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Abstract: Since the beginning of the 21st century, there has been an increase in the agricultural area
devoted to olive growing and in the consumption of extra virgin olive oil (EVOO). The continuous
change in cultivation techniques implemented poses new challenges to ensure environmental and
economic sustainability. In this context, precision oliviculture (PO) is having an increasing scientific
interest and impact on the sector. Its implementation depends on various technological developments:
sensors for local and remote crop monitoring, global navigation satellite system (GNSS), equipment
and machinery to perform site-specific management through variable rate application (VRA), imple-
mentation of geographic information systems (GIS), and systems for analysis, interpretation, and
decision support (DSS). This review provides an overview of the state of the art of technologies
that can be employed and current applications and their potential. It also discusses the challenges
and possible solutions and implementations of future technologies such as IoT, unmanned ground
vehicles (UGV), and machine learning (ML).

Keywords: precision oliviculture; olive tree management; precision farming; remote sensing; proxi-
mal sensing; precision irrigation; precision fertilization; variable rate application; smart farming

1. Introduction

Precision agriculture represents one of the most important opportunities that can be
implemented by companies in order to ensure quantitatively and qualitatively satisfac-
tory productions [1,2]. Recently, the International Society of Precision Agriculture (ISPA)
released this definition:

“Precision Agriculture is a management strategy that gathers, processes and analyses
temporal, spatial and individual data and combines it with other information to support
management decisions according to estimated variability for improved resource use effi-
ciency, productivity, quality, profitability and sustainability of agricultural production.”

Precision farming (PF) is a management method that aims to investigate the spatial
and temporal variability of an agroecosystem in order to carry out site-specific treatments,
applying different technologies and methodologies. The intra- and inter-crop variability
that occurs within the crop is determined by the spatial and temporal variability of the
soil, the crop species, and the climate [3]. The main advantages of this practice include:
savings on the quantity of inputs used [4,5], lower environmental impact [6], higher crop
productivity, and product quality. Its application is widely carried out in herbaceous
crops and, to a lesser extent, in tree crops, where PF is mainly applied in viticulture, as it
succeeds in achieving the best combination of production quality, environmental impact,
and costs [7].

In recent years, there has been an increase in the agricultural area devoted to olive
growing and in the consumption of extra virgin olive oil (EVOO) [8]. In addition, a con-
tinuous change in cultivation techniques has been observed, which poses new challenges
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to ensure the environmental and economic sustainability of olive farms [9]. Today, the
olive tree is cultivated in about 40 countries and occupies a global area of about 10.5 mil-
lion hectares [8]. Its cultivation is almost entirely (over 98%) in countries bordering the
Mediterranean Sea, where olive growing has always been a traditional practice and a
descriptive element of many landscapes in rural and peri-urban areas [10]. However, it is
also continuously expanding in other continents, such as Australia and South America [8].
The world olive system is divided into three forms of cultivation: traditional olive culti-
vation (OT), intensive (HI) or high intensity (HD) olive cultivation, and superintensive
(SHI) or very high density (SHD) olive cultivation [11,12]. These three major classes are
profoundly different in cultivation techniques and require appropriate agronomic choices
for a successful crop.

These techniques are able to modify the vegetative and productive activity of the
olive tree and require appropriate choices depending on the agro-climatic context. These
include phytosanitary management, irrigation, soil management, pruning, fertilization, etc.
However, the most important agronomic practices that need to be different depending on
the type of cropping system in which precision farming can allow a clear improvement are
fertilization and irrigation.

Fertilization can directly and indirectly influence the vegetative-productive activity
of plants and the whole agrosystem. Such application proves to be beneficial in terms of
productivity and quality (size, oil content, etc.) when the foliar nutrient concentration is
below the threshold [13–15]. However, this practice is often carried out without considering
the real needs of the crop, the real availability, and the soil characteristics [16]. In fact,
excessive doses are used with a consequent increase in vegetative activity to the detriment of
productivity (to this condition the olive tree is very sensitive, manifesting itself with a clear
alternation of production), increased management costs, pollution [13], etc. Furthermore,
the use of massive doses of fertilizer leads to a deterioration in oil quality [17–19], due to a
reduction in polyphenol content [20] without any increase in oil yield.

Irrigation, more than any other agronomic practice, is capable of modifying the quality
and quantity of the fruit [21]; unfortunately, it is difficult to reach the right compromise.
In fact, there can be negative effects on fruit quality such as a reduction of the phenolic
component (excessive doses) and on productivity (lower doses). On the other hand, the
positive effects are linked to an increase in production and a reduction in production
alternation. The olive tree is a species that has always been recognized as resistant–tolerant
to water stress with an average water requirement of 1500–2500 m3 ha−1. For this reason,
in traditional systems it is grown without the aid of irrigation [22]. Unfortunately, the
new SHD farming systems, characterized by higher productivity, cannot be managed
without the use of this agronomic practice. Moreover, the water resource is decreasing
due to its continuous exploitation. Therefore, it is evident that it is necessary to use
techniques and agronomic choices able to maximize crop water efficiency (WUE). This
objective can be pursued in different ways: acting on the quantity of water supplied, acting
differently on the different phenological moments, acting on the methods of irrigation
distribution (micro-flow, sprinkling, etc.), and/or through the right agronomic choices
(pruning, fertilization, etc.). However, in order to achieve this, the water status of the crops
must be measured accurately and reliably in order to provide a predetermined stress level.
In this perspective, precision irrigation can provide excellent results on the identification of
water stress variability in the field [21].

In short, the profound differences between farming systems and the different reper-
cussions that agronomic practices can have on them pose new challenges and problems
in successfully transferring and applying precision agriculture to this agronomic system.
The aim of this work was to provide state of the art studies carried out on the application
of precision farming to olive growing, in its different forms (OT, HD, and SHD), and to
illustrate its potential applications. The research was done thoroughly by examining the
existing literature work done in the context.
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2. Remote Sensing Sensors for Spatial Variability Detection

The first step in precision agriculture is the investigation of spatial variability, using
different types of sensors capable of acquiring raster or vector information [23]. As reported
by Zhang et al. (2002) [23], the variability affecting agricultural production can be classified
into six groups: yield variability; field variability; soil variability; crop variability; variability
related to abnormal factors; and management variability. The sensors used for this purpose
are capable of acquiring information of different kinds and cover a more or less wide area.
In order to be able to apply them in the best possible way, it is necessary to know the
variable to be investigated and the acquisition platform on which they will be placed. In
fact, the same sensor, such as a multispectral camera, can be used on remote or proximal
sensing platforms and give very different information. In this article, we focus on the
sensors that are the most used in remote sensing of olive trees as they are the most used in
precision farming. Generally, these sensors are cameras capable of acquiring images (raster
information) in different multispectral bands. Their use differs according to the spatial,
spectral, radiometric, and temporal resolution they offer. The spatial resolution of a sensor
is defined by the size of the pixel representing the investigated area. Spectral resolution
is indicated by the width of the spectral bands of the acquired electromagnetic spectrum.
Radiometric resolution represents the number of different signal intensities that the sensor
is able to acquire; the measurement scale is expressed in bits and generally ranges from 8
to 16. Temporal resolution is associated with the platform hosting the sensor rather than
the sensor itself and represents the time between one acquisition and the next of the same
object [24]. There are many classifications of sensors that can be used remotely, as they can
be distinguished based on their operation, type of acquisition, number of acquisition bands
(multispectral and hyperspectral), and more. In remote sensing, RGB, hyperspectral, and
multispectral images are generally present as sources of spectral information. However,
these provide different information, so it is necessary to understand their actual potential.
In precision olive growing, multispectral images represent the most widely used spectral
information. In this article, the classification was made on the basis of the main crop
characteristics (nutritional, water, and canopy structural status) that can be investigated by
remote sensors on olive trees in the literature.

2.1. Sensors and Technologies for Identifying the Physiological State of the Olive Tree

For the identification of nutritional deficiencies, canopy structural information, wa-
ter status of olive trees, and more generally plant health conditions, sensors capable of
detecting the electromagnetic energy reflected or emitted by plants are used in precision
agriculture [25]. This is because leaf reflectance is influenced by several factors (presence
or absence of particular molecules, environmental factors, etc.) in specific regions of the
electromagnetic spectrum, such as: in the visible wavelengths by photosynthetic pigments
such as chlorophyll a, chlorophyll b, and carotenoids; in the near-infrared by leaf structure
(size and distribution of air and water inside the canopy), and the presence of water and bio-
chemical substances such as lignin, cellulose, starch, proteins, and nitrogen [26]. Therefore,
this optical technique is based on measuring the reflectance of incident electromagnetic
radiation at different wavelengths in the range from 350 to approximately 25,000 nm. This
range includes the frequency bands most commonly used in precision farming, such as:
visible (VIS), near-infrared (NIR), shortwave infrared (SWIR), and thermal infrared (TIR).
The set of spectral responses of a crop at high spectral resolution (narrow bands) allows its
spectral signature to be identified. The spectral signature is typical for each crop and each
stress situation (Figure 1).
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Figure 1. Spectral signature of the olive tree.

The reflectance curves of olive tree leaves show the same spectral pattern typical of
the main agricultural crops [26] for all measured wavelengths, although the magnitude
and amplitude varied especially in the NIR region (750–1100 nm) due to different crop
characteristics such as canopy structure, water content, etc. In the study by Rubio–Delgado
et al. (2021) [25] the reflection curves showed different reflection peaks and absorption
sinks. In the VIS region, one reflection peak was centered at 554 nm (green region) and two
absorption sinks were centered at 390 and 680 nm (blue and red regions, respectively). The
NIR region had a higher reflection than the VIS region. In the SWIR region (1100–2300 nm),
three absorption wells were identified as: 1200, 1450, and 1720 nm, and three reflection
peaks centered at 1280, 1650, and 2200 nm [25]. Thus, the most suitable electromagnetic
spectrum regions for characterizing the absorption spectrum of olive trees are between
350–1350, 1421–1800, and 1961–2300 nm. The first two represent the electromagnetic regions
of greatest interest as they are used to investigate the nitrogen and chlorophyll content
and some structural properties of the canopy. The absorption regions of the band are
caused by the presence of water and have a high presence of noise, resulting in a low
signal-to-noise ratio [27]. Therefore, alterations in photosynthetic activity are related to the
nutritional status, health, and vigor of plants, and can be easily detected with multispectral
and hyperspectral sensors [28].

Since the 1980s, the first vegetation indices (VI) have been created to examine growing
conditions. These are calculated from the individual reflectance value wavelengths acquired.
These are classified into two large families: slope-based and distance-based [29]. In addition
to their simple use, several processing techniques have also been experimented with in order
to obtain greater precision and information of vegetation indices such as smooting (SM),
partial least squares regression (PLSR) techniques, etc. Using PLSR techniques, it is possible
to extrapolate spectral information of the crop from the entire reflectance spectrum (350–2500
nm) [30]. In olive trees, the most widely used VI (Table 1) are probably the normalized
difference vegetation index (NDVI) and the soil-adjusted vegetation index (SAVI). However,
there have not yet been exhaustive studies in the field that have determined their real
potential for use in stress discrimination. Given the high sensitivity of Vis to variations in
chlorophyll content, nitrogen, and plant nutritional status, their application has focused on
precision fertilization techniques [31–33] and precision irrigation [21].
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Table 1. Shows the main VI used on olive trees, conducted by different authors.

Vegetation Index (VI) Acronym Equations References Author of Index

Chlorophyll Absorption in Reflectance
Index CARI CAR*(ρ700/ρ670) [34] Kim et al. 1994

Double-peak Canopy Nitrogen Index DCNI [(ρ720 − ρ700)/(ρ700 − ρ670)]/(ρ720 −
ρ670 + 0.03) [25] Chen et al. 2010

Green Index GI ρ 550/ρ 680 [35] Chamard et al. 1991
Green Normalized Difference Vegetation

Index GNDVI (ρ800 − ρ550)/(ρ800 + ρ550) [5,34] Gitelson and Merzlyak 1994

Modified Chlorophyll Absorption in
Reflectance Index MCARI [(ρ 700 − ρ 1510) − 0.2(ρ 700 − ρ550)] (ρ

700/ρ 1510) [25,34] Daughtry et al. 2000

Moisture Stress Index MSI ρ 858/ρ 1240 [35] Hunt and Rock 1989
Normalized Difference Greenness

Vegetation Index NDGVI (ρ550 − ρ680)/(ρ550 + ρ680) [35,36] Chamard et al. 1991

Normalized Difference Red-Edge Index NDRE (ρNir − ρ RedEdge)/(ρNir + ρRedEdge) [36,37] Maccioni et al. 2001

Normalized Difference Vegetation Index NDVI (ρ800 − ρ680)/(ρ800 + ρ680) [5,35,36,38,39] Rouse, Haas, Deering, and
Sehell 1974

Normalized Difference Water Index NDWI (ρ858 − ρ1240)/(ρ 858 + ρ 1240) [35] Gao 1996
Optimized Soil-Adjusted Vegetation

Index OSAVI (ρNIR − ρR)/(ρNIR + ρR + 0.16) [34] Rondeaux et al. 1996

Soil Adjusted Vegetation Index SAVI (ρNir − ρRed) (ρNir + ρRed + L) × (1 +
L) [5,37] Huete et al. 1988

Simple Ratio 550,670 SR ρ550/ρ670 [38] n.d.
Simple Ratio 780,550 SR ρ780/ρ550 [38] n.d.
Simple Ratio 780,670 SR ρ780/ρ670 [36,38] n.d.

Simple Ratio Water Index SRWI ρ680/ρ1240 [35] Zarco–Tejada, Rueda, and
Ustin 2003

Transformed Chlorophyll Absorption
Ratio Index1510 TCARI 3[(ρ700 − ρ1510) − 0.2(ρ700 − ρ550) (

ρ700/ρ1510)] [25,34] Haboudane et al. 2002

Water Index WI ρ680/ρ858 [35] Peñuelas et al. 1993

Regarding the ability and aptitude of the different IAs to discriminate and investigate
the nutritional status of the olive tree, there are not many studies; moreover, they seem to
be in slight contrast. Gómez–Casero et al. (2007) [38] showed that N and K deficiencies
can be discriminated using about 26 different wavelengths, and the best indices were:
NIR/G, G/R, and NDVI. In general, the best wavelengths for the calculation of VI were
between 830 and 890 nm (mainly in the NIR region) for both nutrients. Noguera et al.
(2021) [40] viewed the reflectance curve, in the VIS-NIR region, of olive trees under different
treatments of nitrogen, phosphorus, and potassium. Their results showed that potassium
and phosphorus had a similar pattern with peaks evident at 550 and 700 nm and to a lesser
extent at 670 nm; in the case of N, they were not significant. Furthermore, using different
methods of data analysis they found that non-parametric analysis (ANN, neural network
analysis) generated the best prediction of leaf element concentration.

The study by [25] contributed significantly to the evaluation of the spectral charac-
teristics of olive leaves with the aim of estimating the nutritional status of this crop. All
the wavelengths used gave a low predictive capacity for leaf nitrogen content. The best
results of the VI used in Rubio–Delgado et al. (2021) [25] were provided by the indices:
double-peak canopy nitrogen index (DCNI, r2 = 0.72), modified chlorophyll absorption
in reflectance index (MCARI, r2 = 0.53), and transformed chlorophyll absorption ratio
index (TCARI, r2 = 0.64). The best vegetation index was DCNI, with a correlation of 0.72,
combining the following wavelengths: 395, (blue); 652 (red), and 1275 nm (SWIR). No index
combining wavelengths from the NIR region presented a high coefficient of determination,
underlining those combinations using blue, red, and SWIR wavelengths are the most suit-
able for estimating leaf nitrogen concentration (LNC) in olive trees using hyperspectral
data. Furthermore, Rubio–Delgado et al. (2021) [25] processed the raw data with different
methodologies in order to verify which one is the best for determining the LNC. The
results showed that the raw data resulted in an increase in the correlation between VI and
LNC, especially when second derivative and smoothing (SM) and/or standard normal
variate (SNV) were used as a pre-processing method. The PLSR models produced very
good accuracy compared to VI, although the uncertainties associated with noise in the
hyperspectral data were higher. Similar results were obtained by Rotbart et al. (2013) [41]
and Zarco–Tejada et al. (2004) [34]. Rotbart et al. (2013) [41] estimated the LNC using the
same methodology (albeit in the laboratory) over a reduced reflection spectrum (SWIR was
not considered). They conclude the work by stating that due to several confounding factors
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such as leaf orientation, water content, etc., it was not possible to build a robust model to
be applied in the field.

Precision irrigation is currently more and more successful, also due to the high tech-
nology push and the gradual reduction of the cost of the necessary equipment in the last
years [40]. However, it still remains a well implemented practice for different crops [42]. In
precision oliviculture, this practice is under continuous experimentation, since the spatially
variable application of water is advantageous for environmental, economic, and manage-
ment sustainability (cost reduction, better balance between production and vegetation, and
higher quality of the final product). Several techniques can be used to directly or indirectly
determine the water status of the crop. The most widely used in precision oliviculture to
investigate the entire variability of the field are thermography and/or the use of Vis closely
linked to the crop’s water content.

The main advantage of using Vis for the identification of plant water conditions lies
in the possibility of exploiting the wavelengths that are recorded with multispectral or
better hyperspectral chambers, which are usually used for the identification of the correct
nutritional and health status of crops. These Vis are based on reflectance spectroscopy in
the electromagnetic regions of the visible (VIS), near infrared (NIR), and shortwave infrared
(SWIR) and can be applied for indirect assessments of the water status of olive trees, as
water content can greatly influence crop spectral signatures [37,43–45]. Recently, a specific
database containing several indices related to “vegetation water” applications has been
created and published online by the Institute of Crop Science and Resource Conservation
(INRES, www.indexdatabase.de; 1 February 2022) of the University of Bonn. Unfortunately,
the proposed indices are not related to any specific crop or physical variable.

Ref. [35] described the accuracy of several VIs and the use of partial least squares
regression (PLSR) to determine leaf water potential (LWP). The best prediction was found
using the moisture stress index (MSI) (RMSE = 0.72 and r2 = 0.45) and the normalized
difference water index (NDWI, RMSE = 0.75 and r2 = 0.45). Using the PLSR technique, a
good prediction of LWP was obtained at both tree canopy and leaf levels. However, this
technique requires the availability of complete high-resolution spectra, which can only
be obtained with portable spectroradiometers or hyperspectral remote sensors. Although
the use of VI seems to have good applications in crop water stress management, high
correlations are not always observed. This is because water stress is a condition that
determines the change of the leaf structure and its spectral response but not always in the
short term, and it is also linked to many other stress conditions such as nutrition and the
management of the olive grove itself.

Even today, methodologies or techniques are proposed that use leaf temperature
alone (in the case of olive trees, the range of stress variability is between 28–37 ◦C), to
distinguish different levels of stress. Unfortunately, this poses numerous limitations due to
the high influence of environmental conditions. For this reason, they are less used today,
and it is preferred to use some normalized indices [46–48]. The main index that allows
the evaluation of the water status of olive trees is the crop water stress index (CWSI). This
index was invented by Jackson et al. (1981) [47] and Idso et al. (1981) [46] and can have
a value ranging from 0 to 1, indicating stress and good irrigation conditions, respectively.
It is determined from the temperature of the object (in this case the leaf temperature) at a
given time (T0). This temperature is closely correlated with water stress, since the physical
principle behind the temperature change depends on transpiration. In fact, the stomatal
closure that occurs due to water stress causes less leaf transpiration (loss of water vapor),
which in turn causes an increase in leaf temperature. From the different studies that have
been found in the bibliography, we can state that CSWI has proven to be a good indicator of
the crop’s water status as it presents very good correlations with canopy temperature and
the different stress indices [42,49–51]. Egea et al. (2017) [50] correlated CSWI and the main
water stress indicator parameters such as: stem water potential (Ψst), leaf water potential
(Ψl), leaf transpiration rate (Em), and stomatal conductance (gsm), obtaining significant
linear regressions (Figure 2).

www.indexdatabase.de
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Figure 2. Relationship between CWSI determined from aerial thermal imaging and (a) midday stem
water potential (Ψst), (b) midday leaf water potential (Ψl), (c) stomatal conductance (gsm), and
(d) leaf transpiration rate (Em) for FI, 45RDICC, and 45RDITP treatments. The straight lines represent
the fitted regression lines to the data. Data from [50].

The CWSI can be calculated from images acquired at wavelengths (λ) between 7–14 nm.
The original formula that was proposed is as follows:

CSWI =
dT − dTll

dTul − dTll
(1)

where dT is given by (Tc−Ta), i.e., the difference between the canopy temperature (Tc) and
the air temperature (Ta); dTll is the No-Water Stressed Baseline (NWSB) of fully irrigated
crops; and dTul is the upper baseline. The dTll and dTul are the temperature values of fully
irrigated and water stressed crops respectively. The dTll and dTul are both a function of
the atmospheric vapor pressure deficit (VPD) [46,52]. Both upper and lower limits are
species-specific and can be derived. Unfortunately, the different published NWSB equations
for olive are site-dependent, as the VPD normalization procedure used to obtain CWSI
does not take into account differences in net radiation and drag that are known to influence
this index. Furthermore, as shown by Egea et al. (2017) [50] the intercept and equation of
the NWSB varies with stagione and time of day. In response to this, Berni et al. (2009) [42]
proposed to calculate the NWSB empirically using the Tc-Ta values of trees from the full
irrigation (FI) treatment near solar noon (12:30 GMT), using hourly mean values from clear
days from April to September. Thus calculated, the NWSB (Tc-Ta = −0.35 − VPD + 2.08,
r2 = 0.67) shows differences in Tc-Ta varying less than 1.5 K even with large variations in
VPD. This difference is very small when compared to NWSB for herbaceous crops but also
for some tree species such as pistachio and peach as well as the slope of the same, probably
due to the high transpiration regulation capacity of olive trees [50–55].

Given the laboriousness, in olive trees, other calculation methods have also been
identified for their determination. To eliminate the problem of knowing the NWSB, Jones



Remote Sens. 2022, 14, 1668 8 of 24

(1999) [56] modified the CWSI and defined a new normalized CWSI, which is described
as follows.

CSWI =
Tcanopy − Twet

Tdry − Twet
(2)

where Tcanopy is actual canopy temperature obtained from the thermal image and Twet and
Tdry are the lower and upper boundary temperatures representing a fully transpiring leaf
with open stomata and a non-transpiring leaf with closed stomata, respectively. Note that
Twet and Tdry are equivalent to dTll e dTul in the original formulation of CWSI by Idso
et al. (1981) [46]. However, normalizing CWSI is a more complex process with changing
atmospheric conditions than using VPD alone. Indeed, varying atmospheric conditions
complicate the normalization of CWSI. In this regard, Tdry and Twet can be calculated using
an empirical approach.

In the empirical approach, Tdry can be determined by adding 5 ◦C to the air tem-
perature [57], while Twet can be determined by two methods. One of these involves the
spraying part of the canopy with water some 20 s prior to thermal image acquisition [48]
or by measuring the temperature of a wet artificial reference surface (WARS). As detailed
by Cohen et al. (2005) [42] and Meron et al. (2003) [58], the WARS is a permanently wet
surface of reproducible radiometric and physical properties, such a wet object, which can
also take the form of an artificial wet cloth [58], with a typical size of 30 × 40 cm. Three
main drawbacks limit the applicability of CWSIE for high spatiotemporal monitoring of
stress [49,59]. The first is the empirical value of 5 ◦C. While it had indeed been proven to
represent the maximum leaf temperature under several conditions [42,48,57], the CWSIE is
quite sensitive to the value assigned to Tdry, and a significant uncertainty is induced to the
index’s value when use of this empirical formulation is adopted. The second drawback is
that it must necessarily be placed inside each thermal image acquired and the third required
high-spatial resolution (to detect a significant number of pixels within the reference, while
avoiding mixed pixels) [49]. For these reason, one analytical method can be used to calcu-
late Tdry and Twet. It is quite expensive in terms of calculation. This method is based on the
energy balance equation [56,60] and requires the measurement of incoming solar radiation,
air temperature, relative humidity, drag, and wind speed [48]. These measurements are
available from any meteorological station and can be representative of very large areas, but
may have a degree of uncertainty that affects their accuracy. For the analytical calculation,
an energy balance is performed to derive the net solar radiation (W m2), using the sum of
incoming and outgoing radiation. The analytical form is proposed by Jones (CWSIA, [56]).
This form has been used extensively in several studies in olive groves [49,61]. Berni et al.
(2009) [61] developed an approach suitable for monitoring areas in the order of hundreds
of hectares using an unmanned aircraft that could provide frequent visits and short lead
times to detect water stress for irrigation scheduling. The methodology presented does
not require the use of reference areas and relies on physical models to estimate all input
variables of the energy balance equations. Berni et al. (2009) [61] calculated firstly the
resistance of the canopy to heat transport (rc). The model used to calculate the CWSI
considers not only the vapor pressure deficit but also Rn and wind speed, parameters
known to influence temperature differences between air and tree canopy. Once the rc is
known and the potential canopy resistance for a well-watered crop (rcp) is estimated [62,63],
one can proceed with the calculation of the CWSI with a purely analytical solution, as
reported below:

CSWI =
γ
(
rc − rcp

ra
)

∆ + γ (1 +
( rcp

ra
) (3)

According to Ben–Gal et al. (2009) [49], a comparison of the two methodologies was
carried out. The best of the two methods (analytical and empirical) turns out to be the
CSWIA, although there are not clear differences. On the other hand, Agam et al. (2013) [59]
obtained contrasting results with Ben–Gal et al. (2009) [49] as they showed that the use of
CSWIE for the identification of the water status of olive trees during stress and recovery
phase is better than the analytical one. Furthermore, Agam et al. (2013) [59] observed
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a poor applicability of CSWIA indices throughout the day, in contrast to CSWIE, which
proved to be better able to differentiate well-watered trees from stressed trees and better
represented the evapotranspirative trend of the crop. Agam et al. (2013) [59] proposed that
the CSWIA can be used not so much for the estimation of the water status of the olive tree,
but for an indirect estimation of the stomatal conductance, with which it is closely related.

Agam et al. (2013) [59] proposed the application of a new CSWI that is intermediate
between the empirical and the analytical method, assuming that Twet is calculated analyt-
ically (Jones method), and thus overcoming one of the application limitations of CWSIE.
Since Twet, calculated according to Jones (1999) [56], has been shown to produce good CWSI
values, it is therefore proposed to combine CWSIA with CWSIE to form a CWSIAE. In the
latter method, Tdry is determined empirically, while Twet is calculated analytically, using
meteorological measurements in the field.

There is also another methodology to calculate CSWI that is used for satellite im-
agery [64]. This methodology turns out to be very similar to the use of CSWIE in that the
image is calibrated based on the two references, hot and cold, present in the image. Veysi
et al. (2017) [52], using this methodology, were able to determine the CWSI using only
remote sensing satellite data, using the following equation:

CSWI =
Ts − Tcold

Thot − Tcold
(4)

where Ts is the land surface temperature (LST) derived from a satellite image providing the
canopy temperature, Tcold is the temperature of the cold pixels, and Thot is the temperature of
the hot pixels. Cold pixels are those covered by fully irrigated crops and hot pixels represent
crops under water stress. Bastiaanssen et al. (1998) [65] described the correct procedure
for selecting hot and cold pixels while Veysi et al. (2017) [52] made some modifications
for selecting hot pixels. Hot pixels are selected from the area with maximum water stress
while LST is calculated using thermal images. The LST calculation requires an image with
no cloud cover or atmospheric correction of it, radiometric calibration, and knowledge of
the emissivity of the considered surface. These are challenging tasks; moreover, existing
terrestrial observations (EO) do not provide TIR images with detailed temporal and spatial
resolution, and do not appear to be able to adequately distinguish individual canopies [64,
66,67]. Fuentes–Peñailillo et al. (2018) [68] also proposed an intermediate methodology
to be applied on remote stellar platforms to the Shuttleworth and Wallace model [69].
This methodology foresaw the use of terrestrial meteorological data (to determine the
intra-plot variability of an olive grove) and satellite images (Landsat 7), obtaining results
with reliable values but still with little applicative possibilities. Unfortunately, given the
average size of olive farms and the implementation of new acquisition platforms with
higher spatial resolution, the use of satellite platforms and CSWI calculation methods from
these platforms have not been widely applied to olive growing. For this reason, applications
of new thermal sensors on board unmanned aerial platforms (UAV) are gaining interest in
water status investigation. They provide a spatial resolution of less than one square meter,
allowing the retrieval of the real canopy temperature, thus minimizing ground thermal
effects compared to images from satellite platforms; despite the uncertainty caused by the
high signal-to-noise ratio due to the high resolution. In addition, atmospheric effects and
atmospheric transmittance should also be considered for low-altitude platforms aimed at
keeping temperature measurement errors below 1 K. In conclusion, it can be stated that
the CSWI, although reliable enough to predict crop water stress conditions, needs further
studies in order to outline a standard protocol applicable in all soil and climate contexts.

2.2. Sensors and Technologies for Olive Canopy Characterization

Characterization of the canopy provides us with data on the amount of biomass,
growth activity, productivity, water consumption [70], health status, etc. Thus, canopy char-
acteristics provide valuable information for specific tree management to reduce production
costs and environmental pollution. There is a whole range of key cultivation operations,
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such as pesticide treatments [71], irrigation [72,73], and fertilization that depend largely
on the structural and geometric properties of the trees. When talking about geometric
variables, we refer to tree height, volume, area, and width, while structural variables
mainly concern leaf area index (LAI), canopy penetrability, and canopy porosity. These
can be determined in different ways and in a more or less empirical manner. Of these,
the leaf area index (LAI) is the most important parameter. The LAI is a dimensionless
variable and was initially defined as the total unilateral area of photosynthetic tissue per
unit area of soil [74,75].

The structural and geometrical parameters of trees, such as volume and vegetation
area, are generally derived from manual measurements of height and width. However,
as this methodology is slow and expensive, alternative methods have been used in the
last 10 years. The measurement and structural characterization of plants can be carried
out remotely using different sensing principles. The main technologies that can be used
for geometric characterization of crops include: ultrasound-based systems [76], digital
photographs [77], laser sensors [78,79], stereoscopic images [80], light sensors [81,82], high-
resolution radar images [83], or high-resolution X-ray computed tomography [84]. Among
these, light detection and ranging (LiDAR) and stereoscopic vision systems are probably
the most promising techniques to obtain 3D images and maps of plants and canopies [85].
It must be stressed that not all the previously mentioned technologies have been able to
best describe the 3D structure of trees, due to the actual field conditions.

For the manual characterization of the olive tree canopy, several methods can be
used. Among the main ones we find the projected vertical crown area (VCPA) method,
ellipsoid volume (VE) method, and tree silhouette volume (VTS) method [86]. The main
disadvantage of these methods concerns their high laboriousness without any possibility of
being able to investigate the whole spatial variability of the plot. The methods of detecting
biophysical parameters of olive trees remotely can be estimated from satellite area platforms
with high spatial resolution [87], on UAV [70,88,89], from sensors mounted on unmanned
aerial vehicle (UGV) or on tractors [86,89,90].

A technology that arouses interest especially for canopy qualification in order to better
define the direction and quantity of plant protection product is the use of ultrasound [90].
Ultrasonic sensors turn out to be cheap, robust, simple to use, and have shown reasonable
accuracy under field conditions, sufficient for most cases [85,91]. On the other hand,
their main disadvantage is the error produced by some factors, mainly the shape and
distance from the target, interference with the signal coming from the sensors, atmospheric
conditions, and a low spatial resolution (requiring the use of a larger number of sensors).

Among the most applied methodologies for the quantification of biophysical param-
eters of olive trees, there are applications using stereoscopic vision techniques, namely
structure from motion (SfM). This technique involves the use of consumer RBG chambers
(with or without an infrared filter), which allow 3D image reconstruction (Figure 3). The
advantage of these technologies lies in the simple and reliable applicability of the system
and its low cost [70,89,92–95]. Anifantis et al. (2019) [93], using a low-cost drone and
a simple RGB camera, managed to obtain very good estimates of canopy structure and
morphology compared to conventional classical methods. For the application of the SfM
technique, the workflow after image acquisition involves orthomosaicking, reconstruction
of the digital surface model (DSM) using structure from motion (SfM) image reconstruction,
and finally GIS analysis to calculate the height and diameter of the canopy. A DSM is
a digital representation of a topographical surface that represents the height of the top
surface of the ground and objects on it, which can be used to obtain information on tree
height. A digital terrain model (DTM) represents the topographic surface by including only
the height of the ground surface, thus excluding the height of objects on it [70].
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Figure 3. 3D representation of a traditional plantation generated with a multispectral sensor (a) and
a row plantation generated with a visible light camera (b). Data from [88].

Based on the different spatial resolutions, very good results are obtained at plant and
individual tree level. Of course, this technology can be tested and used on any type of
planting (traditional and intensive) [94]. Caruso et al. (2019) [70], with the same method-
ology, managed to obtain excellent correlations between biophysical and trunk section
area (TCSA) parameters, underlining how vegetative activity and spectral response are
closely related to the intensity of agronomic practices. Torres–Sánchez et al. (2015) [88],
in order to fully exploit this technology, implemented more robust and automatic image
analysis procedures (Figure 3), using a technique based on the methodology called geo-
graphic object-based image analysis (GEOBIA). GEOBIA overcomes some limitations of
pixel-based methods by grouping adjacent pixels with homogeneous spectral values after
a segmentation process and using the created ‘objects’ as the basic elements of the analy-
sis [96,97]. GEOBIA, or OBIA, combines spectral, topological, and contextual information
of these objects to address complicated classification problems. Karydas et al. (2017) [98],
starting from RGB and multispectral images with high spectral resolution, have obtained
good results from the application of OBIA methodology. Stateras et al. (2020) [39] have
effectively applied OBIA technology on olive grove, managing to formulate a predictive
model of yield based on canopy structural parameters and NDVI.

Finally, the use of LiDAR is presented as a method of quantification and characteriza-
tion of the canopy. This technology is becoming more and more successful in fruit growing,
as it allows precise, objective, and fast determination of morphological parameters. Such
systems can be mounted on any type of platform, even on the same tractor, so that normal
cultivation operations can be used to identify and determine the entire olive grove. In the
olive field, its use lays the foundations to immense application possibilities, especially in
the case of SHD olive groves that need adequate conditioning of vegetative and productive
activity to optimize production [54,99,100]. There are different types of LiDAR sensors on
the market, with different modes of operation, and with a significantly lower cost than other
technologies. LiDAR laser technology is a non-destructive remote sensing technique for
measuring distances, providing a relatively new tool for generating a complete description
of tree structure. The distance between the sensor and the target can be measured by two
methods: by measuring the time a laser pulse takes to travel between the sensor and the
target (LIDAR time-of-flight) or by measuring the phase difference between the incident
and reflected laser beams (LIDAR phase shift measurement). In agricultural applications,
2D terrestrial LIDAR sensors can be used, which are much cheaper to use than 3D LiDAR
sensors [79]. 2D LIDAR sensors obtain a point cloud corresponding to a plane or section of
the object of interest. The fact that these sensors only scan in one plane does not necessarily
limit their scope to 2D perception. Sola–Guirado et al. (2018) [79], using a 2D LiDAR
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sensor, easily managed to obtain on-the-go measurements that could be used for canopy
quantification for different crop operations.

This technology, compared to the previously presented technologies, has the advantage
of achieving much higher levels of resolution. Martínez–Casasnovas et al. (2017) [91]
obtained correlations around 91%, compared to estimates made manually, with a high
saving in time. Furthermore, they managed to identify the behavior of sunlight within the
canopy with an r2 of 0.97. Indeed, they observed that in the first section, sunlight could
easily penetrate the canopy up to a distance of about 0.8 m. The comparison of sunlight
extinction coefficients within the canopy can be used to evaluate the effect of different
cultivation techniques, such as different pruning systems [101] or different irrigation
schemes. The possibility of investigating canopy structure with this technology offers
more application possibilities than other methodologies [81]. Moorthy et al. (2011) [102]
managed to excellently characterize the olive tree canopy and related structural parameters
using an intelligent laser ranging and imaging system (ILRIS-3D). They developed robust
methodologies to characterize diagnostic architectural parameters, such as tree height
(r2 = 0.97, rmse = 0.21 m), crown width (r2 = 0.97, rmse = 0.13 m), crown height (r2 = 0.86,
rmse = 0.14 m), crown volume (r2 = 0.99, rmse = 2.6 m3), and plant area index (PAI) (r2 = 0.76,
rmse = 0.26 m2). The algorithm used to process the LiDAR-3D data was the one developed
and tested in the laboratory and proposed by [103]. The disadvantage of this technology is
related to its cost and the complexity of calculations, which are not yet standardized.

3. Monitoring Technologies That Can Be Used in Precision Olive Growing

The primary objective of the monitoring process is to acquire the maximum amount of
georeferenced information within the olive grove. A wide range of sensors can be used
to monitor the different parameters that characterize the plant growth environment. The
three agronomic variables that must be monitored in order to apply precision farming
correctly are soil, climate, and crop. In the literature, very few works carried out in the
olive grove have allowed the investigation of the spatial variability of the soil and climate
characteristics, also considering what their influence on the cultivation activity might be.
The main scientific progress has been made in the interpretation of data from biophysical
parameters, production data, and spectral responses from the crop. The use of vegetation
indices or punctual data closely linked to the productivity of the olive grove (such as the
production map) are the main methods of analysis and management of the vegetative-
productive variability found.

Senay et al. (1998) [104] distinguish three ways of measuring spatial variability in
the field: continuously, discretely (e.g., point sampling of soil or plant properties), and
remotely (e.g., through aerial photographs). Discrete sampling is generally characterized
by a high precision of the investigated variable but cannot describe the complete variability
in the field. When adopting this technique, proper geostatistical techniques must be
applied, which allow the measurement of the variable to be transformed from discrete to
continuous [105]. As far as continuous surveying methods are concerned, its progressive
use is being observed in precision olive growing, especially for the creation of particular
maps, such as the production map. Finally there is remote sensing: This determines the
creation of continuous measurements in space but acquired from platforms more or less
distant from the object [106]. It represents the most interesting and scientifically focused
mode of data acquisition, as it allows a more precise, less laborious and often cheaper
investigation than point sampling. The problem with remote/proximal sensing techniques
is that generally an indirect estimate of the variable to be investigated is obtained and the
correlation cannot always be generalized to other locations. For example, if we obtain an
NDVI map in an olive grove, we can predict the amount of production that will be obtained,
but this correlation is not always equally applicable. The literature often distinguishes
the remote sensing technique into two large families based on the distance between the
sensor making the measurement and the variable, in this case we speak of remote sensing
and proximal sensing. Their differentiation is based on the distance between the sensor
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and the object of investigation. Generally, proximal sensing is based on the use of ground
moving vehicles carrying various types of sensors, handheld sensors, and systems placed
directly in the soil (ground sensing) or on the crop [106], while remote sensing identifies
more distant and generally mobile platforms such as satellites, aircraft, and UAVs. These
two categories are extremely different from each other and in precision oliviculture, the
most used type of acquisition is remote sensing. However, proximal sensing in view of
technological developments such as LiDAR, unmanned ground vehicle, etc., make this
acquisition mode very interesting.

3.1. Remote Sensing

The technologies available for the remote investigation of olive trees are very varied
and allow increasingly precise monitoring. These are remote image acquisitions with
different resolution scales, capable of describing the olive grove by detecting and recording
reflected sunlight or wavelengths emitted from the surface of objects. Remote sensing
techniques quickly provide a description of the shape, size, vigor, water status, nutritional
status, stress state of the olive tree, and allow the assessment of variability within the
olive grove. The three platforms mainly used in remote sensing are satellites, aircraft,
and unmanned aerial vehicles or remotely-piloted aerial systems (UAV or RPAS). There
are substantial differences between the different acquisition platforms depending on the
acquisition distance and the technical characteristics of the platforms themselves. In the
case of precision oliviculture, it is possible to adopt satellite or airborne remote sensing
techniques and obtain acceptable results [5,107]. Such techniques can be used mainly at
territorial level, for olive groves of large extents and with very large planting distances
or even by public administrations and control bodies [108]. However, as today’s olive
cultivation is also characterized by promiscuous forms of cultivation, with very small
areas, this type of acquisition does not lend itself very well to precise monitoring in all
forms of cultivation and to the correct application of variable rate technologies. On the
other hand, when UAV platforms are adopted, plant investigation can be carried out with
greater accuracy and precision of data (Figure 4), and even spatial resolutions of the order
of a few centimeters can be achieved [36,61]. However, there are studies that emphasize
the potential of remote sensing from satellite for the acquisition of multispectral images,
especially when dealing with large areas [109–111].

Figure 4. Airborne thermal imagery acquired over the study site: (a) AHS image collected at
12:30GMT on 16 July 2005; (b) UAV image collected at 13:30 GMT on 23 August 2007; (c) image
detail showing the spatial resolution differences of AHS (2 m) against the UAV (40 cm). The spatial
resolution of the UAV imagery shows individual tree crown, enabling pure crown temperature
extraction. Data from [61].
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All of the above platforms can be used to obtain information on soil, climate, and,
above all, crops. Naturally, crop information is of greater interest as it allows the direct
investigation of the health status of the olive tree [112], in order to make the correct site-
specific applications. The method involves the acquisition of different types of images such
as multispectral, hyperspectral, and thermal images. From their processing, using GIS and
photogrammetry software, it is possible to obtain the different information. Generally, there
is also the need to carry out direct measurements in the field in order to better calibrate the
final information by making it quantitative. In this way, it is possible to obtain thematic
maps that are used to construct the prescription maps that represent the basis for carrying
out site-specific management [4,105,110]. How the different platforms have been applied
in precision oliviculture is discussed below.

3.1.1. Satellite

Satellites have been used in agriculture since the early 1970s when the Landsat 1
platform (in orbit since 1972), equipped with a multispectral sensor, became operational.
However, the first applications in olive cultivation have been carried out since the 2000s for
the identification of different optical and reflectance properties of the crop. Today, several
satellite platforms are available and are constantly evolving due to the launch of new
satellites by government space agencies and private companies. Indeed, the availability
of images has increased over the years and is now very wide. Thus, the range of sensors
available on the different platforms has also increased, ranging from multispectral sensors
to hyperspectral and thermal sensors. Therefore, given the high availability and types of
images that are acquired by satellite, these platforms are increasingly used for different
precision farming applications. Unfortunately, images may be available for a fee or free of
charge, and often a high image cost is associated with a high spatial resolution.

The main limitation of these technologies relates to spatial resolution and the need to
obtain images with good radiometric correction to obtain more accurate data. In general,
thermal images have low spatial resolutions. For example, Landsat 7 and 8 have spatial
resolutions in the order of 60 and 100 m, respectively.

Satellite remote sensing techniques can be used for different purposes. In precision
oliviculture, they can be used with the aim of better managing the main cultivation tech-
niques such as: precision irrigation, description of biophysical parameters [87,111] and
for precision fertilization. High-resolution images are needed for the identification and
description of biophysical and structural parameters of olive trees. Indeed, the results
obtained from satellite platforms have resolutions that are hardly comparable to those
obtained from proximal acquisition platforms or UAVs [112]. In the study by Gómez et al.
(2011) [87], using images from the CASI satellite with a spatial resolution of 1 m and an
algorithm developed by [113], the authors managed to obtain correlations of 0.82 and 0.87
with very high significance and an RMSE of 4.8 m2 and 8.4 m3, for canopy size (m2) and
volume (m3), respectively. However, using other satellite platforms, such as QuickBird, no
acceptable results were obtained.

Precision irrigation of olive trees using satellite imagery can be skillfully applied
through the calculation of water-sensitive VIs and thermography. The main limitation of
thermography is the possibility to obtain images with high spatial resolution, which are
able to derive the pure temperature of the canopy, minimizing the effect of the soil [114,115].

From satellite, given the wide availability of multispectral sensors with the main VIS,
NIR, and SWIR bands, it is possible to calculate the different vegetation indices in order
to carry out precision fertilization. Unfortunately, in the literature there were not many
studies highlighting the application of this practice on the olive grove. Yet, fertilization
represents an extremely important practice for the determination and maximization of
production quality and quantity [17,54]. Precision fertilization is carried out on the basis of
satellite, soil, climate, and crop data. It allows the differentiated distribution of different
fertilizers (variable rate application, VRA) according to actual needs. An application
study concerning precision fertilization in the olive grove using satellite information was
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conducted by [5]. Using images from the ALOS-Avnir-2 satellite of the Japanese Aerospace
Exploration Agency (JAXA), they managed to obtain several correlation algorithms that
could be used for the creation of variable rate fertilization (VRF) maps. Unfortunately, these
algorithms need to be tested for complete reliability before they can be applied in other
areas. In this study, in addition to multispectral data, information on soil, structural, and
cultural properties was acquired. The multispectral data were acquired with the classic
acquisition bands such as B, G, R, and IR, in order to calculate the three most widely used
vegetation indices in the literature: normalized difference vegetation index (NDVI) and the
soil adjusted vegetation index (SAVI).

3.1.2. Aircraft

Airborne missions for classical precision farming applications have not been very
successful, as they are overpriced and often linked to private agencies. However, they have
a better resolution of the final image than satellite platforms and can cover large areas.
In precision oliviculture, the applications coming from this type of acquisition have been
little used and concern only precision irrigation. In fact, good results have been obtained
from airborne campaigns with high spatial resolution regarding the investigation of water
status [51,61,64,67]. In Sepulcre–Cantó et al. (2005) [51], the aerial campaign was conducted
with the airborne hyperspectral scanner (AHS) (Daedalus Enterprise Inc., USA). The AHS
has a sensor that allows it to acquire 80 spectral bands between 430 and 12,500 nm. In this
work, they were able to achieve a spatial resolution of 2.5 m. Three different flights were also
carried out at different times of the day. Using this platform, they were able to faithfully
describe the variability of the water status of olive trees. The relationships found for
individual trees between the estimated and calculated temperature on the ground resulted
in the following correlation indices: r2 = 0.81; r2 = 0.52, and r2 = 0.56, respectively, for the
three flights performed. Sepulcre–Cantó et al. (2006) [64] also demonstrated that high
spatial resolution AHS images enabled the study of spatial and temporal thermal effects
caused by water stress. In Sepulcre–Cantó et al. (2007) [67], using the same sensor, they
were able to monitor yield and fruit quality parameters. This time, the spatial resolution
obtained was 2 m with the same bands. In this study, the quality parameter was related to
the water content of the olive with respect to the different water conditions of the plants
under different irrigation strategies. These results suggest that high-resolution thermal
remote sensing is a potential indicator of yield and some fruit quality parameters under
different irrigation regimes. Indeed, Tc-Ta maps could be used to assess the level of water
deficits in orchards and to predict its impact on yield and fruit quality.

Unfortunately, no article has been found in the literature attempting to apply spectral
data from such a platform in order to apply other variable rate cultivation practices such
as fertilization. However, the good results that have been found in the previously men-
tioned works on precision irrigation give hope for an implementation of the use of this
acquisition platform.

3.1.3. Unmanned Aerial Vehicles (UAV)

UAV platforms are the most successful spatial data acquisition platform in precision
olive growing. These platforms can be classified as fixed-wing or rotary-wing. They can
be controlled from a visual distance by a pilot on the ground or fly autonomously to a
user-defined set of waypoints, using a complex system of flight control sensors (gyro-
scopes, magnetic compass, GPS, pressure sensor, and triaxial accelerometers) controlled
by a microprocessor. UAVs can be equipped with a variety of sensors, allowing a wide
range of monitoring tasks to be performed. The particularity of the UAV application in
remote sensing is its high spatial resolution (centimeters) and timeliness, due to reduced
planning times. These features make it ideal in SHI or OT olive cultivation characterized
by highly fragmented and heterogeneous areas. In fact, by adopting a common UAV it is
possible to use different types of chambers and obtain very detailed information of the field
conditions. For this reason, most of the scientific articles related to biomass quantification
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and characterization of olive tree canopy architecture have focused on the use of UAVs,
also in view of future implementations of olive tree growth models that need high spatial
resolution information [39,116]. Furthermore, such platforms can be used in some countries
for direct field distribution of some inputs, such as plant protection products [117].

The use of UAV platforms in precision oliviculture has focused on the possibility of
acquiring spectral reflectance images, thermal images, and RGB images for photogram-
metric processing. The high spatial resolution of the images obtained can be attributed
solely to the lower flight height compared to other platforms [36]. This high resolution
makes it possible to better discriminate between different disturbing elements, such as
bare soil, and to obtain pure crop pixels. The main applications of UAV in olive cultivation
concern photogrammetry for the spatial reconstruction of the canopy [86,94] and its use in
thermography to serve irrigation [49,61]. The limitations of this technology are related to
cost, technical training and weather conditions. UAV has been widely used recently for 3D
reconstruction of olive tree structure, mainly using SfM techniques [70,89,93]. An aspect
of primary importance in the use of UAVs concerns the possibility of being able to find
the right compromise between surface to be investigated, final resolution, and processing
procedure [88,89]. Zarco–Tejada et al. (2014) [89] obtained an r2 = 0.83 and an overall root
mean square error (RMSE) of approximately 35 cm among the canopy structural parameters
measured using SfM, highlighting the importance of maintaining a pixel spatial resolution
of at least 30 cm at the time of acquisition. Furthermore, compared to other platforms, it is
possible to associate the geometric characteristics of the canopy with spectral information.

In addition to canopy investigation, literature has focused on the use of drones to
collect thermographic information to serve precision irrigation [35,49,50,61]. While on other
crops the possibility of acquiring multispectral images to carry out precision fertilization is
a well-established practice, in the olive tree, there are not many studies about it. In fact,
the application of drones in precision oliviculture in order to obtain spectral information
and to carry out variable rate fertilization has not been investigated. However, much
research points out that precision fertilization in the olive grove can also be conducted by
the creation of prescription maps starting from soil element content measurements and
obtain savings of up to 30% of fertilizer [4,6,104].

3.2. Proximal Sensing

Proximal sensing is a data acquisition system that exploits different technologies that
are in proximity to or directly in contact with the target surface (land surface or plant).
The main feature of proximal sensing is the high accuracy of the data compared to remote
sensing but generally lower than in the laboratory. Another important feature of this system
is that the sensors can be used either on-line or off-line. In-line sensors are generally used to
directly perform operations in the field while off-line sensors need to be processed in order
to be used [118]. The advantages of proximal sensors advantages are their high-resolution
imagery; their independence from external parameters; their suitability for small fields;
and their simple application (i.e., mounting the sensor on the tractor). A very important
factor to consider is the different sources of information that can be generated compared
to remote sensing due to the different sensor-object position. The limitations of proximal
sensing are due to its high cost and its low capacity to acquire data that are able to describe
the entire variability present in the plot. In fact, they are often point data, which have to be
spatialized in order to refer to the whole area [23]. The ground platforms used for proximal
sensing can be grouped into three categories: portable, self-supporting in the field, and
mounted on tractors or agricultural machinery or UGVs [119]. Regarding the use of UGVs
in precision oliviculture, there have been no scientific applications in the literature yet,
although the progress made in other sectors bodes well for their future application in olive
cultivation [120].

Among the most interesting applications of proximal sensing with a direct effect on
precision olive growing are LiDAR [86,90] and ultrasonic sensors [89]. The latter have found
practical use on the distribution of plant protection products. [121] created an ultrasonic
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prototype that allowed the automatic calibration of plant protection products, based on the
architecture of the canopy.

Among the proximal sensors are those involved in monitoring olive yield. [122]
initiated precision farming applied to olive groves, through the simple application of GPS
sensors to map the production of olive trees. In fact, the production map represents one of
the main sources of information for the creation of the correct fertilization map [123,124].
Ref. [125] was able to determine area production (20–30 trees per area) simply by weighing
production. In other fields, such as precision viticulture, several on-the-go methods already
exist that can map plant production. The idea would be to be able to transfer this type of
technology to precision olive growing as well, in order to obtain data on the productivity
of individual trees, as this is one of the most important pieces of basic information. There
are also other portable instruments that allow, for example, the calculation of chlorophyll
content or the spectral response of the olive tree, directly in the field. However, they have
not been well investigated for use in precision oliviculture.

4. Future Directions of Precision Oliviculture

The world population and its food consumption are growing rapidly, while the effects
of climate change complicate the possibility of ensuring food security in a sustainable
way [126,127]. Therefore, new methods of cultivation and farm management are being
sought that ensure the proper supply of food to the population and a low incidence
of environmental impact. Precision olive growing today represents a method of farm
management that certainly brings undeniable benefits to the sector from all points of view:
productive [126], qualitative, and environmental [6]. Indeed, precision olive growing
involves the application of different technologies in order to optimize the use of different
agricultural inputs [14]. The application of remote sensing technologies for precision
olive growing has increased rapidly in the last decades. The unprecedented availability
of high-resolution (spatial, spectral, and temporal) satellite imagery has promoted the
use of remote sensing in many PA applications, including crop monitoring, irrigation
management, nutrient management, disease management, pest management, and yield
forecasting [120].

However, the aim of precision oliviculture must be to manage all the information
that we are currently able to obtain with the various devices, in order to carry out site-
specific management with the smallest margin of error. The limits of precision olive-
growing are represented by an overview of the agricultural variables (soil, climate, and
cultivation) that is still not completely unambiguous and closely linked to the various
experimental sites. It is likely that in the coming years the above-mentioned remote sensing
and management techniques will be increasingly entrusted to machine learning (ML) [128].
This technology is a branch of artificial intelligence (AI) and allows the automation of
decision-making processes and the development of a farm-specific management system
in real time, simplifying farmers’ work. Indeed, ML provides an effective approach to
build a model for regression and classification of a multivariate, non-linear system, due
to machine learning models. Different machine learning algorithms, such as decision
trees (DTs), support vector machines (SVMs), artificial neural networks (ANNs), genetic
algorithms (GAs), and ensemble learning, have been used effectively on remotely sensed
information [129]. Machine learning has the ability to process large amounts of information.
Recently, the use of machine learning techniques combined with remote sensing data has
reshaped precision agriculture in many ways, such as crop identification, yield prediction,
and crop water stress assessment, with better accuracy than conventional remote-sensing
methods. The development of UGVs is also likely to greatly simplify crop operations
that are carried out manually such as weed control, harvesting, etc. However, UGVs are
currently not used at all in olive groves.

ML can be used to improve data from any platform. Makhloufi et al. (2021) [130],
using this technology, were able to more accurately estimate the biophysical data and
phenological stages of the olive tree from stellar platforms. One problem in implementing
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ML algorithms is the high computing power required. Advances in ML algorithms that
reduce the computational time for data processing will significantly improve the use of ML.

Smart agriculture is developing beyond the modern concept of precision agriculture,
which uses data from global navigation satellite systems (GNSS) and different geographic
information system (GIS) programs [131].

However, this new form of agriculture is based on the concepts of precision farming, but
is enhanced by contextual awareness and is triggered by real-time events, improving its perfor-
mance. Smart farming incorporates intelligent services for the application and management
of information and communication technologies (ICT) and enables cross integration along
the entire agri-food chain with regard to food safety and traceability [132,133]. This complete
interconnection of services and technologies can be done in different ways: Among them, IoT
represents the most efficient [134]. The application of IoT called AIoT [135], Ag-IoT [136], or
IoF, meaning Internet of farming [137] or Internet of food and farm [133], has received more
interest in the scientific community.

Certainly, the possibility of interconnecting multiple technologies available today such
as UAVs, WSNs, and IoT, makes precision agriculture more efficient and could bring about
a momentous change in the concept of agriculture, as happened in the past during the
so-called green revolution [138,139].

These new emerging technologies, such as geospatial technologies, Internet of things
(IoT), big data analytics, and artificial intelligence [140], despite posing new technological
and cognitive challenges to be overcome, could be used to make informed management
decisions in order to further improve the agri-food sector.

5. Conclusions

The growing population and the need to consume more sustainable agricultural prod-
ucts have set new goals for the agri-food sector, which will have to move towards a more
efficient use of resources. This new form of agricultural management, also known as
precision agriculture, is now widely used in many countries characterized by extensive
and highly productive agriculture, which needs this change. A not inconsiderable positive
boost to PF has been given by the increase in scientific interest in research into the develop-
ment of low-cost devices for its application. These range from the constitution of GNSS
receivers [141,142] to the constitution of different proximal devices for machine regulation,
sensors and drones for crop monitoring [40,143].

Today, the olive sector is characterized by a wide variability, due to the different forms
of farm management. The new forms of breeding and cultivation (superintensive olive
groves) have undeniable productive, qualitative, and environmental advantages, but they
pose new problems in their management. Therefore, scientific research is working to better
control the vegetative-productive activity of the various cultivation systems, in different
areas and under different agronomic (management and soil and climate) conditions. In this
context, precision olive cultivation is in line with the needs of the olive sector as it is able to
maximize production and quality, with the least use of inputs (fertilizers, water, fuel, etc.),
safeguarding biodiversity and enhancing environmental sustainability.
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