the copula entropy, using classical Monte-Carlo approach after

expressing the entropy as the expectation over copula density H(C) = −E [logC(VR, VS)]. For

the case in which one of the variables is discrete, we first transform the variable into the continuous

domain by adding an appropriate noise which as it was shown in Safaai et al. [88].

4.4 Mutual Information (Parametric copula)

We implemented several algorithms for mutual information estimation using parametric copulas

that have already been introduced in neuroscience [47, 87]. Full details are contained in the

software documentation. In brief, we adapted our algorithms from those in [87]. For continuous

margins, we provide implementations of the normal and the gamma distributions. For discrete

margins, we provide the Poisson, binomial and negative binomial distributions. We provide the

Gaussian, student and Clayton bivariate copula families as well as rotation transformed Clayton

families.

4.5 Generation of synthetc calcium imaging traces

4.5.1 Convolution with a double exponential kernel

Fluorescent signal was generated as a convolution of the input spike train with a double exponential

kernel in the form:

A
(
1− e

−τ
τon

)
e

−τ
τoff (10)
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GCaMP6f GCaMP6s
A 0.39 0.51
τon 0.03 0.14
τoff 0.09 0.37

Table 2: Used constants for the synthetic trace generation through a double exponential kernel.

Chen et al. [137] report values of peak amplitude, peak time and half decay time for both GCaMP6f

and GCaMP6s in mouse V1 in vivo experiments. Those values are related to the constants A, τon

τoff defined above, and have been defined through an iterative optimization to generate a double

exponential kernel with the same peak amplitude, peak time and half decay time than reported in

literature. Values used of the three constants for the two indicators are reported in Table 2.

Gaussian white noise with given standard deviation is added to the convolved trace to generate the

synthetic calcium imaging trace with given SNR.

4.5.2 Biophysically plausible single compartmental model

Evolution of cytosolic calcium concentration [Ca] is modelled trough the following differential

equation [135]:

d[Ca(t)]

dt
=

−vmax
A
V

(
[Ca(t)]

[Ca(t)]+KM
− [Ca]rest

[Ca]rest+KM

)
+ ∆[Ca]APδ(t−tAP)

dt

1 + ks + kB(t)
(11)

Where vmax is the maximum efflux rate per unit area of the cell membrane, A is the membrane

area, V is the compartment volume, KM is the concentration at which extrusion is half maximal,

∆[Ca]AP is the amount of calcium intake following an action potential, δ is Dirac’s delta, tAP are

the times of action potentials, ks is the binding ratio of the endogenous [Ca] buffers, and kB is the

binding ratio of the exogenous buffers (the indicator itself). The latter is not a model constant and,

for the case of cooperative binding, is defined as [178]:

kB = [B]T
n[Ca(t)]n−1Kn

d(
[Ca(t)]n +Kn

d

)2 (12)

Where [B]T is the concentration of the indicator, n is the Hill coefficient, Kd is the dissociation
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constant of the indicator.

Equation 11 contains two non-linear terms: a saturable mechanism for calcium extrusion from the

cytoplasm (first term at the numerator on the right-hand side). Measured values of vmax are hardly

available in literature. It is more common to find estimates of the extrusion rate γ in case of a

linear extrusion mechanism Ca(t)out = γ ([Ca(t)]− [Ca]rest) [178]. We have thus specified vmax

so that the extrusion rate would match γ = 1200 [1/s] in the surroundings of [Ca(t)] = [Ca]rest.

Time integration of Equation 11 allows to obtain the time trace of free cytosolic calcium in the cell.

The concentration of indicator bound calcium [CaB(t)] has been obtained through integration of:

d[CaB(t)]

dt
= kon[Ca(t)]n ([B]T − [CaB(t)])− koff[CaB(t)] (13)

Where kon and koff are the association/dissociation rates.

Once known the fraction of calcium-bound indicator, fluorescence is generated through a linear

model [178]:

F = ([B]T − [CaB(t)]) + ϕ[CaB(t)] (14)

Where the constant ϕ is indicator specific and has been tuned to experimental data.

The value of baseline fluorescence F0 , in resting state, steady conditions, is calculated from the

resting state indicator-bound concentration using Equation 14 [178]:

[CaB]rest =
[B]T [Ca]nrest

[Ca]nrest +Kn
d

(15)

The model then returns the normalized fluorescence, with the addition of white noise term:

∆F

F0
=

F − F0

F0
+WN(σ) (16)

The standard deviation of the white noise has been specified to match the desired SNR for a given
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Constant Units Value Method Reference
∆[Ca]AP µM 7.6 From reference [83, 135]
ks [−] 110 From reference (L2/3 pyr neuron) [135]
[B]T µM 10 From reference [86]

vmax

[
pMol
cm2s

]
1.8E-1

Specified to match linear extrusion rate
far from saturation in reference

[178]

r µM 5 rom reference (L2/3 pyr neuron) [179]
A m2 A = πr2 Equation
V m3 V = 4/3πr3 Equation
KM µM 0.8 From reference [180]
[Ca]rest nM 50 From reference [181]

Table 3: Model constants used in the SCM. These constants were independent on the indicator.

Constant Units Value GCaMP6f Value GCaMP6s Method Reference
n [−] 2,47 293 Fit to experimental data
Kd [n] 375 144 From reference [137]
kon Hz/Mn kon = koff/K

n
d From reference [178]

koff [Hz] 5.16 0.5 Fit to experimental data
ϕ [−] 15.01 62.72 Fit to experimental data

Table 4: Indicator specific constant used in the SCM. These constants were indicator-specific and have been
determined through fitting the model on experimental data.

synthetic trace.

4.5.3 Fitting of the SCM to experimental data

Fitting of the single-compartment model is done in the following way (separately for each

indicator considered). Among the three variables that are fit to data (ϕ, n, koff), the first one is

optimized first – and independently from the other two – so that saturated indicator reaches the

dynamic range reported in [137]. This is possible due to the fact that n and koff do not impact the

steady state brightness of the indicator, but only its dynamics. Simultaneous 2-photon imaging

and cell-attached electrophysiology data [182] are then used to define the kinetics of the indicator

binding/unbinding and its cooperativity. Given the experimentally measured spike train, and SNR

of the experimental fluorescent trace, we have optimized n and koff to reduce the root square error

between the generated synthetic calcium trace and experimental data. Dataset

‘data_20120521_cell5_007.mat’ has been used for GCaMP6f tuning, while

‘data_20120515_cell1_006.mat’ has been used for GCaMP6s.
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4.6 Definition of spiking activity metrics based on ∆F/F

4.6.1 Max ∆F/F

Values of peak ∆F/F over a defined post stimulus time interval have been calculated as follows:

max(∆F/F ) = max(∆F/F (t)−∆F/F (0)) (17)

4.6.2 Mean/integral ∆F/F

Values of mean ∆F/F over a defined post stimulus time interval have been calculated as follows:

mean(∆F/F ) = mean(∆F/F (t)−∆F/F (0)) (18)

It should be noted that, throughout the text, we refer to this metric as Mean/integral ∆F/F . The

reason for this is that the mean and integral are related by a constant linear scaling and are de facto

equivalent in information-theoretical terms. The full dataset attached to this paper contains also

separate analysis for integral(∆F/F ), showing identical performance to mean(∆F/F ).

4.6.3 Estimated calcium

This metric of spiking activity based on the two photon imaging recordings is based on the

inversion of the forward model detailed in section Biophysically plausible single compartmental

model. The inversion, calculating thus [Ca] from the ∆F/F assumes that the binding/unbinding

happens at chemical equilibrium. In this condition, for cooperative binding, we can write the

relation between [CaB] and [Ca] as:

[CaB(t)]

[B]T
=

[Ca(t)]n

[Ca(t)]n +Kn
d

(19)

Deriving both left and right-hand sides:

d[CaB(t)]

dt
=

nKn
d [Ca(t)]n−1[B]T

([Ca(t)]n +Kn
d )

2

d[Ca(t)]

dt
(20)
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Assuming that the generated fluorescence is a linear combination of the fractions of calcium-free

[B] and calcium-bound [CaB] indicator we can write the following:

F (t) = [B(t)] + ϕ[CaB(t)] = [B]T − [CaB(t)] + ϕ[CaB(t)] = [B]T + α[CaB(t)] (21)

Where α = ϕ− 1. Baseline state fluorescence, thus, is:

F0 = [B(t)] + α[CaB]0 (22)

Combining equations 21 and 22 we have that:

∆F

F
(t) =

α ([CaB(t)]− [CaB]0)

[B]T + α[CaB]0
(23)

Deriving both left and right-hand side of equation 23 with respect to time:

∆FF (t)

dt
=

α

[B]T + α[CaB]0

d[CaB(t)]

dt
(24)

Combining equations 24 and 20:

∆FF (t)

dt
=

α

[B]T + α[CaB]0

nKn
d [Ca(t)]n−1[BT ](

[Ca(t)]n +Kn
d

)2 d[Ca(t)]

dt
(25)

Given the time trace of fluorescence, equation 23 can be used to solve for [Ca(t)] once [Ca(0)] and

[CaB]0 are known. These values have been defined through the following educated guesses. The

baseline calcium-bound indicator concentration [CaB]0 is taken as the steady state equilibrium

concentration when [Ca] = [Ca]rest (using Equation 19).

In order to estimate the initial concentration of free calcium in the cell we used the following

approach. Combining equations 23 and 19 we obtain:
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∆F/F =
α
(

[B]T [Ca(t)]n

[Ca(t)]n+Kn
d
− [CaB]0

)
[B]T + α[CaB]0

(26)

Given ∆F/F at time zero, iterative solution of equation 26 for [Ca(0)]. This sets the initial

conditions for time integration of equation 20.

The obtained time trace is finally deconvolved through a single decaying exponential kernel with

time constant equal to the reciprocal of the unbinding rate of the indicator koff. The mean of the

deconvolved trace is reported as the estimated [Ca].

4.6.4 Linear deconvolution

The ∆F/F trace has been deconvolved with a decaying exponential with a decaying time constant

τoff. The reported value of the deconvolved signal over the post stimulus time interval has been

calculated as:

Linear deconvolution = mean
(
d∆F/F (t)

dt
+

∆F/F (t)

τoff

)
(27)

Where the values of τoff (τoff = 2s for GCaMP6s and τoff = 0.5s for GCaMP6f) have been

estimated from the decay of time traces for GCaMP6 indicator reported in Chen et al. [137].

4.6.5 OASIS

Time trace of ∆F/F has been deconvolved using MATLAB implementation of OASIS [151]

https://github.com/zhoupc/OASIS_matlab. We have used the second order auto-regressive

thresholded implementation of the algorithm. This implementation imposes a minimum

threshold for the deconvolved trace, effectively filtering out spurious deconvolved activity. The

parameters of the auto-regressive model, the value of the threshold, as well as the SNR levels

were estimated by internal functions of the toolbox. The returned value of OASIS metric over a

post-stimulus window has been calculated as:

OASIS = mean (OASIS deconvolved ∆F/F ) (28)
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In order to avoid potential issues in using OASIS to deconvolve traces of limited duration, the

time traces of ∆F/F extended for a total duration of 10s, of which the first second was stimulus

modulated and the remaining part had a constant baseline SR of 0.5 Hz.

4.7 Definition of preparatory activity in motor cortex

Stimulus and choice instantaneous information were computed using mutual information between

those variables and the neural activity over time, resulting in values of information over the trial

duration. Mutual information and intersection information were computed using the direct plug-

in method for computational tractability of such a large dataset. Neural activity was binned in 2

equally populated bins for every timestep.

4.8 Software availability

NIT source code, documentation, installation instructions and tutorials can be downloaded from

the following repository: https://gitlab.com/rmaffulli/nit. Software for the realistic calcium

imaging simulations can be downloaded from the following repository:

https://gitlab.com/rmaffulli/casim.
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Supporting information

Information quantity Allowed bias correction methods

Mutual Information (direct method)
Quadratic extrapolation, Panzeri-Treves,
Bootstrap correction, BUB

Mutual Information (non-parametric copula) Bootstrap correction

Mutual Information Breakdown
Quadratic extrapolation, Panzeri-Treves,
Bootstrap correction

Transfer Entropy
Quadratic extrapolation, Panzeri-Treves,
Bootstrap correction

Partial Information Decomposition
Linear extrapolation, Quadratic extrapolation,
Bootstrap correction

Intersection Information
Linear extrapolation, Quadratic extrapolation,
Bootstrap correction

Feature Information Transfer
Linear extrapolation, Quadratic extrapolation,
Bootstrap correction

Table 5: Compatibility matrix between information-theoretic quantities in NIT and applicable bias correction
strategies.

PSTH shape FR SNR

Low MI, low SR
p = 2.24e− 16
ω2 = 7.00e− 2

p = 3.97e− 4
ω2 = 1.40e− 2

p = 7.21e− 2
ω2 = 3.32e− 3

Low MI, high SR
p = 8.11e− 48
ω2 = 2.08e− 1

p = 4.05e− 1
ω2 = −1.70e− 4

p = 4.09e− 1
ω2 = −1.85e− 4

High MI
p = 0
ω2 = 8.89e− 1

p = 9.30e− 17
ω2 = 7.99e− 3

p = 5.00e− 14
ω2 = 6.54e− 3

Table 6: Table of p-values and effect sizes ω2 for data in Figure 5C. Data have been analyzed using a separate
three-ways ANOVA (considering PSTH shape, FR and SR as grouping variables) for each information level.

PSTH shape Indicator

Low MI, low SR
p = 4.97e− 1
ω2 = 2.69e− 3

p = 4.89e− 1
ω2 = −2.61e− 3

Low MI, high SR
p = 5.61e− 1
ω2 = −1.66e− 3

p = 6.47e− 1
ω2 = −1.98e− 4

High MI
p = 1.5e− 7
ω2 = 4.34e− 2

p = 4.18e− 11
ω2 = −5.45e− 4

Table 7: Table of p-values and effect sizes ω2 for data in Figure 5D. Data have been analyzed using a separate
three-ways ANOVA (considering PSTH shape and calcium indicator as grouping variables) for each information level.
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Fig. 11: Generation of fluorescence trace in the Single Compartment Model. (A) Top: simulated trace of relative
levels of free calcium concentration in the cytoplasm with respect to resting state levels. Circles represent action
potentials. Middle: simulated trace of the fraction of GCaMP indicator bound to calcium. Bottom: fluorescent trace
resulting from the fractions of calcium-bound and calcium-free indicator. (B) Relation between generated fluorescence
and free calcium concentration in the cytoplasm in chemical equilibrium conditions for both GCaMP6f and GCaMP6s
in the used model.
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Fig. 12: Performance of OASIS on experimental calibration dataset [182] with simultaneous calcium imaging
and electrophysiology. (A) Pearson’s correlation coefficient between real and inferred spiking activity using 2nd order
auto-regressive (AR) thresholded OASIS [151] (see Materials and Methods). (N = 34 for GCaMP6f, N = 19 for
GCaMP6s). (B) Relation between z-scored inferred spiking activity in OASIS and ground truth spike rate on 1 s long
windows selected randomly over the entire experimental acquisition (50 random windows per each experimental trace
N = 1700 for GCaMP6f, N = 950 for GCaMP6s). Experimental data for this dataset are publicly available at:
https://crcns.org/data-sets/methods/cai-1
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Fig. 13: Information content in ∆F/F traces with respect to SR code. Percentage of stimulus information retrieved
by each ∆F/F metric with respect to the one contained in spike rate, in all conditions of the parametric sweep
considered in the study. Values represent the average over 50 simulations. For each combination of frame rate, SNR,
information level, indicator and PSTH shape, the * symbol marks the metrics with non statistically different mean
(p > 0.05 Bonferroni corrected Kruskal-Wallis multiple comparison test) from the best performing metric at those
conditions. Best performing metric is defined as the one returning the highest mean stimulus information. All data in
the figure refer to simulated traces. Mutual information is evaluated using plug-in method.
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Abstract

Sensory information is conveyed by populations of neurons, and coding strategies cannot always

be deduced when considering individual neurons. Moreover, information coding depends on the

number of neurons available and on the composition of the population when multiple classes with

different response properties are available. Here, we study population coding in human tactile

afferents by employing a recently developed simulator of mechanoreceptor firing activity. First,

we highlight the interplay of afferents within each class. We demonstrate that the optimal afferent

density to convey maximal information depends on both the tactile feature under consideration

and the afferent class. Second, we find that information is spread across different classes for all

tactile features and that each class encodes both redundant and complementary information with

respect to the other afferent classes. Specifically, combining information from multiple afferent

classes improves information transmission and is often more efficient than increasing the density

of afferents from the same class. Finally, we examine the importance of temporal and spatial

contributions, respectively, to the joint spatiotemporal code. On average, destroying temporal

information is more destructive than removing spatial information, but the importance of either

depends on the stimulus feature analysed. Overall, our results suggest that both optimal afferent

innervation densities and the composition of the population depend in complex ways on the tactile

features in question, potentially accounting for the variety in which tactile peripheral populations

are assembled in different regions across the body.

Author summary

Touching an object elicits neural responses from hundreds or thousands of individual tactile

receptors of different classes embedded within our hand. Information about the extent of contact,

the strength of the touch, and its temporal profile are carried jointly in this population response to

be processed further by the central nervous system. However, studying the nature of the

population code is empirically challenging, as electrophysiological recordings are typically

obtained from single or a small number of neurons at most. Here, we make use of a computer

simulation to recreate the population activity of large numbers of tactile neurons and examine

how information is spread across different neurons. We find that tactile information increases
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with afferent density, but the saturation point depends on both the tactile feature and afferent

class. Importantly, information is generally spread across multiple afferent classes, such that a

combination of afferents from multiple classes yields higher information than the same number

of neurons from a single class. These results will be useful to guide future experiments and

theoretical work on the processing of tactile information by the central nervous system.
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1 Introduction

The brain processes information and makes decisions based on the activity of populations of

neurons [183]. Studying population activity can reveal aspects of the neural code that are

obscured when only individual neurons are considered [184]. For example, the well-known

population vector technique has shown that the direction of arm movements can be precisely

decoded from a population of cortical motor neurons, even though individual neurons are only

broadly tuned to direction [185]. Moreover, some coding strategies will become evident only if

the responses of multiple neurons are considered. For example, while a neuron that remains silent

to a certain stimulus might not appear to convey any information at all, when it is part of a larger

population where other neurons are responding, this silence can be meaningful [186]. Response

correlations between neurons also affect decoding (see [187] for an example). Furthermore,

populations often consist of heterogeneous classes of neurons, especially in sensory systems,

such as the diversity of retinal ganglion cells in the visual pathway [188] or the different classes

of tactile neurons in the somatosensory periphery [189]. Theoretical studies have shown how

response properties and class membership of individual neurons can be optimized to maximize

joint information coding in the population [190–192]. However, because this optimization relies

on the full population, predicting how or to what extent an individual neuron contributes to

population coding becomes impossible without considering the properties of other neurons that

make up the population. Given these findings, it is thus paramount to study the population

activity of sensory neurons in order to understand what stimulus information is available at

subsequent processing stages.

Tactile interactions are mediated by mechanoreceptive afferents and the glabrous skin of the

human hand is innervated by approximately 17,000 fibers [193]. These are divided into different

classes based on their response properties and receptive fields. Three classes are mainly involved

in discriminative touch: slowly adapting type 1 afferents (SA1) exhibit small receptive fields and

respond to static or low-frequency indentations, rapidly adapting afferents (RA) possess slightly

larger receptive fields and respond to dynamic flutter stimuli, and Pacinian afferents (PC) exhibit

extremely large receptive fields and are most responsive to high frequency vibrations. These

classes also differ in the density with which they innervate the skin, both compared to each other
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and at different locations on the skin [193]. A stimulus applied to a specific skin area will

typically activate hundreds if not thousands of afferents of different classes all responding with

distinct spiking responses [194]. However, peripheral neurophysiological measurements are

subject to technical limitations, and typically only one or a small number of afferents are

recorded at once. Moreover, many studies place the stimulus directly above the targeted afferent’s

receptive field hotspot, in an effort to maximize neural responses within the limited recording

window, but such a setup implies that responses from receptors located away from the contact

location will be neglected. Given these constraints, afferent activity on a population level has

scarcely been investigated, and, consequently, our understanding of how tactile information is

represented in the peripheral population is limited (though see [195] for a summary of tactile

population codes).

A particular source of debate in the tactile literature has been the role of different afferent classes.

Traditionally, each afferent class was thought to carry information about different and

complementary stimulus features [196]. However, more recently, it has become clear that most

natural stimuli elicit responses from multiple afferent classes simultaneously (see summary

in [197]), for example, in texture perception [198]. Furthermore, both experimental

evidence [199] and computational modeling [200] suggest that information from multiple classes

of afferents is integrated in cortex, if not before, and psychophysical studies have revealed that

the quality of a tactile percept does not necessarily depend on receptor class [201]. However, to

what extent peripheral tactile population activity carries complementary information about

relevant stimulus features in different afferent classes has not been quantified and it is therefore

unclear when and how it would be beneficial to integrate such information.

Here, we investigate the contribution of large neural populations in tactile stimulus coding and

examine the interplay of tactile submodalities in this process. Because the lack of population

level data currently precludes empirical study, we used a large-scale computational model,

Touchsim [202], to simulate the activity of hundreds of peripheral tactile afferents of three classes

in response to naturalistic stimuli, similar to those commonly used in experimental settings. First,

we parametrically studied the role of afferent density in single-class afferent populations to

explore if and how the composition, and particularly the number of afferents, affects the stimulus

information encoding. Secondly, we considered the three classes together and asked whether
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each class encoded complementary or redundant information regarding stimulus features.

Finally, we assessed the importance of temporal and spatial encoding precision when considering

afferents on a population level. Overall, our work demonstrates that a population-level view of

tactile coding is crucial for a thorough understanding of tactile information processing.
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Fig. 15: Simulation setup. (A) Example of afferents terminating along a line, radiating outwards from the probe
centre (indicated by the arrow). The probe has circular shape (of varying size) and is centred on the origin of the line.
Dots of different colors correspond to different afferent classes (separated in the illustration to facilitate visualization).
(B) Example of afferent populations with different densities. (C) Representation of afferent densities measured on the
human hand and corresponding simulated populations distributed over a line that mimic the densities observed in the
palm and finger. (D) Illustration of the different stimulus features considered: probe size, vibration frequency, ramp
length, and ramp amplitude.

2 Results

We used a large-scale neural simulator [202] to simulate the spiking activity of individual

afferents belonging to three afferent classes (SA1, RA, PC) jointly spanning the range of tactile

sensitivity. In our setup, we simulated the responses of a population of receptors placed along a
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line extending outwards from the contact location of the stimulus probe (see Fig 15A). This

spatial arrangement of receptors allowed for systematic manipulation of the receptor density in

the simulations. Sixteen different afferent populations with a density ranging between 1 and 140

afferents/cm2 were considered for each afferent class. Therefore, we could test the effect of low,

medium, and high densities (Fig 15B) on information encoding and also directly examine natural

innervation densities, such as those encountered on the palm or finger (Fig 15C). The simulated

stimulus was a circular probe indented into the skin and then vibrated. We varied four stimulus

features systematically across trials: the probe size (1-4 mm), the ramp amplitude (0.3-1.2 mm),

the ramp length (10-50 ms), and the vibration frequency (0-200 Hz) (see Fig 15D and Methods).

These parameters were chosen to span the range of tactile stimuli that are typically experienced.

They are also similar to stimuli commonly employed in neurophysiological experiments, such as

those used to fit the initial Touchsim model [202], and simulated responses can therefore be

expected to be a close match to what would be recorded in an actual experiment. Finally, varying

the stimulus across multiple parameters simultaneously ensures that the complexity of everyday

tactile interactions is reproduced in the resulting population responses.

To analyse the simulated responses, we coupled advanced machine learning techniques with

information-theoretic analysis to compute how much information about each stimulus feature

was encoded in the activity of different populations of afferents (see Methods). In brief, after

simulating the spiking responses (Figure 16A), we first used Non-Negative Matrix Factorization

(NMF) [203] to succinctly capture the spatiotemporal patterns of neural responses for each

afferent class (Fig 16B). This technique linearly decomposes each single-trial spatiotemporal

sequence of spike trains into a sum of non-negative spatiotemporal modules (describing

commonly occurring population activity patterns across neurons and time) and non-negative

activation coefficients (describing how strongly each pattern is recruited in a given trial). For this

first stage, we chose an unsupervised technique that did not take into account the specific

stimulus features used to generate the responses in each trial, because this provides an effective

and relatively hypothesis-free way to describe neural responses to all possible stimuli. The

specific choice of NMF was made because this technique provides a natural decomposition for

spike trains, which are by nature non-negative, because it can give accurate single-trial

representations of activity even when neural responses are non-orthogonal and overlapping from
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Fig. 16: Analysis pipeline and calculation of information. (A) Spike trains are generated using the Touchsim
simulator. (B) The spike matrices are then decomposed using the Non-Negative Matrix Factorization (NMF) method,
obtaining a set of non-negative activation coefficients and modules. (C) A Generalized Linear Model (GLM) fed with
the neural activity captured in the NMF activation coefficients gives the probability of observing each stimulus feature.
(D) Probabilities are used to compute mutual information (MI), representing the information that the neural activity
carries about the stimulus.

trial to trial, and because both its basis functions and coefficients are biologically interpretable in

terms of commonly occurring activity patterns and their activation strength in each trial,

respectively [204, 205]. We decided on using spatiotemporal decompositions for this stage, as

used in previous studies [206–208], rather than e.g. decompositions along only the spatial or
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temporal dimension, or tensor decompositions that assume separability in space or

time [204, 205], in order to avoid introducing strong hypotheses about the spatiotemporal nature

of neural population responses, which may be difficult to test or which may bias comparisons

across afferent classes that may have different degrees of interdependence between spatial and

temporal structure.

In the second stage, we extracted specific features from the NMF representation using a supervised

technique. Following previous work [209], we approximated the probabilities of occurrence of the

NMF activation coefficients using a Generalized Linear Model (GLM; see Fig 16C). We then

used this probabilistic model to compute the posterior probability of each stimulus feature given

the observation of the spatiotemporal population spike train in each trial. Finally, we computed

the information using the posterior probabilities between the presented and the decoded stimulus

(Fig 16D). This procedure provides a data-robust but effective lower bound to the total information

carried by population activity [184]. We also checked the robustness of our main findings using a

control analysis employing a simpler decomposition model (see Methods and 22), where the NMF

decomposition is only applied along the spatial axis [210], yielding a larger number of coefficients

for the classifier. This analysis shifts part of the analysis from unsupervised to supervised and can

therefore be expected to extract more information overall, but it makes strong assumptions about

the separability of the spatial dimensions (as it decomposes only simultaneous responses across

neurons), which may not be suitable for some afferent classes for which spatial and temporal

response profiles may be non-separable (see below for some examples).

2.1 Information carried by individual afferent populations

In a first analysis, we investigated the information carried by each of the three afferent

populations separately. To understand which afferent population best encoded any given feature,

and how the information depended on the spatial density of the afferents, we calculated the total

information carried by each population (Fig 17A) by simulating responses with different spatial

receptor densities.

For encoding stimulus size, we found that SA1 afferents were most informative, with information

increasing and then saturating at a density of 40 afferents/cm2. RA afferents provided more

96



i
i

“output” — 2023/6/13 — 12:18 — page 97 — #111 i
i

i
i

i
i

2. RESULTS

A Parametric study of densities

N
or

m
al

iz
ed

 in
fo

rm
at

io
n

N
or

m
al

iz
ed

 in
fo

rm
at

io
n

Frequency

Ramp
length

Ramp
amplitude

Density [afferents/cm2]

Size

Saturation densitiesB

Frequency Ramp
length

Ramp 
amplitude

D
en

si
ty

 [a
ffe

re
nt

s/
cm

2 ]

Size

Frequency Ramp
length

Ramp 
amplitude

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 in
fo

rm
at

io
n

Information values 
at saturation densities

C

Size

Fig. 17: Effect of afferent density on stimulus feature coding. (A) Information content (normalized by the stimulus
entropy) for different stimulus features provided by single-class afferent populations of varying density. Solid lines
represent the average over 40 trials, shaded regions represent standard deviation across NMF instantiations. Dotted
vertical lines indicate information saturation points. (B) Saturation densities for each feature and afferent class. (C)
Maximum information content provided by each afferent class at the saturation density for each feature. Error bars
represent standard deviation across NMF instantiations.

information at very low densities and saturated at a lower level (20 afferents/cm2). In contrast,

PC afferents did not carry any information about stimulus size at any of the densities considered.

This result can be explained by the fact that PC afferents exhibit extremely large receptive

fields [211], certainly larger than the differences in size between the stimuli we applied.

Next, we considered the encoding of the frequency of stimulation. PC afferents provided the

highest frequency information, as predicted by the fact that PC afferents are well known to carry

frequency information in vibrotactile stimulation [196]. Given their large receptive field size,

frequency information of PC cells already saturated with the lowest density of afferents
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considered. In agreement with previous studies, RA afferents also carried considerable

information about frequency [196]. SA1 populations carried low amounts of frequency

information at small spatial densities, but slightly exceeded the frequency information of RA

afferents at higher spatial densities. This result may appear to contradict earlier empirical studies,

where SA1 afferents were shown to respond only to the lower extreme of the range examined in

our study [212]. However, in our simulations, the sinusoidal wave is superimposed on a

ramp-and-hold indentation. This sustained indentation causes low spiking activity in the SA1

afferents, with spikes aligned to the vibration (see panel B in 21). Our finding suggests that this

information emerges when taking into account the activity of SA1 afferents on a population level

rather than single afferents separately.

PC afferents were also the most informative class about the stimulus ramp length, followed by SA1

and RA afferents, which provided similar levels of information, but required higher densities than

PCs to reach saturation. Finally, SA1 afferents carried the highest amounts of information about

ramp amplitude, with PC afferents not encoding any information. RA afferents again provided

higher information than SA1 ones at the lowest density, but adding more fibers did not increase

information for this class.

The information saturation density, which we defined as the smallest value of density at which the

population carried the asymptotic value of information reached for the highest simulated density,

was the highest across classes for SA1 afferent for all considered stimulus features. Conversely, the

information saturation density was the smallest for PC afferents in all cases (Fig 17B). Notably,

when considering purely spatial features such as the stimulus size, the population encoding the

highest asymptotic information level corresponds to the one with the highest saturation density

(Fig 17B and C). Consequently, a high density of afferents is required to extensively innervate a

skin area and discriminate between fine differences in the shape of stimulation. On the other hand,

when looking at temporal features such as the frequency or the ramp length, sparsely distributed

PC afferents overcome the information content encoded by the other more densely packed afferent

classes.

Finally, our result shows that the RA class at saturation density always encodes less information

than the SA1 and PC populations about any feature considered in this study (Fig 17C). However,
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Fig. 18: Integrating information across afferent classes. (A) Information gain considering the two and the three most
informative classes together with respect to the most informative class alone. The density measured on the human finger
was taken for each afferent class. Thin lines correspond to different instantiations of the NMF decomposition, and the
thick dashed lines correspond to their averages. (B) Decomposition of information into redundant and complementary
contributions of each class with respect to the remaining two classes together. Information for each afferent class has
been normalized to 100% and was calculated at the density measured on the human finger. Note that in both panels (A)
and (B) only two afferent classes were considered for the analyses regarding stimulus size and ramp amplitude since
the third class (PC) was carrying null information (see Fig 17C).

at low densities (<10 afferents/cm2), RA afferents were more informative than SA1 for all features

considered, suggesting that the optimal way to encode a tactile feature might depend on the number

of neurons available.

2.2 Information encoded by multiple afferent classes

Next, we investigated how tactile stimulus information was encoded in the joint activity of

multiple afferent classes. In particular, we asked whether the information about stimulus features

carried by an afferent class adds to and complements the information carried by other classes or

whether the information carried by different afferent classes is redundant. To answer this

question, we computed the information carried about each stimulus feature by the joint activity of
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populations of two or three afferent classes and compared the resulting values with the

single-class information calculated above. Specifically, we used the concept of complementary

information [213]: we defined the complementary information carried by additional afferent

classes over that of a reference class as the information carried by all considered classes jointly

subtracted by the information carried by the reference class alone. All possible combinations of

classes were considered. In these calculations, unless otherwise stated, we set the density of each

class to the one measured on the glabrous skin of the human finger (see Methods for details).

This allowed us to compare the information contribution of different classes in a realistic and

biologically relevant setting.

We first considered whether afferent classes that were not the principal source of information

about a stimulus feature added information that was complementary to that of the principally

contributing afferent class. To do so, for each feature, we quantified the amount of complementary

information that the less informative classes add to the information carried by the most informative

class (Fig 18A). The amount of this complementary information was normalized to the amount of

stimulus information carried by the most informative class. For all features, we found that the

second and third most informative classes added information that complements the information

carried by the most informative class alone. On average, the second most informative class added

between 12 and 25% complementary information, depending on the feature considered. When

considered jointly, the second and third most informative classes added, on average, between 15

and 30% of complementary information, compared to the most informative class alone. This result

indicates that for each tactile stimulus feature, each class encodes some amount of complementary

information about the stimulus that cannot be found in the activity of the other two classes.

Next, we investigated which amount of each afferent class’s information contribution was

complementary or redundant when considered against the information contribution of the other

afferent classes. For each stimulus feature and each individual afferent type, we computed the

fraction of the information carried by the considered afferent that is complementary with respect

to the information already carried by the other two afferent classes. This fraction is an index of

the specific novelty of the information of a given afferent class with respect to all others

(Fig 18B). In general, a significant fraction of information carried by each afferent class was

complementary to that of other classes. In most cases, however, this fraction was not close to 1,
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meaning that there was also redundancy between the information carried by afferent classes.

When examining how this fraction varied across stimulus features, interesting patterns emerged.

For vibration frequency and ramp length, the two stimulus features for which all three afferent

classes encoded considerable information, we found mostly redundant coding, with relatively

small fractions of complementary information (on average 13% for frequency and 23% for ramp

length, Fig 18B). All three classes encode vibratory stimuli by locking their spiking activity to

the sinusoidal traces, which explains the redundancy across classes. However, the fact that the

frequency ranges encoded by each class do not completely overlap explains the existence of

significant fractions of complementary information across all three afferent classes. Given that all

three classes encoded large amounts of frequency information, the actual amount of

complementary information added by each class was surprisingly large (Fig 18B). A similar

pattern of complementarity and redundancy of information was observed for ramp length, which

like frequency is a dynamic feature that depends on timing.

For stimulus size, the SA1 afferent population carried most of the information (Fig 17), and this

information had a high value of complementarity (72%), indicating that it could not be found in

other afferent types (Fig 18B). The RA afferent population added less information (Fig 17), but

also exhibited a relatively large fraction of complementarity (48%) (Fig 18B). The encoding of

size for SA1 and RA afferents seems to depend on the number of afferents that are activated by the

stimulus (Fig 21A), and the observed complementarity between RA and SA1 afferents is partly

due to differences in spatial sensitivity across the two populations. Information carried by PCs

about probe size was negligible and therefore this class was not considered in the complementarity

analysis for this feature.

Finally, for ramp amplitude we found results that resemble those for stimulus size. The SA1

population carried most information, which was largely complementary (63%) to that of other

classes. RA afferents carried less information than SA1 afferents, but part of this information

(43%) was complementary to that of SA1 afferents. In this case, the encoding appears again to

depend on the fraction of afferents that are activated by the stimulus, as was the case for stimulus

size. This is a genuine form of population coding that would not be evident from single afferent

analyses. PCs again provided negligible information (see Fig 17C), and thus were not taken into
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account.

2.3 Effect of afferent density on complementary information

Having established that information about individual stimulus features is carried by multiple,

rather than single, afferent classes and that different afferent classes often carry complementary

stimulus information, we next asked how the complementarity of information depends on the

spatial density of afferents. We were especially interested in whether, given the functional

properties of afferents in each class, it would be more efficient to allocate all receptors to the

most informative class or spread the receptors across different classes to take advantage of the

complementarity of different classes. To address these questions, we systematically analyzed the

information carried by individual afferent classes and their combination at different densities

(Fig 19A). We tested the same upper and lower density limits as used previously. For a more

realistic comparison with human biology, we also considered two other cases of spatial density

arrangements, in which each population has a density equal to that experimentally found either in

the palm or in the finger of the human hand (see Methods for precise numbers).

A substantial increase in the amount of encoded information was found for all features when

increasing the density from the lower limit to realistic densities. Conversely, increasing the

densities from the finger values further to the upper limit did not lead to additional increases of

encoded information, neither when considering individual classes nor their combination,

suggesting that the information in multi-class population coding saturates similarly to

single-class coding. The only exception was probe size, for which information content at the

upper limit was higher than at the finger density. As shown in Fig 19B and summarized in Table

8, stimulus size is also the only feature for which increasing the density of the most informative

class, SA1, improves the information content more than combining different classes. As

discussed previously, stimulus size is a purely spatial feature, and a high density of afferents is

necessary to discern small differences in the shape of the stimulus. In contrast, for all other

features considered, combining the content of the two most informative afferent classes yields

more information than doubling the afferent density of the most informative class alone.

Together, these results show the advantages for information encoding at the population level of
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Fig. 19: Information gain at different afferent densities. (A) Radar plot of the information content provided by single
and combined classes at different densities for individual tactile features. Each radial axis represents the information
content of a single afferent class or combination of two classes. Dotted circular lines correspond to the information
given by the three afferent classes together. Information is normalized for each stimulus feature with respect to the
information provided by the three classes altogether at the upper-limit density (i). Four different density sets were
considered: (i) lower limit, (ii) human palm, (iii) human finger, and (iv) upper limit as reported in Table 9. (B)
Comparison of the information gained when doubling the density of the most informative class (central bar) or when
combining with a different population (right bar). The baseline density (left bar) was set at 10 afferents/cm2. Error bars
represent standard deviation across different NMF instantiations.
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Stimulus size Frequency Ramp length Ramp amplitude
Most
informative
class

SAI PC PC SAI

Optimal
encoding
strategy

Increase density
of SAI population

Add SAI population Add SAI population Add RA population

Underlying
rationale

Highest gain in information
by increasing SAI density,
PC provide no information

SAI adds more information than RA,
PC information is density independent

SAI adds more information than RA,
PC information is density independent

SAI+RA reaches the highest
information content,
PC provide no information

Table 8: Information maximizing encoding strategies for each stimulus feature trading off increases in innervation
density for a single afferent class versus adding fibers from a different class.

spreading information across classes of receptors with complementary information rather than

simply packing more receptors of a given class into the skin, even if receptors of this class are

highly informative about the stimulus.

2.4 Contributions of the spatial and temporal organization of population activity

to population coding

After establishing how much information is encoded by each afferent class and their

combinations, we investigated the nature of the population coding in more detail. In particular,

we asked two questions relevant to understanding the spatial and temporal organization of the

population code. First, how important is the precise temporal structure of the population activity

for decoding stimuli from spatiotemporal patterns of neural population activity? Second, how

important are differences in spatial neuron-to-neuron response profiles to decode stimulus

information from spatiotemporal population activity?

The importance of the spatial structure of the afferent population code for information coding,

that is, the afferent-to-afferent difference in stimulus tuning properties at different spatial

locations, is supported by the finding that natural tactile stimuli elicit specific firing patterns in

afferents located in different places [195, 214]. A critical role for the temporal structure of

individual afferent activity has been demonstrated in previous studies [198, 215, 216] and is also

supported by the fact that thalamic and cortical somatosensory neurons also encode tactile

information with millisecond-scale spike timing precision [217–220]. However, it is unknown

whether these expectations would hold at the level of afferent population coding. For example,

precise spike timing might be less important when considering a full population of afferents

rather than a single one. Furthermore, information in the spatial and the temporal structure might
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be redundant, such that for example information contributed by the spike timing of the population

may be redundant with the information encoded in the spatial structure, or vice versa. Addressing

these questions, therefore, requires a direct test with a large population.

First, we evaluated whether the distribution of afferents in space, parameterized in the simulation

as the distance of the afferent location from the stimulation site, impacts the population coding

capabilities. To do so, we kept the NMF spatiotemporal modules computed on the original data

and recomputed the NMF activation coefficients on the spiking activity obtained after destroying

spatial information by randomly shuffling the neural responses across neurons for all time bins.

Then we used the classifier trained on the original data to compute how much information about

each stimulus feature could be decoded (see Methods). We called this "space-coding removed"

information. The difference between the original and the space-coding removed information

quantifies how much of the information in the original, unshuffled spike trains can only be

expressed and decoded because of the spatial structure of the code. Note that this quantification is

performed at a fixed spatial density, and it is thus different from the previous analyses of the

effect of changing the spatial density. We found that, after destroying the spatial structure,

information content dropped, averaged across classes and features, by 19% (Fig 20A). The loss

of information was higher for SA1s (30%) compared with RAs (5%) or PCs (25%). Thus, the

nature of how information is distributed across neurons at different locations provides a

contribution to population coding that is lost and cannot be recovered by the temporal

organization of activity when the spatial structure is destroyed.

Next, to quantify the specific contribution of temporal structure to decoding information from the

spatiotemporal population activity, we computed a "time-coding removed" information value

from the population responses. To do so, we randomly shifted the spikes with each shift

independently drawn from a uniform distribution with range ±2, ±5, and ±10 ms before

recomputing the NMF activation coefficients and estimating the information content (see

Methods). The difference between the original and the time-coding removed information

quantifies how much of the information that was decoded from the spatiotemporal population

activity is contributed by the millisecond-scale temporal structure of the code. We found that,

after destroying the temporal structure of the data with time shifts, the information decoded from

spatiotemporal neural activity dropped, averaged across classes and features, by 7% with the 2
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ms shift, 19% with the 5ms shift, and 28% with the 10 ms shift (Fig 20B). Information loss was

highest for PCs (24%, 41%, and 61%, respectively, for the different time shifts) and relatively

lower for RAs (5%, 15%, and 20%) and SA1s (2%, 12%, and 20%). Notably, across our set of

stimuli, we found higher information loss when neglecting the temporal resolution of spike trains

rather than the spatial distribution. This result indicates that even in large afferent populations

spike timing with high temporal precision remains an important part of the spatiotemporal neural

code. In particular, when examining features that can be expected to mostly rely on temporal

structure, such as vibration frequency, information dropped significantly already with the

smallest jitter of 2 ms. In contrast, other features, such as stimulus size, appear to rely more on

spatial than temporal activation. For these features, information content was preserved when

disrupting the temporal code but decreased abruptly when destroying the spatial structure in the

data. Finally, we noticed that for some stimulus features the information content increased

slightly after destroying spatial or temporal structure. These small increases should not be

interpreted as indicating that more information is available at lower temporal resolutions (which

would contradict the Data Processing Inequality), but rather indicating that in such cases we

could not find evidence of timing information contributing at a finer scale. These effects arise

spuriously in any decoding method that computes a lower bound on the population information,

whose tightness may vary to some extent across conditions. They might also reflect how we

simulated noise: since we simulated motor noise by varying parameters such as indentation

depth, most of the neural noise in the afferent responses is likely correlated; adding a small,

uncorrelated temporal jitter might have helped with decoding in some cases.

3 Discussion

This study is based on a simulation paradigm, which provides novel insights on stimulus coding

by tactile afferent populations. Much of our current understanding of encoding mechanisms of

tactile stimuli derives from electrophysiological studies. However, these are severely limited in the

number of afferents that can be recorded at a time. In addition, many previous studies have focused

only on those afferents terminating directly at the stimulus contact location. Thus, a biased picture

of tactile coding might have emerged. In fact, to our knowledge, population coding of tactile

afferents, taken as the spatiotemporal activation of multiple afferents belonging to one or more
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Reference
Space coding neglected

Size
Frequency

Ramp length
Ramp amplitude

±± ± ±± ± ±± ±

Size Frequency Ramp length Ramp amplitude

B

A Neglecting space coding

Neglecting time coding

Fig. 20: Information recovered after destroying spatial or temporal coding. (A) Information recovered for each
afferent class after neglecting afferents’ spatial organization normalized with respect to the maximum information
content in the original data at the saturation level (see Figure 17C). (B) Information recovered for each afferent class
after destroying precise spike timing at different timescales. Again, information is normalized with respect to the
maximum information content in the original data at the saturation level. Error bars represent standard deviation across
different NMF instantiations. Note that for both stimulus size and ramp amplitude, information carried by PC class was
null (see Figure 17C) and such class was excluded from these analyses.

classes, has scarcely been investigated before. Here, we used a recently developed computational

model that allows simulation of tactile neural responses at the population level with high accuracy.

Although any putative population-level coding mechanisms derived from modeling would need

to be experimentally verified, this approach allows investigating aspects of the neural code that

are currently experimentally intractable and can therefore generate ideas for potential downstream
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decoding mechanisms.

3.1 Single-class coding and receptor density

We first investigated how the density of afferents from a single class plays a role in the encoding

process. We showed that the information content of both SA1 and RA populations increases

asymptotically with afferent density until saturation. This effect was consistent for all features

considered, although the specific saturation densities varied between features. This result

highlights that tactile information is generally spread across a population of multiple afferents,

even for features that are not explicitly spatial. Furthermore, the afferent class most informative

about a tactile feature at low innervation densities might be different from the most informative

class at high densities. Consequently, judging or predicting the information content of a

population from recordings of single afferents only might be misleading and provide a biased

picture of how information is represented in full populations.

In contrast to SA1 and RA afferents, the information level for PC afferents was essentially constant

for all density values considered across all tactile features. While this result might be taken to

suggest that the PC population does not contribute information above that of a single afferent,

there is evidence to suggest that PC populations might be important in different tactile contexts

than the ones explored here: making contact with surfaces causes mechanical waves to spread

throughout the hand, activating PC afferents as far away as the palm and their joint population

activity carries information about how contact is made and other aspects of the grasp [221].

It should be noted that for all afferent classes, the minimum density needed to recover the

maximum information for any tactile feature is lower than the empirical afferent densities

estimated for the human hand [193]. We speculate that the minimum density of afferents required

to reach the information saturation might be higher for more complex features. Indeed, as an

initial investigation into the power of large-scale neural simulations on a population level, this

study considered relatively simple stimulus features compared to the complexity of realistic

tactile interaction. Similarly, previous studies showed a strong relationship between SA1 density

and tactile spatial acuity [193]: afferents, particularly of SA1 type, need to be densely packed in

the skin to resolve and discriminate extremely fine features. While our setup included one clearly
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spatial stimulus (probe size), none of the others were purely spatial. Finally, afferent innervation

densities across most of the skin of the human body are much lower than those in the hand and

indeed within the range identified in the current study, suggesting that our stimulus set was

covering a large part of the physiologically relevant range.

Interestingly, we found that the RA class at saturation density tended to encode less information

than the SA1 and PC populations, but in contrast, was more informative than SA1s at low

densities (< 10 afferents/cm2). This result suggests that the way information is spread across

afferent classes depends in part on receptor density, and in turn, should affect optimal decoding

downstream. Indeed, tactile innervation density changes dramatically across different body areas,

both in terms of the absolute number of afferents and relative innervation densities of different

classes [193], and it is possible that changes in the class composition at different skin sites

partially reflect density-dependent optimal allocation of afferent classes. Our findings also

suggest that tactile information need not be linked firmly to a given receptor type, but that

information is spread in a dynamic way across different afferent classes (see [201] for a concrete

example in frequency coding).

3.2 Complementarity and redundancy across afferent classes

The second step of our analysis was to consider combinations of afferent classes and to evaluate

their information content with respect to different stimulus features. Here, we found both

redundant and complementary contributions to the information across afferent classes. All

afferent classes generally provided at least some complementary information about stimulus

features, suggesting that downstream areas should integrate information from different classes to

maximize information (see also [197]). Quantifying such complementary information is a

necessary first step towards further study of submodality convergence in the stimulus encoding

process, especially considering that directly accessing the integration mechanisms in humans is

complicated. Convergence has previously been inferred from cortical recordings in primates for

multiple individual stimulus attributes [200, 222, 223], but here we quantitatively demonstrate

that information is spread across afferent types in most cases, and therefore, submodality

integration can be expected to be a general feature of downstream processing.
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Not all information was complementary however, and we also found considerable degrees of

redundancy between afferent classes. Redundancy in neural coding has been extensively debated

(see [224] for a review) and can be a strategy for robust stimulus encoding. Indeed,

over-representing stimulus information using large populations of neurons increases the

probability of having a relevant impact in downstream neurons, guaranteeing —or, at least,

making more plausible— that critical information is processed while negligible information is

discarded —or less likely used—. Redundancy can rank information according to relevance,

overcoming the associated coding inefficiency in favor of a significant performance

increase [225]. Furthermore, redundancy could be interpreted as a strategy to make the neural

code resilient in the event of temporary or permanent lack, shortage, or failure of input from an

afferent class. This theory is supported by recent findings in an experimental study in mice that

showed that the use of genetic ablation strategies to suppress the response of either rapidly or

slowly adapting afferents leaves responses in the somatosensory cortex mostly unchanged [199],

which implies that the required information can be recovered from the remaining afferent input.

This would not have been possible if the two classes had encoded complementary information

only. Such a process might be beneficial when several features are processed simultaneously, and

redundancy between classes might help to disambiguate the stimulus.

3.3 Information maximizing receptor selection

We investigated whether increasing the density of afferents of a given class or combining them

with afferents of a different class yields higher information gain. We found that adding afferents

belonging to a different class was generally more efficient than increasing the density of the most

informative class by the same amount, confirming that the information about stimulus features is

not segregated in single afferent classes, but is spread across them. Indeed, while absolute tactile

innervation densities vary widely across the body, the fraction of slowly adapting afferents at any

given site varies only between 40 and 70% and is relatively evenly split for most body regions

[193], especially for those with lower innervation. Our results suggest that such a composition

increases information transmission, while minimizing fiber count. The number of tactile fibers

that can fit into the nerves and spinal cord is naturally constrained, and consequently, extensive

skin areas are innervated at low density. Neurons are also energetically expensive, and therefore
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it is plausible that evolutionary optimization might have maximized the ratio between information

and energy consumption by spatially distributing the mechanoreceptors and diversifying response

properties across different receptor classes.

In several sensory systems other than touch neural populations are also composed of multiple

cell classes with distinct response properties. Indeed, early sensory pathways frequently split into

different classes with disparate response properties (e.g. the large number of retinal ganglion

cell classes [188]). According to the efficient coding hypothesis, sensory systems have evolved to

optimally transmit information about the surrounding world, given constraints on their biophysical

components and energy use [226]. This theory also explains splitting a population into two or more

cell classes as a strategy to maximize information transmission, as shown in previous studies for

different sensory systems [190–192]. Our findings support this hypothesis, showing that, in most

cases, a combination of classes was more informative than a single class higher-density population.

3.4 Limitations and future work

Our study focused on the three main classes of tactile afferents that mediate discriminative touch.

However, other classes also contribute to tactile coding, such as SA2 afferents, which are thought

to primarily signal skin stretch but are consciously perceivable [227]. Furthermore, tactile

innervation and neural response properties differ somewhat in the hairy skin [193], which covers

most of the human body. Thus, our results will most directly reflect tactile coding on the human

hand, but future studies should consider how these results might extend to other regions of the

body.

As the findings are based on computer simulations, the veracity of the results will depend on the

accuracy with which the spiking responses can be replicated in the computational model. The

stimuli we used, namely indentations by a single probe orthogonal to the skin surface with a

superimposed vibration, are similar to those on which the original model was fit and fall into the

range where it has been validated most extensively [202]. Still, by combining multiple tactile

features, we believe that our simulated stimuli are sufficiently complex, varied, and natural that

the resulting findings can be considered of behavioral importance. One avenue for future research

would be to investigate information transfer on tactile inputs arising from natural behaviors such
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as grasping and manipulating objects, which include multiple contacts, shear forces, and

movement between the object and the skin. However, this would require further work on the

precise spatiotemporal force patterns on the hand during such behaviors and spiking models that

take into account more complex afferent response properties (see [228] for an example).

To study the effects of different innervation densities, we considered a simplified setup,

distributing the afferents over a single dimension while neglecting some properties affecting the

spatial distribution of afferents, for example the complex shape of the human hand. Future

studies should take this aspect into account to reveal how the shape of the hand, the different

afferent densities, and the composition of the population in different areas of the hand plays a role

in stimulus encoding. In the same direction, population coding strategies and afferent distribution

might be coupled with natural stimulus statistics in different body areas to deepen the

understanding of how the human somatosensory system is optimised to receive and process

natural tactile stimuli.

Finally, as in other information-theoretic analyses on large-dimensional neural response spaces,

our analysis can only provide a lower bound on the true information contained in the population

spiking patterns. As direct calculation of the information is prohibitive with respect to the amount

of data that would be required, we chose a method that decomposes the high-dimensional

responses, with information values subsequently estimated in the lower-dimensional space. An

additional benefit of this method is that the initial unsupervised decomposition of the neural

responses reflects aspects of neural processing in sensory pathways. However, the resulting

information values will be affected by choices regarding this decomposition specifically, and the

information calculation more generally, and different choices might yield somewhat different

outcomes. To directly test the robustness of our method, we compared our method with a

different analysis pipeline. We found qualitatively very similar results, suggesting that our main

findings, for example regarding the benefits of integrating across different afferent classes, hold

generally, rather than being dependent on the specific analysis method chosen.

4 Methods

112



i
i

“output” — 2023/6/13 — 12:18 — page 113 — #127 i
i

i
i

i
i

4. METHODS

Class Palm Finger Fingertip
SAI 10 30 70
RA 25 40 140
PC 10 10 25

Table 9: Estimated innervation densities of afferent classes (afferents/cm2) for different regions of the human hand
[211].

4.1 Simulation of spiking activity

To generate the spiking activity of tactile afferents, we used a previously published and validated

model called Touchsim [202]. We employed the model to simulate populations of SA1, RA, and

PC afferents terminating along a line of 1 cm for SA1s and RAs, and 5 cm for PCs radiating

outwards from the stimulus location. The density of afferents varied between 1 and 140

afferents/cm2 for a total of 16 different populations per afferent type. This range includes the

physiological innervation densities estimated for the human hand [211]. In some analyses, we

also directly set individual class densities to those of the human palm or finger (see Table 9 for

precise values).

We designed stimuli with circular shapes, which are indented in the skin following a ramp-and-

hold function (see Fig 15 B). When the maximum amplitude of the ramp is reached, a sinusoidal

wave is superimposed. This setup simulates well-established psychophysical setups in which a

probe is brought into contact with the skin and then vibrated at a set frequency. It also includes

many aspects of natural tactile stimulation: indentation, retraction, and constant stimulation at

different depths and spatial scales, as well as vibrations at different frequencies. Individual stimuli

are created by varying 4 different features: 1) the stimulus size (4 conditions: [1:1:4] mm), 2) the

maximum ramp amplitude (4 conditions: [0.3:0.3:1.2] mm), 3) the ramp-up time (5 conditions:

[0.01:0.01:0.05] s), and 4) the frequency of the superimposed sinusoidal wave (10 conditions:

[0, 10, 20, 40, 60, 80, 100, 130, 160, 200] Hz). This setup yielded 800 unique stimuli, and the

afferent response to each was simulated for 40 trials. The model included simulated neural noise.

Additionally, in order to simulate environmental noise such as motor noise during active touch,

we jittered the stimulus location (by ± 0.3 mm), the amplitude of the sinusoidal wave (by ± 0.05

mm), and the ramp amplitude (by ± 0.1 mm) on every trial.
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4.2 Unsupervised spatiotemporal NMF

Information calculations from high dimensional data require prohibitively large datasets. A

common strategy to address this issue is by first performing unsupervised dimensionality

reduction on the data. Here, we used spatiotemporal Non-Negative Matrix Factorization (NMF)

to decompose the spatiotemporal matrix of spiking responses across the population.

Responses were discretized by binning the spike trains into 2-ms intervals and counting the

number of spikes falling into each bin. This resulted in a matrix R ∈ RM × TN , where M is the

total number of trials, T the number of time bins, and N the number of afferents in the

population. NMF decompositions are naturally suited to describe spatiotemporal matrices of

spiking responses, because spike trains are non-negative, and because commonly occurring spike

patterns may be non-orthogonal and partly overlapping, and NMF does not require assumptions

of orthogonality or non-overlap of different activity modules. NMF describes a single trial spike

train as a sum of trial-independent non-negative spatiotemporal modules (describing the most

often recurring spatiotemporal firing patterns) and trial-dependent non-negative activation

coefficients representing the strength of recruitment of each module in the considered

trial [204, 205]:

R = HW + residuals, (29)

where H ∈ RM ×K contains the non-negative activation coefficients for the K modules in each

trial and W ∈ RK × TN contains the non-negative modules. We used the function NMF included

in the scikit-learn Python library [229] to calculate the NMF decomposition.

We performed the NMF decomposition separately for each of the three afferent classes at each

density value considered. Beforehand, we randomly separated the whole set of trials into balanced

sets with a 25/75 split. We used the 25-set to determine the number of modules K as the minimum

number of modules capable of explaining a selected level of variance of the original data in R,

as follows. First, to consistently select the level of variance explained between populations of

the same class but with different densities, we calculated the saturation level of the accounted

variance for each population considered (tolerance <1%). We averaged the saturation levels across

populations of the same class with different densities and used this value as the new threshold for

the explained variance. Finally, we calculated k modules W and activation coefficients H on the
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same 25-set. Given the W modules from the 25-set, we computed the activation coefficients H on

the remaining 75-set. Given the random initialization of the spatiotemporal basis functions with

the NMF decomposition, we computed 50 instantiations of the NMF to account for the variability

of the method.

4.3 Stimulus decoder

After dimensionality reduction, we fed the activation coefficients H computed with the NMF

to a stimulus decoder. We used multinomial logistic regression to decode each stimulus feature

separately on a trial-by-trial basis based on the neural activity (similarly to [209]). The scikit-learn

Python library [229] was used for the implementation. This type of classifier uses a linear function

f(s, i) to predict the probability of outcome s for trial i such that:

f(s, i) = βs ·Hi (30)

where Hi is a vector containing the NMF activation coefficients for trial i and βk stores the

coefficients associated with outcome s. When generalizing to Sn features, the multinomial

logistic regression model consists of Sn − 1 independent logistic regression models regressed

against the remaining Sn outcomes. Note that outcomes correspond to the possible values that

the stimulus features could take and vary for each feature.

The 75-set was divided equally and stratified into training and test sets. We trained the classifier

on the activation coefficients of the training set and evaluated performance using the activation

coefficients of the test set. The training procedure was performed using a stratified 5-fold

cross-validation. This process was repeated for each population of afferents (both for single and

combined classes) and all afferent densities. The solver used for the fitting procedure was lbfgs in

combination with L2 regularization. We selected the parameter C for the regularization by

performing grid search. The scoring of the classifier was the negative log-likelihood, also known

as the cross-entropy loss.

The final fitted model outputs the posterior probability of observing each stimulus feature given the

neural activity captured in the NMF activation coefficients [209]. From this posterior probability,

we decoded the stimulus ŝ that was most likely given the observed afferent activity.
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4.4 Mutual Information

Next, we computed the mutual information [230] from the confusion matrix of the decoder as

follows [184]:

I(S; Ŝ) =
∑
s∈S

∑
ŝ∈Ŝ

p(s, ŝ) log2

(
p(s, ŝ)

p(s)p(ŝ)

)
(31)

where S, Ŝ stand for the set of all possible presented and decoded stimuli, respectively. p(s, ŝ)

denotes joint probability distribution, which is derived from the confusion matrix obtained

empirically across all trials, of presenting stimulus s and decoding stimulus ŝ in a given trial.

p(s) and p(ŝ) correspond to the marginal probabilities of s and ŝ, respectively. The information

in the confusion matrix is a data-robust lower bound to the total information carried by

population activity. This approximation is tight when neural activity can be categorically binned

into as many values as the number of distinct stimuli without losing considerable information.

The information in the confusion matrix captures aspects of information processing, such as the

distribution of decoding errors, which are not captured by simple measures such as the fraction of

correctly decoded stimuli [184]. Since the information upper bound is the entropy of the stimulus

set (indicating perfect single-trial stimulus discrimination), we normalised information values by

dividing them by the entropy of the stimulus set:

H(S) = log2(Sn) (32)

where Sn is the number of values that the stimulus can take.

4.5 Computation of complementary information

To assess the complementarity of stimulus information carried by different classes, we computed

the information carried about each stimulus feature by the joint activity of populations of two or

three afferent classes and compared it to the information carried by a single-class population. We

defined the amount of information carried by the pair of afferent classes that is complementary

to that of a reference class as the difference between the information carried by all the classes

(including the reference class and the additional ones) and the information carried by the reference

class. We repeated this process, taking each class as the reference class in turn. As an example,
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for SA1 afferents as the reference class, the complementary information is computed as:

Icomp(S, SA1) =I(S, {SA1, RA, PC})

−I(S, {RA,PC})
(33)

We defined the redundant information between the additional classes and the reference class as the

sum of the information carried individually by the reference class and the additional ones minus

the information carried by all the classes together, such that (again, taking SA1s as the reference

class):

Ired(S, SA1) =I(S, SA1)

+I(S, {RA,PC})

−I(S, {SA1, RA, PC})

(34)

The sum of redundant (eq. 34) and complementary (eq. 33) information for a class equals the total

information carried by that class.

4.6 Contribution of spatial and temporal structure of neural activity to population

coding

We assessed the contribution of fine temporal and spatial resolution within the spiking activity

to information coding by destroying the temporal and spatial structures in the data. To destroy

the spatial structure, we randomly permuted the order of afferents in the spiking matrix R. Then,

keeping the non-negative modules W obtained with the NMF decomposition on the original, non-

shuffled data, we computed the activation coefficients on the spatial-shuffled data. We finally

used these activation coefficients to feed the classifier previously trained on the original activation

coefficients. To destroy the temporal structure in the data, we randomly shifted the spikes with

a uniform distribution of ±2, ±5, and ±10 ms. Then, as for the spatial case, we obtained the

activation coefficients on the time-shuffled data and used those to feed the classifier trained on

the original data and estimate the residual information content after disrupting the data temporal

structure.
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Control analysis using spatial NMF and supervised decoding of temporal structure

To test the robustness of the analysis pipeline with respect to the choice of low-dimensional

representation, we calculated information values from an alternative NMF decomposition of the

data. We first computed the spike count over the whole trial, Rcount. We then applied the NMF

decomposition on Rcount to find spatial modules Wspace capturing which afferents are firing

together, such that:

Rcount = HcountWspace + residuals. (35)

The tolerance criterion for selecting the number of modules M was the same as described above

for the spatiotemporal NMF.

We computed a single set of spatial modules using the population activity pooled over all time

bins. We then calculated a different activation coefficient Ht for each spatial module and time bin

producing in total a number of activation coefficients per trial equal to the product of the number

of modules M times the number of time bins T , a larger number than the activation coefficients

per trial of the spatiotemporal NMF decomposition described above (which only produced M

activation coefficients per trial).

For the supervised decoding of the activation coefficients in each trial, we used the same GLM

decoder described above.
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Supporting information
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Fig. 21: Illustrative examples of simulated spiking activity. Responses are shown for the three afferent classes as a
function of (A) stimulus size, (B) frequency, (C) ramp length, and (D) ramp amplitude. Note that we conditioned on
the remaining features for each panel and that the afferent densities in this example are the ones in the finger.
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Fig. 22: Robustness of findings using a spatial NMF decomposition of neural responses. Responses are shown for
the three afferent classes as a function of (A) stimulus size, (B) frequency, (C) ramp length, and (D) ramp amplitude.
Note that we conditioned on the remaining features for each panel and that the afferent densities in this example are the
ones in the finger.
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Conclusion

1 Impact

In this thesis, we have explored the neuroscience of touch in the context of its application to

robotics and prosthetics. Our studies aimed to shed light on the mechanisms underlying tactile

perception and how these can be leveraged to develop more sophisticated and effective devices

that can mimic or enhance human touch.

We have shown that touch is a complex sensory modality that involves a variety of neural

structures and processes, from the peripheral nerves in the skin to the somatosensory cortex in the

brain. We have discussed the role of different types of mechanoreceptors in encoding different

features of tactile stimuli, such as texture, pressure, and vibration, and possible mechanisms

showing advantages in therms of the integration and processing of such information carried out

by the brain to give rise to our subjective experience of touch.

We have also examined some of the challenges and opportunities associated with developing

neuromorphic touch-sensitive robotics and prosthetics. We have highlighted the importance of

designing devices that can mimic the complexity and flexibility of human touch, while also being

robust, reliable, and easy to use. We have discussed some of the strategies that have been

proposed to achieve this, including the use heterogeneous populations of sensors providing

complementary but also redundant information about the surroundings.

Overall, this thesis has shown that the neuroscience of touch holds great promise for the

development of innovative and transformative technologies that can improve the lives of many

people. By better understanding the mechanisms of touch perception and using this knowledge to
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inform the design of touch-sensitive devices, we can create new opportunities for individuals with

disabilities, as well as for a wide range of applications in industry (exoskeletons and orthoses),

healthcare (surgery robots), and entertainment (haptics for virtual reality).

2 Future work

There is still much work to be done in this field, and many unanswered questions remain. However,

the research presented in this thesis represents an important step towards a better understanding

of the neuroscience of touch and its application to robotics and prosthetics. It is our hope that this

work will inspire further research and innovation in this exciting and rapidly evolving field.

Future investigations can address a wide range of topics following up this thesis. First, from a

pure neuroscientific point of view, the fundamental knowledge about tactile encoding is far from

being complete. Understanding whether the somatosensory cortex applies any of the principles

suggested in this thesis might be the next step towards a better understanding of touch. Second,

addressing a question more related to the applicability and transfer of knowledge about touch

to robotics and prosthetics, investigations should be focused in conveying whether the strategies

suggested in this thesis can be replicated using artificial sensors mimicking the mechanoreceptors

biological properties, in terms of responses and dynamics.
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