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Chapter 1

Introduction

1.1 Molecular modeling and molecular dynamics

In recent years, the development of synthetic objects designed to interact with bio-
logical molecules or possess bio-inspired properties has become increasingly common
in biomedicine and materials science. For instance, functionalized nanoparticles
(NPs) of nanometric size can find applications in many biological systems as they can
directly interact with them [1],[2], [3]. At the same time, supramolecular polymers
can be designed to mimic the stimuli-responsiveness and self-repairing properties
of biological materials [4]. In both cases, a profound understanding of the physical
processes involved requires investigating the interaction between the system com-
ponents at high spatial and temporal resolutions, which is usually challenging. For
example, elucidating the behavior of an NP at the interface with a lipid membrane is
experimentally prohibitive [5]. The same argument applies to the case of supramolec-
ular polymers (SPs) [6]. The latter are one-dimensional aggregates with fascinating
intrinsic dynamics almost inaccessible through experiments. Even if experiments can
provide powerful insights, they struggle to reach the resolution needed to highlight
the mechanisms involved in the self-assembly of complex materials or the phenomena
happening at biological interfaces.

In this regard, computational approaches, especially those based on molecular
dynamics (MD) simulations, offer a wide range of opportunities. Classical MD
simulations are appropriate when electronic degrees of freedom can be ignored.
They can access processes occurring on time and length scales of microseconds
and tens of nanometers respectively, while maintaining single-atom resolution. In
this way, one can observe the molecular mechanisms of interactions and follow the
dynamics of the systems as if he is near the action. However, the reliability of every
computational result depends on the quality of the model. Indeed, computational
approaches based on MD simulations must utilize suitable molecular models with
an appropriate description of their interactions to generate meaningful simulations
[7]. In MD simulations, the ensemble of functional forms and parameters describing
the intramolecular and intermolecular interactions is called a force field (FF). The
FF parameterization heavily impacts the simulation outcome’s reliability. The FF
functional forms and parameters, together with the topologies of the molecules, are
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usually selected to reproduce specific structural and thermodynamic features of the
system. However, the main challenge is to find the best compromise between the
model’s precision and the simulation’s computational efficiency.

Force fields used in classical MD simulations can be divided into two main groups:
fully atomistic and coarse-grained (CG) [8]. In a fully atomistic FF, atoms are the
basic interacting units, providing a high level of detail. However, one must consider
that the system’s time evolution is computed based on interactions between all atoms.
As the size of the system increases beyond a few nanometers, and the processes of
interest occur on the microsecond timescale, atomistic models become computationally
demanding, and the computing power required could become unattainable. For
example, increasing the size of an atomistic bilayer membrane from 30 nm to 300
nm would require a million times more computing work to equilibrate the system
[9]. Coarse-grained models aim to overcome this problem by simplifying the system
description. This result is achieved by grouping several atoms, typically belonging to
well-defined chemical groups, into single interaction centers called beads. Despite
the unavoidable loss of precision, CG models offer significantly higher efficiency,
providing access to larger spatio-temporal scales and, thus, to processes that are
impossible to study with fully atomistic models.

1.1.1 The power of CG models

In recent decades, CG models have gained tremendous popularity in the scientific
community, becoming essential tools for biomolecular and nanotechnological research.
This popularity is due to their ability to overcome the spatio-temporal limitations of
all-atom models discussed above [10], [11]. Compared to fully atomistic models, CG
models can be orders of magnitude faster. It is important to note that the speedup
achievable depends strongly on the specific CG mapping procedure of the system
and the parameterization of the particular CG FF adopted. However, a few general
factors contribute to this speedup, the most immediate of which is the reduction of
degrees of freedom (DOFs). Reducing the number of particles by a factor of n (easily
around 10) leads to fewer forces to compute, resulting in simulations that are faster
by a factor of n2 (and thus quickly two orders of magnitude). The reduction factor n
can become much more prominent in the case of implicit solvent models. Reducing
DOFs also reduces friction and smooths the potential energy surface, allowing the
system to explore more phase space in the same amount of time. Furthermore, the
smoother energy surface allows for larger time steps. With CG FF, it is common to
use time steps of tens of femtoseconds compared to 1-4 femtoseconds in all-atom MD
simulations. Another factor contributing to the CG speedup is that most CG models
account only for short-range interactions (typically with a cutoff distance of around
1 nm), avoiding the use of expensive techniques to include long-range electrostatic
interactions.

All that glitters is not gold, i.e., CG models also have limitations and subtleties.
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The interpretation of the simulation time in terms of physical time when using a
CG model could be tricky and requires careful comparison with experimental data
or full-atomistic simulations. Another common issue is the need for transferability,
known as the representability problem [12]. There are different CG FF tuned on the
system in hand or even on the mechanisms of interest, which are difficult to use in
different contexts. The challenge is improving compatibility and developing models
suitable for more than just a single class of molecules.

The Martini CG FF was created considering this need for transferability and
became one of the most popular CG models used in biophysical and material science
simulations [13]. The original idea was an extendable CG model based on modular
building blocks (beads) which retain chemical specificity and whose interactions are
mainly based on the hydrophobicity of the chemical group represented by each bead.
At first, the Martini FF was built for lipids and later extended to model a vast class
of biological and synthetic molecules, including proteins, polymers, supramolecular
polymers, and many others [14], [15], [16]. The Martini FF was a perfect choice for
this thesis, representing the best compromise between accuracy and efficiency for our
case studies.

1.2 Case studies

In the present work, we exploit the Martini FF to investigate two molecular systems
characterized by processes that are too long and complex to be studied with atomistic
models. On one hand, the intrinsic dynamics of a one-dimensional self-assembled
supramolecular polymer; on the other hand, the effects of the interaction between
functionalized NPs and multi-component lipid membranes. The following paragraphs
provide a general description of these two systems and the open questions we tackled.

1.2.1 Supramolecular polymers

Synthetic SPs research has become more and more fascinating during the last decade.
SPs are one-dimensional assemblies of basic units, i.e., monomers, that can possess
bio-inspired properties such as environmental adaptivity, stimuli-responsiveness, and
self-healing abilities. These extremely captivating features come from supramolecular
fibers continuously exchanging monomers with the solution and with other fibers
[17], [18]. Indeed, unlike in polymers, in SPs, monomers connect via non-covalent
interactions, and thus their bonds are reversible. The challenge here is to rationally
design monomers to control the properties of the resulting self-assembled material.
This task requires a profound understanding of the mechanisms underlying the
self-assembly and the dynamics of the SP [19].

To experimentally look at these structures at submolecular resolution is particularly
difficult; a diffuse technique is the cryo-TEM that freezes the self-assembled structures
giving high-resolution images but compromising the understanding of the system
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dynamics (Figure 1.1). Trying to capture the exchange of monomers between the
fibers and the solution is even more arduous. A handy tool for this purpose is
represented by molecular modeling and computer simulations, working together as a
virtual microscope. Two main approaches have been adopted to study supramolecular
polymers with MD simulations: the top-down approach and the bottom-up approach.

Figure 1.1: Experimental images of BTA supramolecular fibers. On the left the
image obtained by cryo-TEM with a 100 nm scale bar (copyright 2013
The Royal society of chemistry) [20]. On the right, a sTORM image
with a 1 µm scale bar (copyright 2014 The American Association for the
Advancement of science) [21].

The top-down approach consists in building a pre-stacked assembly and then
relaxing it through a MD simulation. This technique is appropriate when a reasonable
initial configuration has already been suggested by experiments or by high-level
simulations or when the assembling time would be too long to simulate. Top-
down approaches illuminated the study of BTA (Benzene 1,3,5-TricarboxAmide)
supramolecular polymers in water [22]. Experimentalists usually represented them
by perfectly stacked and ordered monomers until AA-MD simulations showed a
more complex and vibrant structure, while confirming the importance of hydrogen
bonding [23]. Even if top-down approaches allowed the study of complex SPs at high
resolution, they had several limitations. Indeed, it is known that complex molecular
systems can remain trapped in meta-stable states and never sample the equilibrium
states. In these cases, enhanced sampling techniques become fundamental, but the
complexity of supramolecular systems modeled at the atomistic level makes their use
challenging.

The bottom-up approach consists of starting from monomers randomly distributed
in a simulation box to follow them while they undergo self-assembling into supramolec-
ular fibers (Figure 1.2). Depending on the monomer complexity, all-atom simulations
with this bottom-up approach can be extraordinarily demanding or even wholly
unfeasible. In order to overcome this problem, CG models, combined with biased
approaches, represent a possible solution. A biased approach made it possible to
observe the BTA monomers forming ordered stacks in organic solvent (nonane).
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Salvalaglio et al. studied the crystallization of urea both in water and in the presence
of additives [24]. However, when the structure of monomers is more complex/flexible,
the self-assembly process becomes too slow for the AA-MD simulation accessible
timescales. In this case, a coarse-grained model for the monomer description becomes
mandatory [25].

Figure 1.2: a) cartoon of a supramolecular polymer: fibers formed through non-
covalent interactions. b) concept representation of the dynamical equilib-
rium between a supramolecular fibre and the monomers in its surrounding
environment (solution).

During the last few years, the popular Martini CG FF has also been used for
treating synthetic polymers and BTA supramolecular polymers. The CG model for
BTA was opportunely refined to reproduce all the system key features: the strength
of monomer-monomer interactions, the behavior of monomers in solution and the
dependence of the order in the final structure from fine monomer details. The model
provided equilibrium configurations for BTA fibers following both top-down and
bottom-up simulations. The finely tuned CG BTA model allowed a direct study of
BTA polymerization in water and revealed the presence of defects in the stacking
[26]. Such defects are fundamental for the BTA fiber dynamics, and their role is the
subject of Chapter 3, in which I present my original results about these systems. In
this work, we combine coarse-grained modeling, enhanced sampling, and machine
learning to investigate the key factors controlling the monomer exchange pathways
in BTA supramolecular polymers. We demonstrate how the interactions between the
monomers control the creation/annihilation of defects in the supramolecular fibers,
determining the specific exchange pathway. The general nature of our CG models
suggest a general approach to manage the key factors that control the dynamic
behavior of such complex systems.

1.2.2 Nanoparticle-lipid membrane interaction

Ligand-protected gold nanoparticles (AuNPs) are extensively studied for their po-
tential application in nanomedicine, e.g., drug/gene delivery and imaging [27], [28],
[29]. In order to understand how NPs impact biological systems, it is fundamental
to clarify the driving forces regulating the interaction between NPs and biologically
relevant interfaces, specifically cell membranes (Figure 1.3) [30], [31].
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Figure 1.3: Cartoon of a ligand-protected NP penetrating a model lipid membrane.
The color scheme is: Au core in yellow, hydrophobic ligands in blue
with charged beads in red. DFPC in pink (headgroup) and green (tails),
DPPC in purple (headgroup) and orange (tails). Cholesterol in silver
[32].

Cell membranes are incredibly complex systems containing many lipid types and
transmembrane proteins. In this framework, the challenge is to overcome the intrin-
sically multiscale nature of the biological environment and the lack of experimental
data with sufficient resolution. Indeed, experiments probing the interaction of NPs
with biological membranes or model membranes struggle to answer several questions
concerning the effect of NP shape, size, surface charge, ligands arrangement, and
toxicity [33], [34], [35]. One of the most investigated AuNPs type is the amphiphilic
thiol-protected one. In the last decade, the AuNPs functionalized with 11-mercapto-1-
undecanesulfonate (MUS) and 1-octanethiol (OT) (hereafter called MUS:OT AuNPs)
give precious insights on the mechanism of the penetration into lipid bilayers, in fact
they allow spontaneous and non-disruptive absorption into the cell, as well as the
possibility of direct drug delivery [36], [37].

Over the last years, MD simulations have clarified many aspects of the NP-
membrane interaction mechanism, mostly for single-phase model lipid membranes, i.e.,
bilayers containing a single or a maximum of two lipid types [38]. The combination of
full-atomistic and CG MD simulations elucidates the way MUS:OT AuNPs passively
translocate into lipid membrane: a multi-step process with at least three metastable
states [39]. The first step is the so called adsorbed state when NP adsorbs on the
top of the bilayer surface; this condition, as CG simulations predicted, is reversible.
The protrusion of a lipid tail to the polar head region of the bilayer starts the
second configurational change that is called hydrophobic contact state. After the
first hydrophobic contact, the NP manages to shift the center of mass towards
the membrane core, rearranging its ligands. The third state of the process, called
snorkeling state is reached when a MUS ligand attaches to the lipid headgroups of
the opposite leaflet of the bilayer. One after the other, MUS ligands bind to the
opposite leaflet until the NP center of mass reaches the center of the membrane.

Simulations are based on simplified membrane models, such as bilayers containing
a single or a maximum of two lipid types [38].
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Figure 1.4: Example of phase-separated lipid bilayer [40]. Saturated lipids in blue,
unsaturated lipids in red and cholesterol yellow.

The key ingredient for more realistic membrane models is definitely lipid hetero-
geneity. Real membranes present transient and dynamic nanocompartments called
lipid rafts [41]. Lipid rafts are liquid-ordered (Lo) phase nanodomains, typically
enriched in cholesterol and saturated lipid species like sphingolipids and gangliosides,
embedded in a liquid-disordered phase (Ld) mainly consisting of unsaturated lipids
(Figure 1.4). In other words, rafts are phase-separated functional platforms on the cell
membrane. There are pieces of evidence that they are involved in signaling and traf-
ficking cellular processes [42]. Both the small size and short lifetime of these domains
make direct measurements tremendously difficult. Thanks to CG MD simulations, it
was possible to investigate spatio-temporal scales involved while preserving molecular
details [43]. For a deeper understanding of AuNPs bioactive role, it is meaningful to
investigate their interaction with lipid rafts. Simulation of functionalized AuNPs,
which are able to passively penetrate through the membrane, interacting with lipid
rafts, can reveal insights that are not accessible with experiments, and this field is
still at its beginning.

Chapter 4 presents my actual results on this subject, which concerns the interaction
between MUS:OT NPs and model neuronal membranes undergoing phase separation.
Atomic force microscopy, quartz crystal microbalance, and molecular dynamics
are combined to study the interaction between model neuronal membranes, which
spontaneously form lateral phase-separation, and MUS:OT AuNPs. The MUS:OT
AuNPs and the membrane molecular models have a coarse-grain resolution compatible
with the Martini FF. We found that the NPs interact with the bilayer and form
bilayer-embedded ordered aggregates. Another interesting result is that nanoparticles
suppress lipid domains, depending on NPs concentration. Finally, through a simple
thermodynamic model, we show that the principal driving force for the suppression
of phase-separation is the lipid–lipid enthalpy variation.
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Chapter 2

Computational methods

2.1 Molecular Dynamics: an overview

To have access to the time and space scales involved in the systems under study, we
used Molecular Dynamics (MD) simulations. The matter behaviour at a microscopic
level can be understand through classical mechanics; relativistic effects in these
systems are not appreciable and quantistic effects can be ignored or, alternatively,
included in the equations as semi-classical correction. We made an acceptable error
in using classical mechanics equations, if the characteristic energy of the system is big
enough to ignore vibrational levels discrete nature. In particular, in bio-molecular
systems this condition is always true as the atoms are sufficiently massive. Generally,
the matter dynamics can be described as the dynamics of its fundamental components,
thus when we study a system via MD we are basically treating an n-bodies problem
by numerically solving Newton equations of motion. Clearly, computing power is
necessary to describe systems of up to hundreds of thousands particles. The MD
basic idea is to reproduce the time evolution of studied objects and their interactions,
as well as the underlying mechanisms. From a more technical point of view, MD is
the combination of the equations of motion integrator and all the algorithms needed
to elaborate the system evolution in specific thermodynamic condition. Statistical
mechanics, through partition function, constitutes the theoretical basis for studying
thermodynamic quantities as temperature, pressure and so on.

In this chapter, the theoretical basis of MD and some of the more advanced
sampling techniques used in our research will be described - i.e. umbrella sampling
and metadynamics.

2.1.1 Fundamentals of classical mechanics

In the classical MD description, atoms are considered point-like objects and they
interact with each other via an effective potential. The potential energy function
(PEF) is defined as U(−→r1 , ..., −→rN ). From Newton equation, we can say that the force
experienced by each atom is

−→
Fi = − ∂U

∂−→ri
(2.1)
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where −→Fi is given by:

−→
Fi = mi

−→rï (2.2)

Eq. 2.1 is a system of 3N second-order differential equations or, equivalently, 6N
first order differential equations: ⎧⎨⎩mi

d−→vi
dt = −→

Fi

d−→ri
dt = −→vi

(2.3)

This is a Cauchy problem - when the system is combined with 2N initial conditions
−→ri (0) = −→r0i and −→vi (0) = −→v0i - with the trajectory (−→ri (t), −→vi (t)). If we write Eq. 2.2
in terms of the momenta −→pi = mi

−→ri̇ we obtain:

d−→pi

dt = −→
Fi, (2.4)

thus we can define the space phase vector at some instant t as the following set
of 6N numbers −→x = (−→r1 , ..., −→rN , −→p1, ..., −→pN ) and solving Eq. 2.4 generates the set of
functions

(−→r1(t), ..., −→rN (t), −→p1(t), ..., −→pN (t)), (2.5)

which describes a trajectory in the phase space.

2.1.2 Fundamentals of statistical mechanics

Classical mechanics provides all the information about the microscopic view of
the system, now we are interested to its thermodynamic properties i.e. internal
energy, temperature, pressure and so on. The problem of extrapolating macroscopic
observable from the complete sets of positions and velocities of all particles has been
solved as part of statistical mechanics by Boltzmann and Gibbs. Statistical mechanics
constitutes a direct connection between the microscopic and the macroscopic worlds,
giving a rigorous derivation of a system thermodynamic properties given only the
microscopic information. The basic idea of the statistical mechanics is that a
macroscopic observable of a system does not strongly depend on the complete dynamics
of each particle in the system, but rather on an average that cancels out all the details
of the microscopic features. Thus, when iterating an experiment, we will find that for
a specific macroscopic state of a system there exists different microscopic states that
yield to the same macroscopic properties. This basically lead us to the definition of a
statistical ensemble: a collection of systems subject to a set of common interactions
and sharing the same macroscopic properties. Each N-particle system can be described
by its microstate −→x - a point in the phase space - and the total ensemble is a set of
points in the phase space with the constraint to be part of the ensemble. The time
evolution of the ensemble is described by the evolution of these phase space points
according to the classical mechanics. The macroscopic observables can be obtained
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simply averaging over all the system of the ensemble thus, at every time, we need to
know the ensemble distribution function ρ̃ = ρ̃(−→x , t) which tell us the microstates of
the phase space that are part of the ensemble.

Let’s consider the infinitesimal phase space volume dx = dr1...dr3Ndp1...dp3N, then

1
N ρ̃(−→x , t)dx = ρ(−→x , t)dx (2.6)

where ρ(−→x , t) is the probability to find a system of the ensemble in the microstate
−→x at a instant t and N is the total number of microstates in the ensemble.

Clearly, from the probability theory, must be∫︂
Ω

ρ(−→x , t)dx = 1 (2.7)

with ρ(−→x , t) ≥ 0.
Given the most convenient ensemble distribution function, the ensemble average

of an observable A = A(−→x ), a time t, is

⟨A⟩(t) =
∫︂

Ω
A(−→x )ρ(−→x , t)dx. (2.8)

If the ensemble is in thermodynamic equilibrium, the equilibrium observable A
must be time-independent and can be expressed as

⟨A⟩ = 1
Z

∫︂
Ω

A(−→x , t)f(H (−→x ))dx (2.9)

where f(H (−→x )) is a scalar function of the Hamiltonian H and Z is the partition
function defined below

Z =
∫︂

Ω
f(H (−→x ))dx. (2.10)

The thermodynamic constant in time observables for an ensemble in thermodynamic
equilibrium are called control variables and they must be specified in order to calculate
the partition function Z . An ensemble is characterized by its control variables, below
some of the main ensembles used in statistical mechanics with their control variables
are listed

• microcanonical ensemble: constant NVE

• canonical ensemble: constant NVT

• isothermal-isobaric ensemble: constant NpT

• grand-canonical ensemble: constant µpT .

In order to complete this brief overview of statistical mechanics, we need a link
between statistical averages and data from experiments. When preparing an experi-
ment, we have only one system in a specific macroscopic state. The measurement of
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a macroscopic observable A requires long times respect to microscopic time scales.
A is a function of time and phase space vector and it fluctuates over time due to
particles interaction, thus when we measure it we take an average over time.

In principle, we could obtain the observable A "real" mean value by averaging on
infinite time:

Ā = lim
τ→+∞

∫︂ τ

τ0
A(−→xt)dt (2.11)

The connection between time averages and ensemble is provided by the ergodic
hypothesis: a system is ergodic if the microstates of the phase space with the same
energy are accessible with the same probability over a long time. If a system is
ergodic, thus the ergodic theorem says that time averages and ensemble averages are
almost equal everywhere in the phase space:

Ā = lim
τ→+∞

1
τ

∫︂ τ

τ0
A(−→x (t))dt =

∫︂
Ω

A(−→x )ρ(x, t)dx = ⟨A⟩(t). (2.12)

2.2 Molecular Dynamics algorithms

We can say that MD simulations have changed the way to use computers in science.
Computers are no longer just a means to make calculations which are too onerous for
men, but it becomes a full-fledged virtual laboratory where to conduct experiments.
Classical Molecular Dynamics (MD) is a set of computational techniques for numerical
resolution of Newton’s second law and, consequently, for the trajectories (time
sequential configurations) of the elementary components of the system under study.
The advantage in using MD, compared to a real experiment, is that the system initial
conditions can be easily set and the key parameters are relatively few being the
system simplified. Furthermore, the experiment reproducibility is easily obtained as
well as it is free from interferences of real laboratories. Obviously, the disadvantages
are related to the accessible time scales and numerical accuracy which are strictly
dependent on the available computational power. In addition, it is crucial to verify
the reliability of the results obtained via MD simulations by testing the quality of
the models used to reconstruct the potential energy function (PEF).

As we mentioned before, once given the initial configuration (potential, positions,
velocities), the problem is to numerically solve the equations of motion. So, in the
next paragraphs we will describe how this can be done. The first step consists in
dividing the integration time in little steps δt - the MD time steps - in which forces
are considered constant. Forces and so the accelerations are computed starting from
an initial phase space vector −→x (0) through the PEF. Using the integration algorithm
- which combines the accelerations with initial positions and velocities - we obtain a
new phase space vector −→x (t) and thus a new set of forces. This procedure is repeated
every time step until the end of the simulation time.

Generally, we are interested in time averages and these can be obtained from 2.12,
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rewritten by discretizing time:

Ā = 1
N

N∑︂
n=1

a(−→x (n∆t)) (2.13)

where ∆t = iδt i = 1,2,... and N∆t is the total time of average.
In this work, the versatile package GROMACS has been used to perform molecular

dynamics simulation. GROMACS was first designed for biochemical systems like
lipids, nucleic acids and proteins. These systems have hundreds to millions of particles
and present many of bonded as well as non bonded interaction to calculate. In the last
decades, GROMACS has been chosen for research in various systems like standard
and supramolecular polymers, molecular machines and so on ([44], [45]).

2.2.1 Configuration setup

As mentioned before, the system setup consists in the assignment of 6N initial
conditions for the positions and the velocities - that is the initial −→x (0) phase space
vector of the particles. Generally, we extract randomly the initial velocities from the
Maxwell-Boltzmann distribution function at the equilibrium temperature:

ρ(vx, vy, vz)dvxdvydvz =
(︃ m

2πkBT

)︃ 3
2

e−
(︄

m−→v 2

2kBT

)︄
dvxdvydvz. (2.14)

Since the set of the extracted velocities −→v ∗
i are not completely symmetric, the

initial momentum of the centre of mass (COM) of the system −→
P 0 =

∑︁
i mi

−→v ∗
i will be

not zero. In order to avoid a constant drift of the system and to preserve the correct
kinetic energy, this can be removed by rescaling velocities −→v ∗

i to have −→
P0 = 0. COM

motion removal is necessary because, in general, the total force acting on the system
−→
F =

∑︁N
i

−→
F i is zero; of course this action reduces the system degrees of freedom

(DOF) by three.

2.2.2 Periodic boundary conditions

In an MD simulation, we want to introduce a well defined reference system of
coordinates. Thus, every sample system evolves in a simulation box whose shape can
be chosen according to the specific symmetry of the simulated system. Using the
simulation box requires a correct treatment of the boundary conditions. In fact, we
want to avoid surface effects. Furthermore, by imposing periodic boundary condition
(PBC) we have the possibility to study bulk features of a system without simulating
a too large number of particles.

In Figure 2.1 a two-dimensional box with PBC is represented: only the central red
contoured box is the simulation box. The PBC idea is to replicate that box in every
direction so that there are no surface effects nor walls in the simulation box.

When a particle moves in the central box, all its images virtually move the same
way in the copies of the box;if a particle leaves the virtual boundary of the central
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Figure 2.1: Cartoon showing a two-dimensional box with PBC. The red contoured
box in the centre is the simulation box and it is replicated along each
dimension.

box from one side, it will appear from the other side and the number density of
particles in the simulation box remains constant. In a cubic box, for example, if a
particle crosses its boundary in the positive/negative x direction, then its coordinate
is corrected by subtracting/adding the box side length parallel to x direction. It
must be taken into account that imposing PBC to a system may affect its properties.
Obviously, we are not able to explore vibrating models with a wavelength greater than
the box length. Another issue is the interaction range between particles: we want
to be sure that the smallest simulation box is greater than interaction range. This
condition is achieved quite easily with short range interactions i.e. the Lennard-Jones
potential, but can be more problematic with long range interactions as electrostatic
ones.

2.2.3 Integrators

Numerical integrators are algorithms that solves Newton’s equation of motion. Liou-
ville theorem says that a system in which energy is conserved shows time reversal
invariance and conservation of the volume in the phase space. Thus, an algorithm
for MD should have these features. Problems may come from discretization of time,
which could introduce fluctuations or drifts in the total energy. In the following
paragraphs, the main algorithms to solve equation of motion are shown with a focus
on the default GROMACS integrator [44].
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2.2.4 Euler algorithm

The simplest way to integrate Newton’s equations of motion is the Euler algorithm
that approximates the derivatives with finite differences:

d−→vi

dt ≈ ∆−→vi

∆t = 1
mi

−→
Fi (2.15)

d−→ri

dt ≈ ∆−→ri

∆t = −→vi . (2.16)

The first-order Taylor expansion of positions and velocities gives

−→ri (t + ∆t) = −→ri (t) + d−→ri

dt ∆t + o(∆t2) (2.17)

−→vi (t + ∆t) = −→vi + d−→vi

dt ∆t + o(∆t2). (2.18)

Now, we can substitute the finite derivatives expressions obtaining:

−→ri (t + ∆t) = −→ri (t) + −→vi (t)∆t (2.19)

−→vi (t + ∆t) = −→vi (t) +
−→
Fi

mi
∆t. (2.20)

In Euler algorithm, positions and velocities are coupled to each other but t + ∆t
and t − ∆t systems are independent.

Euler algorithm has been abandoned because it does not conserve the volume in
the phase space, in other words, it is not symplectic.

2.2.5 Verlet algorithm

The Verlet algorithm is a symplectic integrator and it conserves energy.
It requires the positions and the forces at a time t and the positions a time t − ∆t

to calculate positions at a time t + ∆t:

−→ri (t − ∆t) = −→ri (t) − d−→ri

dt ∆t + 1
2

d2−→ri

dt2 ∆t2 + o(∆t3) (2.21)

−→ri (t + ∆t) = −→ri (t) + d−→ri

dt ∆t + 1
2

d2−→ri

dt2 ∆t2 + o(∆t3) (2.22)

By adding the two equations together we get:

−→ri (t + ∆t) + −→ri (t − ∆t) = 2−→ri (t) + d2−→ri

dt2 ∆t2, (2.23)
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in which the second derivative can be substituted by Newton equation 2.2 obtaining:

−→ri (t + ∆t) = 2−→ri (t) − −→ri (t − ∆t) +
−→
F (−→ri (t))

mi
∆t2 (2.24)

Equation Eq. 2.24 contains third order time steps terms with o(∆t4) error thus,
we expect Verlet algorithm to be more efficient than Euler one.

The velocities do not appear in the equation above but they can be obtained by
taking the difference between equations Eq. 2.21 and Eq. 2.22:

−→vi (t) ≃
−→ri (t + ∆t) − −→ri (t − ∆t)

2∆t (2.25)

Velocities at time t are an output of the calculation and not part of the integrator
itself. Another disadvantage is that Verlet is not a self-starting integrator because
the algorithm requires positions at time t − ∆t,so at t=0 we need some tricks
to calculate the past positions as truncating at the first order equation Eq. 2.22:
−→ri (−∆t) ≃ −→ri (0) − −→vi (0)∆t.

2.2.6 Leapfrog algorithm

The Leapfrog algorithm is a variant of the Verlet one and it is the default MD
integrator used in this work. It computes the positions at time t and the velocities
at time t + ∆t

2 from the forces at time t and the velocities at time t − ∆t
2 . In other

words, velocities are not calculated at every ∆t, but they are updated at intermediate
times:

⎧⎨⎩
−→ri (t + ∆t) = −→ri (t) + −→vi (t − ∆t

2 )∆t
−→vi (t + ∆t

2 ) = −→vi (t − ∆t
2 ) +

−→
F (−→ri (t))

mi
∆t

(2.26)

Even if it seems Leapfrog algorithm has a first order approximation we can easily
demonstrate its equivalence with the Verlet one. We can substitute velocities from
the second equation of the system Eq. 2.26 into the first one obtaining:

−→ri (t + ∆t) = −→ri (t) + −→vi (t + ∆t
2 )∆t −

−→
F (−→ri (t))

mi
∆t2, (2.27)

which is a second order equation in ∆t. Now, by rewriting Eq. 2.26 for ri and
subtracting the two equations, we get:

−→ri (t + ∆t) − −→ri (t) = −→ri (t) − −→ri (t + ∆t) + [−→vi (t + ∆t
2 ) + −→vi (t − ∆t

2 )]∆t. (2.28)

Replacing the term in the square brackets according to Eq. 2.26 we reach the
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following expression

−→ri (t + ∆t) = 2−→ri (t) − −→ri (t − ∆t) +
−→
F (ri(t))

mi
∆t2 (2.29)

which is exactly Eq. 2.24. Instead, velocities at time t - which are necessary for
energy computation - can be obtained by −→vi (t + ∆t

2 ) and −→vi (t − ∆t
2 ) as follow:

−→vi (t + ∆t) = −→vi (t) +
(︃−→

F (−→ri (t)) + −→
F (−→ri (t + ∆t))

2mi

)︃
∆t. (2.30)

The main advantage with respect to the Verlet algorithm is that Leapfrog integrator
is self-starting,so it does not require the positions at time t − ∆t. Furthermore,
velocities are part of the algorithm itself. The disadvantage, here, is that positions
and velocities at time t are not syncronized; velocities at time t are necessary for
the calculation of the kinetic energy contribution to the total energy and can be
computed as follow:

−→vi (t) ≃
−→vi (t + ∆t

2 ) + −→vi (t − ∆t
2 )

2 . (2.31)

2.2.7 Neighbor list

In order to solve the classical equations of motion, the forces calculation requires
most of the computational time; at each step all mutual distances between atoms
are calculated in a double loop. The computational cost scales as N(N−1)

2 ≈ N2 each
step, thus for each n-body interaction forces calculation scales with ≈ Nn. A useful
approximation to reduce this computational cost consists in a neighbour list. It is
possible to consider, for each particle, a list of its neighbour particles that lie within a
sphere of radius rc. Thus, the interactions are computed between the selected particle
and the neighbours in its pair-list. This list can be updated every N steps, where N
has been chosen in such a way that particle neighbours do not change in that time
interval. An over or under-estimation of the inter-particle energy contribution could
be caused by particles crossing the pair-list during the non-updating time.

As suggested by Verlet, we can consider a buffered pair-list or a cut-off Verlet
scheme in which the pair list is built considering those particles that are close to the
selected one by a distance of rl > rc, called radius list. A schematic representation
of the buffered pair-list is shown in Figure 2.2; the pair-list is updated every N
time step, as before, but every time step the pairwise contribution is computed only
between those particles that lie within a sphere of radius rc. The parameters of these
approximations need to be chosen wisely, in order to speed up the calculation, but
not to affect the conservation of total energy.
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Figure 2.2: Cartoon of the buffered pair-list respect to the central particle. All green
particles are included in the interaction calculation, being below the
cut-off radius rc. All orange particles are in the pair–list: at every step it
checked if their distances became smaller then rc. Red particles outside
the pair-list are not in the calculation until the next list update.

2.2.8 Thermostat algorithms

When simulating NVT or NpT ensemble, we need to keep constant temperature
by using thermostat algorithms. Some of these algorithms introduce more degrees
of freedom (DOF) in the system to mimic a real temperature bath coupling (Nosé-
Hoover), others act directly on particle velocities (Anderson, Berendsen, Bussi) like
the one used in both the works presented herein. Bussi et al. ([46]) suggest a velocity
rescale algorithm in which the velocities of all particles are scaled by the same factor.
If we considered the average kinetic energy

⟨K⟩ = 3
2 NkBT, (2.32)

by replacing 3N with the total DOF of the system Nf , we obtained the following
expression

⟨K⟩ = 1
2 NfkBT, (2.33)

with T being the target temperature. The scaling factor is then defined as

αT =

√︄
⟨K⟩
K (2.34)

where K is the total kinetic energy of the system.
This very simple algorithm is often called weak coupling thermostat and the scaling
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operation is usually performed at a fixed rate during the simulation or when the
kinetic energy exceeds a fixed interval centered on a target value. This algorithm
cannot be safely used when the observables are dependent on the fluctuations rather
than on the averages or with small systems. Furthermore, the sample ensemble is
not explicit so, in order to have the correct canonical sampling, Bussi et al. ([46])
propose a new scaling factor that is:

αT =

√︄
⟨KT⟩

K (2.35)

where KT is obtained by a stochastic procedure from the equilibrium canonical
distribution of the kinetic energy:

P(KT) dKT ∝ K
Nf

2−1 e−βKT dKT
T

√︄
⟨KT⟩

K (2.36)

with P(KT)dKT being the probability that the system has a kinetic energy between
KT and KT + dKT.

Since there is a discontinuity in particle velocities around the scaling step, the
KT value is chosen based on the previous K value. Thus, the total kinetic energy is
calculated by using the following auxiliary continuous stochastic dynamics:

dK = ⟨K⟩ − K
τT

dt + 2
√︄

K ⟨K⟩
NfτT

dW (2.37)

where dW is a Wiener stochastic noise and τT is an arbitrary parameter related
to the thermostat time response. The expression Eq. 2.37 reduces to the simple
weak coupling rescale when τT → 0. The first term drives the system to equilibrium
with a characteristic time τT; after the system eaches the equilibrium, the stochastic
contribution samples the canonical distribution.

2.2.9 Barostat algorithm

In order to maintain the system at a constant pressure, a barostat algorithm is
used; the idea is to adjust the pressure by changing the simulation box volume. As
proposed by Berendsen, when scaling both volume and particle coordinates, the
pressure changes with the following rate:

dp
p = p0 − p

τp
(2.38)

where p0 is the target pressure, τp is a coupling constant related to the time
response of the barostat an p is the system pressure at time t. If δt is the simulation
time step, the volume scaling factor λ is given by

λ = 1 − KT(p0 − p)δt
τp

(2.39)
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being KT the isothermal compressibility defined as:

KT = − 1
V

(︃
∂V
∂p

)︃
T

(2.40)

.
The factor δt

τp
takes into account the finite barostat time response. When τp → 0

the system has an infinity isothermal compressibility which means that a really small
change in volume will lead to the correct pressure; the particle coordinates are scaled
by the factor λ

1
3 . In case of anisotropic system, the Berendsen algorithm can be

generalized such that λ becomes a 3 × 3 matrix, by considering the pressure matrix
P and the volume matrix H. As for the weak coupling thermostat, the main problem
of Berendsen thermostat is that the sampled ensemble is not known. The correct
approach to the isobaric ensemble sampling was derived by Parrinello and Rahman
and it is described in the next section [47].

2.2.10 Parrinello-Rahman barostat algorithm

In the Parrinello-Rahman barostat ([47], [48]) the system is coupled to an external
piston of "mass" Mh and the volume is treated like a lagrangian variable of the system.
Then, the volume time evolution can be computed by solving the Euler-Lagrange
equations. In this method, both size and shape of the simulation box are allowed to
fluctuate and they are described by the volume matrix H such that V = |det|H|. If
an external pressure p0 is applied to the piston with lagrangian coordinate H, its
potential energy is given by

Up = p0 |det H |. (2.41)

.
The H variation in time means that a "kinetic energy" is associated to the piston

as described in the following expression:

kp = 1
2MhTr(ḢtḢ) (2.42)

being (̇)t the transpose operator. By defining the vector −→si so that −→ri = H−→si , it is
possible to write the lagrangian of the particle coordinates in terms of H.

Consequently, the square displacement is given by

−→ri · −→ri = (H−→si )tH−→si = −→si
tHtH−→si . (2.43)

Thus, the Lagrangian found by Parrinello et al. (CITA) is

L = 1
2

N∑︂
i=1

mi
−→si̇ Gt−→si̇ −

N∑︂
i=1

N∑︂
j=i+1

Uij(−→r ) + 1
2MhTr(ḢtH) − p0|detH| (2.44)
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where G = HtH.
The equation of motion for H and −→si (Eq. 2.45) can be computed by solving the

Euler-Lagrange equations; the equations of motion, as derived by Parrinello et al.,
sample an isobaric ensemble correctly. This can be easily shown by considering the
following Hamiltonian:

H = 1
2

N∑︂
i=1

mi
−→si̇ Gt−→si̇ −

N∑︂
i=1

N∑︂
j=i+1

Uij(−→r ) + 1
2MhTr(ḢtH) + p0|detH| (2.45)

when the system is at an equilibrium temperature T, the equipartition theorem says
that the kinetic term of the system particles contributes to the energy by 3

2NKBT,
while the kinetic term due to the piston by 9

2NKBT. Since 3N ≫ 9, the Hamiltonian
can be approximated as

H ≃ ⟨K⟩ + U + p0V = H (2.46)

that is the enthalpy. In this way, the correct isobaric ensemble is sampled, being the
Hamiltonian a constant of motion. When the system is also coupled to a thermostat,
the constant of motion becomes the Gibbs free energy G = H − TS, since the -TS
term has to be added. Isobaric-isotherm ensemble is correctly sampled. When there
is an imbalance between the internal pressure p at a time t and the target pressure
p0, the Parrinello-Rahman barostat acts in a way that the system recovers this
imbalance in a characteristic time related to the parameter Mh. If we are interested
only in statistical averages, this parameter can be arbitrarly chosen, in fact the
system properties at equilibrium are indipendent from the masses of its constituents
parts. If this is not the case, Mh has to be properly chosen; in this regard the authors
suggest to choose Mh of the order of L

c where L is the simulation box size and c is
the sound velocity. Parrinello-Rahman method is less stable than Berendsen one,
but it guarantees the correct sample of the isobaric ensemble. In order to avoid large
volume fluctuations When the system is not well equilibrated, the Berendsen barostat
is commonly used to reach equilibrium before switching to the Parrinello-Rahman
algorithm.

2.3 MD enhanced sampling

In studying biomolecular systems, the free energy is a very fundamental quantity; free
energy variations are useful to understand if a chemical reaction occurs spontaneously,
whether some molecules are able to self-assemble in water solution, if a protein
configurational change can take place and so on. The Gibbs free energy is specific
for the NpT isobaric-isothermal ensemble whether the Helmholtz free energy A for
the NVT canonical ensemble. The time evolution of a biomolecular system and
its equilibrium properties are then determined by the system’s free energy surfaces
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(FES). The free energy is related to the partition function of an ensemble thus we
can obtain other thermodynamic quantities by differentiation.

2.3.1 Collective variables

The free energy in function of the distance between the centre of mass (COM) of two
molecules provides information about their attraction or if they form a bound state.
Similarly, when considering the FES as a function of a set of some generalized coor-
dinates, we have access to some mechanical, chemical and thermodynamic processes
occurring in the system. These generalized coordinates are called collective variables
(CVs) of the system; the FES in the CVs space provide a map of the barrier heights
that have to be overcome for a transition to take place. The free energy landscape
can be rich in minima, even for small molecules, and thus difficult to sample in MD
simulations. The advantage of using CVs is the possibility of sampling these regions
that are crucial to understand the process under study.

2.3.2 Free energy surface

Let us suppose we are interested in the FES in function of the CV s(−→r ) in a NpT
ensemble for an isotropic system. The following discussion remains valid even for a
NVE ensemble with the Helmholtz free energy instead of the Gibbs one and with
the correct partition function ZNVE for the ensemble. The Gibbs free energy along
the s(−→r ) CV is given by

G(s) = −KBT ln Q(s) (2.47)

where Q(s) is the partition function that integrates out all the DOF of the system
except for s(−→s ):

Q(s) = 1
ZNpT

∫︂ +∞

0
dV

∫︂
Ω

e−β(H(−→x )+pV)δ(s(−→r ) − s)dx. (2.48)

Since s(−→r ) does not depend on particle momenta, Q(s) can be rewritten as:

Q(s) =
∫︁

Ω e−βU(−→r )δ(s(−→r ) − s)dr∫︁
Ω e−βU(−→r )dr

(2.49)

where U(−→r ) is the potential energy function (PEF). We can interpret Q(s)ds as
the probability to find the system with s(−→x ) between s and s + ds. The equation
contains a direct phase space integration so it can be written using the ergodic
theorem (Eq. 2.12), as a time average:

Q(s) = ⟨δ(s(−→r ) − s)⟩ = lim
x→+∞

1
τ

∫︂ τ

0
δ(s(−→r (t)) − s)dt. (2.50)

In principle, it is possible to derive the time sampling of Eq. 2.50 by MD simulations.
The problem here is that we are not able to simulate infinite time and thus to sample
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all the phase space and consequently the ensemble average. Generally, we can obtain
a good sample of the phase space regions around a local minimum of the FES. Instead,
high energy regions - due to their unfavorable Boltzmann factor, provide only a small
contribution to the partition function. Thus, these regions have to be overcome in
order to reach other minima, but energy barriers that are higher then the thermal
fluctuations (∼ −KBT) have a small probability of being overcome. These transition
are called rare events.

2.4 Bias based advanced sampling

Several techniques have been developed to sample rare events. In particular, we want
to explore other regions of the phase space by escaping local energy minima and to
compute the FES along one or a small set of CVs. The idea is to drive the transition
between two metastable configurations by adding a bias potential.

In the following paragraph are described the methods used in this work: umbrella
sampling and metadynamics (for a more complete discussion consult the review by
Kästen ([49]) for the former and the review by Laio and Gervasio ([50]) for the latter,
Tuckerman’s book describe further advanced sampling methods ([51])).

2.4.1 Umbrella sampling

Umbrella sampling is one of the most used method for calculating free energy
differences between two states. Developed by Torie and Vallean, it proposes to drive
the system from a known state A to an other known state B through a path defined
by the chosen CV - s(−→r ) - describing the process. Umbrella sampling computational
performances degrades rapidly for more than one CV. The path between A and B is
divided into a discrete number of windows Nw, then take a subset si, i = 1, ..., Nw of
the continuous CV values along the path.

In Figure 2.3, an example of windows selection is shown.
In order to restrain the system to the si target value, we add - for each value si - a

bias potential wi to the total potential energy function (PEF). MD simulations are
performed for each window and then all the data are combined to obtain the biased
FES along the chosen CV and, eventually they are used to also recover the unbiased
FES.

The biased PEF of window i is given by

Ub
i = U(−→r ) + wi(s) (2.51)

where wi(s) is the bias potential on window i in function of the CV s(−→r ) and the
superscript b indicates the biased quantities. The corresponding biased partition
function, integrated over all DOF but s, can be obtained from Eq. 2.49 by the
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Figure 2.3: Cartoon showing an umbrella sampling windows selection. The contour
line represents a 2-minima free energy profile through which the system
evolves. The dashed line is a path along the CV s(−→r ) to connect the
state A to the state B. The black continuous line corresponds to the
selected windows for different values of s.

substitution U(−→r ) → Ub
i (−→r ):

Qb
i (s) =

∫︁
Ω e−βU(−→r )δ(s(−→r ) − s)dr∫︁
Ω e−β(U(−→r )+wi(s)(−→r ))dr

. (2.52)

The unbiased partition function can be recovered with the following expression:

Qi(s) = Qb
i (s)eβwi(s) ∫︁

Ω e−βU(−→r )e−βwi(s(−→r ))dr∫︁
Ω e−βU(−→r )dr = (2.53)

= Qb
i (s)eβwi(s)⟨e−βwi(s)⟩. (2.54)

Then, we obtain the FES using Eq. 2.47

Gi(s) = −kBT ln Qb
i (s) − wi(s) + Ci, (2.55)

where Qb
i (s) is given by the ensemble average from biased MD simulation, wi(s) is

a known function and Ci is an addictive constant independent from s that connects
the free energy curves Gi(s) of different windows. In order to compute the global
FES, we need to combine together more windows and all {Ci} must be computed.

2.4.2 Weighted histogram analysis method

In order to extract the global FES G(s) we need to compute the global unbiased
partition function Q(s) from the set of biased partition function {Qn

i (s)}. Several
analysis methods have been developed to combine information collected from the Nw

windows; here we described the most commonly used Weighted Histograms Analysis
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Method (WHAM) [52], [53]. We represent the set
{︂

Qb
i (s)

}︂
with a set of histograms

{hi(s)} with ni bins for each biased window Nw. The aim is to minimize the statistical
error in the calculation of Q(s); the global distribution function is thus computed as
follows

Q(s) =
Nw∑︂
i=0

pihi(s) (2.56)

where

Nw∑︂
i=0

pi = 1 (2.57)

being pi the weights chosen to minimize the statistical error on Q(s):

pi = nie−β(wi(s)−Ci)∑︁Nw
j=0 nje−β(wj(s)−Cj)

. (2.58)

where ni is the total number of independent bins in the i-th histogram. Since Q(s)
depends on {Ci} and vice-versa, the set of constants {Ci} can be computed in an
iterative self-consistent way. A first guess of set {Ci} is used to compute the weights
from Eq. 2.58, then Q(s) is computed from Eq. 2.56 and it is used to obtain a new
set of {Ci} from the Q(s) global distribution function:

e−βCi =
⟨︃

e−βwi(s)
⟩︃

=
∫︂

Q(s)e−βwi(s)ds (2.59)

.
The process is repeated until both equations are satisfied. When the iterative

process is completed, we can obtain the global FES G(s) from Eq. 2.47. In order
to avoid convergence problems of the iterative process, the histograms in adjacent
windows must be sufficiently overlapped otherwise the statistical error due to the
combining procedure can be increased too much. A simple harmonic bias potential
is used together with WHAM to overcome overlap problems. In order to restrain the
system to the target value si of the CV s(−→r ) along the path connecting state A and
B, each window is biased with the following harmonic potential:

wi(s) = 1
2K(s − si)2. (2.60)

The strength of the bias potential K has to be chosen properly to sample the
corresponding modes; it has to be as small as possible to allow some overlap between
windows.

Summarizing, the implementation of the umbrella sampling method needs a CV
well describing the transition from state A to state B and a connecting path; then a
biased simulation is performed for a subset of value assumed by the CV along the
chosen path. Using WHAM, the global unbiased partition function Qs is computed
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by combining the set of biased partition functions
{︂

Qb
i (s)

}︂
. Finally, the global FES

G(s) is computed.

2.4.3 Metadynamics

The metadynamics method was developed by Parrinello and Laio ([54]) in order to
accelerate rare events and computing free energies in function of a small set of CVs.
The basic idea of metadynamics is to enhance the dynamics of a system along the
chosen CVs biasing the dynamics by a history-dependent potential. ([55]). Instead
of umbrella sampling, metadynamics does not require previous knowledge of the
low-free-energy regions of the system conformational space, but "only" the direction
along with the minimum free-energy path develops. Another advantage is that we can
simultaneously use several CVs without affecting simulation performance. After the
CVs choice, metadynamics simply acts by filling the corresponding energy minimum
with an history-dependent bias potential:

U(−→r ) + W(Y, t) (2.61)

where W(Y, t) is a Gaussian of width σ and height w:

W(Y, t) =
∑︂

t′ min t
we[ (y−y(t′))2

2σ2 ].

If we consider, for simplicity, a two state process from state A to B in the CV
space, the Gaussian are initially localized near the initial configuration (A), that is
the first free energy minimum (Figure 2.4).

Figure 2.4: Simple cartoon showing the metadynamics concept. A history-dependent
bias potential is used to fill the well leading to a transition from the state
A to the state B.

When the first free energy minimum is completely filled by Gaussians, the system
performs a transition to the second minimum (B). As also the second minimum
is filled by Gaussians, the CV starts to freely diffuse between the two minima A
and B. By iteratively summing the deposited potential during the biased simulation,
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we obtain an estimator of the FES along the chosen CV. The system evolved with
metadynamics tends to escape from any energy minima via the lowest saddle point.
Thus, another advantage of metadynamics compared to umbrella sampling is the
possibility to explore new reaction paths by accelerating the observation of rare
events. A proper CV leads the system to evolve over the next minimum as it would
do in much more MD simulation time. The height w, the width σ and the deposition
time τ affect the accuracy and the efficiency of the free energy profile reconstruction.

Figure 2.5: Simple cartoon showing the metadynamics concept. A history-dependent
bias potential is used to fill the well leading to a transition from the state
A to the state B.

Empirical criteria can be used to choose the σ and τ parameters; the former by
monitoring the standard deviation of the CVs in an unbiased MD simulation and the
latter by observing the relaxation time of the system after a Gaussian deposition.
If the Gaussians are big and large or placed too quickly the FES will be explored
at a fast pace but the resulting profile will be affected by large errors. Instead, if
they are small or placed with too low frequency, the reconstruction will be accurate
but it will take more time. In particular, the time required to overcome a local
minimum is related to the number of Gaussian necessary to fill the minimum and it
is proportional to ( 1

σ )n, being n the number of the CVs.
So, we want to mantain the number n of the CVs as small as possible or to increase

the Gaussians width σ; as the number of deposited Gaussians increases, in each MD
step, a larger number of exponential terms have to be computed and summed in
order to calculate the forces due to metadynamics, i.e. the derivative of the history-
dependent potential. The convergence of the metadynamics in a specific region of
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the CVs space is reached when the system becomes diffusive, i.e. when the CVs can
assume all possible values in the sampled region (Figure 2.5). It is not trivial to
understand when the convergence has been reached. A practical method is to monitor
the free energy difference between the two reference points: when the difference is
approximately flat the convergence has been reached. As regard the error on the FES
estimator, it is clear that it depends on the chosen parameters for metadynamics
implementation. The error can be estimated by performing statistically independent
metadynamics runs. After the convergence has been reached in each run, we can
consider as the best estimate of the FES the arithmetic average of all potentials
taken at the same time. Instead, in each run, the statistical error of the FES can be
considered as the standard deviation between the history-dependent potential W(s, t)
of that run and the averaged FES G(−→s ) ◦ −W(−→s , t); thus the standard deviation is
averaged over the whole CVs space Ωs as follows

ϵ̄2 = 1
Ωs

∫︂
Ωs

(W(−→s , t) − W(−→s , t))2ds (2.62)

Laio et al. ([56]) have derived an approximate expression for the error estimator
in function of the system and metadynamics parameters by performing extensive
numerical simulations of a Langevin stochastic system:

ϵ̄2 ∝ LT
D

w
τ

σ (2.63)

where L is the size of the simulation box, D is the system diffusion coefficient and
T is the system temperature. The ratio w

τ dominates the error, since the parameter
σ is approximately fixed by the fluctuation of the CVs in an unbiased MD run. The
use of metadynamics is increasingly widespread in the computational community for
its simple implementation and the possibility to control the performance efficiency
by tuning the Gaussians and the history-dependent potential parameters. Bochicchio
et al. ([6]) studied the FES resulting from the transfer of hydrophobic oligomers
from the water phase to the hydrophobic cores of a lipid membrane by both umbrella
sampling and metadynamics. They found that, if the CVs and the parameters are
properly chosen, the resulting free energy profiles are identical between the two
methods, but the metadynamics offers the same accuracy in less simulation time.

2.5 Force Fields

Explicit treatment of solvent molecules in biomolecular simulations deals with the time
evolution of a very large number of particles i.e. from 104 < N < 106. Furthermore,
time scales depend on the system under study: from picoseconds for hydrogen bond
formation in organic molecules, to seconds for the diffusion of massive colloidal
particles. Due to this flexibility in capturing different length and time scales, MD
can be used to explore a multitude of objects such as atoms, molecules as well
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2.5 Force Fields

as macromolecular systems and proteins. The description of such a variety of
systems relies on appropriate models of interaction between atoms and molecules,
that is - for condensed matter systems - the Born-Oppenheimer approximation. This
approximation consists in the separation of the atomic nuclei from the motion of
electrons. Such a model is necessary if we want to simulate systems bigger than 102

atoms; indeed the explicit treatment of the electronic DOF would hugely restrict
MD performances.

In the following, we use a classical model of the inter-atom interactions, that is we
treat nuclei coordinates without considering electrons at all. We call empirical force fields
(FF) all the functional forms of the interaction potentials between atoms and molecules
as well as their parametrization. Empirical means that the functional forms derive
from a compromise between computational parameters and accuracy, rather than
from theoretical principles. The interaction parameters are assigned to reproduce
a set of target properties, which are generally derived from measurements or from
simulations.

In the context of biomolecular systems, two main FF types have been developed:
the atomistic FFs in which the building blocks are atoms and coarse-grained (CG)
FFs in which the basic particles are groupes of atoms. Currently available atomistic
and CG FFs present themselves as packages suitable for the description of a wide
range of compounds both in liquid and in solid phase. The great thing of current FFs
is their tranferability. This means that even if the FF parametrization has been made
to reproduce liquid water features in standard condition, it also able to reproduce
non-standard events. In this section, we describe the most widely used functional
forms representing inter-particle interactions in MD simulations. The last part of
the section focuses on the MARTINI FF [13], the main CG FF used in this research.

2.5.1 The general potential energy function.

In the field of biomolecular applications, the PEF is generally composed by the
bonded and the non-bonded terms:

U(−→r ) = Ub(−→r ) + Unb(−→r ) (2.64)

The bonded interactions contribution involves particles within the same molecules,
instead the non-bonded interactions contribution represents the Van der Waals and
the electrostatic interactions involving all the particles in the system.

In the following, the two contributions are described in detail.
The bonded term is usually described as follow:

Ub(−→r ) = 1
2
∑︂

bonds

1
2kb

i (li − lio)2) + 1
2
∑︂

angles
kα

i (θi − θio)2 + 1
2
∑︂

torsion
Vn(1 + cos(nω − γ)).

(2.65)
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Chapter 2 Computational methods

The first term models the energy contribution due to the deviation from reference
bond length lio and the second the deviation from a bond angle θio. The first two
terms are both harmonic potentials, the former engages a set of two adjacent particles
while the latter a set of three consecutive particles in the same molecule.

Figure 2.6: Cartoon of the bonded and non-bonded interactions: bond stretching, an-
gle bending, torsional term, Van der Waals and electrostatic interactions.

The last term of Eq. 2.26 represents the energy contribution to the bond torsional
change and it involves four consecutive particles in the same molecule mimicking
the energy barrier needed to torsion the bond along the bond axis. Vn qualitatively
describes the energy barrier for each n-th components with n the number for each
components, ω is the torsional angle and γ is a phase factor. The non-bonded
contribution is described by the following equation:

Unb(−→r ) =
N∑︂

i=1

∑︂
j>i

(4ϵij((
σij
rij

)12 − (σij
rij

)6)) + qiqj
4πϵ0rij

. (2.66)

The first contribution in Eq. 2.66 is the Van der Waals interaction which has
the form of a Lennard-Jones 12-6 potential and it depends only on the σij and ϵij

constants assigned to each pair of particles. The last term is the electrostatic energy
term which depends on the particle charge q. As specified before, the non-bonded
contribution engages all the particles of the system; as regard the particles belonging
to the same molecule, they are computed only if their interaction are not described
by bonded terms thus they are separated by at least three bonds. In Figure 2.6 all
the contributions described in the last two equations. On the MD point of view,
the calculations of the non-bonded interactions energy is the most time consuming
part of a simulation. In fact, its calculation scales as ∼ N2 even if a simple pairwise
additive potential is used. Various methods have been developed to speed-up the
simulations. First of all, we can distinguish between short and long range interactions.
Depending on the power order d compared to the dimensionality s of the system, we
have short range if d > s and long range if 1 ≤ d < s. Particularly, the Lennard-Jones
12-6 potential decays to zero as r−6 so it is a short range interaction, while the
electrostatic interaction decays to zero as r, being a long range interaction.

In order to treat short range interactions and, sometimes, even long range ones,
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2.5 Force Fields

the cut-off method was developed. The general idea is to evaluate the non-bonded
interactions between one particle and all the others within the cut-off radius rc. The
new potential is thus of the form

v∗ =

⎧⎨⎩v(r) r ≤ rc

0 r > rc.
(2.67)

The discontinuity of this potential means discontinuity in its first derivatives i.e. in
the forces and the energy conservation is no more satisfied. This problem is fixed by
applying a shift of the potential value at rc so that v∗(rc) = 0. The shifted potential
is

v∗ =

⎧⎨⎩v(r) − v(rc) r ≤ rc

0 r > rc.
(2.68)

To shift the potential will not affect forces calculation. As regard the forces
discontinuity, a simple method is to consider a linear term proportional to the first
derivative of the potential as follow

v∗ =

⎧⎨⎩v(r) − v(rc) − dv(r)
dr
⃓⃓
rc

r ≤ rc

0 r > rc.
(2.69)

The modifications to the original potential due to the shift methods have to be
properly taken into account in order to achieve the correct thermodynamic properties.

An other powerful technique to menage with the discontinuity is the switch method.
The idea, here, is to consider two cut-off radii rc1 and rc2. If r ≤ rc1, the original form
of the potential is used; while if r > rc2 the potential is set to zero. If rc1 < r ≤ rc2,
a switching function is considered to smoothly switch the potential to zero.

All the methods used to treat interactions are part of the simulation parameters
that are part of the FF. They are interdependent with the model parametrization. It
is important to stress out that the simulation parameters should never be changed
without retesting the target properties of the parametrization.

2.5.2 Van der Waals interactions

Quantum dynamic effects are described by Van der Waals forces, which include both
repulsive and attractive terms. The repulsive term describes the Pauli exclusion
principle between electron clouds; the attracting term refers to the dipole-dipole
interactions, London dispersion forces, hydrogen bonding and entropy effects. Van
der Waals interactions are usually described by a pairwise Lennard-Jones potential
which has the following form:

v(r) = 4ϵ

(︃(︃
σ

r

)︃12
−
(︃

σ

r

)︃6)︃
= C12

r12 − C6
r6 (2.70)
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where C12 = 4ϵσ12, C6 = 4ϵσ6 and r is the pairwise particles distance. The ex-
ponent 6 represents the attractive term of dipole-dipole interactions, thus it has a
physical meaning; while the exponent 12 is a computational choice, being easier to
calculate r−12 as (r−6)2. The constants ϵ and σ in Eq. 2.70 are assigned to each
particle pair. The former refers to the absolute value of minimum while σ is related
to the position of the potential minimum rmin = 21/6σ i.e. the Van der Waals radius.
In Figure 2.7, a plot of the function in Eq. 2.70 with ϵ = σ = 1 is shown.

Figure 2.7: Lennard-Jones function with ϵ = σ = 1.

As a short range interaction, the Lennard-Jones function can be efficiently treated
by a cut-off technique with the shift or switch methods. Since at r ∼ 2 the function
value is less than 1% of the r ∼ σ value, a good choice for the cut-off radius is
rc ∼ 2σ ÷ 3σ.

2.5.3 Electrostatic interactions

In general, for computational reasons, a common choice is to consider electrostatic i.e.
long range interactions as short range interactions by a cut-off method - usually with
the same Van der Waals cut-off. Electrostatic energy contribution for the simulation
box is

U = 1
2

N∑︂
i=1

∑︂
j̸i

1
4πϵ0

qiqj
rij

(2.71)

where qi, qj and rij are the charges and the distance, respectively, between particles
i and j. In order to include also image boxes, we can define a tern of integer numbers
(nx, ny, nz), ni = 0, 1, 2, ..., so that the position of all other image boxes, with respect
to the central simulation box, is −→n = L(nx, ny, nz). The energy contribution becomes

U = 1
2

+∞∑︂
nx,ny,nz

N∑︂
i=1

N∑︂
j=1

1
4πϵ0

qiqj
∥−→r i − −→r j + −→n ∥

(2.72)
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where the prime indicates that for −→n = 0, i.e. the energy contribution of the
simulation box, we need to exclude the self interaction term. The main problem for
calculation is that the convergence of the summation in Eq. 2.72 is extremely slow,
especially for system of the order of N ≫ 104. However, the increasing computing
power allows to develop more accurate methods to solve Eq. 2.72.

For a more complete discussion about the advanced methods developed to treat
the electrostatic interactions for biological applications, the reader is addressed to
the review by [57].

2.6 Coarse Grained Models

Many biological processes regarding lipid membrane and other organic molecules, as
well as some mechanisms involving supramolecular polymers, take place on microsec-
onds or milliseconds timescales and tens nanometers length scales. Unfortunately,
these time and length scales are not accessible to atomistic FFs. One possible solution
is to integrate out some DOF, preserving only those that are relevant for the problem
under study: this procedure is called coarse-graining. The basic units of CGFFs are
called beads. Each bead represents a group of atoms or a defined chemical moiety.
The coarsening degree of the FF is determined by the bead size. In Figure 2.8
different levels of coarse-graining are showed.

Figure 2.8: From left to right: increasing levels of coarse-graining of a phospholipid.

In order to develope the CG model from the atomistic one, the very first step is the
mapping procedure. For biological applications, CG FFs are rationally designed to
reproduce specific thermodynamic properties; while for material science applications,
e.g. polymer science, CG FFs are designed to reconstruct the material structural
properties. There is not a unique way to execute the mapping procedure because it
depends on various factors as the desired coarse-graining level, the length and time
scales of the subject under study and for the material features to be reproduced.
Since the DOF of the system are reduced due to the mapping procedure, the CG
FF obtained leads to more efficient calculations. Moreover, after removing finer
structural details, softer interactions are obtained and this means smoother PEF and
faster diffusion. Also the vibrational modes are slower, so in a CG simulation one
can use a larger MD time step than in atomistic one.
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2.6.1 Martini CG FF

Martini is a CG FF introduced by Marrink et al. [13]. It was initially developed to
study lipid membranes and later extended to a variety of other objects as proteins,
carbohydrates and a broad class of polymers [15], [58], [59]. Since its creation, Martini
has dramatically grown in its transferability becoming one of the most well known
CG FF in science community.

The Martini coarse-graining is based on a four-to-one mapping, i.e. on average four
heavy atoms are represented by a single interaction centre, with the only exception
of ring structures.

There are four main bead types: polar (P), non-polar (N), apolar (C) and charged
(Q). Each bead type has several subtypes which allow a more accurate representation
of the chemical nature of the underlying atomic structure. These subtypes are
distinguished by the hydrogen bonding capabilities: donor (d), acceptor (a), both
donor and acceptor (da) and none (o) and/or by their degree of polarity, from lowest
polarity (1) to highest polarity (5). In Figure 2.9 examples of mapping procedures
are shown, including both atomistic and Martini CG descriptions.

Figure 2.9: Martini mapping procedure for various atomistic structures in which
Martini beads are cyan transparent circles underlying the atomistic
structure. A) Standard water bead, B) polarizable water, C) DMPC
lipid, D) Polysaccharide fragment, E) Peptide, F) DNA fragment, G)
Polystyrene fragment and H) Fullerene molecule. Images taken from [60].

The functional form referred to Van der Waals interactions is a Lennard-Jones
12-6 potential as in Eq. 2.70. The interaction has ten levels of strengthness, reported
in Figure 2.10, whereas the strength association matrix is shown in Figure 2.11.

The σ parameter is equal to 0.47 nm except for the Q-C1 and Q-C2 interactions
for which σ = 0.62 nm. This value is consistent with hydration shell when a charged
bead (a) is dragged into an apolar medium. The charges of the Martini beads are
empirically located at the center of the beads and correspond to the net charge of
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2.6 Coarse Grained Models

Figure 2.10: Interaction strength parameter ϵ for different Martini interaction levels.
The last one is for the special case σ = 0.62.

the chemical compound they represent. Water, for example, is described by a neutral
P4 beads. In order to take into account better water behaviour, e.g. polarizability
in lipid membranes, a more sophisticated CG water model, called polarizable water
(PW) has been developed [61].

Figure 2.11: Interactions strength association matrix for different Martini types [13]
.

The bonded contributions include bond length and an angle harmonic term. The
former is modeled with a harmonic potential as in Eq. 2.66 in which all bead types
have the same bond constant kb = 1250kJ/(mol nm2) and an equilibrium distance
l0 = 0.47 nm. The latter is a cosine-type harmonic potential

U = 1
2ka

(︃
cos θ − cos θ0

)︃2
(2.73)

where ka = 25kJ/mol and θ0 = 180◦ for aliphatic chains; ka = 45kJ/mol and
θ0 = 120◦ for cis double bends and ka = 45kJ/mol and θ0 = 180◦ for trans unsatu-
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rated bonds. In some case, e.g. ring systems, a dihedral angle harmonic potential
can be used:

U = kid

(︃
θikjl − θ0

)︃2
(2.74)

where θikjl refers to the angle between the planes described by atoms i,j,k and j,k,l;
kid and θ0 are the force constant and equilibrium angle, respectively.

Although CG FFs, so Martini FF as well, are computationally advantageous, there
are still some limitation, compared to the atomistic models, in both chemical and
spatial resolution. A consequence of the DOF reduction process is the underestimation
of the entropy respect to the atomistic case. Another limitation of CG FFs refers
to the FES that becomes smoother. This results in more sampling of the energy
landscape in a given time period, speeding-up the dynamics of the system. The
speed-up is not easily predictable and probably it depends on the type of molecule.
Moreover, in order to increase the efficiency, all the Martini beads have the same
mass of 72 amu: this makes the time scaling for different beads non-trivial. In the
Martini FF, for example, there is an average scaling factor of four, based on lateral
diffusion coefficients of lipids in membranes, is usually adopted.

A specific problem related to the Lennard-Jones potential is the water - modelled
as P4 particles - melting point at 290 ± 5 K. A partial solution is the introduction of
the BP4 beads, called anti-freeze particles: a mole fraction of naf = 0.1 is sufficient
to prevent freezing.

The reader is addressed to the review by Marrink et al. for a more comprehensive
discussion about the Martini FF and its limitations [60].
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Chapter 3

Controlling exchange pathways in
dynamic supramolecular polymers by
controlling their defects.

3.1 Supramolecular polymers: a need for finely tuned
coarse-grained models.

The reversible nature of supramolecular materials offers numerous advantages such as
the ability to respond to physiological stimuli or to mimic structural and functional
aspects of cellular signaling. Historically, in medicine, materials such as ceramics,
metals and polymers have been used to repair or replace biological elements [17], [62].
These materials have the limit of being mere structural copies of native materials
and cannot reproduce their adaptive and regenerative abilities. The next generation
materials will be based on the principles of supramolecular chemistry. Instead of
covalent bonds, supramolecular structures exploit H-bonding, hydrophobic, π - π

and Van der Waals interactions. The peculiarity of these bonds is precisely their
reversible and dynamic nature. Taken individually, non-covalent interactions may
be weak, however when these interactions add up or are directed, it is possible to
generate stable materials with unique properties.

Supramolecular materials are extremely tunable, dynamic and - a key feature -
modular in nature [63],[64],[4]. Thanks to these characteristics they are the best can-
didates to mimic biological objects and thus launch the next generation materials for
biomedicine and nanobiotechnology. To reach the controlled design of supramolecular
materials, it is necessary to fully understand the nature of the non-covalent bonds
underlying these structures, their strength and the complex interplay between all
the different interaction. A thorough understanding of the cooperation mechanisms
of the constituent entities is fundamental for producing materials with properties
similar to those of biological structures. Handling cooperation means intervening
on materials at the molecular level. This is where self-assembly comes into play. As
already explained in the previous chapters, it is a free-energy driven process that
favors the spontaneous organization of ordered and hierarchical assemblies. The final
goal therefore becomes to reach a self-assembled structure capable of performing the
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function it was designed for.
β-sheet-forming peptides, for example, self-assemble into 1D structures - through

intermolecular H-bonding - which, in turn, can form 3D networks. The peptides
are also biocompatible and biodegradable; this means that we can induce them
to artificially mimic the functions of large proteins through the rational control of
their structures [62]. Part of the functionality of proteins derives, in fact, from the
folding-unfolding mechanisms, that is from their ability to modify their configuration.
Through the structural versatility of self-assembled materials we can hope to produce
bio-materials with an unprecedent biological relevance. Another interesting example
is that of cellular microtubules (MTs) - composed of self-assembled tubulin units
- capable of regulating the motion and differentiation of cells through consecutive
polymerizations and depolymerizations. This process consists in losing a unit from
one end and recovering one from the other repeatedly and constitutes the origin
of the mechanical forces thanks to which the MTs are able to carry out their key
functions for the cells.

Artificial supramolecular polymers aim at a dynamic nature similar to that of
MTs. Controlling, for example, the polymerization / depolymerization rates of the
polymer leads to different degrees of adaptivity, responsiveness to external stimuli
and the ability to reconfigure. To differentiate the dynamic properties and exchange
pathways, the structure and / or composition of the single monomers from which the
general behavior of the polymer derives, must be designed. In this way it is possible
to control the exchange modalities of the monomers; these can detach from the tip of
the polymer or from its lateral surface [18], [19]. Being able to code the response to
a specific stimulus with a specific exchange pathway would generate usable materials
for eg. molecular signaling [65], [45]. This feature also implies the ability of the
polymer to adapt differently depending on the surrounding environment.

To date, it is still experimentally prohibitive to distinguish the precise dynamics
involved in the exchange mechanisms of the supramolecular structures with sufficient
space-time resolution. Despite the enormous technical progress of recent years, the
information obtainable from experiments alone is not sufficient to identify the kinetic
secrets of these assemblies [66]. Once again microtubules represent an interesting case
study; in fact they constitute the starting point for the creation of supramolecular
machines as they are able to generate mechanical forces on a nanometric scale [67].

Building machines of this type means being able to control the assemblies even in
states out of equilibrium and manage the energy dissipation processes. Azobenzene,
for example, is a molecule capable of switching its configuration from trans to
cis isomers in response to light stimuli. The response of these molecules to energy
absorption leads to a progressive increase in the defects present along the structure up
to total disassembly [68]. Submolecular resolution is needed to investigate the defects
creation mechanism. Defects play a central role in the dynamics of supramolecular
structures, in fact they are entrusted with the task of dissipating the energy absorbed
from the external environment - in the form of light, temperature, mechanical stimuli
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- through specific kinetic pathways [69].

3.2 BTA supramolecular polymers.

One-dimensional fibers in various solvents can be an excellent starting point for under-
standing the structure-dynamics relationships between the constituent monomers and
the resulting supramolecular architecture. The monomers contain all the information
that will be transmitted in the polymer, in its intrinsic dynamics and therefore
in the exchange pathways. A very well studied type of fiber is the water-soluble
1,3,5-benzenetricarboxamide (BTA) obtained from the directional stacking of the
BTA monomers core through threefold H-bonding. While the microtubules, described
in the previous paragraph, exchange monomers with the solvent only through the
tips, in some cases the exchange can occur continuously along the entire fiber [18],
[19], [70].

Albertazzi et al. [71] showed this trend with STORM experiments; when different
fibers are immersed in solution it is also possible to use FRET mixing essay to
measure the exchange equilibration time between the various polymers [66]. Studies
on BTAs are also popular due to the simplicity with which it is possible to change
side-arms of monomers in order to obtain soluble fibers in other media [22], [72].
Indeed, adding a stereogenic methyl center to each side arm (C12-PEG4-OH) of
the monomers yields fascinating results. The new monomers self-assembles in one-
dimensional supramolecular fibers but exhibit chirality, unlike fibers of the first type
which do not exhibit any chirality.

The two building block monomers, albeit slightly different, can lead to two resulting
fibers with distinctly different dynamic behavior. The two fibers are practically
indistinguishable through cryo-TEM and SAXS experiments and both appear as
single-columns of BTAs with no branches or superstructures. Using super-resolution
STORM imaging instead - whose resolution starts at around 25 nm and goes down
to tens of microns - once again the fibers appear very similar, both with high aspect
ratios. The only additional info concerns their length: the chiral fiber appears shorter
than its achiral counterpart. The cross-sections of the fibers are however out of
the reach of the SAXS, TEM and STORM techniques and therefore from these
measurements it is not possible to obtain information on the intrinsic dynamics of
these structures. Instead, by combining two samples of each BTA-fiber with a Cy3
and Cy5 FRET pair, mixing the two samples and measuring the FRET ratio, we
obtain estimates of the monomer exchange times for the two fibers. The results show
that the exchange dynamics are much faster in the achiral fiber. Furthermore, the
fitting is compatible with a bi-exponential function, suggesting that the exchange
mechanism between monomers is not a single-step process.

The difference in timescale between the two exponentials is at least one order
of magnitude for both fibers and this data could indicate that, regardless of the
speed of the process, the steps associated with the exchange could undergo the
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same mechanism [69]. As can be seen from the measures described above, with the
experimental techniques available today, it is not possible to obtain information at
the molecular level for supramolecular systems and therefore it is still prohibitive
to extrapolate the physical mechanisms underlying the exchange processes with
experiments alone.

Molecular dynamics simulations have provided valuable insights on the molecular
structure of these stacks as well as on the dynamics and thermodynamics of the
processes involved.

3.3 Multiscale modeling of BTA-based supramolecular
polymers.

In the previous paragraphs it emerged that the structure of the BTA monomers and
their interactions are so inaccessible, especially if the polymer is immersed in water.
Bejagam et al. [73] studied fibers of BTAs with C6 side chains in nonane solvent
using All Atom (AA) MD simulations. Nonane is an apolar organic solvent and the
nature of the monomers leads to the formation of ordered stacks since the solvent do
not disturb their interaction. On the contrary, BTA-based polymers in water appears
more disordered and it could suggest a more complex interaction between monomers
as well as with the solvent.

The two BTA-based supramolecular fibers described in the previous section were
also analyzed through AA-MD simulations [23]. In this way, the differences that
emerged from the experiments - such as the chirality and the different exchange
rate of monomers - can be treated at a much higher resolution [74]. However, the
time-scales related to the assembly and exchange processes of single monomers are
still inaccessible to atomistic models. Coarse grained force fields are a good strategy
to overcome these limitations. The simplification of the models and the consequent
access to previously unexplored time-scales, have made some CG force fields, such as
MARTINI, very used [13].

The spontaneous self-assembly of supramolecular fibers, lipid bilayers, vescicles,
micelles and proteins, to name a few, was studied through CG models [13] [15] [11].
The MARTINI coarse-graining strategy is now a widespread practice for studying
self-assembly processes and the resulting supramolecular architectures; in fact, a large
collection of widely tested chemical groups, lipids and small molecules is available. Ad
hoc CG models were also created to investigate the BTA monomers polymerization
process in explicit apolar solvent [25]. The ad hoc models can be very precise
in the representation of the single structure, but remain limited in the possible
implementation of the model, as well as in the possibility of studying the interaction
of the model in question with a variety of biomolecules.

The advantages of using MARTINI are its high transferable parameterizations
and the numerous components already present in its database and in the literature
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([15] [11] [14]). Inspired by the work of Shatz et al. [10] on supramolecular fibers
of MARTINI CG amphiphilic peptide monomers, Bochicchio et al. developed
a CG MARTINI model for BTA-C12-PEG and BTA-C6 monomers generating
supramolecular fibers in water and in organic solvent respectively [75].

In these two models the representation of the BTA-core is fundamental as it is
responsible for the directionality of the bonds between the monomers by means of
the hydrogen bonds they form. To reproduce this behavior, each MARTINI bead
amide comprises a dipole, i.e. two charges (± q) at a fixed distance [75].

The coarse-grained system gives access to longer time scales, in fact it is possible
to monitor the polymerization process directly during the simulation. To confirm the
results, BTA-C6 monomers form fibers with a slower dynamics, greater persistence
of the aggregates than BTA-C12-PEG fibers and consequently, different dynamics
of monomer exchange [23]. Thanks to the coarse-grained models combined with
advanced sampling techniques, it is possible to state that the exchanges with the
solvent occur - in both cases - from the defects present along the polymer.

3.4 The role of defects in supramolecular polymers.

In the previous paragraphs the fascinating dynamics of BTA-based supramolecular
fibers has been highlighted: these aggregates continuously exchange monomers with
the solvent. The properties that result from this dynamic behavior are the reason
why these directional architectures are so interesting and yet so difficult to study.
Controlling the ability of these structures to exchange with the external environment
and then reconfigure themselves would mean opening the way to new materials
capable of self-repairing or readjusting following an external stimulus.

Using coarse-grained models it is possible to reproduce the exchange pathways, com-
pare their time-scales and take a first step towards the rational-design of supramolec-
ular polymers. Although the simulations of MD-CG give access to a high spatial
resolution, the exchange of a monomer is a rare event, though inaccessible to the
typical times of simulation [76], [77], [78], [79], [80]. A technique developed in
recent years to access more extended time-scales is well-tempered metadynamics
(WT-MetaD) which can provide the free energy profile of our exchange event [81].
The simplest fiber to use as a case study is BTA-C6 in organic solvent - already
introduced in the previous paragraphs - which forms sufficiently long and ordered
fibers (Figure 3.1) [22], [23], [73].

The starting point is to investigate in detail the exchange of a single monomer
with the solvent. Through the WT-MetaD (see chapter 2) it is possible to activate
the exchange of a single monomer. The runs show how the monomer leaves the fiber
and is subsequently re-incorporated by the polymer. To allow the monomer to leave
the stack, the fiber first creates a local defect, then the monomer only sticks on one
side and, in a second step, the monomer detaches completely. The two collective
variables used in WT-MetaD to calculate the free energy profile of the monomer that

41



Figure 3.1: Chemical structure and CG model of a) BTA-C6 monomer and b) BTA-
C12-PEG monomer generating supramolecular fibers in organic solvent
and in water, respectively.

leaves the stack are the stacking distance and the coordination between monomers.
The stacking distance between two monomers for the equilibrated fiber has a

value of c ∼ 3.5 Å; the coordination between monomers is worth about 2 when the
monomer belongs to the bulk while it is worth about 1 when the monomer is one of
the two tips of the stack, or when a defect has been created and is therefore attached
only on one side. The figure Figure 3.2 shows the free-energy surfaces obtained from
the exchange process as a function of these two parameters.

Figure 3.2: Free-energy surfaces (FESs) for monomer exchange as a function of the
minimum stacking distance between monomer cores and the of core-core
coordination. The darker areas identify the energetically favourable re-
gions for the exchange events; on the other hand, lighter areas corresponds
to less probable exchange pathways.

The metastable states of the monomer exchange pathway are identified by the free
energy minima that correspond to the darker areas in the FES. The exchange of
the monomer with the solvent never occurs directly (AC) but the creation of the
defect must first occur (B). The lowest free energy minimum corresponds to the stack
ordered with c ∼ 3.5 Å and monomer coordination about 2. The same two-step
exchange process is observed regardless of the solvent [82].

The complexity of the aggregate increases considerably if we consider BTA in water,
both for the size and for the flexibility of the water-soluble monomers. Furthermore,
as we will see in the next paragraphs, the hydrophobic effect plays a fundamental
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role in the behavior of the supramolecular structure in water. The water soluble
BTA-C12-PEG supramolecular fibers appear as a fiber as well, but along the entire
stack there are monomers attached to the assembly only on one side; in other words,
the fiber has defects along its entire length. In the BTA-C6 fiber the only defects
present are the two tips.

Albertazzi et al. ([71]), combining STORM microscopy with stochastic modeling
they showed how these polymers exchange homogeneously along the entire fiber
(Figure 3.3). The FES have shown that the coordination value between monomer
cores is a good parameter to describe the state of a monomer within an ordered stack
such as BTA-C6. In fact, a monomer immersed in the solvent has coordination 0, a
fiber tip or a defect has coordination 1, while a monomer belonging to the bulk has
coordination 2. In terms of coordination, the creation of a defect corresponds to the
formation of a new tip, therefore the coordination passes from value 2 to value 1.

Figure 3.3 represents the two steps of the exchange: the creation of a defect along
the fiber and the exchange of a tip or, equivalently, of a defect with the solvent. The
transition time distributions for these two events were obtained through multiple runs
of infrequent WT-MetaD, in which monomer exchange was activated. The collective
variable (CV) chosen to deposit the bias (see chapter 2) is the average number of
contacts between the core of the exchanging monomer and all other monomer cores
along the fiber.

Each run provides a value for the transition time of the triggered event. The
characteristic transition time can be extrapolated from the profile obtained from all
transition times, which is the typical profile of the cumulative Poisson distribution.

Figure 3.3: Equilibrated coarse-grained models of octane- (top left) and water soluble
BTA fibers (bottom left. On the right, cartoons show a stack without
defects (top) a stack with bulk defects (green) from which monomers
can always exchange (bottom)). Both cartoons show fiber tips (red)
considered as defects.

Thus, the probability of having at least one trade event in time t is Pn≥1 = 1 − e
−t
τ .

The characteristic time τ of the event corresponds approximately to the midpoint of
the Poissonian sigmoidal curve.

The cumulative Poisson distributions associated with the BTA-C6 fiber for i) the
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creation of a defect, in green and ii) the exchange of a monomer from the tip in
red, are shown in the Figure 3.4(top). Creating a bulk defect is about 4 orders of
magnitude slower than swapping a monomer from tip. The characteristic times (gray
lines) are respectively τi = 104 and τii = 10−1.

While the values of the single characteristic times cannot be realistic - as they
are obtained from a coarse-grained model (see chapter 2) - their comparison, as
well as the comparison between the two different models, instead constitutes a
reliable information. The graph below of Figure 3.4 shows the cumulative Poisson
distributions for a BTA C6 fiber in which the value of the dipoles charges in the
amide beads has been lowered from ± 0.8e to ± 0.65e.

In this way the characteristic times of processes i) and ii) are approached and the
ratio is reduced almost to half compared to the previous fiber (from ∼ 4 to ∼ 2.5
orders of magnitude).

Figure 3.4: a) Cartoon representing the two stepwise process of BTA supramolecular
polymers in organic solvent: first, a defect in the bulk (new tip) has
to be created and, then, the monomer can exchange with solvent. b)
Cumulative Poisson probability distributions (Pn≥1) for the rare events
of monomer exchange from the fiber tip (red) and of the generation of a
bulk defect along the fiber (green). The distributions refer to a BTA-C6
fiber in octane (b, top) and to the same fiber with artificially weakened
directional interactions between the monomer cores (b, bottom). the
grey vertical lines represent the characteristic time scales (τ values) for
the events. In the latter case (b, bottom), the τ values for the exchange
from the tips and the creation of a bulk defect become closer; a similar
effect can be obtained by artificially increasing monomers solvophobicity
(see Figure 3.5).

The result obtained shows that it is easier for the BTA-C6 fiber to exchange
along its entire length following the weakening of the interaction between the BTA
hearts. When we lower the charges of the dipoles we are favoring the non-directional
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interactions between the monomers to the disadvantage of the directional ones. If
we favor non-directional interactions, the fiber will tend to form a more disordered
assembly, i.e. with a greater number of defects. On the other hand, favoring
directional interactions means increasing the order of the stack and therefore the
presence of defects is reduced and the exchange of a bulk monomer becomes slower.

The hypothesis is that by regulating the competition between directional and non-
directional interactions we can control the amount of defects and the data reported
in Figure 3.4 support this hypothesis. Specifically, the presence of defects can be
tuned in two ways. The first - already illustrated above - consists in weakening the
directional interactions (charges of the dipoles from ± 0.8e to ± 0.65e); the second
consists in increasing the non-directional interactions by acting on the composition
of the side chains making, for example, the beads more solvophobic.

Figure 3.5 shows the Poissonians for a BTA-C6 fiber whose side chains have been
made more solvophobic by replacing the beads (SC5 Martini beads instead of SC1).
The difference in the characteristic times i) and ii) is quite similar to the case of BTA
with reduced charges.

It should be noted that for BTA fibers with a length greater than 70 − 700 nm,
the exchange of monomers from the bulk would be statistically the preferred pathway.
Thanks to these results it is evident that the defects are directly connected to the
exchange pathways accessible to a fiber.

Figure 3.5: Cumulative Poisson probability distributions (Pn≥1) for the rare events
of monomer exchange from the fiber tip (red) and of the generation of a
bulk defect along the fiber (green). The distributions refer to a BTA-C6
fiber in octane with artificially increased monomers solvophobicity. The τ
values (vertical grey lines) for the exchange from the tips and the creation
of a bulk defect become closer respect to the case of the BTA-C6 fiber
without modifications (see Figure 3.4 b, top). A similar effect can be
obtained by artificially weakened directional interactions between the
monomer cores (b, bottom) (see Figure 3.5 b, bottom).

Finding a relationship between the defects population and the competition between
directional and non-directional interactions allows us to take a step towards the
rational design of polymers with specific exchange pathways. Unfortunately, with
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BTA-C6 CG model we cannot explore other types of behavior due to the limited
possibility of customizing the model and the reduced flexibility of the lateral chains.
In fact, if we increase the solvophobicity of the side chains a little more, we do not
obtain fibers with a greater number of defects, but nanoparticles, thus 3D aggregates.
The fibers that present a greater number of defects are, for example, the BTA-based
fiber soluble in water as they have long and flexible side chains (PEG) that act as a
solvophilic shield to the internal solvophobic beads, allowing the monomers to form
a linear aggregate.

3.5 Minimalistic CG models of supramolecular polymers.

To generalize the obtained results, we developed a minimalistic model that allows
to describe supramolecular fibers with three lateral arms. Being a coarser model,
there is no chemical accuracy and the monomers are treated in a more abstract
way, drastically reducing the number of parameters that describe them. In fact,
the advantage of this representation consists in the possibility of accessing different
variants of supramolecular polymers simply by intervening on a parameter i.e. by
modifying the solvophobicity of the internal beads of the monomers.

Instead of the three dipoles present in the BTA-C6 model, the directional inter-
actions are entrusted, in this model, to a single dipole placed at the center of the
monomer structure Figure 3.6 a. The 3 final beads of each arm are always solvophilic
(white bonds in figure), while the two internal beads (dark gray bonds) are variable
- that is, they can be taken more or less solvophobic - depending on the polymer
variant we want to obtain. Specifically, three fiber variants were compared, each
made up of forty identical monomers, in which the only difference is the choice of
the degree of solvophobicity of the internal beads.

In the first type of monomer (monomer 1), the structure is totally solvophilic: the
beads are all identical to those of the solvent (C1 Martini beads); self-assembly takes
place by means of the directional interactions carried out by the single central dipole
of the monomers. In the second type of monomer (monomer 2), on the other hand,
the two internal beads of each side chain are replaced by C5 Martini beads, which
are more solvophobic.

In the third type of monomer (monomer 3), the solvophobicity of these beads is
further increased with the choice of the N0 Martini beads, which are even less similar
to the solvent. As regards the central dipole, the charges have been calibrated in order
to reproduce, for monomer 3, the free energy of dimerization for the water-soluble
monomers BTA-C12-PEG which is about 10 kcal mol−1 and left unchanged in the
other two cases [75], [69].

With this choice, the fiber obtained from the monomer 3 (fiber 3) has a behavior in
the solvent similar to that of the supramolecular polymers BTA-C12-PEG (Figure 3.1
b) [23], [74], [75], [69]. Instead, fiber 1 looks similar to BTA-C6 fiber in octane solvent
(Figure 3.1 a). Finally, fiber 2 shows a behavior that is halfway between fibers 1 and
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Figure 3.6: a) Minimalistic CG model for the 3-arms self-assembling monomers stud-
ied herein. The directional interactions between the cores is provided
by a dipole (blue and red) in the central bead. b) Three variants of 40-
monomers stack obtained by modifying directional vs non-directional in-
teraction balance: Fiber 1 (completely solvophilic monomers self-assemble
only due to directional interactions), Fiber 2 (internal monomers beads
slightly more solvophobic than in Fiber 1), Fiber 3 (internal monomers
beads more solvophobic than in Fiber 2). c) Supervised clustering analy-
sis of the three fibers 1, 2 e 3 (left to right) showing different structural
motifs: bulk monomers (black), fiber tips (red), bulk defects (green) and
exchanged monomers (blue).
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3.

Figure 3.6 b shows the three fibers obtained from 3 unbiased runs from 30 µs of the
perfect stack of each type of monomer. The equilibrated stacks of the 3 fibers have
an increasing number of defects as the two internal beads become more solvophobic;
fiber 1 appears linear and without defects, fiber 2 has some defects in the bulk and
fiber 3 has numerous persistent defects. At equilibrium, fiber 2 presents a very
interesting dynamics of defects since they are not persistent but are formed and then
reabsorbed.

We used supervised clustering analysis of the equilibrated trajectories of the three
stacks to study the degree of fiber defectiveness. Through a spectral clustering-based
algorithm (see chapter 2) it was possible to quantitatively describe the structural
behavior of the 3 aggregates by exploring, in particular, two collective variables
calculated for each monomer: the coordination number and the minimum distance
from the other monomer cores. The coordination number is 2 if the monomer is
perfectly aligned with the other monomers of the assembly, so it has precisely 2
neighbors; the minimum distance between two consecutive monomers, in the case of
ordered stacking, is c. The clusters were then projected on these two variables and
are shown in Figure 3.6 c where the different physical states of the monomers are
perfectly distinguishable.

The monomers belonging to the stack perfectly aligned with coordination number
2 and minimum distance 1, are colored black. The monomers belonging to the tips,
with coordination number 1 and minimum distance c, are represented in red. All the
monomers that during the biased run spontaneously leave the fiber and exchange with
the solvent - represented in blue in the clusters - have a coordination number equal
to zero and a minimum distance greater than 2c. Bulk defects have coordination
number values between 1 and 2 and minimum distance values between c and 2c
and are represented in green. Each fiber leads to different clusters for the various
monomer populations and therefore different structural motifs.

From the analysis it is evident that the fiber 1 exchanges only from the tips and
never forms defects; if it trades from the bulk it is only after a break of the stack.
The fibers 2 and 3 instead exchange along the entire length and both have bulk
defects (in green). In particular, the defects present for equilibrated fibers 2 and 3 are
∼ 0.8 and ∼ 12, respectively. The value lower than one for the number of defects
in fiber 2 indicates, as has already been observed, that the defects do not persist
over time, unlike fiber 3 which has intrinsic defects distributed along the entire stack.
The fact that the blue cluster is not present in fibers 2 and 3 is a consequence of
the solvophobicity of the internal beads of the monomers; as the solvophobicity in
the interaction between monomers increases, the general dynamics of the fiber slows
down, as well as the exchange events of the monomers [69].
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3.5.1 High-dimensional analysis with abstract unsupervised machine
learning approach.

Another interesting method for investigating the dynamics of the defects of the
three fibers is machine learning [83]. In particular, a high-dimensional analysis
was used - SOAP: smooth overlap of atomic positions, vectors - combined with an
unsupervised density-based clustering technique - PAMM: probabilistic analysis of
molecular motif - through which it is possible to highlight the representative clusters
of the physical states of the monomers of the system. The advantage of this analysis
is that it requires neither collective variables for grouping the various clusters, nor the
number of clusters in advance. Through these techniques, we can adopt a bottom-up
approach, considering all the cores of the monomers belonging to the three fibers as
a single data set.

In this way we can identify the different clusters associated with the states of the
monomers in a general and equivalent way for the three fibers: the macro-clusters
obtained from these analysis show structural characteristics consistent with those of
Figure 3.6 i.e. the monomers exchanged with the solution, fiber tips, defects and
stacked monomers (Figure 3.7). Figure 3.7 shows the free energy projected on the
two principal components PCA1 and PCA2 of the macro-clusters indicated in the
image by dashed ellipsoids.

The SOAP-PAMM technique also provides data on exchange rates, which allow us
to compare the fibers with each other and also with the spectral clustering analysis
described in the previous paragraph. The black arrows in Figure 3.7 indicate that
the monomers are constantly changing their state and the rates of these transitions.

In the central graph, referred to fiber 2, the global minimum is represented by the
black cluster, i.e. by the monomers of the bulk, while the green cluster associated with
the defects has a free energy value of only ∼ 2 kcal mol−1 higher than the minimum.
This explains why fiber 2 has no permanent defects, but these are statistically formed
along the bulk; in detail, the green-black pass rate is about 14 µs−1, while black-green
is about 0.3 µs−1, values that lead to a defects annihilation / creation ratio of about
40.

In fiber 3, on the other hand, it is interesting to note that there is a green minimum
and therefore that the defects are a persistent condition and the two rates are of the
same order of magnitude (ratio ∼ 2). Consistent with the analysis of Figure 3.6,
fiber 1 has no green cluster. The analyzes described in the last paragraphs provide
a detailed picture of the distribution and dynamics of defects in a supramolecular
polymer. The presence of non-directional interactions favors the appearance of
defects in the bulk, while their absence leads to ordered and aligned stacks.

Being able to monitor the quantity of defects is interesting because they constitute
the hot spots from which the monomer exchanges take place; defects are therefore
the way through which the exchange pathways of the supramolecular aggregates are
activated.
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Figure 3.7: Unsupervised machine learning of defects and of defect dynamics. a)
Minimalistic representation of the three fiber models, showing only the
center for each monomer in the fibers. The monomers centers are colored
according to the cluster they belong to (black: ordered bulk of the fiber,
red: fiber tips, green: bulk defects, blue: exchanged monomers). b)
First two principal components (PCA1 and PCA2) obtained from the
dimensionality reduction of the SOAP analysis of the equilibrium CG-
MD trajectories of the three fibers. Scatter plots are colored according
to the main macro-cluster obtained from the PAMM analysis. c) Low
dimensional free energy surfaces of the three fibers, computed from the
monomer states distribution of panel (b), showing the kinetic analysis
of the relative transition rates between the macro-clusters. Each macro-
cluster is reported in the FES as a dashed ellipsoid, roughly corresponding
to the area of that cluster. The arrows represent the transition rates for
the interconversion of macro-clusters along CG-trajectories; which are
left out for clarity (CG transition rates, having a comparative value.)
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3.6 Origin and dynamic behavior of defects: determining
the most favorable exchange pathway.

The aim of this work is to effectively predict the exchange pathways of a supramolec-
ular polymer. We have seen how the relative intensity of the directional and non-
directional forces between the monomers depends on the solvophobicity of the
monomers themselves and that an increase in solvophobicity leads to a greater
abundance of defects. The interesting part comes when it is understood that the
defects regulate the favorite exchange pathways for the polymer.

We define the dimensionless parameter α as follows:

Ndef Kdef→sol
Ntip Ktip→sol

(3.1)

where Ntip is the number of tips in the stack which by definition equals 2. Ndef

is the average number of defects in the bulk; this quantity was estimated through
block average with a block size of 5 µs via supervised clustering (Figure 3.6 c) and
unsupervised SOAP-PAMM classification (Figure 3.7). Both methods give Ndef < 1
for fiber 2 and Ndef ∼ 12 for fiber 3.

At equilibrium, Kdef→sol and Ktip→sol are the exchange rates between a bulk defect
and the solution and between a tip and the solution, respectively. In Figure 3.8
a the possible exchange pathways for a supramolecular polymer are represented:
the exchange from the tip (red arrow) and the exchange from a defect along the
fiber (green arrow). Through unbiased CG-MD simulations it is difficult to observe
these exchanges as they constitute rare events, even more so when we increase the
solvophobicity of the monomers as in fibers 2 and 3.

As previously done with BTA fibers and other supramolecular polymers ([84], [69],
[85], [86]), the infrequent WT MetaD was used to activate the exchange of monomers
both from the tips and from the bulk. The statistics collected for the three fibers
are shown in Figure 3.8 b-d, being a good fit of the Poissonian for rare events, from
which it is possible to obtain the unbiased characteristic transition times τ , indicated
in Figure 3.8 b-d with a vertical grey line ([69], [79], [76]).

The red curves represent the cumulative Poisson distributions for the exchange
of a monomer from the tip, while the green distributions represent the exchange
of a monomer from the bulk defect. In Figure 3.8 b there is only the curve for
the exchange from the tips consistent with the behavior of fiber 1 without defects.
Furthermore, the characteristic time τ obtained by the infrequent WT MetaD for
fiber 1 is of the order of microsecond, therefore compatible with the result obtained
through unbiased CG simulations (Figure 3.4 b-top). Fibers 2 and 3 show both
exchange pathway curves.

From Figure 3.8 c-d, it can be seen how the relative distance of the characteristic
times for the two exchange pathways is reduced in the case of the fiber 3 with respect
to the fiber 2; this means that as the defects increase, the two modes of exchange
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Figure 3.8: Monomer exchange pathways in a supramolecular polymer. a) Scheme of
rare events in the exchange pathways: exchange with the solvent from
the tip (red arrow) or from a bulk defect (green). The events of creation
(orange) and annihilation (purple) of a bulk defect have a statistical
nature. (b-d) Cumulative Poisson distribution fits for the events of
exchange with the solution, respectively for Fiber 1 (exchange from the
tips in red) and for Fibers 2 and 3 (exchange from the tips in red or from
a bulk defect in green). Vertical green lines roughly correspond to the
characteristic transition time scale (τ) for each distribution.
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become almost equally probable. To estimate the values of α from Eq. 4.1 for the
two fibers we need the exchange rates K which correspond to the reciprocal (τ−1) of
the characteristic times for the transitions obtained from the Poisson distributions.

From Eq. 4.1 we get α ∼ 4 for fiber 2; this value indicates that the fiber exchanges
more from bulk defects, even if the process competes with the exchange from tips.
As the length of the fiber increases, an even greater value would be obtained as the
probability of swapping from the entire length would be statistically favored. For
fiber 3 we obtained the value of α = 12 which confirms the exchange from the bulk
as the favored pathway.

The combination of biased and unbiased simulations coupled with Eq. 4.1 allowed
us to determine which exchange pathway is more likely to occur. It is important to
note that Eq. 4.1 depends on the average number of defects in the fiber, so we can
only use it when we are able to estimate this quantity with sufficient precision. In
general, we have seen that the fibers that have defects such as fiber 2 and fiber 3,
provide for the continuous creation and annihilation of the defects inside the stack,
as well as the exchange of monomers with the solution; the creation / annihilation
process is much faster than the exchange with the outside. Theoretically, for an
equilibrated fiber, we can say that the following expression holds:

NdefKdef→bulk = NbulkKbulk→def (3.2)

where

Nbulk = Ntot − 2 − Ndef (3.3)

with Ntot the total number of monomers of the model fiber, 2 the number of tips
and Ndef the number of defects in the bulk. Kbulk→def and Kdef→bulk are the rates of
creation and annihilation of the defects, respectively.

The average number of defects can be obtained from the following equation, by
substituting Nbulk in Eq. 4.2:

(Ntot − 2)Kbulk→def
Kbulk→def + Kdef→bulk

(3.4)

Combining Eq. 4.1 and Eq. 3.4 we obtain the following general equation:

α = (Ntot − 2)Kbulk→defKdef→sol
2(Kbulk→def + Kdef→bulk)Ktip→sol

(3.5)

This equation depends only on the exchange rates; in our study we obtained
these rates by means of the unsupervised SOAP-PAMM analysis (Figure 3.7 c).
By inserting the values obtained from this analysis for Kbulk→def and Kdef→bulk we
obtain from Eq. 3.4 the values Ndef ∼ 0.9 for fiber 2 and Ndef ∼ 12.9 for fiber 3,
results consistent with those obtained via clustering analysis. The consistency of the
values obtained with the two methods proves that the simulations are at equilibrium.
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In other assemblies, if the dynamics of the formation and annihilation of defects is
slower, it is possible to use WT-MetaD, as we did to derive the exchange rates of
the monomers with the solution from both the tips and the defects. The formulas
obtained are general, depend on a limited number of parameters and can be used for
supramolecular systems of various types.

3.7 Controlling defects and exchange pathways by
customizing monomers.

The balance between directional and non-directional forces is related to the average
number of defects in a supramolecular polymer at equilibrium. Through the analysis
of fibers 1, 2 and 3 we were able to obtain general indicators to infer the exchange
pathways favored by the supramolecular system. If we modulate the balance between
directional and non-directional interactions so that one or the other prevails we can
influence the abundance of defects. We expect to be able to increase the directional
interactions up to the complete disappearance of defects, obtaining a perfectly aligned
fiber. Ways to modulate this balance in favor of directional interactions can be,
for example, i) increasing the charge of the dipoles and ii) increasing the monomer
core area. By making these modifications to the single monomers in the equilibrium
configuration of fibers 2 and 3, we should obtain a progressive decrease of the defects
until their eventual disappearance, obtaining a final configuration similar to fiber 1.

Figure 3.9 a shows different starting configurations with the customized monomers
which, after a 30 µs CG-MD run, lose all the bulk defects. The dashed line to the
right of the red vertical represents the normalized fraction of defects set to 1. The
orange and blue curves were obtained by increasing the dipole charges in fiber 3
from ± 1.4e to ± 1.7e or ± 2e, respectively. While, the pure and green curves were
obtained by increasing the flat area of the monomers of fibers 2 and 3 by a factor of
1.5. Both by increasing the charges of the dipoles and the area of the monomers, the
number of defects go to zero in 30 − 40 µs of CG-MD runs. From the simulations it
is clear how all the fibers end up being perfectly aligned and defect free.

An interesting customization to explore is to change the shape of the monomer
core, making it square and consequently increasing the number of arms from three
to four. As the arms end with solvophilic beads, the effect should be to increase
directional interaction through more effective screening against defect formation.
Figure 3.9 b shows the two versions created for the four-armed monomers: one with
the same area as the original monomer and one with the same area as a porphyrin.
Porphyrin self-assembles generally into fibers without defects in organic solvent ([84]).
In both cases, the four-side-arm monomers form a perfect fiber (Figure 3.9 c-d).

These results show how the relative difference between directional and non-
directional interactions can be modified by acting on molecular factors such as
solvophobicity and shape. These are just some examples of how it is possible to
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Figure 3.9: Controlling the number of defects by modifying monomer-monomer in-
teractions or monomer shape factors. a) Reducing the number of defects
by increasing directional interactions. On the left of the red vertical line:
normalized fraction of defects in the fibers at equilibrium. On the right
of the red vertical line: change in the normalized number of defects as a
function of simulation time obtained by i) increasing the charges in the
central dipole (Dip) of Fiber 3 by a factor ∼ 1.2 (orange) or ∼ 1.4 (blue),
or ii) increasing by a factor 1.5 the monomer core area (Acore) in both
defected fibers (Fiber 2 in purple and Fiber 3 in green). All the curves
have been smoothed with Bézier curves. b) Minimalistic CG models for
monomer with four-arm cores. Left: a monomer with the same core area
as BTA - but having square instead of triangular shape - and with the
same amphiphilic arms of Fiber 3. Right: a monomer with the same core
area as porphyrin [84]. c) Fiber composed of 40 four-arm monomers as
in panel b), right. d) Equilibrium macro-clusters for monomer states of
fiber c): fiber tips in red and bulk monomers in black; the fiber shows no
defects.
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customize a monomer ([84], [87]). The most captivating result is that with simple
interventions on the monomer we not only modify the structure of the resulting fiber,
but also its dynamic behavior - influencing its number of defects in the bulk and
therefore its exchange pathways.

3.8 Conclusions and future outlooks

Multiscale modeling combined with classical and advanced CG molecular dynamics
simulations and unsupervised machine learning have provided interesting insight into
the intrinsic dynamics of supramolecular polymers.

A minimalistic model representative of the family of three-armed monomers,
i.e. BTAs, was created, allowing us to study the structure and behavior of the
supramolecular fibers obtained from it.

Thanks to the data collected, a clear and close relationship was found between the
polymer structure at equilibrium - abundance of defects - and its exchange pathways.

Defects constitute a key factor of the work as controlling their average number
implies controlling the intrinsic dynamics of exchange of the stack.

The quantity of defects derives from the relative difference between directional
and non-directional interactions between the building blocks and this difference can
be modulated by intervening on the solvophobicity of the monomer.

The transferability of the CG model allows to easily change the monomer structure
- for example by inserting more solvophobic beads in the side chains or by changing
the surface of the core - to statistically increase / decrease the appearance of defects
according to the exchange pathways we want to favor.

The SOAP-PAMM unsupervised analysis also made possible to derive the exchange
rates of the monomers and to compare the different dynamics of the three fibers
studied. Thanks to these data, with the general formula (Eq. 3.5) we can calculate
the dimensionless parameter α which provides a measure of how much the production
of defects is favored and consequently the exchange from the bulk compared to that
from the tips. This work showed how, in principle, we can uniquely link the dynamic
behavior of a supramolecular polymer to the molecular structure of its monomers.
The generality of the concepts involved allows us a further step towards the rational
design of these fascinating and complex systems.
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Chapter 4

Dynamic phase separation in multidomain
lipid membranes and the effect of
interaction with amphiphilic gold
nanoparticles.

4.1 Amphiphilic gold nanoparticles and lipid rafts.

The growing progress in manipulating aggregates on nanometric scale posed the base
for investigating various methods to rationally design sophisticated nanomaterials
able to mimic/interact with biological systems. Monolayer protected gold nanoparti-
cles (AuNPs) represent a reference tool for diagnostic and therapeutic applications
thanks to the biocompatible nature of gold, their simple surface chemistry and their
interesting optical and electrical properties. The gold core is commonly covered by a
shell of ligands through Au-S covalent bonds. As shown in numerous studies [88], [5],
[89], [90], [91], [92], [93], by tuning the nanoparticle size and the monolayer structure,
charge and shape, the properties of the AuNPs would change. All these parameters
have to be added to the complexity of the biological environments that the AuNP
would approach, making the case definitely a tricky one.

The cell membrane is the first physical barrier the nanoparticle needs to overcome
when the internalization in a living system occurs. Cell membranes are labyrinthine
architectures of lipids and proteins - in a variable composition depending on the cell
type - with dynamic and heterogeneous features directly involved in NP attachment
process. In order to disentangle, as much as possible, all the relevant physico-chemical
factors acting in this interaction, many simplified model membranes with few lipid
types and no proteins have been used so far [94]. Different morphological distributions
of the ligand shell and its chemical nature and composition affect the internalization
pathway of NPs, as shown in both experimental and computational studies.

Verma et al. [5] show that Au NPs with a random hydrophobic octanethiol (OT)
and hydrophilic 11- mercapto-1-undecanesulphonate (MUS) ligand shell enters the
cell membrane via endocytic pathway, while a striped arrangement of the same
ligands favours a spontaneous internalization without damaging the bilayer. Indeed,
Gkeka et al. [90] suggested that a homogeneous ligand shell is likely to promote the

57



translocation within the membrane. Van Lehn and Alexander Katz [88] investigated
random, mixed and striped MUS-OT NPs of 2 − 6 nm and they found that ligands
fluctuations make very difficult to distinguish various ligand shell patterns in solution.
In their subsequent work, by using an implicit bilayer and implicit solvent model they
showed that there is no substantial difference in the water-membrane free energy
when the interaction with amphiphilic NPs with random or striped ligand patterns
occurs [91].

A first description of amphiphilic NPs internalization pathway suggested that the
key of the insertion process is the hydrophobic effect. The NP tries to minimize its
hydrophobic surface area exposed to water; when it encounters a lipid tail protruded
in the solution and the ligand-lipid contact is established, the NP penetration into
the membrane core can take place [95]. Simonelli et al. [39] identified a three-step
process for the internalization of an anionic Au NP with random and patched ligands
morphologies in a POPC lipid bilayer as shown in Figure 4.1; after the adsorption
on the membrane surface, a hydrophobic ligand-lipid contact occurs and the NP
starts to penetrate into the membrane core until it reaches the final "snorkeled"
configuration with ligands uniformly anchored to both membrane leaflets.

Figure 4.1: Three-steps process of the NP internalization. a) NP adsorption on lipid
membrane surface. b) hydrophobic contact and partial NP embedding.
c) Snorkeled configuration in which NP has five anchors on the opposite
leaflet.

The main interaction mechanism is the same for both random and patched NPs
except for the slower kinetics of the latter. Many efforts have been made to com-
prehend the relationship between NPs and model cell membranes; on the NPs side,
the combination of experiments and molecular dynamics simulations have provided
relevant findings not only regarding NP ligands arrangement but also about NP
surface chemistry and charge [89] [90] [91] [92] [93]. On the contrary, few studies on
more realistic lipid membranes are available so far. As mentioned before, biological
membranes have very complex features, especially for lipids heterogeneity. Real
membranes present distinct relatively ordered subcompartments called lipid rafts or
simply rafts.

Rafts are liquid-ordered (Lo) phase nanodomains tipically enriched in cholesterol
and saturated lipid species like sphyngolipids and gangliosides embedded in a liquid
disordered phase (Ld), mostly consisting of unsaturated lipids. They form phase-
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separated functional platforms on the cell membrane and there are evidence they
are involved in many cellular self-organizing functions, in the interaction between
membrane-associated components as well as in signaling and trafficking cellular
processes [41]. Specialized domains play an important role in regulating the protein
traffick; a protein may associate preferentially to the raft domain or alternatively to
the Ld phase. Furthermore, being rafts rich in cholesterol and sphingolipids, they
may directly act on proteins by modulating bilayer properties. Several works suggest
lipid rafts as fundamental key in brain and nervous system functioning [42], but
an overall picture of physico-chemical mechanisms regulating their formation and
evolution is still lacking.

In the last decades, in order to obtain a more general picture on the molecular
evolution of the mechanisms involved, MD simulations have offered crucial insights
on functionalized NP kinetics and thermodynamic, model membranes and their
interaction. The next step is to investigate, through the combination of simulations
and experiments, more realistic membranes, with a lipid composition offering the
possibility to observe spontaneous phase separation, such as that expected in raft-
containing membranes.

Recent studies show how the embedding of NPs with a diameter of less than 4 nm
is favored on the liquid disordered phase and also larger metallic NPs - which are
generally just adsorbed on the bilayers - have an effect on the membrane surface
i.e. its lipid packing and rigidity [33]. Intrinsic curvature at the boundary of phase-
separated lipid bilayers seems to have a key role in driving the interaction with
NPs. Cationic NPs seem most attracted to phase-separated bilayers rather than to
single-phase ones; the work by Sheavly et al. show that - after being adsorbed on Ld
phase - cationic NPs adsorb to the boundary between Ld phase and Lo phase, where
the bilayer present an intrinsic negative curvature [96]. Tieleman et al. (2018) showed
that the NP adsorption and penetration in phase-separated membranes are generally
regulated by ligands density and bending, NPs surface charge as well as by lipid-lipid
interaction [32] [97]. In Canepa et al. [98] we show how AuNPs stably interact
with model neuronal membranes, leading to the formation of bilayer-embedded,
two-dimensional, ordered NP supra-aggregates. Moreover, we find that Au NPs can
suppress lipid phase separation, in a concentration-dependent fashion. By combining
a simple thermodynamic model with MD simulations we outlined a way to determine
if NPs will have the tendency to favor or disrupt the lipid lateral phase separation of
the model membrane.

4.2 Experimental amphiphilic NPs and multidomain lipid
membranes by our experimental collaborators.

The present computational work has been made in collaboration with the experimental
group of Annalisa Relini at University of Genoa. In the next paragraphs, we present
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the experimental results that motivated our computational investigation. First, we
show the AuNPs and the model neuronal plasma membranes preparation methods;
then we discuss the AFM and QCM-D measurements regarding the interaction
between the NPs and the bilayer. The experimental amphiphilic Au NPs were
synthetized using a one-phase method. A thiol 0.225 mol solution - composed of 1-
octanethiol (OT, 0.075 nmol) and 11-mercaptoundecane sulfonate (MUS, 0.15 nmol)
- was added to the gold solution and after a short wait the reducing agent was
added leading to a reddish-black gold-thiol mixture. The reaction solution was then
refrigerated at −21◦C, to precipitate the NP overnight.

Figure 4.2: AFM image showing the morphology of phase separation; roundish or-
dered domains of different size are surrounded by the continuous disor-
dered phase.

After repeated washings, the precipitate was dried under vacuum to obtain a
shiny dark powder. The NP- core size is 2.7 ± 0.8 (σ) nm and the measure was
obtained by transmission electron microscopy (TEM). The MUS:OT ratio after
decomposition is 80:20 as found using nuclear magnetic resonance (NMR). The NP-
colloidal stability has been ensured by ζ potential measurement of −51 ± 5 mV. The
model neuronal plasma membrane (M1) was derived from vesicles composed by
1,2-dioleoyl-sn-glycero-3-phosphocoline (DOPC), sphingomyelin (SM), cholesterol
(chol) and ganglioside GM1 in the molar ratio DOPC:SM:chol:GM1 63:31:1:5. This
composition guarantees the lateral phase segregation of SM, cholesterol and GM1
[99] [100] [41] [101].

The presence of the negatively charged GM1 leads to a ζ potential of −64 ± 3 mV.
The M1 supported lipid bilayer (SLB) is obtained by vescicles rupture on a solid
substrate. Figure 4.2 shows the AFM image of the M1 composition with well visible
ordered domains of variable sizes surrounded by the disordered phase. Ordered
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domains have regular height profiles with a height difference respect to disordered
phase is ∆z = 2.4 ± 0.3(σ)nm; precedent works on rafts containing gangliosides
confirm this value [102] [103].

In order to study the interaction of M1 model membrane with NPs, two different
sample preparation methods have been developed: the incubation method and the
pre-incubation method. QCM-D and AFM were used to investigate the interaction
features. In the first setup NPs were incubated on a phase-separated preformed
multidomain SLB deposited onto a freshly cleaved mica foil and imaging has been
taken at different incubation times. The solid support acts like a motional constraint
on the membrane by reducing its fluctuations and lipids diffusion in both in-plane
and out-of-plane directions. Furthermore, these constraints suppress the formation
of transient defects at bilayer edges like lipid tail protrusions able to stabilize NP-
membrane interaction [104]. In our M1 SLB, obtained by the incubation method,
there are no defects on a scale of tens of µm (Figure 4.2).

Figure 4.3: Schematic representation of the two sample preparation protocols for
AFM imaging and QCM-D. a) the incubation method in which NPs are
incubated on a preformed phase-separated SLB and b) the pre-incubation
method in which NPs pre-incubated with multidomain lipid vesicles
before their deposition on mica substrate.

This scenario will lead to a weak adsorbtion of NPs on the liquid-disordered
phase; the large free energy barrier the NP has to overcome to be partially or totally
embedded can be lowered by the presence of defects [105] [8]. The pre-incubation
method has been used to ensure a fast kinetics and the formation of defects, though
a more stable NP-membrane interaction. In this setup, NPs are pre-incubated in
multidomain vescicles before deposition on the substrate. In this way, one has the
chance to analyze the behaviour of weakly adsorbed NPs or completely embedded
NPs in M1 membrane as well as NPs effects on phase separation. The two setup
preparation, shown in the scheme Figure 4.3 is the same for both AFM and QCM-D
samples.
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4.3 Computational models of the amphiphilic NPs and of
the multidomain lipid bilayers.

In silico models for the NP and the multidomain lipid membranes are based on the
well-known Martini coarse grained (CG) force field [13]. Here, NPs have an Au core
with a diameter of 2 nm or 4 nm. The 2 nm core consists of 144 Au atoms and 60 S
atoms, with an atomistic representation while the 4 nm core is a hollow sphere made
of 346 Au atoms and 240 S atoms equidistant from the center of the sphere.

Figure 4.4: Coarse grained model for AuNP. The core is represented by an elastic
network between Au-Au and Au-S. OT and MUS ligands are shown
through Martini beads schematization.

Au-Au and Au-S interactions are described by an elastic network. In the 4 nm
core version, NP surface is functionalized with the same ligand density of the 2 nm
NP (ρL = 4.78 ligands nm−2). Ligands are a mixture with a ratio 70:30 of an anionic
11-mercaptoundecanesulfonate (MUS) e hydrophobic octanethiol ligand (OT) - see
Figure 4.4. More specifically, the OT ligand is a chain of two hydrophobic Martini
beads and The MUS ligand is made of three hydrophobic beads and one negatively
charged terminal bead [39] [8]. The in silico model neuronal plasma membrane is a
mixture of 1,2-dilinoleoyl-sn-glycero-3-phosphocoline (DLiPC), SM, cholesterol and
GM1 with the composition DLiPC : SM : chol : GM1 56 : 18 : 17 : 9 Figure 4.5.

M1 membrane consists of 2850 lipids solvated by 35 CG water per lipid and salt at
the physiological concentration of 150 mM; in order to obtain a stable multidomain
membrane with well separated Lo - Ld phases over long simulation time scale, some
adjustments in the composition were needed. The Martini modeled M1 membrane
presents two differences compared to the experimental M1. It contains DLiPC - a
lipid with a double unsaturation - instead of DOPC - single unsaturation - and a
larger amount of cholesterol.

For all the lipids but GM1 standard Martini topology is used [13]. Some previous
GM1 topologies result in a strong GM1 clustering attitude. To prevent this behavior,
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Figure 4.5: Coarse grained models and their chemical formula for the neuronal model
membrane lipids.

the GM1 parametrization by Dasgupta et al. turned out to be the best choice
according to experimental data; this topology merge the non-bonded parameters
by Gu et al. and the bonded parameters by López et al. [106] [107] [16]. The
equilibrated phase separated model neuronal membrane is shown below (Figure 4.6).

Figure 4.6: Top and side view of the phase separated model membrane at equilibrium
(DLiPC in red, SM in light pink, GM1 in yellow, chol in grey)
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4.4 Results

4.4.1 Incubation method: Amphiphilic NPs weakly adsorb on the SLB
disordered phase

In this section we will describe the effects observed, through QCM-D and AFM, when
we deposit NP in various quantities on the preformed SLB for incubation method.
The NPs injected into the QCM chamber interact with the SLB on time scales of the
order of a few hours. The QCM-D curves in the picture show how the interaction is
substantially weak: the NPs are absorbed at the top of the bilayer but they are not
embedded, in fact they can be easily removed or spontaneously desorb (Figure 4.7).
The decrease of the normalized ∆f frequency obtained in the first two hours leads
us to calculate the maximum adsorbed mass of 54 ng cm−2. It is possible to return
to the starting frequency with the rinsing of the sample, which results completely
intact from the data.

The ∆D dissipation variation does not show important perturbations, therefore the
stiffness of the membrane is not affected, indicating that the NPs are never integrated
into the bilayer - i.e. their penetration process does not reach the embedded state.
The same conclusion is reached by AFM imaging of different quantities of NP injected
on preformed SLB again with incubation method setup.

Figure 4.7: Frequency variation ∆f and dissipation variation ∆D from QCM-D curves
obtained after NPs injection onto a preformed M1 SLB.

Imaging was achieved after several incubation times as shown in the picture. After
only forty minutes there are no NPs on the bilayer, while after about 15 h of waiting,
numerous clusters of NP adsorbed on the bilayer surface at higher heights than those
of the ordered domains are clearly visible, as shown in pictures b e c Figure 4.8. Also
in this case the type of interaction between the NPs and the SLB appears weak as
it is possible to move the clusters with the tip of the AFM or to remove most of
them by rinsing. Cluster formation is a time-dependent phenomenon probably due
to the diffusion of NPs on the disordered liquid phase of the model membrane. Both
experimental apparatuses confirm a weak interaction of the NPs with the SLB surface;
it is also in line with several works with MUS: OT NP and phosphatidylcholine lipid
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bilayer.

Van Lehn et al. ([108]), starting from studies on vesicle fusion, have shown how the
increase in the stochastic fluctuation of the amphiphilic tails of the neutral bilayer
lipids of -PC favors a more stable interaction of the NP with the membrane and the
subsequent partial or total embedding. The fluctuation of the tails and therefore
the presence of defects in the bilayer, turns out to be one of the factors that lower
the free energy barrier by mediating the fusion between the NP and the membrane.
Another factor, in addition to the lipid composition of the bilayer, appears to be
the presence of rigid supports in the experiments which slow down the dynamics of
the lipid. The free energy barrier, instead, is considerably reduced in the case of
suspended PC lipid bilayer for which we observe the penetration of the NPs.

Figure 4.8: Preformed multidomain M1 SLBs after the incubation of NPs. On
the left, AFM image acquired ◦15 h after the addition of NPs
(10 µL, 0.12 mg mL−1). On the right, AFM image acquired ◦40 h after
the addition of NPs (40 µL, 0.12 mg mL−1). Lighter areas correspond
to NPs clusters which are higher than the ordered domains.

Van Lehn et al. [108] show how the penetration of NP inside the membrane
depends on the overcoming of two barriers: the first is linked to the fluctuation of
the lipid tails, while the second is linked to the reconstitution of the leaflet after the
internalization of the NP, so that it reaches the minimum energy configuration. It is
possible to observe from the picture how our SLB - in addition of being on a mica
support - has no defects on a scale of tens of micrometers and this indicates that the
first barrier is probably too high to allow the tails to establish contact with the NP
(Figure 4.2). Consistent with these studies, in fact, the fusion of the NP with the
model membrane is evidently hindered; however, we expect the interaction dynamics
to be more consistent in the pre-incubation method, i.e. the second setup used in
our experiments described in the next paragraph.
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4.4.2 Pre-incubation method: membrane fluctuations influence NP
uptake

In this set-up the NPs are injected into the phase separation vesicles for a certain
time before they are deposited on the mica substrate for AFM imaging or on the
QCM-D sensor, which constitutes a substrate in itself. Once deposited, the vesicle
ruptures and forms an SLB with the NPs already inside. In this set up, when we
insert the NPs, membrane fluctuations are not subjected to substrate constraints
and transient defects such as lipid tails protrusion can form.

Figure 4.9: M1 SLB formation through deposition of lipid vesicles with and without
NPs in the QCM-D chamber. Frequency variation (continuous lines),
∆f, and dissipation variation (dotted lines), ∆D, obtained after injection
in the QCM-D chamber of M1 lipid vesicles without NPs and M1 lipid
vesicles pre-incubated with NPs for 4 h. The adsorbed mass is higher
when vesicles are pre-incubated with NP-. When the vesicles attached
to the substrate, a positive ∆D was recorded, indicating the presence
of a viscoelastic film (i.e., the vesicles layer). During vesicle fusion ∆D
decreased gradually to zero.

When the NP meets the tail, contact is established and, depending on the size
of the NP, absorption or complete uptake of the NP occurs. Figure 4.9 shows the
QCM-D curves during SLB formation after the vesicles have been deposited on
the sensor. The measurements were made with and without NP. Compared to the
case without NP, the vesicles containing the NPs result in greater mass adhesion
throughout the process.

From the final frequency shift it is possible to obtain the value ∆m = 267 ± 18 ng cm−2

which corresponds to the total mass of the absorbed NPs. The NPs number is about
0.017NP nm−2 and the number of lipids per nm2 is about 1.34 mol nm−2, from
which we can derive the number of lipids per NP of about 80 lipids per NP.

Previous studies show that MUS: OT Au NPs interact in a stable manner with
vesicles containing a fair percentage of DOPC and SM that show phase separation
however, it seems that the same particles interact weakly with SLBs that present
always phase separation and containing GM1 (([88], [33], [109], [100]). The last result
could be a consequence of the slower dynamics due to the set-up and therefore to
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the almost zero stochastic fluctuations of the lipid fluctuations. The pre-incubation
method presented in this work seems to be the suitable protocol to study the effects
of NPs embedded in phase separation membranes.

4.4.3 Amphiphilic NPs alter the membrane phase separation and NPs
disrupt phase separation by altering lipid–lipid interactions

The two samples for AFM imaging were prepared with a pre-incubation of the NPs
in the vesicles with two different waiting times, respectively 10 min and 4 hours.
As already noted from the analysis of the QCM-D curves, with this setup the NPs
interact stably with the membrane.

Figure 4.10: Alteration of phase separation after the interaction with NPs. a On the
left, AFM image showing the ordered domain fragmentation induced
by NPs (20 µL, 0.12 mg mL−1) after 10 min of pre-incubation. On the
right, AFM image showing the vanishing of phase separation induced by
NPs (20 µL, 0.12 mg mL−1) after 4 h of pre-incubation. The dashed
white contour shows one of the sparse disordered patches within the
new mixed phase.

The AFM images, however, offer further details on the phenomenon; both NP
incubation times lead to an alteration of the phase separation. Figure 4.10 indicates
that already after 10 min the NPs make the phase separation less clear, the domains
have fragmented edges and an irregular shape compared to the situation without
NP (Figure 4.2). After 4 hours of pre-incubation the domains have completely
disappeared and the general morphology is totally different, presenting itself as a
disordered mix of NP and lipids (FIG.5b). Also visible are some clusters of NPs that
we will analyze more closely in the next paragraphs.

Figure 4.11 represents the histogram with the distribution of Deltaz height shifts
between the ordered and disordered phase in the case without particles and in
the one with the particles pre-incubated for 10 min. Without NP the value is
∆z = 2.4 ± 0.3 (σ) nm, while with NP the value drops to ∆z = 1.5 ± 0.5 (σ) nm.
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Figure 4.11: Distributions of height difference (∆z) between ordered and disordered
domains in M1 SLBs without NPs (red bars) and in M1 SLBs deposited
after 10 min of pre-incubation with NPs (blue bars).

4.4.4 MD Simulations

The maximum resolution that can be obtained through AFM imaging is not enough
to understand the molecular mechanisms involved in the interaction between the NP
and the model neuronal membrane, both in the case of adsorption and in that of
internalization of the NP.

Figure 4.12: Potential of mean force (PMF) profiles for the adsorption of a single
NP onto Lo and Ld phase of the model membrane.

As shown in the Figure 4.8, the NP clusters are located in the disordered liquid
phase of the multidomain membrane. We used MD simulations to observe "closely"
the adsorption of NP by calculating the free energy of absorption of a single NP on
the phases Lo and Ld, respectively. In Figure 4.12 the potential mean force profiles
are compared; for the adsorption on phase Lo a value of about 18 kJ mol−1 (9 kbt)
of binding free energy is obtained, while for the absorption on phase Lo the value
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obtained is about 11 kJ mol−1 (5 kbt).
These results are consistent with the experiments as they show that the interaction

on the Ld phase is favored over that on the ordered domains.

Figure 4.13: Snapshot of a NP adsorbed onto Ld phase.

The thermodynamic advantage is also clear from the behavior of the NP during
the simulations; both the 2 nm and the 4 nm NP, initially positioned in the aqueous
phase, spontaneously adsorb on the Ld phase. Even in the case of a brief adsorption
on Lo phase, the NP migrates to Ld phase after only 100 ns and remains there for
the rest of the simulation (20 µs).

Figure 4.14: Simulation snapshot of the end configuration (20 µ s), in which the
lateral phase separation has disappeared.

The liquid disordered phase allows the NP to interact with the lipid heads of the
membrane until it reaches a stable contact Figure 4.13. After the adsorption on the
Ld phase, the simulations show that the phase separation is altered and after 20 µs
there is no longer any trace of domains. Regardless of the degree of NP incorporation
and size, the phase separation disappears (Figure 4.14). When the domains fragment,
the lipids previously confined to the Lo phase diffuse into the Ld part coming into
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contact with the unsaturated DLiPC lipids.
We can quantify this mixing between lipid species by studying the variation of

contacts between all lipid pairs. Figure 4.15 shows how after the incorporation
of NP, at equilibrium, the intradomain contacts decrease. In this new state of
mixed equilibrium, the adsorption of an NP is thermodynamically cheaper than the
adsorption on the Ld and Lo phases.

Figure 4.15: Percentual variation of lipid - lipid contacts in the bilayer with NPs
(altered phase-separation) and without (stable phase-separation).

4.4.5 MD simulations as a tool to predict the tendency of NPs to alter
phase separation in multicomponent lipid bilayers.

The experiments and simulations described in the previous paragraphs show how it
is energetically convenient for NP to interact stably with the membrane and how
this interaction leads to the fragmentation of the phase separation of the model
membrane used. Studying the phenomenon from a thermodynamic point of view
requires considerations regarding the Gibbs free energy and its components. In a
multidomain membrane in equilibrium in its S phase separated state, the Gibbs free
energy is minimal and is described by the following expression:

GS = HS − TSS (4.1)

if we want to describe a spontaneous transition from the mixed state M to the
phase separated state S, then expression Eq. 4.1 can be rewritten in the following

∆GS→M = ∆HS→M − T∆SS→M > 0 (4.2)

The entropy term includes to a greater extent the entropy of mixing and to a lesser
extent the configurational entropy of lipids. The enthalpy term instead is the mixing
enthalpy. To destabilize the phase separation it is necessary that there is an entropic
gain and an enthalpy loss [110]. We are going to omit the S → M subscript for the
sake of simplicity.
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We want to analyze this Gibbs free energy ∆GNP in case the membrane sponta-
neously interacts with a certain concentration of NPs and to study the sign of ∆GNP

to determine the tendency of NPs to alter phase separation. We then rewrite the
expression Eq. 4.2 in the case of interaction with NPs:

∆GNP = ∆HNP − T∆SNP (4.3)

The entropic term ∆SNP is substantially equal to the corresponding ∆S term
without NP, since cNP is much smaller than the clip, i.e. the concentration of NP is
negligible compared to the lipid one. The enthalpy term therefore decides the sign of
∆GNP; we then compare ∆H with ∆HNP.

1. ∆HNP < ∆H. The decrease in enthalpy with the inclusion of NPs can reduce
the stability of the phase separation if the NP concentration is high enough.

we can define ctr as a threshold value for which ∆HNP is equal to the entropic term.
Ours is the case of the concentration of NP higher than the threshold value ctr which
leads to an enthalpy loss and therefore to a mixing state M favored with respect to
the state S. With short simulations it is possible to calculate all the enthalpy terms
involved in both the cases.

2. ∆HNP > ∆H. Then the state S is favored and therefore the NPs do not alter
the phase separation [111], [112]. The values obtained for ∆H and ∆HNP in the case
of the model neuronal membrane confirms the condition of the second case: the NPs
alter the phase separation, in particular they reduce the enthalpy factor connected
to the lipids in the ordered liquid phase, making their confinement less favorable.

Molecular dynamics simulations are a powerful tool for making predictions about
the type of effect that functionalized NPs have on multidomain membranes.

4.4.6 Amphiphilic NPs form ordered supramolecular aggregates within
the membrane

In the previous paragraphs it has been described how the insertion of NP, through
pre-incubation method, in vesicles that spontaneously form phase separation, leads
to the fragmentation of the ordered domains until their complete disappearance.

The NPs are therefore in a new mixed phase in which they are free to diffuse.
In Figure 4.9, obtained by AFM imaging of vesicles with NP pre-incubated for 4h,
supramolecular aggregates are clearly visible. By increasing the pre-incubation time
by a few hours, the lattices become even more evident. In Figure 4.16, a digital zoom
shows a lattice of NPs embedded in M1 bilayer.

Histogram in Figure 4.17 shows the distribution of height differences between the
supramolecular aggregates and the disordered phase; the obtained value ∆z = 1.2 ± 0.3
shows that the NPs are partially incorporated in the bilayer being smaller than the
average diameter of the NPs used for the experiment. ∆z data have been obtained
from the contour of the rough patches around the NP lattices (e.g., the one outlined
by the white dashed line in Figure 4.10). The histogram in Figure 4.18 is instead the
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Figure 4.16: Widespread NPs lattice, imaged by AFM, after 4 h of pre-incubation
with NPs (20 µL, 0.12 mg mL−1). Digital zoom of the area with blue
contour showing the lattice order at higher magnification.

Figure 4.17: On the left: distribution of distances between NPs. On the right:
distribution of the height of the supramolecular lattice, ∆z, measured
with respect to the disordered phase.
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distribution of the NP-NP distances, the average distance is 7.5 ± 0.1 nm with a
standard deviation of 1.6 nm in line with the NP size distribution.

Figure 4.18: Potential of mean force (PMF) for the dimerization of 2 NPs of 4 nm size
embedded in the membrane. In the inset, the NP–NP radial distribution
function, g(r), obtained during the unbiased run with 7 NP- embedded
in the bilayer.

As part of the study of the interaction between amphiphilic gold nanoparticles and
lipid membranes, Atukorale et al. highlighted how, in a system like the one described
here, there is a certain structure-function relationship, in particular concerning the
NP core size [109]. Generally, NP aggregation is observed when the size of the NPs
is comparable to or greater than the thickness of the membrane.

Figure 4.19: Height profile of a single NP and of a dimer of NPs (4 nm), averaged
along the simulation time.

In the experiments described, the size range of the NPs is 2 − 4 nm in diameter.
Let’s try to investigate the aggregation of NP more thoroughly through dimerization
simulations, to understand to what extent the size affects the formation process of
the observed ordered lattices. Unbiased simulations of 10 µs with NP of 2 nm in
diameter lead only to transient dimers. On the other hand, using NP of 4 nm in
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diameter - comparable in size to the thickness of the membrane - stable dimers are
obtained. The dimerization PMF in Figure 4.18 shows how the dimerization for NP
of this size is particularly favorable.

Figure 4.20: Side view of the NPs dimer, in which the formation of a nanopore is
shown. Lipid head groups are shown as semi-transparent surface, lipid
tails are not shown for clarity, Na+ ions are shown in red and water in
blue.

To have a comparison with the experimental data, we calculate the height difference
of the NP with respect to the bilayer mediated along the simulation time, obtaining an
average protrusion value of 1.5 nm compatible with that obtained by AFM imaging
of 1.2 nm and consistent with the degree of incorporation of NPs (Figure 4.19).

The snapshot of Figure 4.20 shows the dimerization of two NPs of 4 nm in diameter
and the relative formation of a small nanopore which allows the surrounding ligands
to reconfigure around the NP [93]. However, the nanopore is the only defect caused by
dimerization and remains almost unchanged for the entire duration of the simulation.
In addition to dimers, configurations with higher NP numbers were also tested.

Figure 4.21: Top view of the initial configuration of an MD simulation in which 7
NPs (4 nm), embedded in the bilayer, are let to freely diffuse in the
bilayer. e Hexagonal aggregate spontaneously formed by the 7 NPs after
23 µs of simulations, and stable until the end of the run (30 µs)

First it was verified that a 7 NP preformed hexagonal lattice was stable with
an unbiased run of 10 µs. Thus, using a configuration with 7 embedded NPs with
random positions, free to diffuse in the bilayer and interact with each other, it was
observed after 23 µs of unbiased run that the NPs spontaneously form a hexagonal
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aggregate - see Figure 4.21. The lattice distance, shown in the inset of Figure 4.18, is
consistent with the experimental data. In both simulations it is possible to observe
the spontaneous formation of pores that open and close many times during the
simulation (microseconds time scale).

4.5 Conclusions and future outlooks

The work just described shows how negatively charged amphiphilic gold nanoparticles,
ranging in size from 2 nm to 4 nm, are capable of altering the phase separation
of a model neuronal membrane. The samples used for AFM and QCM-D were
prepared by pre-incubating the NPs in multidomain vesicles. The NPs interact
spontaneously with the bilayer i.e. via passive plasma membrane penetration and
completely suppress the ordered domains already after 4h of incubation. The new
mixed phase allows the NP to diffuse in the bilayer to form stable and ordered
two-dimensional aggregates (Figure 4.21).

The interpretation of the effect of NP on the ordered phase was given through
a simple thermodynamic model: from the comparison of the enthalpy between the
lipids in the phase separation state and in the mixed state, with and without NP, it
is possible to deduce the energetically more favorable following the interaction with
the NP. The model was tested on membranes with different compositions; it can also
be used for any embedded NP with a size comparable to the thickness of the bilayer.
In this regard, MD simulations prove to be valuable for extrapolating the enthalpy
values of the system and therefore constitute an effective tool for making predictions
on the effect of inclusion in the membrane of objects of various kinds.

For example, one could proceed in similar ways to understand if certain types of
proteins or peptides can influence the lateral phase separation of a lipid bilayer. Or
investigate the effect of the same protein in different membrane compositions. Zeno
et al. investigated the dissolution of phase separation following the inclusion of large
molecular assemblies and nanolipidprotein particles on a small protein [113].

Schieve et al. showed that when several membrane proteins interact simultaneously
with the ordered liquid phase, they can destabilize it until the complete rupture
of the rafts [114]. The cause of the fragmentation in this case is the increase -
due to the collisions between proteins - of the steric pressure until the enthalpy of
membrane mixing is overcome. This result supports the thesis according to which
the stability of phase separation is directly linked to the balance of free energies.
Cases of transmembrane proteins capable of stabilizing lipid rafts ([115], [116]) or
even particular peptides capable of inducing or suppressing phase separation in
a concentration-dependent fashion have also been documented. This is the case
of gramicidin-A, a hydrophobic helical peptide, embedded in DOPC: DSPC: chol
vescicles.

By studying the interaction of NPs with the membrane in more detail, we note
that there are other similarities with transmembrane proteins. In fact, when a ligand-
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protected NP is embedded in the membrane it assumes a cylindrical configuration
due to the hydrophobic effect; the flexibility of the ligands allows the NP to modify
the hydrophobic surface exposed to the surrounding environment. The NP exposes
its lateral surface, i.e. the hydrophobic carbon chains, to the membrane lipid tails,
and its hydrophilic sulfonate ligand terminals, i.e. the bases of the cylinder, to the
aqueous phase. As in the case of transmembrane proteins, this configuration leads
to a hydrophobic mismatch between the NP and the lipid domain, favoring the
aggregation of the NPs. The tendency of the membrane to minimize the curvature
induced by the presence of NPs also contributes to their aggregation. In fact, the
ligands adjust and reorient around the NP stabilizing the aggregate.

The interplay of the physical mechanisms underlying NP membrane aggregation
needs further investigation. Nevertheless, the ordered aggregates of functionalized
NPs constitute an excellent prospect for bio-sensors or in general for two-dimensional
hybrid materials capable of responding to electromagnetic stimuli. This study
highlights the need to study in detail the interactions between ligand protected-NP
and realistic membranes in order to master the mechanisms involved. Furthermore,
it suggests that the way to do this is a synergistic combination of experiments with
molecular dynamics, an indispensable tool for extrapolating both qualitative and
quantitative data on the systems involved.

76



Chapter 5

Conclusions

In this thesis, we exploited the synergistic combination of multiscale molecular
modeling, molecular dynamics (MD), and enhanced sampling to tackle two complex
systems. In the first case study, we investigated the intrinsic dynamic behavior
of a Benzene 1,3,5-TricarboxAmide (BTA) supramolecular polymer in water. In
the second case study, we inquired about the effect of functionalized amphiphilic
gold nanoparticles (Au NPs) on the phase behavior of a multi-component lipid
membrane. In the following two paragraphs, I briefly summarize the principal results
and perspectives of these two case studies, and in the last paragraph, I draw global
conclusions.

5.0.1 Controlling exchange pathways in dynamic supramolecular
polymers by controlling their defects.

Here the primary goal of our research was to investigate the relationship between the
structure, including the presence of defects, and the dynamic behavior of supramolec-
ular fibers. We developed transferable and minimalistic CG models representative
of BTA monomers and, in general, three-armed monomers. Thanks to supervised
and unsupervised clustering analysis, we highlighted the presence of defects within
the fibers, which is paramount to understanding how the fibers exchange monomers
with the solvent. Indeed, defects are monomers that are weakly incorporated into
the supramolecular stack and they are more likely to exchange with the solvent than
well-incorporated monomers. We used enhanced sampling (infrequent metadynamics)
to activate these rare events, i.e., the exchange of monomers with the solvent, recov-
ering their timescale. Combining the information on the abundance of defects and
the exchange timescales, we showed how the average number of defects modulates
the exchange with the solvent. In other words, we demonstrated how controlling the
number of defects implies controlling the preferred exchange pathway of the polymer.

However, how can we control the number of defects in a supramolecular fiber?
We showed that the key factor regulating the abundance of defects is the relative
difference between directional and non-directional interactions between the monomers,
which in turn depends on the solvophobicity of the monomer arms and the geometry
of the monomer core. Thanks to the customizability of our CG models, we could
modify the monomer structure by placing more solvophobic beads in the side chains
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or changing the shape/size of the core, to enhance or reduce the appearance of defects.
By doing so, we established an unambiguous link between a supramolecular polymer’s
dynamic behavior and its monomers’ molecular structure. Our results clarified the
factors controlling the dynamic behavior of supramolecular polymers, opening up
new perspectives for developing other supramolecular systems with controllable
properties.

5.0.2 Dynamic phase separation in multidomain lipid membranes and
the effect of interaction with amphiphilic gold nanoparticles.

Here the primary goal was to establish how negatively charged amphiphilic gold
nanoparticles, ranging in size from 2 nm to 4 nm, can perturb the lipid phase
separation of a model neuronal membrane. AFM and QCM-D experiments, combined
with MD simulations, demonstrated that these nanoparticles interact spontaneously
with the model neuronal bilayers via passive penetration, suppressing the ordered
domains (rafts) in a concentration-dependent manner. Based on data extrapolated
from our unbiased MD simulations, we developed a simple thermodynamic model
highlighting the lipid-lipid enthalpy difference between the phase-separated and
the mixed bilayer as the key indicator of the NPs effect on phase separation. As
long as the size of the NPs is comparable with the thickness of the bilayer, this
thermodynamic model can be used for any inclusion embedded in the membrane.

Furthermore, we also found that NPs diffuse into the bilayer to form stable and
ordered two-dimensional lattices. Regarding NP aggregation, we observed that the
physical factors determining amphiphilic Au NPs are similar to those occurring in
protein-protein aggregation in membranes. In the case of NP-NP aggregation, the
flexibility of the ligands, which is greater than the protein conformational flexibility,
plays a vital role in stabilizing the NP lattices. Furthermore, our simulations revealed
ion-stabilized transient water nanopores forming in the interstices between adjacent
NPs in the aggregates. Ordered aggregates of functionalized NPs could lead to the
developing of two-dimensional hybrid materials designed to respond rationally to
electromagnetic stimuli. Our study opened this perspective while calling for a more
detailed investigation of the interactions of ligand-protected NPs with more realistic
membranes and the mechanisms underlying NP-NP aggregation.

5.0.3 Concluding remarks

In conclusion, our results show the power of computational techniques in comple-
menting the experimental investigation of complex molecular systems. Through
our simulations, we gained a deeper understanding of the structure and dynamics
of a class of supramolecular polymers. Additionally, we identified the factors that
control the exchange of monomers between the different fibers, which can be used to
inform the design of novel supramolecular materials in the future. Our simulations
provided insights into the mechanisms underlying the interaction between function-
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alized nanoparticles and lipid membranes, extrapolating the factors that influence
the stability of the membrane phase separation. The acquired knowledge can be
applied in drug delivery systems or to create new hybrid materials containing ordered
two-dimensional NP lattices.

In particular, it is worth noting that in both studies, using coarse-grained models
with the proper (sub-molecular) resolution was crucial to overcoming the limitations
of classic all-atom force fields while maintaining the needed chemical specificity.
Overall, the results of these studies have broad implications for materials science and
biophysics and demonstrate the potential of computational modeling to inform the
design of novel materials and systems.
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