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Normalized Solutions to the Fractional
Schrödinger Equation with Potential

Jiabin Zuo , Chungen Liu and Calogero Vetro

Abstract. This paper is concerned with the existence of normalized solu-
tions to a class of Schrödinger equations driven by a fractional operator
with a parametric potential term. We obtain minimization of energy
functional associated with that equations assuming basic conditions for
the potential. Our work offers a partial extension of previous results to
the non-local case.
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1. Introduction and Main Result

In this paper, we investigate the attainability of the following constraint
minimization problem:

Im = inf
u∈Mm

E(u), (1.1)

where m is a positive constant and the energy functional E : W → R is
defined by

E(u) =
1
2
[u]2Hs +

1
2

∫
RN

λV (x)|u|2dx − 1
p
‖u‖p

p,

Mm =
{
u ∈ W : ‖u‖22 = m2

}
,

here, 0 < s < 1 and 2s < N < 4s, λ is a positive parameter, p ∈ (2,min{N/(N−
2s), p}) with L2-critical exponent p = 2 + 4 s/N , the potential function
V (x) : RN → [0,+∞) is continuous and bounded. Moreover, the weighted
fractional Sobolev space W is given by

W =
{

u ∈ Hs(RN ) :
∫
RN

λV (x)|u|2dx < +∞
}

,
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with norm

‖u‖W =
(∫

RN

(λV (x) + 1)|u|2dx + [u]2Hs

) 1
2

.

In addition, ‖ · ‖p represents the norm of Lebesgue space Lp and Hs(RN )
denotes the fractional Sobolev space:

Hs(RN ) =
{

u ∈ L2(RN ) : [u]2Hs =
∫
R2N

|u(x) − u(y)|2
|x − y|N+2s

dxdy < ∞
}

,

where [u]2Hs is the Gagliardo semi-norm, The norm of Hs(RN ) is defined by

‖u‖Hs = (‖u‖22 + [u]2Hs)
1
2 .

According to the definition of W , it is clear that the embedding W ↪→
Hs(RN ) is continuous, furthermore, we know that W ↪→ Lh(RN ) is also
continuous for any h ∈ [2, 2∗

s ] (see Di Nezza et al. [12, Theorem 6.5]), where
2∗

s = 2N/(N − 2s) is the fractional critical exponent. It is well known that
problem (1.1) plays an important role in studying the standing wave of the
following fractional Schrödinger equation

iφt = (−Δ)sφ + λV (x)φ − |φ|p−2φ, for all (x, t) ∈ (RN ,R), (1.2)

where i is the imaginary unit and (−Δ)s is the fractional Laplacian, which
is defined by

(−Δ)sφ(x) = C(N, s) lim
ε→0+

∫
RN \Bε(x)

φ(x) − φ(y)
|x − y|N+2s

dy,

where C(N, s) is a constant that depends on N and s (for more information
we refer again to [12]). Putting the standing wave φ(x, t) = eiμtu(x) into
(1.2), we obtain the equation

(−Δ)su + μu + λV (x)u − |u|p−2u = 0 in R
N . (1.3)

This is a classical fractional Schrödinger equation, which is originated by
Laskin’ work in [19]. In recent decades a great deal of attention has been
paid to this kind of problem because of its important applications in many
disciplines such as physics. In general, the role of parameter μ in Eq. (1.3)
is reflected in two aspects. First fixed the number μ ∈ R, one can look to
the solution of (1.3), that is the so-called fixed frequency problem. A large
number of researchers have carried out in-depth studies using variational
and topological methods, here we just mention the works by Berestycki and
Lions [6,7] (minimization problems in unbounded domains), Liang et al. [21]
(critical Choquard-Kirchhoff equations). Then, taking μ as unknown, which
appears as a Lagrange multiplier, one can look to prescribed L2-norm solu-
tions. From a physical point of view, the study seems particularly interesting
because of the conservation of mass. To the best of our knowledge, there have
been some works that have considered this aspect but without involving a
potential term. For example, Luo and Zhang [18] studied a class of frac-
tional Schrödinger equations and established several results concerning the
existence of normalized solutions. For more details on normalized solutions
of fractional problems we refer to Appolloni e Secchi [4] (mass supercritical
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nonlinearity), Li and Zou [20] and Zhen and Zhang [27] (L2-subcritical (or
L2-critical or L2-supercritical) perturbation). When V (x) ≡ 0 and s = 1 in
Eq. (1.3), namely the fractional Laplace operator (−Δ)s reduces to the clas-
sical Laplace operator, then a large body of literatures studied the following
problem:

− Δu + μu − f(u) = 0 in R
N , ‖u‖22 = m2. (1.4)

We mention the works of Alves et al. [1,2] (critical growth case), Jeanjean
[17] (semilinear elliptic equations), Stefanov [23] and Soave [24,25] (ground
states and combined power nonlinearities). In a recent paper, Cingolani et
al. [11] studied the fractional counterpart of Eq. (1.4) in the case when the
function f satisfies suitable Berestycki–Lions type conditions. They show the
existence of solutions by means of a variant of the Palais-Smale condition to-
gether with some deformation arguments. This variational approach is based
on previous results and ideas introduced by Ikoma and Tanaka [16], to ob-
tain existence and multiplicity results in the local case. We note that when
V (x) �≡ 0, the scaled function u(ξx) may not be useful to approach the prob-
lem (see Ikoma et al. [14] and refer to the well-known scaling function method
to solve optimization problems). This makes it more difficult to deal with the
constraint minimization problem. For this reason, the papers concerned with
this topic are very few, we point out that Ikoma et al. in [14] studied a
constraint minimization problem and proved the existence and nonexistence
of the minimizer of this problem for integer-order cases (for some differ-
ences between the cases V (x) ≡ 0 and V (x) �≡ 0 see [14, Remark 1.2]).
Subsequently, the ideas of paper [14] are applied to a nonlinear Schrödinger
system with potentials in Ikoma et al. [15]. For more information on normal-
ized (hence prescribed L2-norm) solutions of the Schrödinger equation with
different types of potentials, interested readers can refer to Alves and Ji [3]
(L2-subcritical growth), Bartsch et al. [9] (mass supercritical case), Bellazzini
et al. [10] and Zhong and Zou [28] (ground state solutions). However, as far
as we know, the above works only consider the local case, and so it is natural
to investigate whether some of the results still hold for the non-local case. For
this, Peng and Xia [22] proved that a fractional Schrödinger equation admits
normalized solutions in the mass supercritical case, using technical assump-
tions on the potential function. They consider a potential vanishing at zero
and note that the energy functional associated with the principal equation
possesses a mountain pass geometry with the same mountain pass value of
the case when V (x) ≡ 0 but it is not achieved. Thus, it is very worth paying
attention to the mass subcritical case with respect to this problem as well.
When we go on this way, we will face new math challenge such as how to
properly overcome the difficulties caused by the non-local operator and the
potential function.

To state our main result, we need the following assumptions about the
potential function V (x) : RN → [0,+∞):
(V1) there exists a positive constant C0 > 0 such that the measure of the set

Ω = {x ∈ R
N : V (x) < C0} is finite.

(V2) V ∈ L∞(RN ).
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Remark 1.1. The conditions (V1)–(V2) originate from the finding in [8], but
we get suitable modifications (namely, we consider weaker assumptions) be-
cause of the different needs of Lemmas 2.3 and 2.4 in Sect. 2. In particular, we
do not impose conditions about the nonemptiness of the interior of V −1(0)
and the positivity of the measure of Ω (which are involved in [8] to get the
Palais-Smale condition for the energy functional associated with the semilin-
ear elliptic partial differential equation considered therein).

Then, our main result is as follows.

Theorem 1.2. Let 2s < N < 4s, p ∈ (2,min{N/(N − 2s), 2 + 4s/N}) and
suppose that conditions (V1)-(V2) hold. Then, for each m > 0, there exist
λ∗ > 0 and ζ = ζ(m) > 0 such that Im < 0 for all λ ∈ [λ∗,+∞) satisfying
λ‖V ‖∞ < ζ. Furthermore, the infimum Im is attained at a point u ∈ Mm,
which is a solution of (1.3) with μ = μm as a Lagrange multiplier.

Remark 1.3. Although [3, Theorem 1.3] shows the existence of solutions to
the local version of our problem (1.3) under analogous assumptions (see con-
dition (V4) of [3]), we point out that the hypothesis of [3, Lemma 2.2] (the
key lemma to prove [3, Theorem 1.3]) makes V (x) = 0 a.e. in R

N . Differently,
here we do not need a similar behavior (see Lemma 2.3) and we consider a
condition (see assumption (V2)), which is weaker than condition (V3) in [3].
We note that λ∗ > 0 in Theorem 1.2 is independent of m, as can be seen
following the proof of Lemma 2.8 (see Sect. 2).

2. Proofs of Auxiliary Lemmas and Theorem 1.2

In this section, we first note an important fractional Gagliardo-Nirenberg
inequality (see Frank et al. [13]), which will be used in the proofs of some
auxiliary lemmas. Hence, we denote γp = N

s ( 12 − 1
p ) and, if it is not said

differently in the statement, we assume p ∈ (2, 2 + 4 s/N) in all lemmas.

Lemma 2.1. Let u ∈ Hs(RN ) and p ∈ (2, 2∗
s), then there exists a positive

constant C(N, s, p) such that the following is the case

‖u‖p
p ≤ C(N, s, p)[u]γpp

Hs ‖u‖(1−γp)p
2 .

As a consequence of Lemma 2.1, we obtain the following result.

Lemma 2.2. The energy functional E(·) is bounded from below on Mm for
all m > 0.

Proof. It follows from Lemma 2.1 that

E(u) =
1
2
[u]2Hs +

1
2

∫
RN

λV (x)|u|2dx − 1
p
‖u‖p

p

≥ 1
2
[u]2Hs − C(N, s, p)

p
m(1−γp)p[u]γpp

Hs .

Since p ∈ (2, 2 + 4s/N), thus γpp < 2. So we deduce that the result is true
and the definition of Im is reasonable. �
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Next, we establish the following key lemma (scaling result).

Lemma 2.3. If condition (V2) holds, then for any m > 0 there exists ζ =
ζ(m) > 0 such that Im < 0 if λ‖V ‖∞ < ζ.

Proof. For any m > 0, we set u0 ∈ Mm and make a scaling that, keeping
L2-norm invariant, gives us:

(η 
 u0)(x) = e
ηN
2 u0(eηx) for any η ∈ R and x ∈ R

N ,

which is borrowed from the ideas of Jeanjean [17]. Through simple calcula-
tions, we get that

[η 
 u0]2Hs = e2ηs

∫
R2N

|u0(x) − u0(y)|2
|x − y|N+2s

dxdy = e2ηs[u0]2Hs ,

‖η 
 u0‖22 = ‖u0‖22 = m2,

‖η 
 u0‖α
α = e

(α−2)Nη
2 ‖u0‖α

α for any α > 2.

Thus, we have

E(η 
 u0) ≤ 1
2
e2ηs[u0]2Hs +

λ

2
‖V ‖∞m2 − e

(p−2)Nη
2

p
‖u0‖p

p.

Since p ∈ (2, 2 + 4s/N), then we get that (p − 2)N < 4s and so there exists
η < 0 such that

1
2
e2ηs[u0]2Hs − e

(p−2)Nη
2

p
‖u0‖p

p = Zη < 0.

Hence, fixed the number ζ = −Zη

m2 and in view of the assumption λ‖V ‖∞ < ζ,
we deduce that E(η 
 u0) < 0, which implies that Im < 0. �

Even if not explicitly stated, in the following series of lemmas we always
assume that

(un)n∈N ⊂ Mm is a minimizing sequence for Im.

The first lemma gives us a positive bound-from-below condition.

Lemma 2.4. If condition (V2) holds, then for any m > 0, there exist ζ(m) > 0
and M > 0 such that

lim inf
n→+∞

∫
RN

|un|pdx ≥ M if λ‖V ‖∞ < ζ. (2.1)

Proof. From Lemma 2.3 we know that we can find ζ(m) > 0 and M > 0
such that Im < −M if λ‖V ‖∞ < ζ. Now, since (un) ⊂ Mm is a minimizing
sequence for Im, then we have

Im + on(1) = E(un)

=
1
2
[un]2Hs +

1
2

∫
RN

λV (x)|un|2dx − 1
p
‖un‖p

p,

furthermore, we obtain that

−M + on(1) ≥ −1
p
‖un‖p

p,

hence (2.1) holds. �
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Next result establishes a quantitative relationship between the two or-
dered values of m and the corresponding values of Im.

Lemma 2.5. If condition (V2) holds and if 0 < m1 < m2, then
Im2
m2

2
<

Im1
m2

1
.

Proof. The proof of this lemma is almost the same as that of [3, Lemma 2.3],
so we omit the details. �

Now, we prove a (strong) convergence result in the weighted fractional
Sobolev space W .

Lemma 2.6. If condition (V2) holds and if un ⇀ u in W , un(x) → u(x) a.e.
in R

N and u �= 0, then u ∈ Mm, E(u) = Im and un → u in W .

Proof. We note that if ‖u‖2 = k �= m, according to the Fatou lemma and the
assumption u �= 0, we get that k ∈ (0,m). From the continuity of embedding
W ↪→ Lh(RN ) for any h ∈ [2, 2∗

s ] and two kinds of Brézis–Lieb lemmas in
[26] and [5], we have that

[un]2Hs = [un − u]2Hs + [u]2Hs + on(1),
‖un‖22 = ‖un − u‖22 + ‖u‖22 + on(1),
‖un‖p

p = ‖un − u‖p
p + ‖u‖p

p + on(1). (2.2)

Let vn = un − u, ‖vn‖2 = ln and assume that ‖vn‖2 → l, by (2.2) we infer
that m2 = k2 + l2 and ln ∈ (0,m) for sufficiently big n, which implies that

Im + on(1) = E(un)

= E(vn) + E(u) + on(1)

≥ Iln + Ik + on(1)

≥ l2n
m2

Im + Ik + on(1),

thanks to Lemma 2.5. Letting n → +∞, we obtain the inequality

Im ≥ l2

m2
Im + Ik.

Using the fact that k ∈ (0,m) and Lemma 2.5 in the above inequality (this
time for Ik), we deduce that

Im >
l2

m2
Im +

k2

m2
Im = Im,

a contradiction. Therefore ‖u‖2 = m, that is, u ∈ Mm. It follows from
‖un‖2 = ‖u‖2 = m and un ⇀ u in L2(RN ) (since W ↪→ L2(RN ) is a
continuous embedding) that un → u in L2(RN ), which together with in-
terpolation inequality gives us that un → u in Lp(RN ). In addition, since∫
RN λV (x)|u|2dx + [u]2Hs is convex and continuous in W , we know that it is

a weak lower semicontinuous, namely

lim inf
n→+∞

(∫
RN

λV (x)|un|2dx + [un]2Hs

)
≥

∫
RN

λV (x)|u|2dx + [u]2Hs .
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Keeping in mind that Im = limn→+∞ E(un), we infer that Im ≥ E(u), again
by the definition of Im and u ∈ Mm we get that Im = E(u), and hence

lim
n→+∞ E(un) = E(u).

Finally, in view of the convergences un → u in L2(RN ) and un → u in
Lp(RN ), we conclude that un → u in W . �

We give the following short proof of the boundedness of a minimizing
sequence for Im, in the weighted fractional Sobolev space W .

Lemma 2.7. The sequence (un)n∈N is bounded in W .

Proof. It follows from the definition of minimizing sequence that

Im = lim
n→+∞ E(un),

which combined with Lemma 2.2 gives us that ([un]Hs)n∈N is a bounded se-
quence. Consequently, the sequence (

∫
RN λV (x)|un|2dx)n∈N is also bounded.

As a result, (un)n∈N is a bounded sequence in W . �

We now establish a technical result, which will be successfully involved
in the proof (by contradiction) of a subsequent lemma.

Lemma 2.8. Let p ∈ [1, N/(N − 2s)]. If conditions (V1)-(V2) hold, then there
exist R > 0 and λ∗ > 0 such that for any λ > λ∗, we have

lim sup
n→+∞

∫
Bc

R(0)

|un|pdx ≤ M

2
, (2.3)

where Bc
R(0) = {x ∈ R

N : |x| > R}, M > 0 as given in Lemma 2.4.

Proof. Following the methods of Bartsch and Wang [8], for R > 0, we consider
two sets

X(R) := {x ∈ R
N : |x| > R,V (x) ≥ C0}

and

Y (R) := {x ∈ R
N : |x| > R,V (x) < C0}.

Let C > 0 be a constant whose value may change from line to line. According
to Lemma 2.7 we know that ‖un‖2W ≤ C for all n ∈ N, hence we have∫

X(R)

u2
ndx ≤ 1

λC0 + 1

∫
RN

(λV (x) + 1)u2
ndx

≤ 1
λC0 + 1

(∫
RN

(λV (x) + 1)u2
ndx + [un]2Hs

)

=
1

λC0 + 1
‖un‖2W

≤ C

λC0 + 1
.
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Again by the Hölder inequality, the continuous embedding Hs(RN ) ↪→ L2p(RN )
for any p ∈ [1, N/(N − 2s)] (see [12, Theorem 6.5]) and condition (V1), we
obtain

∫
Y (R)

u2
ndx ≤

(∫
Y (R)

|un|2pdx

) 1
p

(∫
Y (R)

dx

) 1
q

≤
(∫

RN

|un|2pdx

) 1
p

(∫
Y (R)

dx

) 1
q

≤ C‖un‖2Hs |Y (R)| 1
q

= C|Y (R)| 1
q ,

where 1
p + 1

q = 1. It follows from Lemma 2.1 that

∫
Bc

R(0)

|un|pdx ≤ C(N, s, p)[un|Bc
R(0)]

γpp
Hs ‖un|Bc

R(0)‖(1−γp)p
2

≤ C(N, s, p)Cγpp‖un‖γpp
W

(∫
X(R)

u2
ndx +

∫
Y (R)

u2
ndx

) (1−γp)p

2

≤ C

(∫
X(R)

u2
ndx +

∫
Y (R)

u2
ndx

) (1−γp)p

2

.

The first term on the right-hand side of the above inequality can be arbitrarily
small when λ > λ∗ (large enough). The second term on the right-hand side
of the above inequality can also be arbitrarily small if R is big enough since
|Y (R)| → 0 as R → +∞, thanks to condition (V1). This concludes the proof,
that is, (2.3) holds. �

The last auxiliary lemma concerns the existence of a suitable weak limit,
always in the setting of weighted fractional Sobolev space W .

Lemma 2.9. If conditions (V1)–(V2) hold, then there exists λ∗∗ > 0 such that
for any λ > λ∗∗ the sequence (un)n∈N admits a nontrivial weak limit u in W .

Proof. According to Lemma 2.7, we know that there exists u ∈ W and a
subsequence of (un)n∈N, still denoted as itself, such that

un ⇀ u in W, un(x) → u(x) a.e. in R
N .

Now, arguing by contradiction, we assume u = 0 for some λ > λ∗ as given in
Lemma 2.8. Based on the compactness of the embedding over the bounded
domain, we get that un → 0 in Lp(BR(0)) for any R > 0. In view of Lemmas
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2.4 and 2.8, we have that

M ≤ lim inf
n→+∞

∫
RN

|un|pdx

= lim inf
n→+∞

∫
Bc

R(0)

|un|pdx

≤ lim sup
n→+∞

∫
Bc

R(0)

|un|pdx

≤ M

2
,

a contradiction. Thus we conclude that there exists λ∗∗ ≤ λ∗ such that u is
nontrivial for any λ > λ∗∗. �

Finally, we can give the proof of our main result.

Proof of Theorem 1.2. From Lemmas 2.7 and 2.9 it follows that there exists
a minimizing sequence (un)n∈N ⊂ Mm for Im, which is bounded in W and
its weak limit u is nontrivial. In view of Lemma 2.6, we have that u ∈ Mm,
E(u) = Im and un → u in W . Hence, employing the Lagrange multiplier
method, there exists μm ∈ R solving the equation

E
′
(u) + μmJ

′
(u) = 0 in W ∗, (2.4)

where W ∗ is the dual space of W and J : W → R is defined by

J(u) = ‖u‖2, u ∈ W.

By (2.4), we deduce that

(−Δ)su + μmu + λV (x)u − |u|p−2u = 0 in R
N .

The proof of Theorem 1.2 is now complete. �
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within the CRUI-CARE Agreement. The authors declare that no funds,
grants, or other support were received during the preparation of this manu-
script.



  216 Page 10 of 12 J. Zuo et al. MJOM

Availability of Data and Material. This paper has no associated data and
material.

Declarations

Conflict of interest. The authors read and approved the final manuscript.
The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Alves, C.O., Chao, J., Miyagaki, O.H.: Normalized solutions for a Schrödinger
equation with critical growth in R

N . Calc. Var. Partial Differ. Equ. 61(18), 24
(2022)

[2] Alves, C.O., Chao, J., Miyagaki, O.H.: Multiplicity of normalized solutions for
a Schrödinger equation with critical growth in R

N . arXiv:2103.07940v2, 21 pp
(2021)

[3] Alves, C.O., Ji, C.: Normalized solutions for the Schrödinger equations with
L2-subcritical growth and different types of potentials. J. Geom. Anal. 32, 1–25
(2022)

[4] Appolloni, L., Secchi, S.: Normalized solutions for the fractional NLS with mass
supercritical nonlinearity. J. Diff. Equ. 286, 248–283 (2021)
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