
University of Palermo
PhD joint program:

University of Catania - University of Messina
XXXV CYCLE

Doctoral Thesis

Geometric methods in coding theory
and cryptography

Author:
Giuseppe Filippone B

Supervisor:
Prof. Domenico Tegolo

Co-Supervisor:
Prof. Giovanni Falcone

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in

Mathematics and Computational Sciences

May 29, 2023

https://www.unipa.it
https://www.researchgate.net/profile/Giuseppe-Filippone-2
https://orcid.org/0000-0001-7315-1852
mailto:giuseppe.filippone01@unipa.it
https://www.unipa.it/persone/docenti/t/domenico.tegolo
https://orcid.org/0000-0001-5417-5584
https://www.unipa.it/persone/docenti/f/giovanni.falcone
https://orcid.org/0000-0002-5210-5416

i

Declaration of Authorship

I, Giuseppe Filippone, declare that this thesis titled, “Geometric methods in coding
theory and cryptography” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself.

Signed: Giuseppe Filippone

Date: May 29, 2023

ii

Contents

Declaration of Authorship i

Contents ii

List of Figures v

List of Tables vi

List of Symbols vii

Introduction 3

I Mathematical background 6

1 Cryptography 7

2 Algebraic curves 12
2.1 Projective space . 12
2.2 Homogeneous rational functions . 14
2.3 Algebraic variety . 16
2.4 Divisor of algebraic curves . 18

3 Elliptic curves 20
3.1 Elliptic curves in Weierstrass form . 20

3.1.1 Group law . 22
3.1.2 Elliptic curves in Weierstrass form over the field of complex

numbers . 24
3.1.3 Elliptic curves in Weierstrass form over the field of rational

numbers . 25
3.1.4 Elliptic curves in Weierstrass form over finite fields 26

3.2 Montgomery curves . 27
3.3 Edwards curves . 27

3.3.1 Group law . 28
3.3.2 Equivalence between Edwards curves and Elliptic curves in

Weierstrass form . 31
3.3.3 Twisted Edwards curves . 34

4 Hyperelliptic curves 36
4.1 Group law . 37
4.2 Meaning of the Cantor-Koblitz algorithm 39
4.3 Doubling of divisors without Cantor-Koblitz algorithm 43

iii

5 Elliptic curves cryptography 45
5.1 Diffie-Hellman and ElGamal . 46

6 Code-based cryptography 48
6.1 Coding theory . 48
6.2 McEliece cryptosystem . 50
6.3 Algebraic-geometric Goppa codes . 51

II Curves over Qp 53

7 Local fields 54
7.1 The p-adic numbers . 55

8 Elliptic curves over local rings 57
8.1 The case K = Qp . 58
8.2 Group law over Qp . 60
8.3 The Log function . 61
8.4 ECDLP exploiting the map LogW . 62

8.4.1 Refinement of the ECDLP over Qp 63
8.5 ECDLP from Q to Qp . 65

9 Hyperelliptic curves over Qp 68
9.1 “Weaknesses” of Cantor-Koblitz algorithm 70

10 Edwards curves over Qp 73
10.1 The map Exp over local fields . 73
10.2 The map Exp over Qp . 75

III Coding theory 77

11 Goppa codes for Edwards curves 78
11.1 The Riemann-Roch space L (D) . 78

11.1.1 Computational cost . 81
11.2 AG Goppa codes . 82

11.2.1 Computational cost of constructing a Goppa code over Edwards
curves . 83

11.3 A small example . 83
11.4 A small example of a McEliece cryptosystems 84
11.5 Implementation . 85

12 Goppa codes for hyperelliptic curves 86
12.1 The Riemann-Roch space L (D) . 86
12.2 AG Goppa codes . 91
12.3 A small example . 92

13 HL-codes and their decoding algorithm 94
13.1 Reed-Muller codes . 94
13.2 HL-codes . 99
13.3 Decoding . 100

Conclusions 108

iv

IV Appendices and index 110

A Pseudocodes 111
A.1 ECDLP using the Log function . 111
A.2 AG Goppa codes for Edwards curves 115
A.3 AG Goppa codes for hyperelliptic curves 117
A.4 HL-codes . 119

B Implementations and benchmarks 129
B.1 ECDLP using the Log function . 129
B.2 AG Goppa codes for Edwards curves 134
B.3 AG Goppa codes for hyperelliptic curves 135
B.4 HL-codes . 137

Bibliography 147

Index 153

v

List of Figures

3.1 Sum of two points in an elliptic curve 24
3.2 Sum of two points on an Edwards curve 29

4.1 Sum of two divisors in a hyperelliptic curve of genus 2 39
4.2 Representation of divisors by means of the pair (parabola, straight line) 40
4.3 The only cubic (in light blue) passing through the points belonging to

the supports of the two divisors D1 = P1 + P2 − 2 ·Ω (in green) and
D2 = Q1 +Q2 − 2 ·Ω (in red) . 42

4.4 The only cubic (in light blue) passing through the four points P1, P2,
Q1, and Q2, where P1 and P2 are in green, while Q1 and Q2 are in red 42

4.5 Tangent cubics with Taylor at points P and Q 44
4.6 Tangent cubics at points P and Q . 44

11.1 Edwards real curve with d = −8. The points P , R, and R′ have the
following coordinates (a, b), (a,−b), and (−a,−b), respectively 80

B.1 Benchmark for p = 3 and p = 37 . 130
B.2 Benchmark for p = 3, p = 5 and p = 17 . 130
B.3 Benchmark of the ECDLP for the elliptic curve given by the equation

y2 = x3 − x+ 1
4 over Z/pkZ . 130

B.4 Encryption times for an HL-code of parameter m = 10 138
B.5 Decryption times for an HL-code of parameter m = 10 138
B.6 WALL-time for an HL-code of parameter m = 10 138
B.7 Encryption times for an HL-code of parameter m = 12 138
B.8 Decryption times for an HL-code of parameter m = 12 138
B.9 WALL-time for an HL-code of parameter m = 12 138

vi

List of Tables

8.1 ECDLP as successive approximations modulo 3k 65

B.1 Hardware . 129
B.2 Mean time for the protocol . 139

vii

List of Symbols

K is a generic field
C is the field of complex numbers
R is the field of real numbers
Q is the field of rational numbers
Z is the field of integer numbers
N is the field of natural numbers
Qp is the field of p-adic numbers
Zp is the field of p-adic integers
GF(p) is the Galois finite field of integers modulo p
Z/pkZ is the ring of integers modulo pk

char(K) is the characteristic of the field K

card(K) is the cardinality (or the order) of the field K

a (mod p) is the modulo p operation of the integer a
x is a vector x of n entries
A is a m× n matrix A
An is a n× n matrix A
P is the projective space
Pn(K) is the projective space P over a vector space Kn

fh is the homogenization of the function f

P1(K) is the projective line
P2(K) is the projective plane
[Z : X : Y] are the homogeneous coordinates of a point belonging to a projective

curve
Exp(z) is the exponential map that returns the point P from ℘(z) and ℘′(z)
ExpC(z) is the exponential map with respect to the curve C
Mod(P) is the modulo map that returns the point P which coordinates are

reduced modulo p
ModC(P) is the modulo map with respect to the curve C
Modh(P) is the modulo map that returns the point P which coordinates are

reduced modulo ph

Log(z) is the inverse function of Exp(z)
LogC(z) is the inverse function of ExpC(z)
λP is the scalar multiplication by λ ∈ K of each coordinate of the (affine

or projective) point P , that is, λP = [λx0 : λx1 : . . . : λxn] or λP =
(λx,λy)

viii

E(m, k) is an encryption algorithm for any message m ∈ Dn and key k ∈ Dl

D(c, k) is a decryption algorithm for any encrypted message c ∈ Dn and key
k ∈ Dl

D is an arbitrary domain used in both the two maps E and D
C(K) is an arbitrary algebraic curve C over a field K

Ck is C
(

Z/pkZ
)

W(K) is an arbitrary generalized elliptic curve in Weierstrass form W over
a field K

W(K) is an arbitrary short elliptic curve in Weierstrass formW over a field
K

E(K) is an arbitrary Edwards curve E over a field K

H(K) is an arbitrary Hyperelliptic curve H over a field K

M(K) is an arbitrary Montgomery curve M over a field K

Div(C) is the group of divisor of an arbitrary algebraic curve C
Div0(C) is the group of zero degree divisor of an arbitrary algebraic curve C
Princ(C) is the principal divisor class of an arbitrary algebraic curve C
J (C) is the Jacobian Div0(C)/Princ(C) of an arbitrary algebraic curve C

over a field K

Jk(C) is the Jacobian of an arbitrary algebraic curve C over Z/pkZ, for
some p

P(A) is the probability that an event A occurs
n · P is the formal multiplication between a scalar n ∈ Z and a point P

in a divisor
P −Q is the formal subtraction between two points in a divisor
P +Q is the formal addition between two points in a divisor
P ⊕Q is the group addition between the two divisors P −O and Q−O

belonging to the Jacobian of an algebraic curve, where O is the
identity element

⊖P is the opposite element of P according to the group operation of the
Jacobian of an algebraic curve

P ⊖Q is the group subtraction between the two divisors P −O and Q−O
belonging to the Jacobian of an algebraic curve, where O is the
identity element. This is the abbreviation of P ⊕ (⊖Q)

n⊗ P is the group addition of P − O with itself n ∈ Z times, that is,⊕n
i=1 P if n > 0, while for n < 0 one takes

⊕−n
i=1⊖P

D1 ⊕D2 is the group addition between two principal divisors of the Jacobian
of a hyperelliptic curve

⊖D is the opposite element of the divisor D according to the group op-
eration of the Jacobian of a hyperelliptic curve

D1 ⊖D2 is the group subtraction between two principal divisors of the Jaco-
bian of a hyperelliptic curve, that is, D1 ⊕ (⊖D2)

n⊗D is the group addition of the divisor D with itself n ∈ Z times, that
is,
⊕n

i=1D if n > 0, where for n < 0 one takes
⊕−n

i=1⊖D
L (D) is the Riemann-Roch space of a divisor D belonging to the Jacobian

of a curve

1

Structure of thesis

The structure of this thesis is as follows:

• In Introduction, we provide a brief overview of cryptography and its importance;

• In chapter 1, we present the mathematical foundations of different types of
cryptography and the concept of security;

• In chapter 2, we introduce the topics of curves and algebraic varieties;

• In chapter 3, our focus is on elliptic curves, including their group law, and we
present some key results regarding their properties based on their ground field;

• In chapter 4, we delve into the topic of hyperelliptic curves, including their
group law, and specifically focus on the Cantor-Koblitz algorithm used to sum
two divisors belonging to the Jacobian of a hyperelliptic curve;

• In chapter 5, we provide a brief introduction to cryptography using elliptic
curves, with a particular focus on the importance of selecting “good” ellip-
tic curves that ensure an acceptable level of security. Specifically, we discuss
concerns related to the properties of elliptic curves, such as the need to avoid
“anomalous” curves;

• In chapter 6, we introduce the fundamental concepts of coding theory and dis-
cuss its relevance within the context of cryptography, i.e. the code-based cryp-
tography;

• In chapter 7, we provide an introduction to local fields, their structure, and
their properties;

• In chapter 8, we examine the structure of the Jacobians of elliptic curves over
local fields. In particular, we focus on the field of p-adic numbers. Moreover, we
provide an algorithm to compute the inverse of the exponential map defined on
elliptic curves in Weierstrass form in order to compute the elliptic curve discrete
logarithm;

• In chapter 9, we extend the results of chapter 8 to hyperelliptic curves;

• In chapter 10, we analyze the Jacobian structure of Edwards curves over the
field of p-adic numbers.

• In chapter 11, we give a basis of the Riemann-Roch space for Edwards curves
over finite fields, and we use the latter basis to compute a generating matrix
for an algebraic-geometric Goppa code for such curves;

• In chapter 12, we give a basis of the Riemann-Roch space for hyperelliptic
curves over finite fields using the Mumford representation of the divisors of
their Jacobian, and we use the latter basis to computer a generating matrix for
an algebraic-geometric Goppa code for such curves;

List of Symbols 2

• In chapter 13, we describe HL-codes as sub-classes of Reed-Muller codes (RM
codes), and we extend the original decoding algorithm for RM codes to HL-
codes;

• In Conclusions, we resume the results of this thesis.

At the end of this thesis, readers will find a list of symbols used throughout the
document, as well as a comprehensive index to facilitate navigation and understanding
of the topics discussed.

3

Introduction

Cryptography, or the study of techniques for secure communication in the presence
of third parties, has a long and fascinating history that spans thousands of years. Its
origins can be traced back to ancient civilizations, where it was used for military and
diplomatic purposes. In this chapter, we provide a brief overview of the history of
cryptography, highlighting some of the key developments and milestones that have
shaped the field.

One of the earliest recorded uses of cryptography was the scytale, a rod used by the
ancient Greeks to send secret messages by wrapping a strip of parchment around it
and writing on it. The message could only be read by someone who had a rod of the
same diameter as the one used to write the message. This technique was famously
used by the Spartan military to communicate battlefield orders.

In the 20th century, the development of sophisticated mechanical devices such as
the Enigma machine allowed for the secure transmission of messages. The Enigma
machine, introduced by the Germans in the 1920s, used a series of rotating disks to en-
code messages, which were then transmitted via radio or telegraph. The machine was
later used by the Germans during World War II to encode military communications.

With the advent of computers in the 20th century, the field of cryptography under-
went a significant transformation. For instance, in 1978, Rivest, Shamir, and Adleman
introduced the RSA algorithm [65], which is widely used today for secure commu-
nication. The RSA algorithm is based on the difficulty of factoring large composite
numbers, and it is used for a variety of applications, including online communication
and secure storage of sensitive data.

In the 1990s, the National Institute of Standards and Technology (NIST) launched a
competition to select a new standard for symmetric-key encryption, which is a type
of encryption that uses the same key for both encryption and decryption. In 2001,
NIST selected the Advanced Encryption Standard (AES) as the new standard [26].
The AES is a widely used algorithm that is considered to be secure against attacks
by classical computers.

With the growing concern about the potential vulnerabilities of current cryptograph-
ic techniques in the face of quantum computers, there has been a renewed interest
in developing the so-called post-quantum cryptography [10]. Quantum computers,
which use quantum-mechanical phenomena to perform calculations, are believed to
be able to break many of the encryption schemes that are currently used. Unlike the
classical ones, quantum computers exploit the qubits (quantum bits) to overcome the
limits of classical technology based on the binary system. The qubits, in fact, carry
considerably more information than the classic 64-bit binary registers. The greater
the number of qubits employed, the greater the threat to modern cryptographic al-
gorithms. Specifically, while classical computers use bits that can only assume two
values (0 or 1), quantum computers take advantage of quantum superposition, allow-
ing them to perform calculations simultaneously on multiple quantum states. This

List of Symbols 4

enables quantum computers to solve some computational problems in much shorter
times compared to classical computers, especially for problems that involve factoriz-
ing large numbers, exhaustive searching or computing the inverse of a function (such
as with the Grover’s algorithm). For instance, the well-known Shor’s algorithm [71]
for integer factorization (in quantum computers) is an enormous threat for the RSA
algorithm. Fortunately, at the present time, there are no quantum computers with
enough qubits to undermine neither RSA nor modern cryptography. However, in or-
der to now-days security, researchers are working to develop cryptographic techniques
that are resistant to attacks by quantum computers.

As already mentioned, the history of cryptography is closely tied to the development
of various encryption techniques. In the early days of cryptography, mono-alphabetic
ciphers were commonly used. These ciphers used a fixed substitution alphabet, where
each letter in the plaintext (the message to encrypt) was replaced with a corresponding
letter in the ciphertext (the encrypted message). One of the most famous mono-
alphabetic ciphers is the Caesar cipher, which was used by Julius Caesar to send
secret messages to his generals.

As the use of mono-alphabetic ciphers became more widespread, it became increas-
ingly easy for attackers to break them using various statistical analysis techniques,
which consist of checking how often letters appear in an encrypted message. More
precisely, statistical analyses of encrypted messages have shown a correspondence be-
tween the most frequent letters in ciphered texts using mono-alphabetic ciphers and
the most frequent letters in the language in which the unencrypted message was writ-
ten (for instance, in English the two most frequent letters are “a” and “e”, while the
least frequent letters are “x”, “j”, “q” and “z”). Thus, it follows that mono-alphabetic
ciphers are absolutely insecure because one can easily decipher them. In response,
poly-alphabetic ciphers were developed, which used multiple substitution alphabets
in an attempt to thwart statistical attacks. One of the most famous poly-alphabetic
ciphers is the Vigenère cipher, which was developed in the 16th century and remained
unbroken for over 300 years.

Despite their improved security, poly-alphabetic ciphers were eventually broken using
sophisticated cryptanalytic techniques. In 1917, Gilbert Vernam, an engineer at the
American Telephone and Telegraph Company (AT&T), developed the Vernam cipher,
which is considered to be the first practical example of a perfect secrecy cipher. The
fundamental concept behind the Vernam cipher is the one-time pad (OTP), which
is a random secret key that is used for both encrypting and decrypting a message.
The security of the Vernam cipher is based on the fact that the key is at least as
long as the message and is used only once. More precisely, this cipher is immune to
the ciphertext-only attack (or COA), that is, a ciphertext attack where a malicious
user tries to retrieve the unencrypted message using only the encrypted one. More
precisely, due to the randomness of the OTP, it is impossible for an attacker to use
statistical analysis or other methods to decipher the message without access to the
key.

The development of the Vernam cipher marked an important milestone in the history
of cryptography, as it demonstrated that perfect secrecy (meaning that the ciphertext
reveals no information about the plaintext message, even if the attacker has infinite
computational power) was theoretically possible. Today, the Vernam cipher is still
considered to be one of the most secure encryption techniques, although it is rarely
used in practice due to the difficulty of securely transmitting, storing and generating

List of Symbols 5

such random secret key. Specifically, it is impossible to use the original Vernam cipher
since it requires a truly random OTP, which is not feasible to generate. Nonetheless,
the concept of the Vernam cipher has been adapted and repurposed with the use of
pseudo-random number generators (PRNGs). These generators produce a pseudo-
random key at least as long as the plaintext, starting from a seed value. While
this approach emulates the Vernam cipher’s idea, unlike a truly random OTP, it
is susceptible to several issues concerning the vulnerability of PRNGs in how they
generate their sequence of “random” numbers.

Overall, the field of cryptography has played a crucial role in the evolution of secure
communications, blockchains, smart contracts, crypto-currencies, and will continue
to be an important area of research in the future. As technology and mathematics
continue to advance, we can expect to see new developments and innovations in the
field of cryptography.

In general, cryptography exploits mathematical problems that are inherently diffi-
cult to solve for anyone without the private information, that is, for any user not
authenticated. Among these mathematical problems, we find the discrete logarithm
problem (such as with cryptography using elliptic curves), the factorization of inte-
gers (such as with RSA), the decoding of a linear code (such as with the McEliece
cryptosystem), finding the inverse of a function (such as with 3DES, AES, and other
symmetric ciphers).

In this thesis, we will mainly deal with cryptographic algorithms based on algebraic
curves, a possible attack that aims to speed up the current algorithms in solving the
discrete logarithm problem for algebraic curves, and code-based cryptography using
HL-codes.

The results obtained in chapter 10 have been published in [31]. Moreover, the results
obtained in chapter 8, chapter 11, chapter 12, and chapter 13 have been collected
in four articles submitted for possible publication. We address the reader to the
corresponding preprints in [29, 32, 33, 37].

6

Part I

Mathematical background

7

1 Cryptography

In this chapter, we provide an introduction to the field of cryptography, including key
definitions and modern standards.

Cryptography involves the use of encryption algorithms to convert plaintext, or un-
encrypted information, into ciphertext, or encrypted information and vice versa.

Cryptography algorithms can be divided into two main categories: symmetric-key
and asymmetric-key encryption. The former uses the same key, known as shared key,
to encrypt the plaintext and decrypt the ciphertext, while the latter uses one key,
known as public-key, to encrypt the plaintext and another key, known as private-key,
to decrypt the ciphertext.

Remark 1.1. It is not strictly necessary for the key used in encryption to be as long
as the plaintext, as secure key expansion protocols can be implemented, depending on
the cryptographic protocol being used.

In order to distinguish between symmetric-key and asymmetric-key encryption al-
gorithms, it is first necessary to understand the difference between encryption and
decryption methods.

As outlined in definition 1.1, an encryption method is a function that maps a pair
(plaintext, key) to the corresponding ciphertext. Conversely, as defined in defini-
tion 1.2, a decryption method maps a pair (ciphertext, key) to the corresponding
plaintext. It is noteworthy that these mappings may not be invertible everywhere.
However, this property allows for the definition of secure methods, as outlined in
definition 1.3 and definition 1.4.

Definition 1.1 (Encryption method). Let E(m, k) be an encryption method defined
as follows:

E : Dn ×Dl −→ Dn

(m, k) 7−→ c
(1.1)

where l ≤ n ∈ N, D is a suitable domain such as a finite field, k is a key, m is a
plaintext, and c is the corresponding ciphertext.

Definition 1.2 (Decryption method). Let D(c, k) be a decryption method defined as
follows:

D : Dn ×Dl −→ Dn

(c, k) 7−→ m
(1.2)

where l ≤ n ∈ N, D is a suitable domain such as a finite field, k is a key, c is a
ciphertext, and m is the corresponding plaintext.

In order to ensure the safety of encrypting and decrypting, it is crucial that both
the encryption and decryption methods are secure. Specifically, this means that
the probability that the encryption of two distinct plaintexts results in the same
ciphertext, or the decryption of two distinct ciphertexts results in the same plaintext,

Chapter 1. Cryptography 8

is negligible. In other words, the encryption and decryption methods should be
invertible almost everywhere within their domain.

Definition 1.3 (Secure encryption method). Let E(m, k) be an encryption method,
then the method E is secure if, for any pair of plaintexts (m1,m2) such that m1 ̸= m2,
the probability P(E(m1, k) = E(m2, k)) is negligible, where k is a cryptographically
secure key.

Definition 1.4 (Secure decryption method). Let D(c, k) be a decryption method, then
the method D is secure if, for any pair of ciphertexts (c1, c2) such that c1 ̸= c2, the
probability P(D(c1, k) = D(c2, k)) is negligible, where k is a cryptographically secure
key.

Remark 1.2. It is not straightforward to define a cryptographically secure key, as
the strength of a key is dependent on various parameters such as the size of the key,
typically measured in terms of number of bits, or the randomness of the key, which
is influenced by the method used to generate the key. Typically, a key is considered
secure if it passes various security tests.

As previously said, a symmetric-key encryption algorithm, defined in definition 1.5,
is a cryptographic algorithm that uses the same secret key for both encryption and
decryption of data. Examples of symmetric-key encryption algorithms include AES,
DES, and Blowfish.

On the other hand, an asymmetric-key encryption algorithm, also known as a public-
key encryption algorithm, defined in definition 1.6, uses two different keys: a public
key and a private key. The public key is used for encrypting the data, while the private
key is used for decrypting the data. This means that the encryption process can be
performed by anyone who has access to the public key, but the decryption process
can only be performed by the owner of the private key. Examples of asymmetric-
key encryption algorithms include RSA, Elliptic Curve Cryptography (ECC), and
Diffie-Hellman key exchange.

In addition to the key usage differences, symmetric-key encryption algorithms are
typically faster and more efficient than asymmetric-key encryption algorithms. How-
ever, they are less secure due to the requirement of sharing the secret key among all
parties involved in the encryption and decryption process. Asymmetric-key encryp-
tion algorithms, on the other hand, are considered more secure as the private key is
not shared with anyone and can only be used by the owner of the key.

Definition 1.5 (Symmetric-key encryption algorithm). Let S(E, D, k) be a symmetric-
key encryption algorithm, also known as shared-key encryption algorithm, over
a domain D, where E is an encryption method, D is a decryption method, and
k ∈ Dl is the shared-key. For any plaintext m ∈ Dn, where n ≥ l, it holds that
D(E(m, k), k) = m.

Definition 1.6 (Asymmetric-key encryption algorithm). Let A(E, D, k1, k2) be an
asymmetric-key encryption algorithm, also known as public-key encryption algorithm,
over a domain D, where E is an encryption method, D is a decryption method,
k1 ∈ Dl1 is a public-key, and k2 ∈ Dl2 is a private-key, where l1, l2 ∈ N are not
necessarily distinct. For any plaintext m ∈ Dn, where n ≥ l1 and n ≥ l2, it holds
that D(E(m, k1), k2) = m.

Remark 1.3. In symmetric-key encryption, there are two main types of ciphers:
stream ciphers and block ciphers. Stream ciphers encrypt the plaintext one bit or byte

Chapter 1. Cryptography 9

at a time. They generate a stream of keystream bits, which are combined with the
plaintext bits in a bit-by-bit or byte-by-byte exclusive-OR operation. The keystream
is typically generated by a pseudo-random number generator, which is initialized with
a secret key. On the contrary, block ciphers divide the plaintext into fixed-size blocks
and encrypt them in sequence, with the encryption of each block being dependent on
the previous blocks. They apply the same transformation to each block of plaintext,
using a secret key. The transformation is typically a combination of permutations
and substitutions, which is repeated several times (rounds) in order to increase the
security. The main difference between a stream cipher and a block cipher is that
the latter divides the plaintext into fixed-size blocks and encrypts them independently,
while the former encrypts the plaintext one bit or byte at a time. Stream ciphers are
typically faster and more efficient than block ciphers, but they are less secure since
they can be vulnerable to certain attacks such as plaintext attacks. On the other hand,
block ciphers are more secure and resistant to such attacks, but they are slower and
less efficient.

Although one can define a security level, it is acknowledged that any cryptographic
algorithm is breakable, meaning that there is always at least one attack that is capa-
ble of retrieving the encryption key, plaintext, or any other secret parameter of the
algorithm. For this reason, it is important to define when a cryptographic algorithm
is considered secure and under what types of attacks it is vulnerable.

Definition 1.7 (Cryptographic attack). A cryptographic attack is a method that at-
tempts to violate the security of a cryptographic system by identifying one or more
weaknesses in one or more of its components. In this case, one says that a crypto-
graphic attack breaks a cryptographic algorithm.

Cryptographic attacks can take many forms, each focusing on different aspects of
a cryptographic algorithm in an attempt to break it. For example, some attacks
exploit the choice of algorithm parameters to optimize the process of breaking the
algorithm, while others seek flaws in the cryptographic protocol in order to decode
messages without knowledge of the key. The simplest form of attack, which makes
no assumptions about the data, is known as a brute force attack.

Definition 1.8 (Brute force attack). A brute force attack, also known as exhaustive
search, is a type of cryptographic attack in which an attacker systematically tries all
possible combinations of inputs in order to find the correct one, such as attempting
every possible key to decrypt a ciphertext.

A typical example of a brute force attack is the exhaustive search for the encryption
key. For instance, consider a cryptographic algorithm that utilizes an 80-bit key. The
brute force attack requires an exhaustive key-search by trying all possible 280 keys.
However, in practice, the number of keys to search can be much lower than the total
number of possible keys, making it possible for modern computers to quickly perform
a brute force attack on certain cryptographic algorithms. Furthermore, the brute
force attack can be made more efficient by using techniques such as pre-computation
and table lookups, which can significantly reduce the number of keys that needed to be
searched. Additionally, it is important to consider the possibility of parallelization and
the use of specialized hardware to speed up the attack. Therefore, when evaluating
the security of a cryptographic algorithm, it is essential to take into account not only
the number of possible keys but also the potential computational resources available
to an attacker.

Chapter 1. Cryptography 10

Definition 1.9 (Power of a computer). The power of a computer, in the context of
cryptography, refers to the number of floating point operations per second (FLOPS)
it can perform.

Remark 1.4. Another unit of measurement commonly used in cryptography is the
million instructions per second (MIPS), which measures the number of instructions
per second executed by a microprocessor. However, to use this unit of measurement,
it is necessary to measure the number of machine instructions (i.e., instructions exe-
cuted by the microprocessor) that the cryptographic attack performs. This can be used
to compare the computational resources required for different attacks on the same
cryptographic algorithm.

A secure cryptographic algorithm, as defined in definition 1.10, is one that is able
to withstand the most efficient known attack, as determined by the current most
powerful computer in the world. The security strength of the algorithm is measured
in terms of the number of steps required to break the algorithm, with a higher number
indicating a stronger level of security. The security level of the algorithm should be
significantly greater than the computational power of the most powerful computer in
order to consider the algorithm secure.

Definition 1.10 (Secure cryptographic algorithm). Let CA be a cryptographic algo-
rithm, and let O(f(x)) be the cost of decrypting a ciphertext generated by CA by an
authorized user. Let B be the most efficient cryptographic attack that can currently
break CA. The algorithm CA is considered to be secure (with respect to B) if the cost
of B is O

(
ef (x)

)
.

Remark 1.5. It should be noted that the security of a cryptographic algorithm, as
described in definition 1.10, does not take into account the increasing computational
power of modern computers. As computing power grows, the parameters of a secure
cryptographic algorithm, such as key length, must also increase to maintain a desired
level of security. Specifically, let K be the power (in FLOPS) of the current most
powerful computer. Hence, the algorithm CA in definition 1.10 is secure (with respect
to B) if the cost of B is O

(
ef (x)

)
, and its security strength (or security level) with

respect to B is at least t bits, meaning that the number of steps required to break CA
with B is equal to 2t, with 2t ≫ K.

Remark 1.6. An equivalent way to evaluate the security of the cryptographic algo-
rithm CA with respect to a specific attack B is to consider the number of instructions
required to execute the attack. Specifically, if the number of instructions n required to
execute the attack B is significantly greater than the number of MIPS K of the current
most powerful computer, then the algorithm CA can be considered secure against that
attack.

In definition 1.10, we state that a cryptographic algorithm is considered secure if it
is considered to be “hard” to break using the most efficient attack currently known.
The number 2t must be significantly greater than the number K. For instance, the
top security level accepted today is at least 128 bits (or at least 80 for standard secret
messages), while the most powerful computer has K ≈ 415× 1015 ≈ 252 FLOPS.
This means that it would take approximately 2128 / 252 = 276 seconds, or over 2.4
quadrillion years (i.e., 1015 years), to break a cryptographic algorithm (with a security
level of 128 bits) using the most efficient attack currently known. Specifically, in this
case, we considered the brute force attack since the number of keys to be checked is
given by the ratio of the security level and the power of the most powerful computer

Chapter 1. Cryptography 11

in the world. It is important to note that any other attack that utilizes a subset of
keys would reduce the search time even further.

In order to conclude this chapter, it is worth noting that a fundamental feature of
cryptographic algorithms is that they must be made publicly available. This ensures
the portability and widespread use of these algorithms in modern technologies. Ad-
ditionally, it guarantees that there are no hidden vulnerabilities or “backdoors” that
would allow the creators of the algorithm to decrypt messages without the use of the
encryption key.

Definition 1.11 (Backdoor). In cryptography, a backdoor is a mechanism or tech-
nique that enables the creators of an algorithm to gain unauthorized access to the cryp-
tographic system or algorithm, thereby compromising the confidentiality and integrity
of the system. Such a mechanism can provide the ability to bypass authentication
procedures or gain access to encrypted data without the proper decryption key.

Backdoors can be deliberately inserted by the creators of the cryptographic system
for the purpose of gaining access to sensitive information, or they can be the result
of a vulnerability or flaw in the design of the system. Backdoors pose a significant
security risk as they undermine the integrity and confidentiality of the cryptographic
system, and they can be exploited by unauthorized actors to gain access to sensitive
information.

Although backdoors are often used for legitimate purposes, such as performing recov-
ery procedures that would otherwise be impossible or very difficult, their existence
can compromise the security of a cryptographic protocol. Even the National Institute
of Standards and Technology (NIST), a leading institute that also standardizes vari-
ous cryptographic protocols, has been shown [4, 7, 11, 13] to have backdoors within
its protocols.

Remark 1.7. It is worth mentioning that the field of study that deals with the security
of various cryptographic protocols is called cryptanalysis, and its goal is to break
cryptographic systems by identifying any weaknesses.

Specifically, cryptanalysis is the study of methods for obtaining encrypted informa-
tion without access to the secret key. Additionally, it analyzes a cryptographic system
or algorithm to identify weaknesses or vulnerabilities that could be exploited to gain
unauthorized access to encrypted information. Cryptanalysis can take several forms,
including breaking a ciphertext to obtain the plaintext, breaking a digital signature
to forge a new one, or discovering the key used to encrypt or decrypt the informa-
tion. Finally, cryptanalytic techniques can include, but are not limited to, brute-force
attacks, differential cryptanalysis, linear cryptanalysis, and side-channel attacks.

12

2 Algebraic curves

Elliptic curves are a specific type of algebraic curve defined over a field that are
commonly utilized in cryptographic contexts. In order to understand them, it is
necessary to first familiarize oneself with some fundamental concepts. For a general
introduction, readers are directed to a classic reference, e.g. [43].

2.1 Projective space
In this section, we provide definitions of projective space in order to facilitate the
explanation of elliptic curves in the following chapter.

Projective space is a fundamental concept in algebraic geometry. It is a way of
extending the notion of Euclidean space to include “points at infinity”, which cannot
be represented in the traditional Cartesian coordinate system.

The concept of projective space originated in the field of projective geometry, which
was developed in the late 19th century as a way to study geometric properties that
remain invariant under projection. One of the main figures in the development of
projective geometry was the French mathematician Jean-Victor Poncelet, who in his
work “Traité des propriétés projectives des figures” (Treatise on the Projective Prop-
erties of Figures), published in 1822, laid the foundation for the study of projective
geometry.

Poncelet’s work was motivated by the need to understand geometric properties that
are not affected by changes in position or orientation. He observed that many geomet-
ric figures, such as lines and conic sections, possess properties that remain unchanged
under projection. This led him to introduce the concept of a “projective invariant”,
which is a property of a figure that remains unchanged under projection.

Poncelet’s work was further developed by other mathematicians such as Augustin-
Louis Cauchy, who introduced the concept of “projective transformation” which is a
transformation that preserves the incidence relations between points and lines. This
led to the development of the group of projective transformations, known as the
projective linear group. Additionally, these transformations can be represented by
matrices and the group law is the matrix multiplication.

The concept of projective space was later formalized by the German mathematician
David Hilbert, who in his work “Foundations of Geometry” (1899) defined projective
space, as stated in definition 2.1, as the set of equivalence classes of non-zero vectors
in a vector space over a field, where two vectors are considered equivalent if they are
proportional. This is known as the “homogeneous coordinates” representation of a
point. For example, in a two-dimensional projective space, a point (x, y) can also be
represented as (rx, ry) for any non-zero scalar r.

In the context of projective geometry, a point in projective space is represented by a
homogeneous vector, i.e. a vector whose entries are elements of a field and are not all

Chapter 2. Algebraic curves 13

zero. The dimension of a projective space refers to the number of coordinates needed
to specify a point in that space. For instance, a projective space of dimension n over
a field K is denoted by Pn(K). In other words, it is a set of all the one-dimensional
subspaces of a vector space of dimension n+ 1 over K.

Definition 2.1 (Projective space). If V = Kn+1 is a vector space over a field K,
then the projective space Pn(K) is the set of equivalence classes of V \ {0} under the
equivalence relation (∼) defined by x ∼ y, for x, y ∈ V , if there is a non-zero element
λ ∈ K∗ such that x = λy.

Definition 2.2 (Homogeneous coordinates). Let [P] be an element of Pn(K),
one says that P is a projective point of projective (or homogeneous) coordinates
[x0 : x1 : . . . : xn], and one writes P = [x0 : x1 : . . . : xn] if the vector [x0,x1, . . . ,xn]
is a representative of the class [P]. One simply writes P ∈ Pn(K) to mean the
representative of the class [P].

Remark 2.1. As pointed out previously and according to definition 2.1, every point
in the projective space is equivalent to a scalar multiplicative of its coordinates, that is,
if P ∈ Pn(K) is such that P = [x0 : x1 : . . . : xn], then P ≡ [λx0 : λx1 : . . . : λxn] =
λP , where λ ∈ K∗.

Thus, one defines a point in dehomogenized coordinates by simply dividing its coor-
dinates by a scalar that makes the first non-zero coordinate equal to 1.

Definition 2.3 (Dehomogenized coordinates). Let P be an element of Pn(K), and
let 0 ≤ i < n be the first index such that xi ̸= 0, that is, P = [0 : . . . : 0 : xi : . . . : xn],
with xi ̸= 0. One can dehomogenize P by dividing each coordinate of P for xi, that
is, P =

[
0 : . . . : 0 : xi

xi
: . . . : xn

xi

]
.

Hence, by representing each element of Pn(K) in dehomogenized coordinates, one
has an unique representative for each equivalence classes.

In the following, we present two types of points: proper and improper points. Specif-
ically, the latter distinction is given by projective geometry. On one hand, proper
points, also known as finite points, are the points that can be represented by a set of
coordinates in the traditional Cartesian coordinate system. These points are located
within the projective space and have a finite distance from the origin. On the other
hand, improper points, also known as points at infinity, are points that cannot be
represented by a set of coordinates in the traditional Cartesian coordinate system.
These points are located outside the projective space and have an infinite distance
from the origin. They are often considered as an extension of the projective space.
Therefore, the projective space can be considered as an extension of the affine space,
incorporating the concept of improper points.

The distinction between proper and improper points arises from the idea that geo-
metric figures can be transformed by projection and, as previously established, the
properties of a figure that remain unchanged under projection are called projective
invariants. The concept of a point at infinity allows us to extend the projective space
and consider a point at infinity as a point of the space, making it important for the
study of projective geometry.

The reason why they are called in this way is because proper points are considered
to be “proper” points in the traditional sense, while improper points are considered
to be “improper” or “at infinity” as they cannot be represented by coordinates in the
traditional sense.

Chapter 2. Algebraic curves 14

In summary, proper points are finite points within the projective space while improper
points are the points at infinity, which are located outside the projective space and
are considered to extend the projective space. This distinction is important for the
study of projective geometry as it allows for the consideration of points at infinity as
proper points in the space.

Specifically, these two types of points are distinguished, conventionally, according to
the value of the first coordinate x0 of a point, P .

Definition 2.4 (Proper and improper points). Let P be an element of Pn(K). If
P = [x0 : x1 : . . . : xn] with x0 ̸= 0, then P is a proper point, otherwise, if x0 = 0,
then P is an improper point (also known as point at infinity).

Remark 2.2. Note that referring to the elements of Pn(K) with x0 = 0 as “improper
points” is simply a convention. In general, elements of Pn(K) with xi = 0, where
0 ≤ i ∈ Z, can also be referred to as improper points. The choice of coordinate only
affects the reference to the (projective) line at infinity. In the case presented, the line
at infinity is defined by the equation x0 = 0, otherwise, in other references it could
be defined by the equation xi = 0. Both choices are equivalent, and it is possible
to move from one reference system to the other and vice versa through appropriate
transformations.

In order to conclude this section, we present two well-known special instances of pro-
jective space: the projective line and the projective plane. On one hand, a projective
line over a field K, denoted by P1(K), is defined as the set of all one-dimensional
subspaces of a vector space of dimension 2 over K. This is known as a “Riemann
sphere” representation of the complex numbers. On the other hand, a projective
plane over a field K, denoted by P2(K), is defined as the set of all one-dimensional
subspaces of a vector space of dimension 3 over K.

For the latter, a bijective correspondence is defined between each point P ∈ P2(K)
such that x0 ̸= 0 and a point on the affine plane. In particular, let P ∈ P2(K) be
a point whose homogeneous coordinates are [x0 : x1 : x2] = [Z : X : Y]. If Z ̸= 0,
then the bijective function P 7→ P =

(
X
Z , YZ

)
= (x, y) maps the projective point

P onto the affine point P . In this case, it follows that P = [Z : X : Y] ≡ (x, y).
Similarly, if Z = 0 and X ̸= 0, then one maps the improper points uniquely onto
a line, specifically [0 : X : Y] ≡

[
0 : XX : YX

]
. Finally, if Z = 0 and X = 0, then

the point [0 : 0 : Y] ≡
[
0 : 0 : YY

]
= Ω is an additional point commonly referred as a

further point at infinity.

2.2 Homogeneous rational functions
Homogeneous polynomials and rational homogeneous functions are mathematical con-
cepts that are widely used in various fields of mathematics, such as algebraic geom-
etry, number theory, and cryptography. On one hand, a homogeneous polynomial is
a polynomial in which the degree of each variable is the same, and the coefficients
are not dependent on the variables. Additionally, homogeneous polynomials can be
used to define algebraic varieties in projective space, which are important objects in
algebraic geometry. On the other hand, rational homogeneous functions are a type of
homogeneous polynomials in which the coefficients are rational numbers. They are
often used in the study of projective varieties, for instance, to parameterize algebraic

Chapter 2. Algebraic curves 15

curves, and they can be defined as a ratio of two homogeneous polynomials with the
same degree.

In general, homogeneous polynomials and rational homogeneous functions are impor-
tant tools in algebraic geometry and other related fields, providing a way to study
geometric objects and algebraic equations in a more general and abstract setting.

Definition 2.5 (Homogeneous polynomial). Let f ∈ K[x0,x1, . . . ,xn] be a polyno-
mial in n+ 1 variables. If all non-zero terms of f have a degree equal to 0 ≤ d ∈N,
then f is referred to as a homogeneous polynomial of degree d.

Definition 2.6 (Homogeneous rational function). If f , g ∈ K[x0,x1, . . . ,xn] are two
homogeneous polynomials of degree d, then F = f

g is referred to as a homogeneous
rational function of degree d.

Homogeneous polynomials and rational homogeneous functions possess several im-
portant properties that are widely studied and utilized in various branches of math-
ematics.

One of the main properties of homogeneous polynomials is that they are closed under
scalar multiplication. This means that if a homogeneous polynomial is multiplied by
a scalar, the resulting polynomial will still be homogeneous. This property is a direct
result of the fact that the degree of each variable in a homogeneous polynomial is the
same, making it easy to maintain this property after scalar multiplication.

Another important property of homogeneous polynomials is that they can be rep-
resented by homogeneous coordinates. This allows for a more compact and elegant
representation of geometric objects, such as points and lines in projective space.

Rational homogeneous functions also possess several important properties. In par-
ticular, let P be an element in Pn(K), if f is a homogeneous polynomial of degree
d, then f(λP) = λdf(P), where λ ∈ K∗. Furthermore, if F = f

g is a homogeneous
rational function of degree d, then it follows that

F (λP) =
f(λP)

g(λP)
=
λdf(P)

λdg(P)
= F (P).

Thus, the evaluation at P ∈ Pn(K) of a homogeneous rational function is the same
for every λP = Q ≡ P .

Definition 2.7 (Homogenization). Let f ∈ K[x1,x2, . . . ,xn] be a non-homogeneous
polynomial of degree d. One can homogenize f , i.e., convert it into a homogeneous
polynomial, by introducing a new variable x0 and multiplying each non-zero term of
degree ki of f times x0

d−ki. The polynomial fh is referred to as the homogenization
of the polynomial f , and it is a homogeneous polynomial of degree d.

Definition 2.8 (Dehomogenization). Let fh ∈ K[x0,x1, . . . ,xn] be a homogeneous
polynomial of degree d. One can dehomogenize fh , i.e., convert it back into a non-
homogeneous polynomial, by setting x0 = 1, resulting in f(x1, . . . ,xn), which is re-
ferred to as the dehomogenization of fh .

Another important property of rational homogeneous functions is that they can be
decomposed into their zeros and poles. This decomposition is known as the factoriza-
tion of the function, and it is achieved by expressing the function as the ratio of two
polynomials, where the zeros of the function correspond to the zeros of the numerator
polynomial and the poles of the function correspond to the zeros of the denominator

Chapter 2. Algebraic curves 16

polynomial. The decomposition of the function in zeros and poles is a fundamental
tool to study their properties.

Definition 2.9 (Zeros and poles). Let F = f
g be a homogeneous rational function of

degree d. A point P is a zero of F (and, as a result, a zero of f) if the polynomial
f vanishes at P , while a point Q is a pole of F (and, as a result, a zero of g) if the
polynomial g vanishes at Q.

One of the fundamental theorems in algebraic geometry is Bezout’s theorem for ratio-
nal homogeneous functions, which states that the number of zeros of a homogeneous
rational function is equal to the number of its poles. This theorem is derived from
the factorization of the function into its zeros and poles and holds for any algebraic
closed field and for any homogeneous rational function defined in a projective space.

Theorem 2.1 (Bezout’s theorem). Let F = f
g be a homogeneous rational function

of degree d over an algebraically closed field K. The number of zeros of F is equal to
the number of poles of F over the algebraic closure of the defining field of F .

2.3 Algebraic variety
Algebraic varieties are one of the central objects of study in algebraic geometry.
They are geometric objects that are defined by the common solutions of a system
of polynomial equations. The study of algebraic varieties dates back to the 19th
century with the work of mathematicians such as Augustin-Louis Cauchy, Jean-Victor
Poncelet, and Carl Friedrich Gauss. However, it was not until the work of David
Hilbert and his school of algebraic geometry in the late 19th and early 20th century
that the field began to take shape.

The definition of an algebraic variety is quite general and encompasses a wide range
of geometric objects, including affine and projective varieties, as well as complex
varieties. As stated in definition 2.11, an affine variety is a common solution set of a
system of polynomial equations in affine space, while a projective variety, as stated
in definition 2.12, is a common solution set of a system of homogeneous polynomial
equations in projective space. Complex varieties, on the other hand, are the common
solution sets of a system of polynomial equations in complex space.

One of the main results in algebraic geometry is the classification of algebraic varieties.
This classification is based on the dimension of the variety and its degree. The
dimension of an algebraic variety is the maximum number of linearly independent
vectors that can be found in the variety. The degree of an algebraic variety is the
maximum number of points of intersection of the variety with a general linear space
of the same dimension.

One of the most important results in the study of algebraic varieties is the Nullstel-
lensatz, or “zero-set theorem”. This theorem, first proven by David Hilbert, states
that the radical ideal generated by the polynomials that define a variety is equal to
the ideal generated by the polynomials that vanish on the variety. This result has
important consequences in the study of algebraic geometry, including the ability to
study the algebraic properties of a variety, such as its dimension, by studying the
ideal generated by the polynomials that define it.

Algebraic varieties also play an important role in many other branches of mathemat-
ics, such as number theory, cryptography, and coding theory. For example, the theory
of elliptic curves, which are a special type of algebraic varieties, is used in the study of

Chapter 2. Algebraic curves 17

cryptography and coding theory. Algebraic geometry also has important applications
in computer science, such as in the study of computational complexity and in the
design of algorithms for solving polynomial equations.

Definition 2.10 (Algebraic variety). Let K be an algebraically closed field, one says
that V is an algebraic variety if V is the set of solutions (the zero set) of a system of
polynomial equations over K.

Definition 2.11 (Affine variety). Let K be an algebraically closed field, and let n be
a natural number, one says that An is an affine vector space of dimension n over K.
Let S be a set of non-homogeneous polynomials f ∈ K[x1, . . . ,xn], one defines

Z(S) = {x ∈ An : f(x) = 0 for all f ∈ S}.

Hence, if V is a nonempty subset of An such that V = Z(S) for some S, then V is a
nonempty affine algebraic set, also known as affine variety.

Definition 2.12 (Projective variety). Let K be an algebraically closed field, and let n
be a natural number, one says that Pn is a projective vector space of dimension n over
K. Let S be a set of homogeneous polynomials f ∈ K[x0,x1, . . . ,xn] of degree d, one
defines Z(S) = {x ∈ Pn : f(x) = 0 for all f ∈ S}. Hence, if V is a nonempty subset
of Pn such that V = Z(S) for some S, then V is a nonempty projective algebraic set,
also known as projective variety.

An interesting property of algebraic varieties is irreducibility, meaning that they can-
not be expressed as a union of two or more proper algebraic subvarieties. Addition-
ally, they are closely related to the concept of prime ideals in algebraic geometry.
In particular, the ideal of an irreducible variety is a prime ideal. Furthermore, irre-
ducible varieties are also important in the study of singularities, i.e., points where
the algebraic variety is not locally “smooth”. Overall, understanding the concept of
irreducibility is crucial for understanding the structure of algebraic varieties and for
applying algebraic techniques to geometric objects.

Definition 2.13 (Irreducible variety). If V is an (affine or projective) algebraic va-
riety, then V is considered to be irreducible if it cannot be expressed as the union of
two or more proper algebraic subvarieties.

Algebraic curves are a specific subset of algebraic varieties, defined as the common
solution set of a single polynomial equation in two variables. The study of algebraic
curves is a fundamental aspect of algebraic geometry. An important result in the study
of algebraic curves is the Riemann-Roch theorem, which relates the dimension and
degree of a curve (or a variety) to its genus and the number of its singularities. This
theorem is a fundamental tool in the study of algebraic varieties, and has important
applications in the study of algebraic geometry and other branches of mathematics.

Definition 2.14 (Affine algebraic curve). Let K be a field. An affine algebraic plane
curve, or simply affine algebraic curve, is defined as the zero set over K in the affine
plane of a non-homogeneous polynomial in two variables, typically denoted as x and
y.

Definition 2.15 (Projective algebraic curve). Let K be a field. A projective algebraic
plane curve, or simply projective algebraic curve, is defined as the zero set over K in
the projective plane of a homogeneous polynomial in three variables, typically denoted
as X, Y , and Z.

Chapter 2. Algebraic curves 18

Remark 2.3. It is possible to convert an affine algebraic curve into a projective
algebraic curve by a process known as completion. This is achieved by homogenizing
the defining polynomial of the affine curve. Conversely, a projective algebraic curve
can be converted into an affine algebraic curve by a process known as restriction,
which is achieved by setting Z = 1. Since these operations are inverses of each other,
it is common to refer to algebraic curves without specifying whether they are affine or
projective.

2.4 Divisor of algebraic curves
In algebraic geometry, the concept of divisors on algebraic curves C is used to classify
the zeros and poles of rational functions on the curve. As outlined in definition 2.17,
a divisor on an algebraic curve is defined as a formal sum of points on the curve, with
each point having an associated coefficient that represents the multiplicity of that
point.

Definition 2.16 (Free group). The free group over a set S = {xi}, with i ∈ I, where
I is a set of indices, is the group G whose objects are (formal) products, that is, they
are obtained as simply the superposition of elements of S,

g =
∏
j∈J

xj
ϵj , J ⊆ I, ϵj = ±1, (2.1)

by extending to a finite set of indices J , such that there is only the rule x · x−1 =
x−1 · x = 1. In addition, if one imposes that the elements of G have to commute,
then the group G is said to be a free abelian group, where the operation is (+) and 0
is the neutral element.

Definition 2.17 (Divisor of an algebraic curve). Let C be an algebraic curve over a
field K. A divisor of C is an element of the free abelian group Div(C) over the set
C(K) of K-rational points in C, that is, it is a formal sum D =

∑
P∈C(K) nP ·P , where

nP ∈ Z is the multiplicity of P in D, and only a finite number of nP is non-zero.

As there are many points belonging to C, it is convenient to represent the set of points
belonging to a divisor D, that is, the set of points such that nP ̸= 0 in D.

Definition 2.18 (Support of a divisor). Let C be an algebraic curve over a field K,
and let D be a divisor in Div(C). The support of the divisor D is the set of points
belonging to D such that nP ̸= 0. Specifically, if supp(D) = {P1, . . . ,Pk}, then
D =

∑k
i=1 nPi · Pi, with nPi ̸= 0.

One of the main properties of divisors is that they have an associated degree, as
stated in definition 2.19, which is defined as the sum of the coefficients of the points
in the divisor. The degree of a divisor is a useful invariant that can be used to classify
divisors into different types, such as effective divisors (as stated in definition 2.20),
which have non-negative coefficients.

Definition 2.19 (Degree of a divisor). Let D be a divisor of an algebraic curve C,
that is,

∑
P∈supp(D) nP ·P = D ∈ Div(C). Hence, one defines the degree of the divisor

D as deg(D) = δ(D) =
∑
P∈supp(D) nP ∈ Z.

Definition 2.20 (Effective divisor). Let C be an algebraic curve. The divisor

D =
∑

P∈supp(D)

nP · P

Chapter 2. Algebraic curves 19

is considered to be an effective divisor of C if for any P ∈ supp(D), then it holds that
nP ≥ 0.

An important class of divisors for an algebraic curve is the class of zero degree divisors.

Definition 2.21 (Zero degree divisor). Let C be an algebraic curve. The divisor D
is considered to be a zero degree divisor of C if δ(D) = 0.

Theorem 2.2 (Zero degree divisors of an algebraic curve). The set of all the zero
degree divisors of an algebraic curve C, also known as Div0(C), constitutes an additive
subgroup of the free abelian group Div(C).

Definition 2.22 (Principal divisor of a homogeneous rational function). Let F = f
g

be a homogeneous rational function of degree d. A principal divisor of F is the zero
degree divisor div(F) =

∑n
i=1 Pi −

∑n
i=1Qi, where Pi and Qi are the zeros and the

poles of F , respectively.

Definition 2.23 (Principal divisors group). Let F = f
g be a homogeneous rational

function of degree d. The group of principal divisors of F , denoted as Princ(F),
forms an equivalence class under the equivalence relation (∼) such that, for any
D1,D2 ∈ Princ(F), one has that D1 ∼ D2 if D1 = D2 + div(G) for a suitable
homogeneous rational function G.

Given the concepts of divisors and principal divisors of an algebraic curve, one has
all the necessary components to define the group associated with an algebraic curve
C.

Definition 2.24 (Jacobian of an algebraic curve). Let C be an algebraic curve over
a field K. The Jacobian J (C) of C is defined as the group of zero degree divisors of
C, modulo the group of principal divisors of C, and it is expressed as:

J (C) = Div0(C)/Princ(C). (2.2)

20

3 Elliptic curves

In this chapter, we introduce the concept of elliptic curves, based on the definitions
previously discussed. We also provide a brief overview to several types of elliptic
curves, including those in Weierstrass form [15, 21, 44, 47, 73], Montgomery form
[61], Edwards form [8, 9, 28, 52], and the more general hyperelliptic curves [18, 49].

In the following, in order to discuss elliptic curves, it is necessary to first define and
distinguish between certain concepts related to algebraic geometry such as regular
functions, algebraic groups, and abelian varieties.

Definition 3.1 (Regular function). A regular function is a morphism from an alge-
braic variety to the affine line.

Definition 3.2 (Algebraic group). An algebraic group G is both a group and an
algebraic variety, with group operations (multiplication and inversion) given by regular
functions.

Definition 3.3 (Abelian variety). An abelian variety V is a projective algebraic va-
riety that is also an algebraic group.

Definition 3.4 (Smooth algebraic curve). An algebraic curve C is considered to be
smooth, or non-singular, if it is a one-dimensional, irreducible, abelian variety over
an algebraically closed field.

Remark 3.1. Note that a smooth algebraic curve is a projective algebraic curve that
is characterized by its property of being infinitely differentiable, that is, it does not
have any singularity points.

Definition 3.5 (Elliptic curve). An elliptic curve C over a field K is a smooth,
projective algebraic curve of genus g = 1. The curve is equipped with a group law,
defined by the algebraic structure, and a distinguished point O, called the identity
element, which serves as the neutral element of the group operation. The points on
the curve, along with the identity element, form an abelian group under this operation,
referred to as the group law of the elliptic curve.

Remark 3.2. It is noteworthy that the elements D of the Jacobian J (C) of an
elliptic curve C over a field K have the following canonical forms: D = O−O (the
identity element of the group, represented simply as D = O) or D = P −O (or simply
D = P), where P ∈ C(K).

3.1 Elliptic curves in Weierstrass form
Elliptic curves in Weierstrass form were first studied by K.T.W. Weierstrass and are
the most commonly used in elliptic curve cryptography. Their properties depend on
the field K over which they are defined. For more information on elliptic curves, we
address the reader to classic book, e.g. [73].

Chapter 3. Elliptic curves 21

Definition 3.6 (Generalized elliptic curve in Weierstrass form). An elliptic curve in
generalized Weierstrass form, denoted as W, over a field K is defined by the equation

y2 + (a1x+ a3)y = x3 + a2x
2 + a4x+ a6, (3.1)

where a1, a2, a3, a4, a6 ∈ K. The curve W has at least a K-rational point, i.e., the
point at infinity, commonly denoted as Ω = [0 : 0 : 1], which serves as the identity
element of the group defined by the algebraic structure of W.

In the following, we provide the formulas to compute the discriminant and the j-
invariant of elliptic curves. These parameters are important in determining certain
interesting properties of these curves. Given the elliptic curve in generalized Weier-
strass form W, the parameters b2, b4, b6, b8, c4 ∈ K are defined as

b2 = a1
2 + 4a2, b4 = 2a4 + a1a3,

b6 = a3
2 + 4a6, b8 = a1

2a6 + 4a2a6 − a1a3a4 + a2a3
2 − a4

2,
c4 = b2

2 − 24b4.

The discriminant of the curve, denoted as ∆W , and the j-invariant, denoted as jW ,
are then computed as

∆W = −b2
2b8 − 8b4

3 − 27b6
2 + 9b2b4b6, jW =

c4
3

∆W
.

As previously claimed, the j-invariant of an elliptic curve is an important parameter.
For instance, it is important to determine whether two curves are isomorphic, as well
to classify elliptic curves into different families. Specifically, two elliptic curves C1 and
C2 are isomorphic over an algebraically closed field K if their j-invariant is the same.

Remark 3.3. Note that the discriminant is a measure of the singularities of an
elliptic curve, and is equal to zero if and only if the curve is singular (or non-smooth).

When dealing with elliptic curves over a finite field, one must also consider the effect
of reduction modulo a prime number. Specifically, in the case in which K is a finite
field of characteristic, denoted as char(K), equal to a prime number p, and cardinality
card(K) = pt, where t ∈ N, one can refer to a good or bad reduction of W modulo
p.

Theorem 3.1 (Good reduction at p). Let W be an elliptic curve in Weierstrass
form over a field K. The curve W has a good reduction modulo a prime p > 0 if
∆W ̸≡ 0 (mod p) (that is, if the reduced curve is non-singular).

Conversely, if ∆W ≡ 0 (mod p), thenW has a bad reduction modulo p. Furthermore,
one may reduce W to one of its normal forms by eliminating its terms xy, y, and
x2 through simple transformations of x and y. Specifically, if the characteristic of
the field K is different from 2, then one can reduce the generalized Weierstrass form
through appropriate substitutions of the variables x and y, in order to eliminate the
terms xy and y. Additionally, if char(K) is also different from 3, then one can perform
another substitution in order to eliminate the term x2.

Theorem 3.2 (Short elliptic curve in Weierstrass form). Let W be an elliptic curve
in generalized Weierstrass form over a field K of characteristic different from 2 and
from 3. It is possible to reduce W to the short Weierstrass form W, defined by the

Chapter 3. Elliptic curves 22

equation y2 = x3 + ax+ b, by applying the following transformation map: (x, y) 7→(
f(x)− h2(x)

4 , y− h(x)
2

)
, where f(x) = x3 + a2x

2 + a4x+ a6, and h(x) = a1x+ a3.

Remark 3.4. The curve W is non-singular if ∆W = −16
(
4a3 + 27b2) ̸= 0 over K.

In the following, we will discuss the reduced forms of elliptic curves in generalized
Weierstrass form W over a field K when the characteristic of the field is equal to
2 or 3. These cases require specific reductions depending on the j-invariant of the
elliptic curve. Specifically, if char(K) = 2, then it is possible to reduce the generalized
Weierstrass form to one of the following forms (cf. [44, 73]):

y2 + a′3y = x3 + a′4x+ a′6 if jW = 0,
y2 + a′′1xy = x3 + a′′2x

2 + a′′6 if jW ̸= 0.

The first form is also referred as a supersingular (see definition 3.7) elliptic curve in
Weierstrass form over F2, while the second form is a non-supersingular elliptic curve
in Weierstrass form. On the other hand, if char(K) = 3, then it is possible to reduce
the generalized Weierstrass form to one of the following forms (cf. [44, 73]):

y2 = x3 + a′4x+ a′6 if jW = 0,
y2 = x3 + a′′2x

2 + a′′6 if jW ̸= 0.

Definition 3.7 (Supersingular elliptic curve). Let W be an elliptic curve in Weier-
strass form over K such that char(K) = p, where p is a prime number. The curve W
is considered to be supersingular if there are no elements in J (W) that have order
(see definition 3.8) equal to card(K).

Given that it is always possible to reduce an elliptic curve in generalized Weierstrass
form to one of its reduced forms, depending on the characteristic of the field and the
j-invariant of the curve, it follows that it is always possible to consider the reduced
form directly.

3.1.1 Group law

The group law of an elliptic curve in Weierstrass form W, known as the chord-and-
tangent rule, makes W an abelian group, with the point at infinity Ω as the identity
element, since it is commutative, associative and has an inverse for each point.

As illustrated in fig. 3.1, let P1 = (x1, y1) and P2 = (x2, y2) be two points belonging
to W(K). The chord-and-tangent rule states that:

⊖P1 = (x1,−y1 − (a1x1 + a3)),
P1 ⊖ P2 = P1 ⊕ (⊖P2),

P1 ⊕ P2 =

{
Ω if P1 = ⊖P2

(x3, y3) if P1 ̸= ⊖P2
,

(3.2)

where
x3 = λ2 + a1λ− a2 − x1 − x2,
y3 = (x1 − x3)λ− y1 − a1x3 − a3,

(3.3)

Chapter 3. Elliptic curves 23

and λ is the slope of the line between P1 and P2, defined as

λ =

y1 − y2
x1 − x2

if P1 ̸= P2,

3x1
2 + 2a2x1 − a1y1 + a4
2y1 + a1x1 + a3

if P1 = P2.
(3.4)

Specifically, in terms of divisors, when using the chord rule, one identifies P1 ⊕ P2
through the two zero divisors div(r1,2) and div(l3), where r1,2 is the line passing
through P1 and P2, and intersecting the curve W at a third point P3, and l3 is the
line passing through P3 and orthogonal to the x-axis (and thus also passing through
the point Q, which is symmetric to P3 with respect to the x-axis). In particular, on
the projective plane, one has that

div(r1,2) = P1 + P2 + P3 − 3Ω,
div(l3) = P3 +Q+ Ω− 3Ω,

div
(
r1,2
l3

)
= (P1 + P2)− (Q+ Ω).

(3.5)

Consequently, one has that P1 + P2 ≡ Q+ Ω, from which it follows that (P1 −Ω) +
(P2 −Ω) ≡ (Q−Ω). Thus, in order to sum the two divisors P1 −Ω and P2 −Ω
using the above rule, one has the following equality: P1⊕P2 = Q = ⊖P3. Note that,
in the case of the tangent rule, one has that P1 = P2, that is, r1,2 is the tangent line
at P1 = P2, and one writes 2⊗ P1 instead of P1 ⊕ P1.

In general, one writes n⊗P to represent the addition of the point P (or its opposite)
with itself |n| times, according to the group law of W„ that is, n⊗ P =

⊕n
i=1 P if

n > 0, or n⊗ P =
⊕−n

i=1(⊖P) if n < 0.

Definition 3.8 (Order of a point). Let W be an elliptic curve in Weierstrass form
over a field K, and let P − Ω be a divisor belonging to J (W). If there exists a
minimum and finite 0 < n ∈ N such that n⊗ P = Ω, then n is the order of the
divisor (P −Ω) ∈ J (W) (or, equivalently, as stated in remark 3.2, the order of the
point P), and one writes ord(P −Ω) = ord(P) = n. However, if such n does not
exist, then P −Ω has order equal to ∞.

Remark 3.5. Note that the only element in J (W) of order equal to 1 is the identity
element Ω−Ω.

Definition 3.9 (Order of an elliptic curve). LetW be an elliptic curve in Weierstrass
form over a field K. The order of W is equal to the number of K-rational points
belonging to W(K), including the point at infinity Ω.

Chapter 3. Elliptic curves 24

Figure 3.1: Sum of two points in an elliptic curve

3.1.2 Elliptic curves in Weierstrass form over the field of complex
numbers

In this section, we will discuss some properties of elliptic curves when the field of
consideration is the field of complex numbers. There exists a strong connection be-
tween elliptic curves in short Weierstrass form and the doubly periodic (with respect
to a lattice Λ generated by 2ω1, 2ω2 ∈ C) Weierstrass ℘-function and its derivative
℘′, whose half-periods are ω1 and ω2. More precisely, the Weierstrass ℘-function is
related to the elliptic integral, that is, one has that:

z =
∫ ∞
℘(z)

1√
4t2 − g2t− g3

dt. (3.6)

Given the two functions ℘ and ℘′, one has the following equality:(1
2℘
′(z)

)2
= ℘3(z)− g2

4 ℘(z)−
g3
4 ,

where g2, g3 ∈ C are constants known as elliptic invariants.

One notes that, with
x = ℘(z), y =

1
2℘
′(z),

a = −g2
4 , b = −g3

4 ,

the point (x, y) fulfills the equation y2 = x3 + ax+ b, which is of an elliptic curve
in short Weierstrass form. In fact, the Weierstrass ℘-function and its derivative
determine all the points of an elliptic curve in short Weierstrass form W through the
following map:

Exp : C −→ W(C)

z 7−→
[
1 : ℘(z) :

1
2℘
′(z)

]
,

which describes how to embed the complex torus T = C/Λ into the complex projec-
tive plane. Specifically, the map Exp defines a group isomorphism between the com-
plex torus T and the group defined by the chord-and-tangent rule forW. Additionally,
the map Exp defines an exponential map, that is, Exp(z1 + z2) = Exp(z1)⊕Exp(z2),
where (⊕) is the sum by using the chord-and-tangent rule.

Chapter 3. Elliptic curves 25

Note that if γ ∈ Λ, then lim
z→γ

Exp(z) is equal to Ω = [0 : 0 : 1], that is, the point at

infinity of W.

The Weierstrass ℘-function (and its derivative) can be expressed [1, 3] through a
Laurent series in a neighborhood of zero. Specifically, one has:

℘(z) =
1
z2 +

∞∑
k=2

ckz
2k−2, (3.7)

℘′(z) = − 2
z3 +

∞∑
k=2

(2k− 2)ckz2k−3,

where c2 = g2
20 , c3 = g3

28 and ck =
3

(2k+1)(k−3)
∑k−2
m=2 cmck−m.

Remark 3.6. Note that while the above results were presented over C, they can also
be generalized over any suitable field K by taking into account a neighborhood of zero
in order to ensure the convergence for the series expansion of ℘(z) and ℘′(z). In this
case, the elements g2, g3, and z would belong to the field K.

Remark 3.7. The map Exp is also known as the Weierstrass uniformizing map, and
can also be expressed as follows:

Exp : C −→ P2(C)

z 7−→
[
1 : ℘(z) :

1
2℘
′(z)

]. (3.8)

3.1.3 Elliptic curves in Weierstrass form over the field of rational
numbers

An elliptic curve defined over the field of rational numbers has some particular fea-
tures. For instance, the Mordell-Weil theorem states thatW(Q) is a finitely generated
abelian group and, in particular, is a finite direct sum of r copies of Z and finite cyclic
groups. Specifically, one can write W(Q) as Wtors(Q)⊕Zr, where r ∈ N is known
as the (geometric) rank of W, and W(Q)tors represents the torsion subgroup (see
definition 3.10) of W(Q), that is, the set of Q-rational points with finite order.

Thus, W(Q) is finitely generated by a point P of finite order and a set of r points
{Ti} of infinite order, meaning that if Q ∈ W(Q), then Q can be expressed as Q =
(k⊗ P)⊕ (

∑r
i=1 ai ⊗ Ti), where ai are k are integer numbers different from ∞, P is

a generator forW(Q)tors, and {Ti} is a set of r linearly independent points of infinite
order belonging to the curve. Note that, over the field Q, the points with infinite
order have rational coordinates.

Definition 3.10 (Torsion subgroup ofW). Let W be an elliptic curve in Weierstrass
form over a field K. The torsion subgroup of W, denoted as W(K)tors, is defined as
follows:

W(K)tors = {Q ∈ W(K) : ∃ 0 < n ∈N \ {∞}, n⊗Q = Ω}, (3.9)

where (⊗) is the scalar multiplication defined on the group law.

It is well-known that the torsion subgroup over Q is isomorphic to either of the
following 15 groups: Z/NZ, for N = 1, . . . , 10 or N = 12, or Z/2Z×Z/NZ for
N = 1, 2, 3, 4.

Chapter 3. Elliptic curves 26

Remark 3.8. One can define the set of points of a specific order n ∈ N, known as
the n-torsion subgroup. Specifically, one writes

W(K)[n] = {Q ∈ W(K) : n⊗Q = Ω}. (3.10)

For instance, ifW is a supersingular elliptic curve, then one has thatW(K)[card(K)] =
∅.

Remark 3.9. The rank of an elliptic curve W over Q can be challenging to compute.
This is because it involves finding the size r of the smallest torsion-free generating set
of points {T1,T2, . . . ,Tr} such that, for i = 1, . . . , r, Ti ∈ W(Q) and Ti ̸= Ω [2, 73].

Although the rank is challenging to compute, one simply computes the torsion sub-
group W(Q)tors by using the Nagell–Lutz theorem.

Theorem 3.3 (Nagell–Lutz theorem). Let W be an elliptic curve in Weierstrass
form over Q. The point (x, y) = P ∈ W(Q) has finite order, i.e., P ∈ W(Q)tors, if
and only if either x, y ∈ Z, or ∃ m,n ∈ Z such that ord(P) = 2 and (x, y) =

(
m
4 , n8

)
.

3.1.4 Elliptic curves in Weierstrass form over finite fields

In this part, we present some properties of elliptic curves in Weierstrass form W over
a finite field K of characteristic char(K) = p and card(K) = pt, where t ∈ N and p
is a prime number. For further information, we address the reader to [73].

Elliptic curves over finite fields have an elegant and simple structure to study. One
of the most challenging tasks when studying elliptic curves over a general field K is
counting the number of their rational points. However, through Hasse’s theorem, one
knows that there is a specific bound for the order of the group J (W).

Theorem 3.4 (Hasse’s theorem). Let W be an elliptic curve in Weierstrass form
over a finite field K of characteristic char(K) = p and card(K) = q = pt, where
t ∈N and p is a prime number. Hasse’s bound for W is

|N − (q− 1)| ≤ 2√q, (3.11)

where N ∈N is the order of J (W).

Another interesting fact is that J (K) forms a finite abelian group, which is al-
ways cyclic or the product of two cyclic groups. This result, along with Hasse’s
bound, has enabled the development of efficient algorithms for counting the num-
ber of points on these curves such as the Baby-step giant-step, Schoof’s algorithm,
and Schoof–Elkies–Atkin’s algorithm (an improvement of Schoof’s algorithm). For
instance, Schoof’s algorithm uses the division polynomials [16] of an elliptic curve to
count the elements belonging to the Jacobian. Additionally, Cantor in [19] generalized
the concept of division polynomials to hyperelliptic curves.

The order of the Jacobian of an elliptic curve is a significant security parameter in
the context of cryptography, as the higher this number, the greater the difficulty of
breaking cryptographic protocols that use elliptic curves (see chapter 5 for further
details).

Chapter 3. Elliptic curves 27

3.2 Montgomery curves
Montgomery curves M are particular forms of elliptic curves, different from those in
Weierstrass form W. They were introduced by P. Montgomery in 1987 in the work
[61], and are widely used in various cryptographic applications.

Definition 3.11 (Montgomery curve). A Montgomery curve M is an elliptic curve
over a field K, with char(K) ̸= 2, defined by the equation

By2 = x3 +Ax2 + x, (3.12)

where A,B ∈ K and B(A2 − 4) ̸= 0.

The use of Montgomery curves in cryptographic methods is due to their ability to
optimize the addition and doubling operations of the group law in comparison to
those of elliptic curves in Weierstrass form. Specifically, one can rewrite the affine
coordinates of a point P = (x, y) as (partial) projective coordinates P = (X,Z)
without keeping track of the Y coordinate. This is possible because the Y coordinate
can be easily determined from X and Z by solving a square root in the field K.
While the classical group law that uses affine coordinates can always be employed,
operating with the projective coordinates X and Z leads to a significant reduction in
the number of computations. In fact, the group law of these curves is currently one
of the most efficient among all other elliptic curve forms.

A prominent example of their use is the end-to-end encryption adopted by WhatsApp,
which utilizes the well-known Montgomery curve known as Curve25519.

3.3 Edwards curves
The Edwards curves E are a family of non-smooth curves introduced by H. Edwards in
2007 [28]. Later, D.J. Bernstein and T. Lange generalized them [8, 9] and provided an
efficient implementation in order to apply these curves for cryptographic applications.

Like the Montgomery curves, the Edwards curves have several advantages compared
to the classic elliptic curves in Weierstrass form. Specifically, they allow for the
optimization of the addition and doubling operations of the group law, leading to
a significant reduction in computational complexity. Furthermore, one of the main
advantages of Edwards curves is their high level of security. They have been shown
to be resistant to certain types of side-channel attacks, making them a popular choice
for secure communication and encryption. Due to their high level of security and
efficiency, Edwards curves have been adopted in several cryptographic systems. For
instance, they are used in the Ed25519 signature system, the X25519 Diffie-Hellman
key exchange, and the EdDSA. In particular, they are also used in OpenSSH, an
open-source implementation of the SSH protocol.

Definition 3.12 (Edwards curve). An Edwards curve E is a non-smooth curve over
the field K defined by the equation

x2 + y2 = c2
(
1 + dx2y2

)
, (3.13)

where c, d ∈ K and cd
(
1− c4d

)
̸= 0.

As previously stated, these curves are non-smooth, meaning that there are singular
points in E . Specifically, Edwards curves, unlike those in Weierstrass form, has two

Chapter 3. Elliptic curves 28

points at infinity: Ω1 = [0 : 1 : 0] on the x-axis and Ω2 = [0 : 0 : 1] on the y-axis,
which are the two ordinary singular points of E .

3.3.1 Group law

In order to compute the sum of two divisors (P −O) and (Q−O), where P ,Q ∈
E(K) are two K-rational affine points of E , and O = (0, c) ∈ E(K) is taken as
the neutral element of the group, one has to consider the group of divisor classes
Div0(E)/Princ(E), modulo the subgroup of principal divisors of E .

Specifically, one has to consider the three divisors div(κ), div(lR), and div(X), where
κ is an hyperbola, lR is a line, and X = 0 is the equation of the x-axis in the
projective plane. In particular, κ is the unique hyperbola, intersecting E in a third
point R = (xR, yR), such that supp(div(κ)) contains O′ = (0,−c), 2 ·Ω1, and 2 ·Ω2,
and passing through the points P and Q. Moreover, lR is the line passing through R
and parallel to the x-axis (thus lR intersects the curves at the point S = (−xR, yR)
as well). It follows that

div(κ) = (P +Q+R+O′ + 2 ·Ω1 + 2 ·Ω2)− (4 ·Ω1 + 4 ·Ω2),
div(lR) = (R+ S + 2 ·Ω1)− (2 ·Ω1 + 2 ·Ω2),
div(X) = (O+O′ + 2 ·Ω2)− (2 ·Ω1 + 2 ·Ω2),

(3.14)

and
div
(

κ

lR ·X

)
= P +Q− S −O. (3.15)

Therefore, one has that (P −O) + (Q−O) ≡ (S −O), and consequently P ⊕Q = S.
Since Edwards curves are symmetric with respect to the y-axis, the divisor S −O is
the opposite of the divisor R−O, and S = ⊖R.

In summary, as illustrated in fig. 3.2, in order to sum two not necessarily distinct
points P ,Q ∈ E(K), one has to:

• Determine the unique hyperbola defined by the equation xy+Ax+By+B = 0
(containing O′ = (0,−c), 2 ·Ω1 and 2 ·Ω2) that passes through P and Q;

• Compute the additional intersection point R = (xR, yR) between the hyperbola
and the curve E ;

• Consider the line lR passing through R and parallel to the x-axis, which also
passes through the point S = (−xR, yR) = ⊖R as well.

Chapter 3. Elliptic curves 29

Figure 3.2: Sum of two points on an Edwards curve

Thus, one defines the following operations to sum or subtract the points P1,P2 ∈
E(K), where P1 = (x1, y1) and P2 = (x2, y2):

⊖P1 = (−x1, y1),

n⊗ P1 =
n⊕
i=1

P1 n ∈ Z,n > 0,

n⊗ P1 =
−n⊕
i=1

(⊖P1) n ∈ Z,n < 0,

P1 ⊖ P2 = P1 ⊕ (⊖P2),

P1 ⊕ P2 =

O if P1 = ⊖P2(

x1y2 + x2y1
c(1 + dx1x2y1y2)

, y1y2 − x1x2
c(1− dx1x2y1y2)

)
if P1 ̸= ⊖P2

(3.16)

Remark 3.10 (cf. [8]). Note that (P −O) + (Q−O) ≡ O −O if and only if P =
(xP , yP) and Q = (xQ, yQ) are such that yP = yQ and xP = −xQ, meaning that Q
is the point symmetric to P with respect to the y-axis.

Remark 3.11. Note that if the parameter d is a non-square, then the denominators
in the addition and doubling formulas cannot vanish [8] and the affine points of the
curve give in turn a subgroup of the entire group of divisor classes (cf. corollary 3.5).

Remark 3.12. In the curve E, there are four noteworthy points: O = (0, c), O′ =
(0,−c), H = (c, 0), H ′ = (−c, 0). As already stated, O serves as the identity element
of the group law, meaning that for any point P = (a, b) ∈ E(K), one has that P ⊕O =
P . The other three points have the following properties:

• (a, b)⊕O′ = (−a,−b);

• (a, b)⊕H = (b,−a);

• (a, b)⊕H ′ = (−b, a).

Specifically, these four points form the cyclic group C4, where O′ has order 2, and
2⊗H = 2⊗H ′ = O′.

Corollary 3.5. The subset J 0(E) of zero degree divisors whose support contains only
affine points is a subgroup of J (E).

Chapter 3. Elliptic curves 30

Proof. Let (P − O), (Q − O) ∈ J 0(E) be two divisors, where P ,Q ∈ E(K). By
remark 3.10 one has that −(Q − O) ∈ J 0(E), and by remark 3.11 one has that
(P −O)− (Q−O) ∈ J 0(E). ■

In terms of the group of divisor classes, one finds either of the following reduced
divisors in each divisor class.

Theorem 3.6 (Jacobian of Edwards curves). Let E be an Edwards curve, and let
J (E) be the Jacobian of E. Every divisor D ∈ J (E) has one of the following canonical
forms:

1. D ≡ P −O,

2. D ≡ (P −O) + (Ω1 −O),

3. D ≡ (P −O) + (Ω2 −O),

4. D ≡ (P −O) + (Ω1 −Ω2),

where P ∈ E(K) is an affine point. In particular, the divisors equivalent to P −O
forms the subgroup J 0(E) (see corollary 3.5) of index 4 in J (E).

Proof. In the first part of this proof, we show that every even multiple of Ω1 and Ω2
is equivalent to a multiple of O′ +O and H +H ′, respectively. Specifically, we have
that:

div
(
X

Z

)
= O′ +O− 2 ·Ω1,

div
(
Y

Z

)
= H ′ +H − 2 ·Ω2,

which implies that O′ +O ≡ 2 ·Ω1 and H ′ +H ≡ 2 ·Ω2.

Let D = D1 +D2 be an unreduced divisor of J (E), where supp(D1) consists of only
affine points, and D2 = t1 ·Ω1 + t2 ·Ω2 with t1, t2 ∈ Z. In this context, there are
only three possible cases for the pair (t1, t2):

1. both t1 and t2 are even;

2. only one between t1 and t2 is even;

3. both t1 and t2 are odd.

Since O′ +O ≡ 2 ·Ω1 and H ′ +H ≡ 2 ·Ω2, if both t1 and t2 are even, then we can
cancel out t1 ·Ω1 and t2 ·Ω2 in order to reduce D to a divisor whose support consist
of only affine points. Subsequently, we may use the group law in order to get the first
canonical form of D, that is, D ≡ P −O.

In the following, we consider the case where only one of the two values, t1 and t2, is
even. If this is the case, then we can cancel either t1 ·Ω1 or t2 ·Ω2, and we obtain
either (P −O) + (Ω1 −O) or (P −O) + (Ω2 −O). Since the curve E has degree
equal to 4, thus these forms are not equivalent as any principal divisor on the curve
E will always have an even number of Ω1 and Ω2 in its support.

In the third case, where both t1 and t2 are odd, we can cancel an even number of Ω1
and Ω2 to obtain either (P −O) + (Ω1−Ω2) or (P −O) + (Ω2−Ω1). However, the
latter form is equivalent to the former as Ω1 −Ω2 ≡ (Ω2 −Ω1) + (O′ +O)− (H ′ +
H).

Chapter 3. Elliptic curves 31

Finally, since

2 · (Ω1 −O) = 2 ·Ω1 − 2 ·O ≡ (O′ +O)− 2 ·O = O′ −O ∈ J 0(E),
2 · (Ω2 −O) = 2 ·Ω2 − 2 ·O ≡ (H ′ +H)− 2 ·O ∈ J 0(E),

thus the quotient group J (E)/J 0(E) is isomorphic to Z/2Z⊕Z/2Z. ■

Remark 3.13. As for remark 3.2, for a given Edwards curve E, any non-zero divisor
P −O in J 0(E) can be associated with the affine point P ∈ E(K), and the zero divisor
O−O can be represented by O. As a result, one can interchangeably refer to either
the Jacobian or the group of K-rational points of this curve.

3.3.2 Equivalence between Edwards curves and Elliptic curves in
Weierstrass form

In this section, we show that under particular assumptions elliptic curves in Weier-
strass form are equivalent to Edwards curves.

As noted in remark 3.12, the point H = (c, 0) belonging to E has order equal to four.
In the following proposition, we identify a point of order four belonging to an elliptic
curve in a suitable Weierstrass form. This latter point will be used in the birational
maps between these two curves in theorem 3.8.

Proposition 1. Let W̃ be an elliptic curve over a field K of characteristic different
from 2, given in the Weierstrass form

y2 = x3 + a′x2 + b′x.

The curve W̃ has a point P = (x1, y1) ∈ W̃(K) such that the divisor P − Ω ∈
J
(
W̃
)

has order 4 and 2(P −Ω) = (0, 0)−Ω, if and only if x2
1 = b′ (and obviously

y2
1 = x3

1 + a′x2
1 + b′x1). Furthermore, if one defines d = 1− 4x3

1
y2

1
, then one has that

a′ = 2x1
1+d
1−d .

Proof. In this proof, we make use of the group law of the elliptic curve W̃ to compute
the point (x3, y3) such that (x3, y3)−Ω = 2 · ((x1, y1)−Ω). Specifically, we have
that

λ =
3x2

1+2a′x1+b′

2y1
,

x3 = λ2 − a′ − 2x1,
y3 = (x1 − x3)λ− y1,

where λ is the slope of the tangent line at (x1, y1). The solution of the previous
system of equations is the point (x3, y3) = (0, 0), which always belongs to the curve
W̃, and therefore (x1, y1)−Ω is a divisor of order 4. ■

Theorem 3.7 (cf. [8]). Let K be a field of characteristic different from 2. Let E be
a (non-smooth) Edwards curve defined over K by the equation

x̂2 + ŷ2 = 1 + dx̂2ŷ2,

where d(d− 1) ̸= 0. For any x1 ∈ K, if one chooses y1 ∈ K such that y2
1 =

4x3
1

d−1 ,
a′ = 2x1

1+d
1−d , and b′ = x2

1, then one has a rational map between the curve E and the

Chapter 3. Elliptic curves 32

elliptic curve defined over K, and given in the Weierstrass form W̃, by the equation

y2 = x3 + a′x2 + b′x.

Specifically, the point (x1, y1) belongs to W̃(K), and the rational map between E and
W̃ is given by

α : E(K) −→ W̃(K) (3.17a)

(x̂, ŷ) 7−→ (x, y) =
(
x1

1 + ŷ

1− ŷ , y1
(1 + ŷ)

x̂(1− ŷ)

)
.

Conversely, one has the following result.

Theorem 3.8 (cf. [8]). Let K be a field of characteristic different from 2. Let W̃ be
an elliptic curve defined over K in the Weierstrass form

y2 = x3 + a′x2 + b′x.

If the point P = (x1, y1) ∈ W̃(K) is such that 2 · (P −Ω) = (0, 0)−Ω, then, putting
d = 1− 4x3

1
y2

1
, there is a rational map over K between W̃ and the (non-smooth) Edwards

curve E defined by the equation

x̂2 + ŷ2 = 1 + dx̂2ŷ2.

The rational map between W̃ and E, which turns out to be the inverse of the map α
in theorem 3.7, is given by

β : W̃(K) −→ E(K) (3.18a)

(x, y) 7−→ (x̂, ŷ) =
(
y1x

x1y
, x− x1
x+ x1

)

Therefore, we arrive at the following definition that encompasses the above statements
and outlines the assumptions under which there is a relationship between Edwards
curves and elliptic curves in Weierstrass form.

Definition 3.13 (cf. [8]). Let K be a field of characteristic different from 2. Let E
be an Edwards curve defined over K by the equation

x̂2 + ŷ2 = 1 + dx̂2ŷ2,

where d(d− 1) ̸= 0. Let 0 ̸= x1 ∈ K be such that x1 and (1− d) are either both
non-square or both square in K, and let y1 ∈ K such that y2

1 =
4x3

1
1−d . Furthermore, let

W̃ = W̃d,x1 be the elliptic curve in Weierstrass form defined over K by the equation

y2 = x3 + a′x2 + b′x,

Chapter 3. Elliptic curves 33

where a′ = 2x1
1+d
1−d and b′ = x2

1. The two rational maps, denoted α and β, between E
and W̃ are defined as follows:

α : E(K) −→ W̃(K) (3.19a)

(x̂, ŷ) 7−→ (x, y) =
(
x1

1 + ŷ

1− ŷ , y1
(1 + ŷ)

x̂(1− ŷ)

)
,

α−1 = β : W̃(K) −→ E(K) (3.19b)

(x, y) 7−→ (x̂, ŷ) =
(
y1x

x1y
, x− x1
x+ x1

)
.

There maps make the two curves W̃ and E birationally equivalent. Additionally, the
definitions of α and β are extended by putting

α((0, 1)) = Ω, β(Ω) = (0, 1),
α((0,−1)) = (0, 0), β((0, 0)) = (0,−1);

(3.20)

and (possibly)
β((t1, 0)) = β((t2, 0)) = Ω1,

β((−x1,±s1)) = Ω2,
(3.21)

where (t1, 0), (t2, 0), (−x1,±s1) ∈ W̃(K), with t1, t2 ̸= 0 and s2
1 = (−x1)

3 +
a′(−x1)

2 + b′(−x1).

Remark 3.14. Note that, in definition 3.13, the affine point P4 = (x1, y1) belongs
to W̃(K) and satisfies the condition that P4 −Ω ∈ J

(
W̃
)

is a divisor of order 4.

Remark 3.15. In light of the fact that there are two points mapped by β to Ω1 and
two points to Ω2, it is not possible to coherently define α(Ω1) and α(Ω2). As a result,
the maps α and β define a birational equivalence between the two curves. In addition,
it is noteworthy that the curve W̃ is actually a smooth projective resolution of the
non-smooth curve E.

Remark 3.16. The values of Ω1 and Ω2 can be directly obtained as the projective
images of β((t1, 0)) and β((t2, 0)), and β((−x1,±s1)), respectively, that is, by using
the homogeneous coordinates for α and β. As for the value of β(Ω), if K = C and
P =

(
℘(z) + a′

3 , 1
2℘
′(z)

)
∈ W̃(K), where ℘(z) and ℘′(z) are the Weierstrass elliptic

functions in subsec. 3.1.2 then,

lim
z→0

β(P) = lim
z→0

(2y1
3x1

(3℘(z) + a′)

℘′(z)
, 3℘(z) + a′ − 3x1
3℘(z) + a′ + 3x1

)
= (0, 1) = O,

as 3℘(z)+a′

3℘′(z) = o(z), that is, β is continuous at P = Ω.

Remark 3.17. Since the map β in (3.19b) transforms a line through two points P
and Q belonging to W̃(K) onto the hyperbola passing through β(P), β(Q), O′, 2 ·Ω1
and 2 · Ω2, and maps vertical lines onto horizontal lines, then β induces a group
homomorphism of the corresponding divisor classes group.

Remark 3.18. Since the coefficient d depends on a point P4 ∈ W̃(K) such that
(P4 −Ω) ∈ J

(
W̃
)

is a divisor of order 4, it may be necessary to extend the field of
definition of E in order to determine the Weierstrass elliptic curve W̃ that projects
onto E.

In the following, we emphasize the meaning of taking d a non-square in a field K.

Chapter 3. Elliptic curves 34

Theorem 3.9 (Isomorphism between J
(
W̃
)

and J 0(E)). Let both E and W̃ be de-
fined as in definition 3.13. If d is not a square in the field K, then an isomorphism
over K exists between the group J

(
W̃
)

and the subgroup J 0(E) defined in theorem 3.6.

Proof. In the following, we will demonstrate that if d is a non-square in the field K,
then the rational map β defined in (3.19b) constitutes a biregular map between the
Weierstrass elliptic curve W̃, given by the equation y2 = x3 + a′x2 + b′x, and the
subset of the Edwards curve E consisting of its affine points. By using the parameters
x1, y1, a′, and b′ as defined in definition 3.13, we show that there is no point in W̃
with abscissa equal to −x1 and that (0, 0) is the only point in W̃(K) with ordinate
y = 0. The absence of a point in W̃ with abscissa equal to −x1 can be derived from
the fact that the intersection of the line x = −x1 and the curve W̃ results in the
following:

−x3
1 + a′x2

1 − b′x1 = x2
1(a
′ − 2x1) = x2

1

(
2x1

1 + d

1− d − 2x1

)
=

= x2
1

(
2x1

2d
1− d

)
= dy2

1.

Since d is a non-square, dy2
1 is also a non-square, and thus, there is no point in W̃

with abscissa equal to −x1.

The latter assertion follows from the fact that the line y = 0 intersects the curve W̃
only at x = 0 over K. This can be proven by examining the equation

x3 + a′x2 + b′x = x(x2 + a′x+ b′) = 0.

Specifically, one has that

∆(x2 + a′x+ b′) = a′
2 − 4b′ = a′

2 − 4x2
1 =

= 4x2
1

(1 + d

1− d

)2
− 4x2

1 =

= 4x2
1

4d
(1− d)2 .

Since d is a non-square, the discriminant is not a square in K, which implies that
(0, 0) is the only point in W̃(K) with ordinate y = 0. ■

From this point forward, we restrict our attention to the scenario outlined in theo-
rem 3.9. In this case, we can identify elements P −O of J 0(E) with the point P so
that O is the neutral element of the group, as previously mentioned in remark 3.13.

3.3.3 Twisted Edwards curves

The twisted Edwards curves were introduced by Bernstein and Lange in an attempt
to generalize the original Edwards curves (that they already extend by introducing
the parameter c, as stated in definition 3.12).

Definition 3.14 (Twisted Edwards curve). Let K be a field of characteristic different
from 2. A twisted Edwards curve Ea,d over K is an Edwards curve defined by equation

ax2 + y2 = 1 + dx2y2, (3.22)

Chapter 3. Elliptic curves 35

where a, d ∈ K \ {0} and a ̸= d.

Remark 3.19. Note that E1,d is the Edwards curve defined in definition 3.12 with
c = 1.

The twisted Edwards curves have several advantages over the classic Edwards curves,
including faster point addition and scalar multiplication algorithms. As a result,
Twisted Edwards curves have found several applications in cryptography, including
their use as the core of the Edwards-curve Digital Signature Algorithm (EdDSA), a
high-performance digital signature scheme. In addition to digital signatures, twisted
Edwards curves have also been used for key exchange, identity-based encryption, and
homomorphic encryption. Many articles and scientific papers have been published
about twisted Edwards curves, including works by Bernstein et al. [14], which prove
that twisted Edwards curves are birationally equivalent to the Montgomery curves.
This equivalence has important implications for the security of cryptographic systems
that use twisted Edwards curves, as well as for the efficiency and performance of these
systems.

Overall, twisted Edwards curves are a promising development in the field of elliptic
curve cryptography, offering improved performance and security compared to classic
Edwards curves and elliptic curves. They have already been widely adopted by several
cryptographic communities and are likely to become even more popular in the future.

36

4 Hyperelliptic curves

Elliptic curves are one of the most important objects in modern cryptography, since
they have numerous applications in the areas of secure communication and data
protection. These curves have been extensively studied since the late 19th century,
but have only recently gained popularity due to their important role in public-key
cryptography. In recent years, the study of elliptic curves has been extended to a
new type of curves known as hyperelliptic curves. One of the key advantages of
hyperelliptic curves over elliptic curves is that they are more secure against certain
types of attacks. For example, they are less vulnerable to attacks based on the discrete
logarithm problem, since they have a higher number of points on the curve. This
makes them ideal for use in public-key cryptography, where security is of the utmost
importance. Another important application of hyperelliptic curves is in the area of
digital signatures, which are used to verify the authenticity of electronic documents,
and are an essential component of secure communication.

Definition 4.1. A hyperelliptic curve H is an algebraic curve of genus g ≥ 1 defined
over field K by the equation

y2 + h(x)y = f(x), (4.1)

where f(x) is a monic polynomial such that deg(f(x)) = 2g + 1 or deg(f(x)) =
2g+ 2, and deg(h(x)) ≤ g+ 1.

Remark 4.1. If the ground field K of H is such that char(K) ̸= 2, then the transfor-
mation (x, y) 7→

(
f(x)− h2(x)

4 , y− h(x)
2

)
can be applied in order to have set h(x) = 0.

It is noteworthy that, on one hand, when deg(f(x)) = 2g + 1, one has that
deg(h(x)) ≤ g and these curves are known as imaginary hyperelliptic curves. On
the other hand, when deg(f(x)) = 2g + 2, these curves are known as real hyperel-
liptic curves which have two points at infinity, commonly denoted as Ω1 and Ω2.
Throughout this thesis, we only consider the imaginary hyperelliptic curves.

Remark 4.2. In accordance with the mathematical definition of an imaginary hy-
perelliptic curve, it is worth mentioning that such curves of genus g = 1 are simply
referred to as ordinary elliptic curves, previously defined in definition 3.5.

Definition 4.2 (Jacobian of an imaginary hyperelliptic curve). Let H be an (imagi-
nary) hyperelliptic curve of genus g over an algebraically closed field K. The Jacobian
J (H) is the group of all the principal divisors of H such that D ∈ J (H) is linearly
equivalent to a reduced divisor of the form

∑n
i=1 Pi − n ·Ω, where 0 ≤ n ≤ g, and for

all i = 1, . . . ,n, one has that Pi ̸= Ω, and Pi + Pj − 2 ·Ω ̸≡ Ω−Ω for any i ̸= j.

Remark 4.3. The divisor D = Ω − Ω, or simply D = Ω, denotes the identity
element of the group.

Remark 4.4. Note that, in the case where g = 1, there are only two possible reduced
divisors: either D = Ω −Ω or D = P −Ω, where P is an affine point belonging
to the curve. These two principal divisors are denoted as D = Ω and D = P

Chapter 4. Hyperelliptic curves 37

respectively, and they form the group of principal divisors for the elliptic curves,
which was previously discussed in remark 3.2.

To end this introduction, we present the well-known Hasse’s Theorem for hyperelliptic
curves over a finite field.

Theorem 4.1 (Hasse’s theorem for hyperelliptic curves). Let H be a hyperelliptic
curve of genus g over a finite field K with characteristic p and cardinality q = pt,
where t ∈N and p is a prime number. The Hasse bound for H is given by

(
√
q− 1)2g ≤ N ≤ (

√
q+ 1)2g, (4.2)

where N ∈N is the cardinality of J (H).

4.1 Group law
In order to define the general group law [22] for an (imaginary) hyperelliptic curve, we
use the Mumford representation [63] of a reduced divisor belonging to the Jacobian of
a hyperelliptic curve of genus g ≥ 1. For a more in-depth analysis of this group law,
the reader is referred to [17], which uses the Weierstrass ℘-function. We remark that
the study of this group law has been the focus of numerous investigations with the
goal of speeding it up for cryptographic purposes, particularly when g = 2 as seen in
[41, 53, 54].

Theorem 4.2 (Mumford representation). Let H be a hyperelliptic curve of genus g
over an algebraically closed field K, defined by the equation y2 + h(x)y = f(x). Let
D ∈ J (H) be a divisor linearly equivalent to

∑n
i=1 Pi − n ·Ω, where 0 ≤ n ≤ g, and

for i = 1, . . . ,n, one has that Pi = (xi, yi) ∈ H
(

K
)
, Pi ̸= Ω, and Pi + Pj − 2 ·Ω ̸≡

Ω−Ω for any i ̸= j. Then, D has a Mumford representation as pair of polynomials
div(u(x), v(x)) = (u(x), v(x)) such that:

• gcd(u(x),u′(x), v(x)) = 1,

• deg(v(x)) < deg(u(x)) ≤ g,

• u(x) | v(x)2 + v(x)h(x)− f(x),

where u(x) is the monic polynomial equal to
∏n
i=1(x−xi) and v(x) is the interpolating

polynomial such that v(xi) = yi.

Remark 4.5. The divisor D, represented in Mumford representation as (u(x) =
1, v(x) = 0), is the identity element of the group, i.e., the divisor Ω−Ω.

Remark 4.6. If (xi, yi) ∈ supp(D) has multiplicity ni > 1, then the following con-
ditions must be met:((

δ

δx

)j(
v2(x) + v(x)h(x)− f(x)

))∣∣∣∣∣
x=xi

= 0 with j = 0, . . . ,ni − 1.

The Cantor-Koblitz algorithm for the sum of two divisors D1 and D2 was first in-
troduced by Cantor in [18]. This algorithm, which uses the Mumford representation
of a divisor, allows for the calculation of the unique reduced divisor D equivalent to
D1⊕D2 in any hyperelliptic curve of genus g ≥ 1. Originally, Cantor only considered
the case in which h(x) was equal to zero. However, this was later generalized by

Chapter 4. Hyperelliptic curves 38

Koblitz in [49] to include the binary case in which h(x) ̸= 0. We present below the
Cantor-Koblitz algorithm for the sum of two divisors.

Algorithm 1: Cantor-Koblitz algorithm
Input: D1 = (u1(x), v1(x)), D2 = (u2(x), v2(x)), H : y2 + h(x)y = f(x), where

deg(f(x)) = 2g+ 1
Output: D = D1 ⊕D2 = (u(x), v(x))
// compute the extended GCD between u1(x) and u2(x)

1 (d1, e1, e2)←− Extended-GCD(u1(x), u2(x)) // d1 = e1u1(x) + e2u2(x)
// compute the extended GCD between d1 and v1(x) + v2(x) + h(x)

2 (d, c1, c2)←− Extended-GCD(d1, v1(x) + v2(x) + h(x))
// d = c1d1 + c2(v1(x) + v2(x) + h(x))

3 s1 ←− c1e1
4 s2 ←− c1e2
5 s3 ←− c2

// composition step
// computation of the curve passing through the points in D1 and D2

6 u(x)←− u1(x)u2(x)
d2

// computation of the curve passing through the points in D1 and D2, and
the curve H

7 v(x)←− s1u1(x)v2(x)+s2u2(x)v1(x)+s3(v1(x)v2(x)+f (x))
d (mod u(x))

8 repeat// reduction step

9 u(x)←− f (x)−v(x)h(x)−v2(x)
u(x)

10 v(x)←− −h(x)− v(x) (mod u(x))
11 until deg(u(x)) ≤ g

// make u(x) monic dividing it by its leading coefficient

12 u(x)←− u(x)
lc(u(x))

13 return (u(x), v(x))

The lines 6 and 7 comprise the component of the algorithm referred to as the compo-
sition phase, where one obtains the composed, unreduced, divisor whose support is
the union of supp(D1) and supp(D2). On the other hand, the loop from line 8 to 11
constitutes the reduction phase, where the reduced divisor D = D1⊕D2 is obtained.

In the following, we analyze the behavior of the Cantor-Koblitz algorithm. In general,
to perform the sum of two divisors D1 and D2 belonging to J (H), one must:

1. Find the curve y = g(x) passing through the k points {Pi = (xi, yi)} belonging
to the supports of the divisors D1 and D2 that need to be summed;

2. Intersect the curve y = g(x) and the hyperelliptic curve y2 + h(x)y = f(x);

3. Divide the resulting polynomial q(x) = g2(x)+h(x)g(x)− f(x), obtained from
in the previous step, by the polynomial p(x) =

∏k
i=1(x−xi), as this polynomial

is a multiple of q(x);

4. Find the roots of the resulting polynomial q(x)
p(x) .

In order to take advantage of the Mumford representation of a divisor, the Cantor-
Koblitz algorithm needs to be slightly modified. Specifically, in the first five lines of
the algorithm, any common points between the divisors to be added are obtained, i.e.,
P ∈ supp(D1)∩ supp(D2). For example, if the divisors to be summed are D1 = P1 +
P2− 2 ·Ω and D2 = P1 +Q1− 2 ·Ω, then point P1 = (x1, y1) is common to both and
therefore x1 constitutes a root with multiplicity greater than one of the polynomial

Chapter 4. Hyperelliptic curves 39

u(x) = u1(x)u2(x) in line 6 of the pseudocode. Subsequently, it is necessary to obtain
the curve B that passes through all the points P ∈ supp(D1) ∪ supp(D2) (line 7 of
the pseudocode) in order to obtain a semi-reduced divisor D, which is the divisor
D = D1 ⊕D2, but not necessarily yet in the reduced form

∑n
i=1 Pi − n ·Ω, where

n ≤ g. The loop between lines 8 and 11 reduces the divisor D until the reduced
divisor D = D1⊕D2 is obtained, i.e., one obtains D =

∑n
i=1 Pi−n ·Ω, where n ≤ g.

At line 9, the equation of the curve B found at line 7 is combined (in a similar
manner to a system of equations) with the hyperelliptic curve in order to obtain the
resulting polynomial between these two curves. At line 10, the polynomial v(x) is
obtained, whose roots are the ordinates yi of the points belonging to the support
of D = D1 ⊕D2. Note that the calculation v(x) = −h(x) − v(x) (mod u(x)) is
performed since it is always necessary to take the opposite divisor, i.e., the divisor
D = ⊖D′ =

∑
P∈supp(D) nP · (⊖P), where ⊖P = (xi,−yi − h(xi)) is the opposite

point of P with respect to the line y = h(x). Finally, at line 11, the polynomial u(x)
becomes monic so that it is uniquely determined.

In fig. 4.1, we present a graphical illustration of the sum of two divisors on a hyper-
elliptic curve of genus g = 2.

Figure 4.1: Sum of two divisors in a hyperelliptic curve of genus 2

Remark 4.7. The computational complexity of this group law increases as the genus g
grows. However, for genus g = 2 or g = 3, an optimized version of the Cantor-Koblitz
algorithm can be defined to accelerate the computation and leverage these curves and
their group law for cryptographic purposes [53].

Remark 4.8. Note that, in accordance with the group law, the opposite of a divisor
D = (u(x), v(x)) is given by ⊖D = (u(x), (−h(x)− v(x)) (mod u(x))). Further-
more, we use again the notation n⊗D in order to denote the sum

⊕n
i=1D if n > 0,

or
⊕−n

i=1(⊖D) if n < 0.

4.2 Meaning of the Cantor-Koblitz algorithm
In this section, we aim to provide a deeper understanding of the algorithm by present-
ing a simple example. Consider a hyperelliptic curve of genus g = 2 and set h(x) = 0
for the moment. We also consider a simple case where the two divisors to be added
have no common points and each consist of two points, that is, D1 = P1 + P2− 2 ·Ω
and D2 = Q1 +Q2 − 2 ·Ω, where Pi = (x1,i, y1,i) and Qi = (x2,i, y2,i).

Chapter 4. Hyperelliptic curves 40

In the Mumford representation, we have D1 = (u1(x), v1(x)) and D2 =
(u2(x), v2(x)), where deg(u1(x)) = deg(u2(x)) = g = 2 and deg(v1(x)) =
deg(v2(x)) = 1. Therefore, each divisor Di is represented by a parabola ui(x),
which contains information on the abscissas of the points in the support of Di (i.e.,
ui(xi,j) = 0), and a line y = vi(x) passing through these points, which contains
information on their ordinates (i.e., vi(xi,j) = yi,j), where i = 1, 2 and j = 1, 2.

In fig. 4.2, we show the graphic representation of the two divisors D1 and D2 as pairs
(parabola, line), with D1 being represented in red and D2 in green.

Figure 4.2: Representation of divisors by means of the pair
(parabola, straight line)

In the present scenario, the procedures outlined in lines 1 to 5 of algorithm 1 are
unnecessary due to the absence of any common points between the two divisors. As
a result, d1 = d = s1 = s2 = 1 and s3 = 0. At line 6, the polynomial u(x) =
u1(x)u2(x) is calculated. This polynomial represents the quartic curve whose roots
are the union of the roots of the polynomials u1(x) and u2(x), i.e., supp(div(u(x))) =
supp(div(u1(x))) ∩ supp(div(u2(x))). At line 7, the cubic passing through the four
points P1, P2, Q1, and Q2 is calculated.

Note that
F = {λ · p(x1, . . . ,xn) + γ · q(x1, . . . ,xn)},

where x1, . . . ,xn are unknowns, represents a family of curves with degree deg(p) =
deg(q). Additionally, if the curve p vanishes at the points in the set M =
{M1, . . . ,Mk} and the curve q vanishes at the points in the set T = {T1, . . . ,Th},
then every polynomial l ∈ F vanishes at the points in M ∩ T .

It is worth mentioning that the product ui(x)vi(x), which uniquely represents the
divisor Di, constitutes is a degenerate cubic in the current scenario (g = 2 and D1,
D2 consisting of four distinct points), since it can be broken down into the product
of a line and a parabola.

In order to obtain the only cubic passing through the points P1, P2, Q1, and Q2, it is
necessary to combine the supports of ui(x) and vj(x). At line 7, one finds the cubic
as v(x) = u1(x)v2(x) + u2(x)v1(x) (due to s1 = s2 = 1 and s3 = 0), which is the
unique cubic, passing through the above points, belonging to the family of degenerate

Chapter 4. Hyperelliptic curves 41

cubics {λ(u1(x)v2(x)) + γ(u2(x)v1(x))}, where λ = s1 = 1 and γ = s2 = 1. With
regards to the principal divisors, one observes that

{P1,P2} ⊆ supp(div(u1(x))),
{P1,P2} ⊆ supp(div(v1(x))),
{Q1,Q2} ⊆ supp(div(u2(x))),
{Q1,Q2} ⊆ supp(div(v2(x))).

(4.3)

Thus, it follows that

{P1,P2,Q1,Q2} ⊆ supp(div(u1(x)v2(x))),
{P1,P2,Q1,Q2} ⊆ supp(div(u2(x)v1(x))).

(4.4)

As previously stated, the family of degenerate cubics is comprised of the points
that are solutions for both curves. Consequently, one has that {P1,P2,Q1,Q2} ∈
supp(div(v(x))), and v(x) is the unique cubic passing through the four specified
points P1, P2, Q1, and Q2.

It is possible to obtain the same result by performing some algebraic operations. As
previously stated, since d1 = e1u1(x) + e2u2(x), then by substituting e2, one has that

v(x) = c1e1u1(x)v2(x) + c1
d1 − e1u1(x)

u2(x)
u2(x)v1(x).

Additionally, by evaluating v(x) at x1,1 and x1,2, one obtains y1,1 and y1,2, respec-
tively, since in this case d1 = c1 = 1. Hence, v(x) is the curve that passes through
the points P1 and P2.

Similarly, by substituting e1, one obtains:

v(x) = c1
d1 − e2u2(x)

u1(x)
u1(x)v2(x) + c1e2u2(x)v1(x).

Again, by evaluating v(x) at x2,1 and x2,2, one obtains y2,1 and y2,2, respectively.
Hence, the polynomial v(x) also passes through the points Q1 and Q2 and represents
the unique cubic passing through the points P1, P2, Q1, and Q2.

In addition, note that the computation v(x) (mod u(x)) has no effect since
deg(v(x)) = 3, while deg(u(x)) = deg(u1(x)u2(x)) = 4.

The visual representation of the cubic (in light blue) passing through the points P1,
P2, Q1, and Q2 can be seen in fig. 4.3 and fig. 4.4.

Chapter 4. Hyperelliptic curves 42

Figure 4.3: The
only cubic (in
light blue) passing
through the points
belonging to the
supports of the
two divisors D1 =
P1 + P2 − 2 ·Ω (in
green) and D2 =
Q1 + Q2 − 2 · Ω

(in red)

Figure 4.4: The
only cubic (in
light blue) passing
through the four
points P1, P2, Q1,
and Q2, where
P1 and P2 are in
green, while Q1
and Q2 are in red

At line 9, one performs the intersection between the equation of the cubic v(x) and
the equation of the hyperelliptic curve H, i.e., one has{

y = v(x),
y2 + h(x)y = f(x),

hence f(x)− h(x)v(x)− v2(x) = 0. Given that v(x) is a cubic and f(x) is a fifth-
degree polynomial (2g + 1 = 5), the degree of f(x)− h(x)v(x)− v2(x) is six. The
abscissas of four solutions,P1, P2, Q1, and Q2, are already known, while the other
two solutions are the abscissas of the points belonging to the support of the sum
divisor. Therefore, at line 9, the polynomial f(x)− h(x)v(x)− v2(x) is divided by
the previously calculated polynomial u(x), which vanishes at the abscissas of P1, P2,
Q1, and Q2. As a result, the ratio f (x)−v(x)h(x)−v2(x)

u(x) returns the polynomial u(x) of
the Mumford representation of the sum divisor D.

In order to determine the ordinates yi of the points belonging to supp(u(x)), at line
10, one computes v(x) = −h(x)− v(x) (mod u(x)) = −v(x) (mod u(x)) since, in
this example, we have that h(x) = 0. The latter leads to v(x) = −v(x) + u(x)g(x),
where g(x) is a suitable polynomial, and u(x) is the parabola passing through the
two points belonging to the support of the sum divisor. Recall that the polynomial
v(x), computed at line 7, is the unique cubic that passes through P1, P2, Q1, Q2,
and intersects the curve in two additional points belonging to the support of the sum
divisor. The polynomial modulo operation of v(x) with respect to u(x) removes the
points P1, P2, Q1, and Q2 from the cubic and retains the opposite (with respect to
the line y = h(x) = 0, i.e., the x-axis) of the remaining two points.

Chapter 4. Hyperelliptic curves 43

4.3 Doubling of divisors without Cantor-Koblitz algo-
rithm

The Cantor-Koblitz algorithm is particularly useful in computing the double of a
divisor. Consider the simple case of a hyperelliptic curve H of genus g = 2 over a
field K and, with h(x) = 0. In this scenario, the elements in the Jacobian of the curve
take one of the following forms: D = Ω−Ω, D = P −Ω, or D = P1 + P2 − 2 ·Ω.

Doubling the divisor D = Ω−Ω is trivial as it is the identity divisor. On the other
hand, for D = P −Ω, the double of D, i.e., 2⊗D, is also trivial and is given by
2 · P − 2 ·Ω. In particular, to compute it, one has to compute the tangent line at
P to the curve H and find the solutions common to both curves. This reduces to a
tangent line as, in this case, 2⊗D is already a reduced divisor.

In the case where D = P1 +P2− 2 ·Ω, the doubling is slightly more complicated and
requires further division into two cases: P1 = P2 and P1 ̸= P2. In the former case, one
has D = 2 ·P1− 2 ·Ω and 2⊗D = 4 ·P1− 4 ·Ω. In order to find the reduced divisor
of 2⊗D, i.e., a divisor such that there are at most g = 2 affine points in its support,
one computes the cubic tangent to H at P1. This cubic could be obtained through the
Taylor series approximation of order 3 of the function y = ±

√
f(x) at xP1 (recall that

H is defined by the equation y2 = f(x)). In particular, one approximates the function
y =

√
f(x) if

√
f(xP1) = yP1 or the function y = −

√
f(x) if −

√
f(xP1) = yP1 . Note

that this approximation changes when h(x) ̸= 0.

Definition 4.3 (Tangent of degree k of a curve). Let C be a generic curve of degree
t over K, and let (x0, y0) ∈ C(K) be a point belonging to C. The Taylor series
approximation of C of order k < t at x0 is the curve H of degree k which is tangent
to the curve C at x0.

The Taylor series approximation involves the calculation of a polynomial of degree k
that approximates the curve C locally at x0 and is tangent to C at this point.

This local approximation can be used to determine the cubic tangent to the curve H
at P1 in order to obtain the divisor 2⊗D = 4 · P1 − 4 ·Ω in either its reduced form
2⊗D = A+B − 2 ·Ω or 2⊗D = A−Ω. This can be achieved by solving a system
of equations between the cubic and the hyperelliptic curve.

However, in the case where D = P1 + P2 − 2 ·Ω, where P1 ̸= P2, the cubic must be
tangent to both P1 and P2, and this double tangent condition is not easily determined.
It should be noted that finding the tangent cubic at P1 and P2 using the Taylor
series approximation and combining them is not likely to result in the desired cubic.
This is because the Taylor series only approximates the function locally and the
approximation polynomial has the same concavity at x0 as the approximated function
y = ±

√
f(x). However, the tangent cubic may have a different concavity at P1 and

P2 than the approximated function, as shown in fig. 4.5, where the tangent at P is in
green and the tangent at Q is in blue. In fig. 4.6, the proper tangent cubic at P and
Q is displayed, and the concavity at P of the tangent is opposite to the concavity at
P of H, indicating that it may not be possible to compute the proper cubic tangent
at P1 and P2 using the Taylor series approximation.

Chapter 4. Hyperelliptic curves 44

Figure 4.5: Tan-
gent cubics with
Taylor at points P

and Q

Figure 4.6:
Tangent cubics at

points P and Q

The computation of the tangent cubic at points P1 and P2 is performed as follows.
Let y = ax3 + bx2 + cx+ d be the equation of a generic cubic curve. The tangent
cubic to the curve H at P1 and P2 is computed by assuming that:

1. P1 satisfies the equation y = ax3 + bx2 + cx+ d;

2. P2 satisfies the equation y = ax3 + bx2 + cx+ d;

3. The derivative at x = xP1 of the equation y = ax3 + bx2 + cx+ d is equal to
the derivative of y = ±

√
f(x) at xP1 ;

4. The derivative at x = xP2 of the equation y = ax3 + bx2 + cx+ d is equal to
the derivative of y = ±

√
f(x) at xP2 .

This results in a system of four equations in the unknowns a, b, c, and d:

yP1 = ax3
P1

+ bx2
P1

+ cxP1 + d,
yP2 = ax3

P2
+ bx2

P2
+ cxP2 + d,

3ax2
P1

+ 2bxP1 + c = δ
δx

(
±
√
f(x)

)∣∣∣
xP1

,

3ax2
P2

+ 2bxP2 + c = δ
δx

(
±
√
f(x)

)∣∣∣
xP2

.

The solution of this system provides the coefficients a, b, c, and d of the tangent cubic
at P1 and P2.

It is important to note that the complexity of the calculation increases with the genus
of the curve. Hence, the Cantor-Koblitz algorithm greatly simplifies these calculations
as the genus increases.

45

5 Elliptic curves cryptography

In this section, we provide an overview of cryptography based on elliptic and hyper-
elliptic curves.

Elliptic Curve Cryptography (ECC) [48, 60] is a public-key cryptographic method
that uses secure elliptic curves over finite fields for the purpose of encryption and
decryption of messages. ECC is particularly useful for secure and efficient key agree-
ment, a protocol in which parties can establish a common key for secure communica-
tion without the risk of third-party decryption.

Public-key cryptography, in general, relies on the difficulty of certain mathematical
problems. For example, ECC takes advantage of the intractability of the discrete
logarithm problem (or DLP), defined in definition 5.1.

Furthermore, ECC has several advantages over other public-key cryptographic meth-
ods, such as RSA. For example, ECC requires smaller key sizes to achieve the same
level of security, which makes it more efficient in terms of computation and stor-
age. In addition, ECC is less susceptible to quantum computer attacks, which is an
increasingly important consideration as quantum computers become more advanced.

Definition 5.1 (Discrete Logarithm Problem). Let G be a cyclic group of order n,
and let a, b ∈ G be two elements of G such that na and nb are their respective orders.
The discrete logarithm problem involves finding the solution of the equality loga(b) = x
over the group G, i.e., one has to find x ∈ G such that xa = b (mod na).

Note that if a is a generator of the group G, then the discrete logarithm loga(b) is
defined for any b ∈ G. On the other hand, if a is not a generator for G, then the
discrete logarithm is only defined and exists for any b belonging to the subgroup
generated by a. However, if b does not belong to this subgroup, then the logarithm
is not defined.

In the case of an elliptic curve C over the field K, one takes G = J (C), which is
an additive group. In this case, the additive discrete logarithm is clearly defined
as ax = b. Specifically, one has that Q = k ⊗ P , where P ∈ C(K) is such that
P −Ω is an element of order n (possibly, a generator) of J (C), Q is the point for
which the logarithm is being calculated, and k ∈ {0, . . . ,n− 1} is the value of the
logarithm. The problem of finding the number k such that Q = k ⊗ P is known as
the elliptic curve discrete logarithm problem (ECDLP). Additionally, in the case of a
hyperelliptic curve, this problem is referred as hyperelliptic curve discrete logarithm
problem (HECDLP) [15, 42].

The security of ECC depends on various factors such as the chosen elliptic curve,
the dimension of its underlying finite field, and others. Currently, the most efficient
method to solve the ECDLP is Pollard’s rho algorithm for elliptic curves C with a
complexity of O(

√
n), where n ≤ card(J (C)) is the order of the subgroup generated

by the divisor P −Ω used as the base point in the computation. The larger the

Chapter 5. Elliptic curves cryptography 46

cardinality of the subgroup generated by P , the security of a cryptographic method
relying on the intractability of the ECDLP.

Secure elliptic curves are difficult to find as they must meet certain criteria [36, 50,
67], such as having an order of the Jacobian of at least 2160 to ensure a minimum
security strength and a cofactor of at most 4 The cofactor h ∈N of an elliptic curve
C is the number of points with the same abscissa in C, and it must be small due to
the existence of attacks that use this information to speed up the resolution of the
ECDLP. Furthermore, some elliptic curves such as anomalous curves are inherently
unsecure.

Definition 5.2. Let C be an algebraic curve over a finite field k such that
card(Jk(C)) = card(k). The curve C is an anomalous curve.

Non-anomalous curves are subject to attacks by means, for instance, of pair-
ing mappings, that is, efficiently computable, bilinear, and non-degenerate maps
e : G1 × G2 → G3, where typically G1 and G2 are cyclic subgroups (such as the
Weil pairing, see e.g. §IX.6 [15], §III.8 in [73], and the Ate pairing, see [39]) or quo-
tient groups (such as the Tate pairing, see e.g. [34], and the Eta pairing, see [5])
of the Jacobian of the curve, while G3 is a subgroup of the multiplicative group of
the ground field because the pairing carries the logarithm of an element in G1 to the
logarithm of an element in G3 (see e.g. [59]). Anomalous curves are safe with respect
to these attacks since all the above pairings are defined if and only if the cardinalities
of G1 and G2 divide qk − 1, where qk is the cardinality of the ground field.

On the other hand, however, anomalous curves are also subject to attacks as it is
possible to map the Jacobian of such curves to the additive group of the finite field
k (see [45, 55, 66, 68, 73, 74]). We address the reader to §XI.6 in [73] for a simple
polynomial algorithm able to solve the ECDLP for an anomalous curve.

Finally, ECC has been extended to hyperelliptic curves, and this extension is known
as hyperelliptic curve cryptography (HCC). The advantage of using HCC lies in its
use of hyperelliptic curves with genus g = 2, as it has been proven that the complexity
of the Hyperelliptic Curve DLP (HCDLP) decreases as the genus increases. In par-
ticular, Gaudry’s work in [35] demonstrated that the the Index Calculus algorithm,
another method that solves the DLP, can be optimized to become competitive and
even more efficient than the classic Pollard’s rho algorithm for hyperelliptic curves.
Specifically, given the hyperelliptic curve H of genus g > 0 over the finite field Fqn ,
where n ∈ N and q is a prime number, Pollard’s rho algorithm has a complexity
of O

(√
card(J (H))

)
, while the optimized Index Calculus, as proposed by Gaudry,

has a complexity of O
(
q

2− 2
n·g
)
. Note that, when g = 1, one has that n ≥ 2 for this

complexity.

For instance, when n = 1 and g = 3, the optimized Index Calculus has a complexity
of O

(
q2− 2

3
)
= O

(
q

4
3
)
, which is lower than the complexity of Pollard’s rho algorithm

with the same parameters since, in this case, the cardinality of the Jacobian of H is
O
(
q3) (see theorem 4.1).

5.1 Diffie-Hellman and ElGamal
The cryptography based on elliptic curves employs the Diffie-Hellman protocol for
the key-exchange phase. This scheme returns a tuple of five parameters for each user.
Specifically, the parameters are defined as (C, q,G,n,h), where C is an elliptic curve

Chapter 5. Elliptic curves cryptography 47

over a finite field F of characteristic q, G is such that G−Ω is a generator of J (C)
or a point such that the order of the subgroup generated by G−Ω is approximately
equal to card(J (C)), n is the order of G, and h is the cofactor (for cryptographic
applications, it is preferable to have a cofactor equal to 1, although in general h ≤ 4).
Additionally, each user generates a pair of keys (d,Q), where d ∈ {0, . . . ,n− 1} is the
randomly generated private-key, and Q = d⊗G the public-key. Solving the ECDLP
problem is necessary in order to determine the private key d.

The Diffie-Hellman protocol offers a secure mechanism for agreeing on a common key
to encrypt and decrypt messages.

Definition 5.3 (Diffie-Hellman protocol). Let G be a cyclic group, and let γ be a
generator of G. Let A,B be two users that generate their respective private-keys
a, b ∈ G. If γa and γb are the public keys of A and B, respectively, then γab is the
secret (or shared) key, and it is common to both A and B.

Typically, in the case of an elliptic curve, the secret key shared by two users is the
abscissa of the common point. Specifically, given the private and public keys of
two users, (dA,QA) and (dB,QB), the common point is dA ⊗ QB = dB ⊗ QA =
dAdB ⊗G = (xAB, yAB), where xAB is the secret key.

The ElGamal encryption scheme also makes use of the Diffie-Hellman protocol to es-
tablish a common key for encryption and decryption of messages. Once the common
key xAB is agreed upon, the encryption phase of the ElGamal method is very sim-
ple. Specifically, the encryption process involves encoding the message m as a point
belonging to C(Fq) and computing the ciphertext C as xAB ⊗M , where M is the
encoded message. Typically, a message m is encoded by looking for a point M with
abscissa equal to m or, if this point does not exist, to perform other steps involved
by the standard adopted. The decryption process involves computing M = x−1

AB ⊗C
and decoding it to obtain the original message m. The value of x−1

AB is computed
modulo the order n of G.

48

6 Code-based cryptography

In this chapter, the fundamentals of coding theory will be presented and its utilization
in a cryptographic system referred to as the McElice cryptosystem. The McElice
cryptosystem will be thoroughly discussed in section 6.2.

Code-based cryptography is a type of cryptography that uses error-correcting codes
to encrypt messages. Furthermore, it is used for several different applications, includ-
ing secure communication, secure key distribution, secure identification, and secure
signature. It is particularly useful for applications that require high levels of secu-
rity, such as military and government communications, financial transactions, and
e-commerce.

One of the main advantages of code-based cryptography is its high level of security.
Unlike traditional cryptography, which is based on mathematical problems that can
be solved by brute force attacks, code-based cryptography is based on coding theory,
which is much more difficult to break.

6.1 Coding theory
Coding theory is a mathematical discipline that deals with the study of error-
correction codes, defined in definition 6.1, which are sequences of symbols used to
transmit data over a noisy channel in such a way that errors can be detected and
corrected.

Hence, coding theory is important because it provides a means of ensuring that infor-
mation is transmitted accurately and efficiently in situations where noise or interfer-
ence can cause errors in the transmission process. This is due to the fact that physical
channels are not exempt from noise, which can result in the alteration of bits in a
message during transmission, making it difficult for the receiver to properly decode
the information. In order to tackle this problem, codes are employed to convert a
message into a series of coded words that can still be accurately decoded even if errors
take place during transmission through a channel affected by noise.

Coding theory is important because it provides a means of ensuring that information
is transmitted accurately and efficiently in situations where noise or interference can
cause errors in the transmission process. The main applications of coding theory can
be found in the fields of telecommunications, computer networks, and data storage.

In telecommunications, coding theory is used to design efficient error-correcting codes
for the transmission of voice and data over digital networks, such as satellite and
cellular communications.

In computer networks, coding theory is used to design efficient error-correction al-
gorithms for the transmission of data packets over the Internet and other computer
networks.

Chapter 6. Code-based cryptography 49

In data storage, coding theory is used to design efficient error-correction codes for
the storage of digital data on hard drives, memory chips, and other digital storage
devices. This is particularly important in situations where the data stored is critical
and cannot be lost, such as in the case of financial records, medical records, and other
sensitive information.

In the following section, we will outline crucial definitions central to the field of coding
theory.

Definition 6.1 (Code). A code C is a vector subspace of the vector space An, where A
is an alphabet of symbols, typically a field. Each vector v ∈ C is known as a codeword
of C.

Definition 6.2 (Weight of a codeword). Let C be a code over An, where A is a finite
field. The weight |·| of a codeword a ∈ C is the number of its non-zero elements, that
is, for a = (a1, a2, . . . , an), with ai ∈ A, then |a| = l if there are n− l elements of a
equal to zero.

Definition 6.3 (Hamming distance). Let C be a code over An, where A is a finite
field. The Hamming distance, or simply distance, between two codewords a, b ∈ C is
dist(a, b) = |a− b|, that is, the number of positions in which they differ.

Definition 6.4 (Minimum distance). Let C be a code over An, where A is a finite
field. The minimum (Hamming) distance of C is the smallest distance between any
two codewords of C.

Definition 6.5 (Linear code). A linear code of parameters [n, k, d]q is a code C that
is a vector subspace of dimension k of the vector space Fq

n, where Fq is a finite field,
and such that the minimum distance of C is equal to d.

Definition 6.6 (Error). Let C be a code over Fq
n, and let v, w be two vectors such

that v ∈ C and v + v′ = w /∈ C. The number of errors between the codeword v and
the word w is the distance |w− v|.

Any linear code is an error-correcting code that is able to detect and correct errors.
In particular, any linear code C of minimum distance d is capable of detecting at most
d− 1 errors and correcting at most

⌊
d−1

2

⌋
errors.

In addition, any linear code can be represented using a matrix, specifically the gener-
ator matrix G or the parity-check matrix H, where G ·HT = 0. In other words, the
matrix H is the nullspace of G.

In the following, we provide two equivalent definitions for a linear code that use the
above matrices.

Definition 6.7. Let C ≤ Fq
n be a [n, k, d]q linear code, and let H ∈ Fq

n−k×n be the
parity-check matrix of C. The code C is the set

{
v ∈ Fq

n : v ·HT = 0
}

.

Definition 6.8. Let C ≤ Fq
n be a [n, k, d]q linear code, and let G ∈ Fq

k×n be the
generator matrix of C. The code C is the set

{
v ·G ∈ Fq

n : v ∈ Fq
k
}

.

Remark 6.1. If the columns of G are ordered in such a way that its first k of them
are linearly independent, then the Gauss-Jordan method can be applied in order to
reduce G to its standard form, i.e., G = [Ik|M], where Ik is the identity matrix of
order k, and M is a matrix of dimension k× (n− k). Upon reducing G is in standard
form, the parity-check matrix H can be computed as

[
−MT |In−k

]
.

Chapter 6. Code-based cryptography 50

By representing C through a matrix, it is possible to compute easily its minimum
distance by calculating the rank of the matrix H. Specifically, the minimum distance
d is such that d columns of H are linearly dependent, while d− 1 columns of H are
always linearly independent.

Additionally, by the rank theorem (or dimensional theorem), one can prove that
dim(C) = k = n− r, where r is the rank of H, i.e., the minimum distance of the
code.

Theorem 6.1 (Singleton). If C ≤ Fq
n is a [n, k, d]q linear code, then d ≤ n− k+ 1.

Proof. The proof follows from the rank theorem and the definition of d such that d− 1
is the maximum number of columns of H that are linearly independent. Specifically,
by the rank theorem r = n− k, and d− 1 ≤ r since d is the minimum distance. ■

Definition 6.9 (MDS Code). A Maximum Distance Separable code (MDS code) is
a linear code C ≤ Fq

n of parameters [n, k, d]q such that d = n− k+ 1.

6.2 McEliece cryptosystem
The McEliece cryptosystem was first introduced in 1978 and was the first asymmet-
ric encryption algorithm to incorporate randomization during the encryption process
[58]. It is considered a candidate for post-quantum cryptography as it is immune to
Shor’s algorithm attacks [12, 25]. This cryptography system is based on the difficulty
of decoding a message using a general linear code, which is an NP-hard problem [6].
In comparison to other cryptographic schemes such as RSA, the McEliece cryptosys-
tem is faster in both the encryption and decryption steps. Initially, the McEliece
cryptosystem used binary Goppa codes, however, since 1996 it has been extended to
algebraic-geometric Goppa codes (AG Goppa codes) that use curves of genus greater
than zero over finite fields with characteristic q = pt ≥ 2 [30, 46]. However, in 2008
and 2014, attacks were developed that completely broke McEliece cryptosystems us-
ing AG Goppa codes [23, 30].

Despite being a quantum-safe method, the main disadvantage of the McEliece cryp-
tosystem is the larger key sizes compared to other public-key encryption methods
such as RSA or ECC. For example, to achieve a security level of 128-bit, the typical
public-key size for this method is approximately 2.5 Mbits, while the public-key size
for the same security level on ECC is only 256 bits and 2048 bits for the RSA method.

The advancement of quantum computers poses a threat to the security of modern
cryptographic algorithms, making it necessary to consider quantum-safe methods,
even if there is a performance downgrade.

The following outlines the steps involved in the McElice Cryptosystem. Prior to com-
munication between a sender and a receiver, the receiver must perform the following:

• Select the number t of errors that can be corrected;

• Choose a random [n, k, d]q linear code that is capable of correcting at least t
errors, with an efficient decoding algorithm D. Let G be the generator matrix
of the selected code in standard form;

• Select a random non-singular matrix S ∈ Fq
k×k;

• Select a random permutation matrix P ∈ F2
n×n;

Chapter 6. Code-based cryptography 51

• Compute the matrix G̃ = S ·G · P ;

• Publish the public-key (G̃, t), and keep secret the private-key (S−1,P−1,D).

In order to encrypt a message M , the sender have to:

• Obtain the public-key (, t) of the receiver;

• Encode the message M into a vector m of length k;

• Compute a random error vector e ∈ Fn
2 such that |e| = t;

• Send the encrypted vector c = m ·+e to the receiver.

Conversely, the receiver have to perform the following steps:

• Compute the vector s = c · P−1 = m · S ·G+ e · P−1;

• Apply its private decoding algorithm D to s in order to remove the error vector
e · P−1, so that D(s) = m · S ·G;

• Since the generator matrix G is taken in standard form, it follows that the first
k element of D(s) are equal to z = m · S;

• Compute the vector m = z · S−1;

• Compute the original message M by decoding the vector m.

Remark 6.2. The sender and receiver must have a mutual understanding of the
encoding process for converting a message M into a vector m and the decoding process
for converting m back into M .

Remark 6.3. If G is not taken in its standard form, then the receiver have to solve a
linear system in order to compute the vector m ·S from D(s), since G is a rectangular
matrix.

6.3 Algebraic-geometric Goppa codes
Algebraic-geometric Goppa codes use a Riemann-Roch space over algebraic curve to
compute their generator matrices. Specifically, given an algebraic curve X and a
divisor D ∈ Div(X), a Riemann-Roch space is the defined as follows:

L (D) = {f ∈ K(X)∗ : div(f) +D is effective} ∪ {0}

that is, it is the space of K-rational functions f for which div(f) +D is an effective
divisor (see definition 2.20).

Since L (D) is a vector space, it is possible to find a basis of L (D). If D is a divisor
of positive degree k, then ⟨F0, F1, . . . , Fk−1⟩ is a base for L (D).

Remark 6.4. Any divisor D have a reduced representation, that is, there exists an
equivalent divisor D′ such that D ≡ D′ and D′ is unique. Thus, we may consider D
to be a reduced divisor without loss of generality.

Remark 6.5. By definition, for any pole Q ∈ div(f), with f ∈ L (D), one has that
Q is a zero of D, meaning that the support of D contains at least all the poles of the
functions in L (D).

Once we have computed the basis of L (D), we can define an algebraic-geometric
Goppa code.

Chapter 6. Code-based cryptography 52

Definition 6.10. Let D be a reduced divisor of positive degree δD = k of the curve
X over Fq, where q = pt and p is a prime number. Let ⟨F0, F1, . . . , Fk−1⟩ be a basis
of the Riemann-Roch space L (D), let T = {P1, . . . ,Pn} be a set of n points such
that Pj ∈ X (Fq), and Pj /∈ supp(D). The matrix (Gij) = G ∈ Fq

k×n such that,
for i = 1, . . . , k and j = 1, . . . ,n, Gij = Fi−1(Pj), is the generator matrix for an
[n, k, d]q AG Goppa code.

Remark 6.6. The matrix G is well defined because all points Pj ∈ T do not belong to
the support of D, which contains at least all the poles of the basis function belonging
to Fi.

Theorem 6.2. Let C be an AG Goppa code as in definition 6.10. The minimum
distance d of C is such that d ≥ n− δD = n− k.

53

Part II

Curves over Qp

54

7 Local fields

In this chapter, we introduce basic concepts about local fields. For further details,
we address the reader to classic book, e.g. [69].

In mathematics, a local field K is a field that is locally compact and has a discrete
valuation function. Overall, local fields are an important area of study in mathe-
matics, with applications in a wide range of fields including algebraic number theory,
algebraic geometry, and harmonic analysis.

One of the key properties of local fields is that they are equipped with a topology that
is induced by the absolute value. In particular, K is a local field if it is complete with
respect to a topology induced by a discrete valuation function ν, and if its residue
field is finite.

There are two main types of local fields: Archimedean and non-Archimedean. Archi-
medean local fields are fields that are equipped with an absolute value that is com-
patible with the usual absolute value on the real or complex numbers. Examples of
Archimedean local fields include the real numbers R and the complex numbers C.

On the other hand, non-Archimedean local fields are fields that are equipped with
an absolute value that is not compatible with the usual absolute value on the real
or complex numbers. More precisely, non-Archimedean local fields have a discrete
valuation, which means that the absolute value takes on only discrete values. These
fields are typically denoted by a symbol such as Qp (the field of p-adic numbers) or
Fq((T)) (the field of formal Laurent series over the finite field Fq), where p is a prime
number and q is a power of a prime number. More precisely, every non-Archimedean
local field of characteristic zero is isomorphic to Qp, while every non-Archimedean
local field of characteristic p is isomorphic to Fq((T)), where q is a power of the prime
p.

In particular, the field of formal Laurent series is an extension of the finite field Fq,
and it is equipped with a non-Archimedean absolute value, which has the property
that the value of a Laurent series is determined by the lowest power of T that appears
in the series. For example, in the field of formal Laurent series over the finite field
F2, the Laurent series T + T 2 + T 3 + · · · has a value of 1

T , because the lowest power
of T that appears in the series is T 1. Similarly, the Laurent series 1 + T + T 2 + · · ·
has a value of 1, because the lowest power of T that appears in the series is T 0 = 1.

On the other hand, the p-adic numbers are an extension of the rational numbers, and
they are equipped with a non-Archimedean absolute value. This absolute value has
the property that the value of a number is determined by its highest power of p in its
prime factorization. For example, in the 2-adic numbers, the number 5 has a value of
1
2 , because the highest power of 2 in its prime factorization is 20 = 1. Similarly, the
number 12 has a value of 1

4 , because the highest power of 2 in its prime factorization
is 22 = 4.

Chapter 7. Local fields 55

Given the surjective discrete normalized valuation function ν : K → Z ∪ {∞} of the
local field K, one defines the following important objects for a local field:

• OK = {x ∈ K : ν(x) ≥ 0}, that is, the ring of integers of K, which is a discrete
valuation ring;

• O∗K = {x ∈ K : ν(x) = 0}, that is, the units of OK;

• mK = {x ∈ K : ν(x) > 0}, that is, the unique non-zero prime ideal of OK,
which is also the unique maximal ideal of OK;

• ϖK, that is, a generator of mK which is the uniformizer of K;

• OK/mK, that is, the finite residue field of K, which is the quotient field of OK

modulo mK.

By using the above objects, every non-zero element x ∈ K can be expressed with the
generator ϖK as follows: x = ϖK

tu, where u ∈ O∗K and t ∈ Z is a unique integer. In
particular, one has that ν maps every x ∈ K onto the unique integer t that defines
the above equivalence, that is, ν : x 7→ t such that x = ϖK

tu, with ν(0) =∞.

If q is the cardinality of the residue field of K, then there is a natural definition of
the absolute value on K induced by its structure as a local field, that is, |x| = q−ν(x),
where x ∈ K.

Remark 7.1. Note that the ring of integers described above is a generalization of the
ring of integers over an algebraic number field F. Specifically, in this latter case, the
ring of integers OF is the ring of all the algebraic integers in F, that is, the roots of
monic polynomials h(x) = xn+

∑n−1
i=0 cix

i, with integer coefficients ci. However, one
can find a suitable discrete valuation function in order to define OF in the same way.
In particular, this ring may be defined as all the elements which are integers in every
non-Archimedean completion.

7.1 The p-adic numbers
The primary focus of this thesis is the study of algebraic curves C of genus g ≥ 1
over the field Qp of p-adic numbers, using an inverse limit process. Specifically, we
study the same curve over Z/pZ, Z/p2Z, . . ., Z/pkZ approaching Qp through this
inverse limit with k →∞. We address the reader to the notes of J.W.S. Cassels [21]
and C. Xavier in [20] to have further details regarding p-adic numbers and a series of
algorithm to implement them.

Our aim is to study the Jacobian of an elliptic curve over Q by starting with the
study of the Jacobian on the same curve over Qp. In the latter case, unlike in finite
groups such as GF(p), going from Z/pZ to Z/pkZ involves moving from a field to a
ring in which there are elements that may not have an inverse. Therefore, rather than
working with points in non-homogeneous coordinates (x, y), we will consider both the
curve and points in homogeneous coordinates, where P = [Z : X : Y] ≡

(
X
Z , YZ

)
=

(x, y).

As already mentioned in the previous section, the p-adic numbers are a completion of
Q using the p-adic metric, which determines if two numbers are close. In particular,
fixing a prime number p, any number can be written as a linear combination of powers

Chapter 7. Local fields 56

of p, that is,

n =
∞∑
i=k

aip
i, (7.1)

where k ∈ Z, and if ai = 0 for i < 0 and ai ∈ {0, . . . , p− 1} for i ≥ 0, then n is a
positive integer. This expansion is unique if n ̸= 0 and ak ̸= 0.

Remark 7.2. All the p-adic numbers with k ≥ 0 form a subring of Qp. This subring
is known as the ring Zp of p-adic integers, because it is the ring of integers of the
field Qp. Alternatively, Zp can be viewed as the inverse limit of the ring Z/pkZ of
integers modulo pk.

The p-adic order of a rational number n can be defined as the highest power of p for
which n is divisible. More precisely, if m(·) is a function defined as follows:

m(i) = max
l

{
l ∈N : pl | i

}
(7.2)

with i ∈ Z, then the p-adic evaluation function νp(·) is defined as follows:

νp(n) = νp

(
a

b

)
=

{
m(a)−m(b) if n ̸= 0,
∞ if n = 0,

(7.3)

then νp(n) is the p-adic order of n. Note that any rational number can be represented
as the ratio of two integers multiplied by a power of p:

n = pc
t

d
, (7.4)

where c, t, d ∈ Z, c is unique, and p ∤ td. Thus, the p-adic order of n is equal to c.

Based on this, one can define the p-adic norm of n as

|n|p = p−νp(n), (7.5)

where |0|p = 0. This norm allows one to define the following p-adic metric, which
measures the distance of two rational numbers n1,n2 ∈ Q:

d(n1,n2) = |n1 − n2|p. (7.6)

In particular, n1,n2 ∈ Q are close, according to the p-adic metric, if their difference
is divisible by a high power of p. Note that this norm defines a distance because:

|n|p ≥ 0 ∀n ∈ Q,
|n|p = 0 if n = 0,
|n|p = |−n|p,
|n1n2|p = |n1|p|n2|p,
|n1 + n2|p ≤ max (|n1|p, |n2|p).

(7.7)

57

8 Elliptic curves over local rings

Let K be a local field, OK its ring of integers, mK its prime ideal, and k = OK/mK

its residue field.

First, we remark that for elliptic curves W in short Weierstrass form, defined by the
equation y2 = x3 + ax+ b, whose reduction modulo mK is non-singular, the following
sequence:

0 −→ mK

ExpW−−−−→ JK

(
W
) ModW−−−−→ Jk

(
W
)
−→ 0 (8.1)

is exact [40, 51, 76] (see also [73, ch. §VII]), thus Im
(
ExpW

)
= Ker

(
ModW

)
, ExpW

is a monomorphism, ModW is an epimorphism, and one has that

Jk
(
W
)
∼= JK

(
W
)

/Ker
(
ModW

)
= JK

(
W
)

/Im
(
ExpW

)
. (8.2)

Two maps were defined in the previous short exact sequence: ExpW and ModW .
The map ModW is simply the reduction modulo mK of the coordinates of the points
P = [Z : X : Y] inW(K) which, up to a multiplication times a suitable t ∈ OK, have
integral entries Z,X,Y ∈ OK:

ModW : JK

(
W
)

→ Jk
(
W
)

P = [Z : X : Y] 7→ [Z (mod mK) : X (mod mK) : Y (mod mK)] . (8.3)

Note that ModW is trivially surjective for Hensel’s lemma (see proof in [73, sec.
§VII.2.1]).

Furthermore, the function ExpW is defined as follows:

ExpW : mK −→ JK

(
W
)

z 7−→
[
1 : ℘(z) :

1
2℘
′(z)

]
, (8.4)

0 7−→ Ω,

where ℘ is the Weierstrass elliptic function (see subsec. 3.1.2).

Since z = 0 is the only element of mK mapped to Ω, the homomorphism ExpW is into;
thus, for any z in a neighborhood of zero, one can define Exp−1

W (see §IV and §VII
[73] for further details) such that Exp−1

W
(
ExpW(z)

)
= z. Specifically, if 1 < i ≤ 5,

one has that the function

Exp−1
W : [T : X : Y] 7−→ −2 X

Y
(8.5)

is such that Exp−1
W
(
ExpW(z)

)
= z

(
mod mK

i
)
. As long as the domain of Exp−1

W is
Im
(
ExpW

)
, one has that −2XY is equivalent to −2 ℘(z)

℘′(z) , whose first terms in a Taylor

Chapter 8. Elliptic curves over local rings 58

series expansion are

z +
g2
10z

5 +
3g3
28 z

7 +
g2

2
120z

9 +
23g2g3
1540 z11 +O(z13).

Hence, for any z such that Exp(z) = P = [T : X : Y] one has that z−
(
−2XY

)
∈ mK

i,
for 1 < i ≤ 5.

Finally, it is worth to note that the above exact sequence does not split over a field
K if one supposes that the elliptic curve in Weierstrass form is an anomalous curve
(see definition 5.2).

Theorem 8.1. If k = OK/mK is finite, and W is not an anomalous curve, then
JK(W) is isomorphic to the direct sum of Jk(W) and mK.

Proof. As k = OK/mK is finite and W is not anomalous, for any 1 ≤ h ∈ Z, the
sequence:

0 −→ H −→ JH(W) −→ Jk(W) −→ 0,

where H = mK/(ϖh
KOK), with ϖK the uniformizer of K, is splitting by the Schur-

Zassenhaus theorem and defines, therefore, a section σhW : Jk(W) → JH(W) which
is a homomorphism. Taking the inverse limit σW = lim

h→∞
σhW , we obtain a section

σW : Jk(W)→ JH(W) which is a homomorphism, hence the sequence is splitting. ■

In the following, we provide an example of anomalous elliptic curve in Weierstrass
form for which the exact sequence does not splits.

Example 1. Let W be the elliptic curve in Weierstrass form defined by the equa-
tion y2 = x3 + 4x+ 7 over k = GF(53), whose Jacobian can be readily verified to
have 53 elements. Hence, Jk(W) is isomorphic to the cyclic group C53. However,
JZ/532Z(W) ̸= C53 ⊕ C53 as the point P = (3, 130) ∈ W

(
Z/532Z

)
is such that

53(P −Ω) = [0 : 53 : 1603]−Ω ̸= Ω−Ω.

8.1 The case K = Qp

In the case K = Qp, one has that its ring of integers OK is the ring Zp of p-adic
integers, its prime ideal mK is pZp (which uniformizer ϖK is equal to p), and its
residue field OK/mK is Z/pZ = GF(p).

In this case, the exact sequence in equation (8.1) indicates that JQp

(
W
)
∼=

JZ/pZ

(
W
)
⊕ Im

(
ExpW

)
, that is, the Jacobian of the curve over Qp is simply di-

rect sum of the Jacobian of the curve over the finite field Z/pZ and the integers
modulo pk−1. This result, although previously known, has significant advantages
since as it allows for group operations on the curve over Qp to be performed in simple
way, by treating the Jacobian of the curve over Z/pZ and modulo integers addition
as separate entities.

Recall that, in equation (3.7), we gave the Laurent series expansion for the Weierstrass
℘-function and its derivative ℘′ for a complex number z. As here we are now focusing
on the field Qp, one has to take into account the convergence radius of these series
over Qp. In the context of the field of p-adic numbers, a convergence neighborhood of
zero is given by multiples of p, that is, when p | z. In this neighborhood, these series

Chapter 8. Elliptic curves over local rings 59

always converge since ckz2k−2 ≡ 0
(
mod ph

)
, and (2k − 2)ckz2k−3 ≡ 0

(
mod ph

)
,

for a suitable positive integer h.

Moreover, recall that we aim to study the field Qp as an inverse limit Zp =
lim
←−

Z/pkZ, approaching Zp for k →∞. In this case, the map ExpW becomes

ExpW : pZp/pkZp −→ W
(

Z/pkZ
)

z = ph 7−→
[
1 : ℘(z) :

1
2℘
′(z)

]
, (8.6)

where h = 1, 2, . . . , pk−1, since Zp = lim
←−

Z/pkZ.

Remark 8.1. Note that in this case we consider, as the domain of ExpW , the quotient
pZp/pkZp since, modulo pk, ExpW(ph) = ExpW

(
p(h+ pk−1)

)
, with h ∈ Z.

Remark 8.2. Note that, as there is a natural isomorphism from Im(Exp) and
Z/pk−1Z through the following map:

pZp/pkZp −→ Z/pk−1Z

ph 7−→ h,

where h = 1, 2, . . . , pk−1, we have that JZ/pkZ

(
W
)
= JZ/pZ

(
W
)
⊕Z/pk−1Z.

In addition, as we are approximating Qp with Z/pkZ, with k →∞, the map ExpW
for elliptic curves in short Weierstrass form should be rewritten as follows:

ExpW : pZp/pkZp −→ W
(

Z/pkZ
)

z 7−→
[
tz3 : tz3℘(z) : tz3 1

2℘
′(z)

]
, (8.7)

where t is the least common multiple between the denominators of the series expansion
of ℘ and ℘′ (see equation (3.7)). In particular, the multiplication by the factor tz3 has
to be done in order to make all coordinates integer, and therefore to avoid modular
inversions when the denominator is a multiple of p as we move from the field Z/pZ

to the ring Z/pkZ.

Since Im
(
ExpW

)
= Ker

(
ModW

)
, then P ∈ Im

(
ExpW

)
if ModW(P) = Ω. Therefore,

the points belonging to Im
(
ExpW

)
have the following form P = [ph1 : ph2 : h3] with

p ∤ h3.

We claim that the number of elements belonging to Im
(
ExpW

)
is pk−1, where ExpW

is the map in equation (8.7). In particular, the Weierstrass ℘-function cycle modulo
pk is exactly long pk−1. This is immediately evident if one considers that h goes
from 1 to pk−1 before the function ExpW(z) is repeated, where z = ph. In fact, if
h = pk−1 + 1 we have that z = p(pk−1 + 1) ≡ p

(
mod pk

)
. Therefore, we observe

that there are pk−1 points belonging to the image of ExpW are none other than the
points that break the Jacobian of the curve over Z/pkZ in the direct sum.

Thus, for a non-anomalous curve, the map ExpW allows us to speed up the addition
operation by splitting the original group JZ/pkZ

(
W
)

into a pair (P , c), where P ∈
W(Z/pZ) and c ∈ Z/pk−1Z.

Chapter 8. Elliptic curves over local rings 60

Finally, to aid in our upcoming discussions, we introduce a new function, denoted as

Modpk : JK

(
W
)

→ JZ/pkZ

(
W
)

P = [Z : X : Y] 7→
[
Z
(
mod pk

)
: X

(
mod pk

)
: Y

(
mod pk

)]
. (8.8)

8.2 Group law over Qp

Although we possess the two maps ExpW and LogW = Exp−1
W , the direct summation

of two points P andQ belonging to an elliptic curve in Weierstrass form over Z/pkZ is
not feasible. In particular, given P and Q belonging to W

(
Z/pkZ

)
, operations such

as P ⊕Q or n⊗P may not be possible, where n is a positive integer. For example, in
affine coordinates, we may encounter a denominator d such that p divides d, making
the inversion operation invalid. Additionally, in projective coordinates, we may obtain
a point R /∈ W

(
Z/pkZ

)
or the point [0 : 0 : 0], which is not defined.

We attempted to extend the addition operation to obtain the exact point. Specifically,
we attempted to sum the two points over Z/p3kZ and then reduce them over Z/pkZ,
i.e. if P ⊕Q is not feasible over Z/pkZ, we sum P and Q over Z/p3kZ and then
reduce the resulting point modulo pk. However, this approach is not viable when the
denominator is not coprime with the characteristic of the defining field ofW. In such
cases, we cannot sum two points by extending the defining field. We note that since
a point P can be expressed as

[
z3 : z3℘(z) : z

3

2 ℘
′(z)

]
over C, then we could at most

compute P ⊕Q over Z/p3kZ to obtain the exact result, provided that p divides z if
P ∈ Im(Exp) and P ∈ W

(
Z/pkZ

)
. Attempting to compute P ⊕Q over Z/p3k+cZ,

where c is a positive integer, is futile.

The group law over Q will always return the exact result. Specifically, we define an
elliptic curve in Weierstrass form over Q that, when reduced modulo pk, gives us our
curve and has a point P that, when reduced modulo pk, gives us the generator point
of the reduced curve. Using this curve over Q, we perform group law operations over
Q and, finally, reduce modulo pk the resulting point to obtain the exact point. In
particular, let P be a point belonging to W(Q), and let n be a positive integer, thus
(n⊗ P)

(
mod pk

)
is surely the exact point belonging to W

(
Z/pkZ

)
.

Although moving to Q gives us an exact representation of points belonging to
W
(

Z/pkZ
)

and enables us to perform cryptographic operations with these curves,
a significant issue arises due to the increasing size of the input. To understand why
the input size increases, we introduce the concepts of height, logarithmic height, and
canonical height of a point.

Definition 8.1 (Point height). LetW be an elliptic curve in Weierstrass form over Q,
and let P = (x, y) be a point belonging toW(Q) such that x = a

b , where gcd(a, b) = 1.
The height of the point P is

h(P) = max (|a|, |b|). (8.9)

Remark 8.3. If P = (x, y) ∈ W(K) is such that x /∈ Q, then h(P) = |x|, where K

is a field different from Q.

In particular, one usually considers the logarithmic height or the canonical height of
a point.

Chapter 8. Elliptic curves over local rings 61

Definition 8.2 (Logarithmic height). Let W be an elliptic curve over Q, and let
P = (x, y) be a point belonging to W(Q). The logarithmic height of the point P is

hL(P) = log(h(P)). (8.10)

Thus, the logarithmic height of P is a measure of the bits required to represent the
x coordinate of P .

Definition 8.3 (Canonical height or Néron–Tate height). Let W be an elliptic curve
over Q, and let P = (x, y) be a point belonging to W(Q). The Néron–Tate height (or
canonical height) of the point P is

ĥ(P) = lim
n→∞

hL(n⊗ P)
n2 = hL(P) +O(1). (8.11)

In particular, one of the properties of the canonical height (and the logarithmic height)
of a point states that ĥ(n⊗ P) = n2ĥ(P).

Thus, given a point P ∈ W(Q) whose coordinates have a single digit, the point n⊗P
over Q may have coordinates with hundreds of thousands of digits. This exponential
increase in the size of the coordinates leads to a rapid saturation of the computer’s
RAM and a significant decline in terms of group law performance.

Despite this limitation, currently, there is no other method capable of computing the
sum of any two points over Z/pkZ without error.

8.3 The Log function
In this section, we assume that the local field K is the field of p-adic numbers with
the approximation in section 8.1.

In order to be able to efficiently perform the sum of points defined by the map ExpW ,
it is necessary to obtain a map that computes the value of z given ExpW(z), i.e. the
map

LogW : Im
(
ExpW

)
−→ Z/pkZ

ExpW(z) 7−→ z. (8.12)

Determining the proper value of z is a complex task in this case. Despite its ap-
parent simplicity, the module makes it impossible to determine z by starting with
the definition of the exponential function and proceeding to use the series expan-
sion of the Weierstrass ℘-function and its derivative. This task becomes even more
challenging when attempting to compute z using the inverse function of the Weier-
strass ℘-function. Unlike the Weierstrass ℘-function, there is no direct expression
that allows for the algorithmically determination of the series expansion of ℘−1(z′).
Furthermore, the expansion of ℘−1(z′) in Puiseux series

℘−1(z′) = z′
− 1

2 +
1
40g2z

′− 5
2 +

1
56g3z

′− 7
2 + · · · (8.13)

involves square roots, which raises additional difficulties. The use of square roots in
this context raises a number of questions and issues. Unlike the square root function
in the field of real numbers, the square root modulo pk may have more than two

Chapter 8. Elliptic curves over local rings 62

solutions. For example, the square root of 0 modulo 35 is given by multiples of 27, i.e.
27h, where h = 0, 1, . . . , 8. Additionally, when working with powers, it is necessary
to establish a specific order of operations. For instance, the expressions (a

1
b)
c

and
(ac)

1
b do not necessarily yield the same result a

b
c modulo pk. As an example, if we

calculate 9
5
2 modulo 34 = 81, then we would have 9

1
2 = {3, 24, 30, 51, 57, 78}. If we

raise each of these results to the fifth power, then we would get zero in each case.
However, if we perform the operation (95)

1
2 , then we would obtain all of the square

roots of zero modulo 81, i.e. {0, 9, 18, 27, 36, 45, 64, 72}.

The task of computing the logarithm of a point P ∈ Im
(
ExpW

)
is a challenging task.

To this end, we attempted to compute the cubic root of the projective coordinate
Z of P . Specifically, we have that Z = tz3, where t is the least common multiple
between z3℘(z) and z3

2 ℘
′(z). In principle, this should allow us to compute the cubic

root of Z in order to determine the value of z. However, we have seen that the least
common multiple t may not have a cubic root modulo pk, or that there may be more
than one cubic root of z3, which made these computations not successful.

As an alternative, we sought to approximate the value of z by starting with the value
of z modulo p5. Specifically, we used the series expansion of ℘(z) and ℘′(z) modulo
p5, taking only the first three terms of the series. By this method, we are able to
obtain the value of z directly modulo p5. In order to obtain the value of z modulo pk,
once z modulo p5 is known, we can find z ≡ z′

(
mod p5) and thus z = z′ + hp5. For

example, in order to get z modulo pk, we would first calculate z modulo p5 directly,
then we would obtain the value of z modulo p6, and so on, up to pk.

8.4 ECDLP exploiting the map LogW
The LogW is closely related to the discrete logarithm problem for elliptic curves.
Consider the elliptic curve in Weierstrass form W defined over the rational numbers,
a known point Q and the generator point P of the curve. The goal is to compute
the value of h that satisfies the expression Q = h ⊗ P . We assume that P is a
generator of the group in order to perform reductions of h modulo the cardinality of
the Jacobian. If ord

(
Modpk(P)

)
̸= card

(
JZ/pkZ

(
W
))

, then the computation should

be done modulo ord
(
Modpk(P)

)
.

A simple initial approach for computing h is to move from the curve over the rational
numbers to the same curve over the field of p-adic numbers. This greatly simplifies
the problem, as h will also be reduced with respect to the order of this curve (if a
generator point P of the group is taken). The relationship Q = h⊗ P always holds,
regardless of whether it is computed in a field or in a ring. The only difference will be
that the points will be reduced modulo pk and h will be reduced with respect to the
order of the curve modulo pk. We then have the relationship h ≡ h′ (mod t), with
t = ord(Modp(P)) = card

(
JZ/pZ(C)

)
. If the curve, reduced modulo p, has a “small”

order, then it is possible to easily find h′ and check if h′ ⊗ P = Q over the rational
numbers. If so, then the search for h is complete, otherwise we should calculate
h ≡ h′′

(
mod card

(
JZ/p2Z(C)

))
. Since card

(
JZ/pkZ(C)

)
= t · pk−1, then we have

that h ≡ h′′
(
mod pk−1 · t

)
. Furthermore, since h′ is already known from the previous

computation, it follows that h′′ = h′ +m · t, for some m ∈ Z. We can then proceed
in this manner until we find that h ≡ r

(
mod pk

)
such that Q = r⊗P = h⊗P over

the rational numbers.

Chapter 8. Elliptic curves over local rings 63

In the following, we present a practical example.

Example 2. Let W be an elliptic curve defined over Q by the equation y2 = x3 −
x+ 1

4 . We assume that the relationship Q = 31⊗P holds true, where P =
(
2, 5

2

)
and

Q are points belonging to W(Q) and P −Ω is the generator of the Jacobian. For the
purpose of simplifying the notation in this example, we fix the prime number p = 3.
We reduce the curve W over Z/3Z and we get y2 = x3 − x+ 1. The Jacobian of
this latter curve contains exactly 7 points, including the infinity point Ω, and thus
constitutes a cyclic group of order 7. The goal is to determine the value of h, which
is such that Q = h⊗ P . However, it should be noted that the value of h is unknown,
and it is only known that Q = h⊗ P for some h ∈ Z.

In order to compute the exact value of h, several steps are taken. First, the points
P and Q are reduced over Z/3Z, and let Mod3(P) and Mod3(Q) be their respective
reductions. Since JZ/3Z

(
W
)

has an order of 7, it follows that Mod3(Q) = 3 ⊗
Mod3(P) over Z/3Z, as 31 ≡ 3 (mod 7). However, if we were to calculate 3⊗ P
over Q, the result would not be equal to the point Q. Therefore, further computation
is required.

Next, we calculate W
(
Z/32Z

)
, which is defined by the equation y2 = x3 − x + 7

(as 1
4 ≡ 7 (mod 9)) and reduce the points P and Q over Z/32Z. It was previ-

ously determined that h ≡ 3 (mod 7), and we already know that the cardinality of
JZ/32Z

(
W
)

is equal to 21. This allows us to avoid calculating all the possible sums
of the form t ⊗Mod32(P), where t = 3 + 7l, and only compute the sums where
t = 3, 10, 17. Additionally, since we have already verified that 3⊗ P is not equal to
Q over Q, we can avoid this computation. Furthermore, knowing that the cardinal-
ity of JZ/32Z

(
W
)

is 21, we can determine the value of h modulo 21, in particular,
we find that h ≡ 10 (mod 21). The process is not yet complete, but by moving to
W
(
Z/33Z

)
, we can deduce that h = 31 = 10 + 21 (mod 27), thus successfully com-

pleting the search.

8.4.1 Refinement of the ECDLP over Qp

In the previous section, a relatively simple method was presented for computing the
discrete logarithm of a point that belongs to a curve defined over Q, by using the
same elliptic curve over Qp with p as the prime number.

This section illustrates a more advanced procedure which can determine the discrete
logarithm under the same conditions. We address the reader to appendix A.1 and
appendix B.1 for, respectively, the pseudocodes and the implementation codes of the
algorithms used to compute the ECDLP. Additionally, in the latter appendix, we
show the results of our implementation.

Specifically, we can use the map ExpW and its inverse LogW to determine the value of
h such that Q = h⊗P over Q. One can see that Q⊖ (h⊗P) = Ω over Q. Therefore,

Q⊖ (h⊗ P) ∈ Im
(
ExpW

)
.

Furthermore, over Z/pZ, we may reduce h modulo t = ord(Modp(P −Ω)), i.e.
h ≡ h (mod t). Thus, we have that h = h+ nt, for some n ∈ Z. We can therefore
express thatQ = h⊗P = (h+nt)⊗P , and thusQ⊖ (h⊗P) = nt⊗P . Additionally,

Chapter 8. Elliptic curves over local rings 64

t⊗ P = ExpW(pcm) for some m ∈ Z, and thus

nt⊗Modpk(P) = n⊗ExpW(pcm) = ExpW(pcnm),

by definition of ExpW . As a result, we have that

Modpk

(
Q⊖ (h⊗ P)

)
= nt⊗Modpk(P).

In conclusion, if p is a small prime number, then h can be computed immediately
over Z/pZ, and the value of t can be quickly determined as well. What is needed
is the value of n. Thus, the points P and Q can be reduced over Z/pkZ, and the
relationship Modpk

(
Q⊖ (h⊗ P)

)
= nt⊗Modpk(P) can be derived.

By taking the logarithm, we have that

LogW
(
Modpk

(
Q⊖ (h⊗ P)

))
= LogW

(
nt⊗Modpk(P)

)
.

From the left side of this latter equation, it follows that

LogW
(
Modpk

(
Q⊖ (h⊗ P)

))
= LogW

(
ExpW

(
pdl
))

= pdl,

for some l ∈ Z and 1 ≤ d ∈N, while from the right side, we have that

LogW
(
nt⊗Modpk(P)

)
= LogW

(
ExpW(pcnm)

)
= pcnm,

for some m ∈ Z and 1 ≤ c ∈N. Thus, we get at the expression

pdl ≡ pcnm
(
mod pk

)
,

hence, if l
m is a unit of Z/pkZ, then we obtain that

n ≡ pd−c l
m

(
mod pk−c

)
.

Special attention should be given to the final expression as the presence of pc and
pd reduces the convergence radius, as n will only be found modulo pk−c. Typically,
c = 1, which implies that the solution can be found modulo pk−1, despite the fact
that the expressions were calculated modulo pk. Below, we restate example 2 using
the method just described.

Example 3. Let W be an elliptic curve in Weierstrass form defined over Q by the
equation y2 = x3− x+ 1

4 and let P =
(
2, 5

2

)
be a point belonging to W(Q). The task

is to solve the ECDLP for Q = h⊗ P , where h is an unknown integer. However,
for the purposes of this demonstration, suppose we know that h = 31 and we aim
to verify the efficacy of the algorithm discussed above. In table 8.1, we present the
results of the aforementioned algorithms, where we exploit an approximation modulo
pk, with p = 3.

As previously stated, we first calculate LogW(t⊗ P) = LogW(7⊗ P), where t =
card

(
JZ/pZ(C)

)
= 7 can be easily computed. Furthermore, we can compute h over

W(Z/pZ) by calculating h (mod t) and obtaining h = 3, in order to compute
Q⊖ (h⊗P). Next, we can compute the logarithm of 7⊗P and Q⊖ (3⊗P) modulo 3k.

Chapter 8. Elliptic curves over local rings 65

These two points belong to Im
(
ExpW

)
, thus, their logarithm values can be easily com-

puted using successive approximations and by exploiting the p-adic series expansions
of ℘ and its derivative (see section 8.3). Additionally, we know that these logarithms
are multiples of p = 3, that is, LogW(t⊗ P) = 3l1 and LogW(Q⊖ (3⊗ P)) = 3l2
for some l1, l2 ∈ Z. Since these two values have to be equal modulo pk = 3k, their
ratio modulo 3k yields the unknown n such that h = h+ nt. This is easy to verify
since Q = h⊗P , but h = h+ nt, thus (tn)⊗P ≡ Q⊖ (h⊗P) over Z/pkZ. There-
fore, LogW((tn)⊗ P) ≡ LogW

(
Q⊖ (h⊗ P)

)
over Z/pkZ from which it follows that

pnl1 ≡ pl2
(
mod 3k

)
.

We note that this latter equivalence gives us n ≡ l2
l1

(
mod 3k−1

)
. Specifically, we

found the first valid n modulo 33 as the curve W over Z/33Z is the first curve whose
Jacobian has a cardinality greater than h, thus here we have found the exact value of
h. Therefore, we only need to compute the two logarithms of t⊗P and Q⊖ (h⊗P) for
⌊log3(h)⌋ = 3 times. Therefore, the cost of this algorithm is O(⌊log3(h)⌋ · r), where r
is the cost of computing the two logarithms at each step. It is worth mentioning that
we assumed that P is a generator of JZ/pkZ

(
W
)
, thus we computed all the previous

expressions modulo the cardinality of the Jacobian. If P were not a generator, then
the computations would have to be done modulo the order of Modpk(P).

k Log(7⊗ P) Log(Q⊖ (3⊗ P)) n h = 3 + 7n

1 3 0 0 3
2 6 6 1 10
3 6 24 4 31
4 33 51 4 31
5 195 51 4 31
6 681 537 4 31
7 2139 1995 4 31
8 6513 6369 4 31
9 13074 12930 4 31
10 13074 52296 4 31

Table 8.1: ECDLP as successive approximations modulo 3k

8.5 ECDLP from Q to Qp

In section 8.4, we discussed the discrete logarithm problem and presented an elegant
and efficient method to deal with it in subsec. 8.4.1.

From a more abstract perspective, we can consider an elliptic curve in Weierstrass
form, denoted by W, defined over the field of rational numbers. We can also con-
sider the relationship α = a ⊗ γ, where α, γ ∈ W(Q), and a is an integer. This
relationship, being defined over Q, remains valid as well when the map ModW is

Chapter 8. Elliptic curves over local rings 66

applied to it. In other words, if we define Modpk(α) and Modpk(γ) to be the re-
duction modulo pk of α and γ, respectively, then Modpk(α) = a′ ⊗Modpk(γ), where
a ≡ a′

(
mod ord

(
Modpk(γ)

))
. Therefore, if we have an elliptic curve in Weierstrass

form W over Q, and we reduce W modulo pk, any relationship of the form α = a⊗ γ
over Q will still hold in the reduced curve, with the appropriate modifications. The
diagram below illustrates the concepts discussed previously:

W(Q)
ModW−−−−→ W(Fq)yModW

W(Fp)

where p and q are prime numbers such that q ≫ p. In this diagram, the top arrow
represents the reduction modulo q, while the bottom arrow represents the reduction
modulo p.

Suppose for the moment that we have an elliptic curve in Weierstrass form over Q,
which when reduced modulo a very large prime q, gives us one of the well-known curves
currently used in cryptography, such as the curve Curve25519, in which q = 2255− 19.
At this point, we would like to solve the ECDLP for Curve25519, but we know that
it is computationally infeasible to do so directly.

Since we know W(Q), in principle, we can compute the points α and γ over Q,
which, when reduced modulo q, give us the respective points over Curve25519. Now,
we compute a third curve over a field with a very small prime characteristic, preferably
3, by reducing W(Q) modulo this small prime. For instance, we could obtain the
elliptic curve given by the equation y2 = x3 − x + 1, which has exactly 7 points.
Next, exploiting the method presented in subsec. 8.4.1, we can first obtain the value
of a modulo 7. Subsequently, through an iterative process, we obtain the curve W
reduced modulo 3k, and we exploit this reduction in order to obtain the true value of
a over Q.

We already know, as we stated in chapter 8, that the elliptic curve, given by the
equation y2 = x3− x+ 1, reduced modulo 3k will have a cardinality equal to 7 · 3k−1.
Therefore, it is not difficult to understand that, from 32 onwards, it is necessary
to perform at most two operations of the form n ⊗ P , where n is an integer and
P ∈ JZ/3kZ(W) in order to determine the solution of the ECDLP.

Assuming that a ≡ c (mod 7), we know that the elliptic curve reduced modulo 32

will have 21 points. From the previously established relationship, we know that
a ≡ c (mod 7). Therefore, if the value of a does not satisfy the relationship α = a⊗ γ
over Q, then we should only verify if either a = c + 7 or a = c + 14 satisfy the
relationship α = a⊗ γ over Q. Similarly, there will be at most two other products
n⊗P on the other curves reduced modulo 3k, where k > 2. Hence, with these elliptic
curves, we can solve the ECDLP with only O(log3(a)) products of points n⊗P over
elliptic curves reduced modulo 3k.

In practice, the original elliptic curve over Q and the original relationship are not
typically available. One only has the elliptic curve over some finite field (such as
Curve25519), a relationship between two points belonging to that curve, and wants
to solve the ECDLP for that relationship.

Chapter 8. Elliptic curves over local rings 67

In principle, it would also be possible to derive the common ancestor of W over Q,
starting from the curve W over Fq, but it is more complex. It turns out that if
we have the relationship α = a⊗ γ over Fq, then this relationship over Q becomes
α′ = (a′⊗ γ′) + ω, where ω is a point belonging to W(Q) which reduced modulo q is
equal to Ω.

68

9 Hyperelliptic curves over Qp

In order to simplify the notation in this chapter, we use the notation Hk to refer to
H
(

Z/pkZ
)
, and Jk(H) to refer to the Jacobian of the hyperelliptic curve H over

Z/pkZ.

Based on the results obtained in the case of elliptic curves over Z/pkZ, we have
expanded our study to include more complex abelian varieties such as hyperelliptic
curves (see chapter 4). Specifically, we aim to demonstrate that the Jacobian J (H)
of a hyperelliptic curve H over Z/pkZ has a structure that is similar to that found
in elliptic curves, that is, Jk(H) ∼= J1(H)⊕Z/pg(k−1)Z.

In order to prove this result, we must accurately count the number of divisors in
Jk(H). Although this task may appear simple, it is quite complex.

In order to illustrate this point, we will consider a trivial example, namely, a hyper-
elliptic curve H of genus g = 2. In this case, the divisors can take only the following
forms: D = Ω −Ω, D = P −Ω, and D = P + Q− 2 ·Ω. Assume we count all
the n points belonging to Hk, that is, we determine all the pairs (x, y) ∈ Hk, where
x, y ∈ Z/pkZ.

As a result, the number of divisors of the type D = P −Ω is n, while the number
of divisors of the type D = P +Q− 2 ·Ω is at most (n+1

2), as P can be equal to
Q. However, it is important to note that this calculation is not entirely accurate as
divisors of the form D = 2 · P − 2 ·Ω may not exist, or may be equivalent to other
divisors, such as D = Q−Ω, D = Ω−Ω, or D = P ′ +Q′ − 2 ·Ω.

Furthermore, by counting the divisors in the forms of D = Ω −Ω, D = P −Ω,
and D = P +Q− 2 ·Ω as 1 + n+ (n2) (without repetition) or 1 + n+ (n+1

2) (with
repetition), we obtain an incorrect value. According to a well-known result in the
literature, e.g. in a classic book as [44], the 2-torsion subgroup of a hyperelliptic
curve H, defined as

H[2] = {D ∈ J (H) : 2⊗D = Ω−Ω}, (9.1)

is isomorphic to Z/22gZ. This implies that if the 2-torsion subgroup in H of genus
g = 2 exists, then it must have a cardinality equal to 24 = 16. However, our previous
count does not yield a multiple of 16, even though the 2-torsion subgroup exists.

Thinking of divisors as formal sums of points belonging to the curve complicates this
counting process because these points may not necessarily exist within the defining
field K of H, but they surely exist over an algebraic closure of K. In light of this, we
turned to the Mumford representation, which states that regardless of the genus of
H, a divisor is always determined by a pair of polynomials (u(x), v(x)). For example,
if one were to operate on a curve of genus g = 10, then the classic representation of
the divisor D would have to take into account all the at most 10 affine points that

Chapter 9. Hyperelliptic curves over Qp 69

belong to its support. On the other hand, with the Mumford representation, only a
pair of polynomials is sufficient.

The Mumford representation of the principal divisors of a hyperelliptic curve sim-
plifies the counting process, but it is still complex. By using the properties that
deg(v(x)) < deg(u(x)) ≤ g and u(x) | v(x)2 + v(x)h(x)− f(x), it may appear pos-
sible to algorithmically determine the number of principal divisors in the Mumford
form that belong to the Jacobian of the curve.

Consider again the case of g = 2, in which u(x) is a polynomial of degree at most
g and v(x) is a polynomial of degree at most g − 1. For each v(x) = ax+ b, where
a, b ∈ Z/pkZ, it is possible to determine the valid u(x) polynomials by factoring the
polynomial v(x)2 + v(x)h(x)− f(x) over Z/pkZ and taking the factors of degree n
such that deg(v(x)) < n ≤ g. This process yields the divisors in the Mumford form
D = (u(x), v(x)) ∈ Jk(H) that meet the criteria listed above. However, there are
still some invalid divisors. These errors are ultimately due to a conjecture about the
order of this Jacobian.

In order to further understand the structure of the Jacobian of hyperelliptic curves
over Z/pkZ, we make the conjecture that the cardinality of the Jacobian follows a
similar pattern to that of elliptic curves. Specifically, we propose that for a hyper-
elliptic curve in Weierstrass form H of genus g over Z/pkZ, the cardinality of the
Jacobian is equal to:

card
(
JZ/pkZ(H)

)
= card

(
JZ/pZ(H)

)
· pg(k−1). (9.2)

This conjecture is based on the observation that for an elliptic curve in Weierstrass
form W over Z/pkZ, the cardinality of its Jacobian is given by:

card
(
JZ/pkZ

(
W
))

= card
(
JZ/pZ

(
W
))
· pk−1 (9.3)

This idea would need further exploration and proof before it can be considered a
proven results.

Determining all valid divisors of a hyperelliptic curve can be a complex process. One
approach is to use the Mumford representation of the principal divisors of a curve,
which simplifies the count compared to using formal sums of points belonging to
the curve. However, this method still poses several challenges. First, Mumford’s
representation only considers divisors consisting of proper points P = (x, y), where
x, y ∈ K. In the case of elliptic curves over Qp, there are also “improper” points
P = [Z : X : Y] whose reduction modulo p is the point at infinity Ω. The procedure
described above can only be applied to count divisors with proper points, i.e., points
whose reduction modulo p is not Ω. However, divisors that include improper points
or a combination of proper and improper points must also be taken into account.

Second, factoring the polynomial v(x)2 + v(x)h(x) − f(x) over Z/pkZ (a ring) is
not always possible as current algorithms only work when the discriminant of the
polynomial to factorize is non-zero. In cases where the discriminant is zero, it is
possible to factor the polynomial over Qp and determine the factors over Z/pkZ

by means of the equivalent factors over Qp. However, this complicates the process
further, as factors may not exist over Z/pkZ.

Finally, a non-trivial issue is the ability to perform addition of divisors in the form
of Mumford. Specifically, with the Cantor-Koblitz algorithm (algorithm 1), one can

Chapter 9. Hyperelliptic curves over Qp 70

determine the divisor sum D = D1 ⊕D2. Then, once a divisor D = (u(x), v(x))
has been determined by factoring v(x)2 + v(x)h(x)− f(x) over Zpk , one computes
n⊗D, for increasing n ∈ N, until either n⊗D = Ω−Ω or there are any errors. If
there are errors, then the divisor would be considered invalid.

However, all these techniques do not yet yield the expected results or, in any case,
a valid number of divisors for the curve H over Zpk . Therefore, determining the
exact number of divisors belonging to the Jacobian of H over Zpk remains an open
problem. It is likely that the group we are searching for is a subgroup of Jk(H) such
that the divisors, expressed in Mumford form, are formed by points that at most have
coordinates in a quadratic extension of the defining field of H. For example, as noted
in the case of g = 2, the polynomial u(x) could be irreducible over the defining field
K of the curve H but it may have roots in a quadratic extension of K.

9.1 “Weaknesses” of Cantor-Koblitz algorithm with hy-
perelliptic curves over Qp

The Cantor-Koblitz algorithm is applicable to any hyperelliptic curve of genus g > 0
over any field, and even over a ring, with the necessary precautions. It should be
noted that any fraction of the form a

b over Z/pkZ, where p | b, is not invertible and
must be treated accordingly.

The Cantor-Koblitz algorithm has two operations that can be problematic when ap-
plied to rings: the gcd and the polynomial modulo operation. Both of these operations
rely on division between polynomials, which can be infeasible when one of the polyno-
mials has a multiple of p among its coefficients. As a result, performing the gcd and
polynomial modulo operation with this multiple of p could lead to a division between
coefficients where the denominator is also a multiple of p, making the computation
impractical.

One potential solution to this issue is to operate on the same curve over Q in-
stead of Z/pkZ, since the gcd and polynomial modulo operations will always be
possible in this case. However, one may wonder how to move from Q to Z/pkZ,
or if the map Modpk is sufficient for this purpose. In particular, one may won-
der if D = (u(x), v(x)) is a divisor of the Jacobian of H over Q, then does
Modpk(D) = (u(x)

(
mod pk

)
, v(x)

(
mod pk

)
) represent a valid divisor for the Jaco-

bian of H over Z/pkZ. Additionally, one may question whether two divisors repre-
sent the same object. However, in general, the answer is no, as demonstrated in the
following example.

Example 4. Suppose that k = 1 and let H be the hyperelliptic curve in Weierstrass
form of genus g = 2 over Q defined by the equation:

y2 = x(x− 1)(x+ 2)(x− 3)(x+ 4).

Consider the divisor (x− 4, 24) = D ∈ J (H). Also, suppose we are interested in
finding the order of D on the same curve but reduced over Z/11Z. We will find that
the order of D, reduced modulo 11, is 16. Now, suppose we calculate the divisors
2⊗D, 4⊗D, 8⊗D, and 16⊗D over both Q and Z/11Z, and then we compare
these results. In particular, given h⊗D over Q, we compare Modp(h⊗D) with h⊗
Modp(D), that is, the divisor obtained by making the same computation but directly
modulo 11. We will observe that, from a certain h onwards, these divisors will be

Chapter 9. Hyperelliptic curves over Qp 71

different. For instance, Modp(8⊗D) = (x + 10, 4x + 7), while 8 ⊗Modp(D) =
(x + 10, 0). The second result is the correct one because if D has order 16 over
Z/11Z, then 8⊗D has order 2 and, therefore, is a divisor whose points in its support
lie on the x-axis. Let us now consider the same scenario over Q. We observe that
4x+ 7 = 4(x+ 10) modulo 11. Furthermore, the cubic, passing through the points
belonging to supp(4⊗D) (used for the computation of 8⊗D as (4⊗D)⊕ (4⊗D)),
can be factored modulo 11 as (x+ 3)(x+ 10). Thus, this result suggests that it was
necessary to further execute the loop between lines 8 and 11 of the Cantor-Koblitz
algorithm (algorithm 1) as the divisor Modp(h⊗D) might not be reduced.

The method of reducing the divisors using the previously defined map Modp alone is
not sufficient to establish equivalence between the two methods. For example, con-
sider the divisor Modp(16⊗D) = (x2, 8x) and compare it to 16 ⊗Modp(D) =
(1, 0) (the identity divisor Ω − Ω in Mumford form). It is worth to note that
Modp(16⊗D) is not a valid divisor in Mumford form since u(x) does not di-
vide

(
v2(x) + v(x)h(x)− f(x)

)
. More precisely, Modp(16⊗D) should be equal to

2 · (0, 0)− 2 ·Ω, but this latter divisor is not valid since any divisor represented in
Mumford form is such that gcd(u(x),u′(x), v(x)) = 1 (see theorem 4.2), i.e., a point
lying in the x-axis cannot have multiplicity greater than 1 in the support of a di-
visor belonging to the Jacobian of a hyperelliptic curve. Additionally, the divisor
Modp(8⊗D) is not a valid Mumford representation since deg(v(x)) = deg(u(x)).

The above example highlights that the following diagram is not commutative:

JQ(H)×JQ(H)
⊕−−−−→ JQ(H)yMod

pk

yMod
pk

yMod
pk

Jk(H)×Jk(H)
⊕−−−−→ Jk(H)

Specifically, when reducing elements in JQ(H) over Z/pkZ, the sum of those ele-
ments may yield a divisor that does not exist (such as the divisor Modp(16⊗D) in
example 4) or one that does not belong to the Jacobian of the curve over Z/pkZ.
This is due to the fact that when p divides the coefficients of the polynomials f1(x)
or f2(x), we have:

gcd(f1(x), f2(x))
(
mod pk

)
̸≡ gcd(f1(x)

(
mod pk

)
, f2(x)

(
mod pk

)
),

so that it is not always possible to apply the reduction while maintaining the equiv-
alence.

It should be noted that, in lines 1-2 of the Cantor-Koblitz algorithm, one computes
the gcd between the polynomials u1(x) and u2(x) of the Mumford form of the divisors
to be summed, respectively. However, this computation may differ if one considers
the two divisors over Q and their respective reductions over Z/pkZ. For example,
consider summing the two divisors Mod11(15⊗D) = (x+ 7, 9) and Mod11(D) =
(x+ 7, 2), where D is the divisor considered in example 4.

On one hand, over Z/11Z, the gcd computation in line 1 of the algorithm gives us
d1 = x+ 7. On the other hand, since 15⊗D over Q is equal to

15⊗D =
(
x2 + 5329753222...1306367

14623495...57664 x+ 1676245790...05761
365587392...3164416 , 108340762895...9428583233

559212413009...39411712 x+ 104257378356...660863103
1398031032...813609852928

)
,

Chapter 9. Hyperelliptic curves over Qp 72

which is a divisor whose coefficients have numerators and denominators with more
than 200 digits, and since the polynomial u(x) in 15⊗D does not have roots over Q,
the gcd at line 1 of the algorithm give us d1 = 1, which is not equivalent to d1 = x− 7
over Z/11Z.

In conclusion, this implies that the previous diagram does not commute and that
the composition between the map Modpk and the gcd computation is not always
commutative. As a result, it is not possible to extend the results in chapter 8 to the
case of hyperelliptic curves of genus g > 1.

73

10 Edwards curves over Qp

In this chapter, we extend the results of chapter 8 on elliptic curves in Weierstrass form
over Z/pkZ to the case of Edwards curves. Specifically, we examine the properties
and characteristics of Edwards curves, which are a specific type of (non-smooth)
curves that have been widely studied in recent years due to their efficiency in certain
cryptographic constructions. We address the reader to section 3.3 for further details
about Edwards curves.

Furthermore, in the following sections, we first compute the map Exp for Edwards
curves over a local field. Then, we will compute this map over the p-adic number field,
which has significant implications for several number-theoretic and cryptographic
applications.

Our motivations are based on an authoritative literature on the matter of lifting,
which has been summarized by J. Silverman in [72]. In this survey, Silverman connects
the lifting problem to the DLP for elliptic curves in Weierstrass form. Moreover, in
[77] the authors defined a cryptosystem based on quotient groups of an elliptic curve in
Weierstrass form over the p-adic number field, able to encrypt messages with variable
lengths. This led to public-key cryptosystems with hierarchy management [78], which
look interesting for their possible applications. Additionally, recently, similar topics
have been investigated in [75], where the authors consider twisted Edwards curves
over local fields and introduce a cryptosystem based on quotient groups of twisted
Edwards curves over local fields.

For these reasons, although it is possible to extend the exponential map to other forms
of elliptic curves (such as Legendre form, Jacobi form, Hessian form, Huff form), in
this chapter we will focus only on the Edwards form.

10.1 The map Exp over local fields
In this section, we leverage the previously established results on elliptic curves in
Weierstrass form (see also [33]) and extend them to the case of Edwards curves. As
previously discussed, we are considering the scenario where there exists a birational
equivalence between an elliptic curve W in Weierstrass form and an Edwards curve
E , such that the Jacobian J (W) of W is isomorphic to the Jacobian J 0(E) of E (as
stated in theorem 3.9). This isomorphism applies to the subgroup of divisors of J (E)
whose reduced form is P −O, where P is an affine point and O = (0, 1) is taken as
the neutral element of the group.

Let K be a local field, with OK being its ring of integers, mK its prime ideal and
k = OK/mK its residue field. We will take the image J 0

k (E) under the reduction
modulo mK of the group J 0

K(E), and proceed to investigate under what conditions
one has that J 0

K(E) ∼= J 0
k (E)⊕mK.

Chapter 10. Edwards curves over Qp 74

Given the results presented in chapter 8, and under the assumption that E has a
non-singular reduction modulo mK, we can establish the following theorem.

Theorem 10.1 (The map Exp for Edwards curves). Let K be a local field, OK is its
ring of integers, and mK is the prime ideal of OK. If E is an Edwards curve as in
theorem 3.9, that is, with d ∈ K a non-square, then the following map:

ExpE : mK −→ J 0
K(E)

z 7−→
(2

3
y1(3℘(z)− a′)

x1℘′(z)
, 3℘(z)− a′ − 3x1
3℘(z)− a′ + 3x1

)
,

where x1, y1 and a′ are as in definition 3.13, is an exponential map for E, that is,
ExpE(z1 + z2) = ExpE(z1)⊕ExpE(z2).

Proof. Recall that, in definition 3.13, we have a birational equivalence of the Edwards
curve E with elliptic curve in Weierstrass form W of equation y2 = x3 + a′x2 + b′x,
whereas the above map ExpW is defined for elliptic curves in short Weierstrass form
W of equation y2 = x3 + ax+ b.

However, we can apply the transformation χ : (x, y) 7→
(
x− a′

3 , y
)

which, through
the change of variables x̄ = x − a′

3 , ȳ = y, changes the Weierstrass form y2 =
x3 + a′x2 + b′x onto the short Weierstrass form ȳ2 = x̄3 + ax̄+ b, that is, for any
P = (x̄, ȳ) ∈ W(K), such that ȳ2 = x̄3 + ax̄+ b, we have that χ(P) = P ′ ∈ W(K).
As χ(P) = P ′ belongs to W(K), we can now compute β(P ′), where β in (3.19b),
in order to get a point belonging to E(K). In particular, if P = ExpW(z) for some
z ∈ mK, then

β(χ(P)) = β
(
χ
(
ExpW(z)

))
= β

(
χ

([
1 : ℘(z) :

1
2℘
′(z)

]))
=

= β

([
1 : ℘(z)− a′

3 :
1
2℘
′(z)

])
=

=

(2
3
y1(3℘(z)− a′)

x1℘′(z)
, 3℘(z)− a′ − 3x1
3℘(z)− a′ + 3x1

)
.

Thus, the map ExpE for Edwards curves over the local field K is defined as ExpE =
β ◦ χ ◦ExpW , that is,

ExpE : mK −→ JK(E)

z 7−→ ExpE(z) = β
(
χ
(
ExpW(z)

))
=

(2
3
y1(3℘(z)− a′)

x1℘′(z)
, 3℘(z)− a′ − 3x1
3℘(z)− a′ + 3x1

)
.

Note that χ(Ω) = Ω = [0 : 0 : 1] as the projective map χ maps [Z : X : Y] onto
the point

[
Z : X − a′

3 Z : Y
]
, and thus we have that β

(
χ
(
ExpW(0)

))
= β(χ(Ω)) =

β(Ω) = O.

Finally, we are left to prove that the map ExpE = β ◦ χ ◦ ExpW is a one-to-one
homomorphism of groups. On the one hand, the maps ExpW , β, and χ are one-to-
one. Specifically, the map β here is bijective as d is not a square, and χ−1 : (x̄, ȳ) 7→(
x+ a′

3 , y
)
.

Chapter 10. Edwards curves over Qp 75

On the other hand, ExpE is a homomorphism because ExpW (see subsec. 3.1.2) and
β (see remark 3.17) are homomorphisms, and χ is a translation, thus one has that:

ExpE(z1 + z2) = β ◦ χ ◦ExpW(z1 + z2) =

= β ◦ χ ◦
(
ExpW(z1)⊕ExpW(z2)

)
=

= β ◦ χ ◦ExpW(z1)⊕ β ◦ χ ◦ExpW(z2) =

= ExpE(z1)⊕ExpE(z2).

■

The following remark highlights the relationship between the curve W and its reduc-
tion W under the transformation χ.

Remark 10.1. Since χ transforms the curve W into the curve W, it holds that
χ(P1 ⊕ P2) = χ(P1)⊕ χ(P2), where the left term uses the addition formula for W,
and the right term uses the addition formula for W.

Corollary 10.2. The following is a short exact sequence:

0 −→ mK
ExpE−−−→ J 0

K(E)
ModE−−−→ J 0

k (E) −→ 0. (10.1)

Proof. The proof follows from the fact that, from theorem 10.1, ExpE is a monomor-
phism and ModE is an epimorphism. Moreover, since, for any z ∈ mK, ExpE(z) =
(O
(
z3), 1 + O

(
z3)), then ModE(ExpE(z)) = (0, 1), and Im(ExpE) ⊆ Ker(ModE).

Finally, together with ExpW , which is invertible by the equation (8.5), the map
ExpE = β ◦ χ ◦ExpW is invertible for z ∈ mK, that is, one can write any point P in
Ker(ModE) as P = ExpE(z), for some z ∈ mK, thus Ker(ModE) ⊆ Im(ExpE). ■

In the following corollary, we prove that the exact sequence in corollary 10.2 splits if
the Edwards curve taken into account is isomorphic to an elliptic curve in Weierstrass
form which is non-anomalous.

The following corollary shows that the exact sequence in corollary 10.2 splits, provided
that the Edwards curve in question is isomorphic to a non-anomalous elliptic curve
in Weierstrass form. It is worth to note that splitting the exact sequence means that
the group splits into a direct sum of subgroups and it is crucial in many mathematical
and cryptographic applications.

Corollary 10.3. If k = OK/mK is finite, W is not an anomalous curve, and E is the
Edwards curve birational equivalent to W, then J 0

K(E) is isomorphic to J 0
k (E)⊕mK.

Proof. Since we confined ourselves to the case in theorem 3.9, then we have that
J 0

K(E) ∼= JK(W), J 0
k (E) ∼= Jk(W), and the proof follows from theorem 8.1. ■

10.2 The map Exp over Qp

The objective of this section is to compute the map Exp for Edwards curves E over the
field of p-adic numbers. Specifically, we impose the same assumptions and restrictions
on the map ExpE as in section 8.1.

In this context, if J 0
k (E) denotes the image of the subgroup J 0(E) modulo pk, then,

by making similar modifications and observations as in section 8.1, the results in
section 10.1 can be rephrased as follows: J 0

k (E) = J 0
1 (E)⊕ Im(ExpE).

Chapter 10. Edwards curves over Qp 76

Since in theorem 10.1 we stated that ExpE = β ◦ χ ◦ ExpW , and since from equa-
tion (8.6) we have the representation of ExpW whose domain is the inverse limit
approximation of Zp, we have that the map ExpE over Qp can be expressed as

As established in theorem 10.1, the map ExpE is equivalent to the composition of
maps β ◦ χ ◦ ExpW . Additionally, in equation (8.6), we provide a representation of
the map ExpW whose domain is an approximation of Zp through an inverse limit.
Therefore, the map ExpE over the field of p-adic numbers can be expressed as:

ExpE : pZp/pkZp −→ E
(

Z/pkZ
)

z = ph 7−→
(2

3
y1(3℘(z)− a′)

x1℘′(z)
, 3℘(z)− a′ − 3x1
3℘(z)− a′ + 3x1

)
,

where h = 1, 2, . . . , pk−1.

It is noteworthy, as stated in remark 8.1, that the domain of the map ExpE is the
quotient group pZp/pkZp. Furthermore, we have been established in remark 8.2 that
this latter group is isomorphic to Z/pk−1Z, and thus we can express the subgroup
J 0(E) over this approximation as J 0

k (E) = J 0
1 (E)⊕Z/pk−1Z.

As previously discussed in section section 8.1, the points belonging to the image of
the map ExpW are in the form P = [ph1 : ph2 : h3] with p ∤ h3. Additionally, the
point at infinity Ω is mapped through β to the neutral point O on the Edwards curve.
As a result of this mapping, all points in the image of ExpE are equivalent modulo
p to the neutral point O, and therefore are affine points. Therefore, if we count all
the affine points (x, y) in E

(
Z/pkZ

)
, the number of these points will be equal to

card
(
J 0

1 (E)
)
· pk−1, where pk−1 is the cardinality of Im(ExpE).

Similar to the map ExpW , the function ExpE allows us to speed up the addition
operation by breaking down the original group J 0

k (E) into a pair (P , c), where P ∈
E(Z/pZ) and c ∈ Z/pk−1Z. This representation of the group simplifies the operation
of adding two points in the group J 0

k (E) by reducing it to adding two points in the
simpler group J 0

1 (E) and an integer c, respectively. This allows to simplify the
computational process and improve performance.

It is noteworthy that the addition formula for the Weierstrass form cannot be applied
when points, reduced modulo p, are mapped to the point at infinity. In such cases,
the sum of two points over Z/pkZ may produce something like [0 : 0 : 0], which is not
a valid point. On the other hand, every point in E

(
Z/pkZ

)
is affine, and therefore

the addition formula for an Edwards curve always yields a correct result.

77

Part III

Coding theory

78

11 Goppa codes for Edwards
curves

In this chapter, we present a method for constructing an Algebraic-Geometric (AG)
Goppa code (as discussed in section 6.3) for Edwards curves [32] by using the bira-
tional equivalence (discussed in subsec. 3.3.2) between Edwards curves and elliptic
curves in Weierstrass form. We address the reader to appendix A.2 and appendix B.2
for, respectively, the pseudocodes and the implementation codes of the algorithms
used to compute a basis of the Riemann-Roch space, and a generator matrix for an
AG Goppa code for these curves.

Our approach consists of several steps. Firstly, we compute a basis for the Riemann-
Roch space of these non-smooth curves. Subsequently, we use this basis to compute
the generator matrix of the AG Goppa code. Finally, we provide an example of an
Maximum Distance Separable (MDS) AG Goppa code.

11.1 The Riemann-Roch space L (D)

In this section,we describe a method for constructing a basis for the Riemann-Roch
(vector) space for an Edwards curve.

As a reminder, the Riemann-Roch space of an algebraic curve is a linear space of
rational functions on the curve, with certain degree and pole conditions.

More precisely, given a divisor D ∈ Div(E), under the assumption that the support
of D does not contain the two singular points Ω1 and Ω2, the Riemann-Roch space
for an Edwards curve E is given by

L (D) = {f ∈ K(E)∗ : div(f) +D is effective} ∪ {0}.

.

We observe that any divisor D′ on the Edwards curve E , of degree k + 1, such that
the singular points Ω1 and Ω2 are not part of the support of D′, is linearly equivalent
to P + k ·O, for a suitable point P ∈ E(K) (or (k+ 1) ·O, in the case where P = O),
meaning that D′ = P + k ·O+ div(g), for a suitable function g. As the map

ψ : L (D′) −→ L (P + k ·O)
F 7−→ gF

is an isomorphism between L (D′) and L (P + k ·O), we restrict ourselves to consid-
ering the latter space.

Theorem 11.1. Let E be an Edwards curve defined, over a field K of characteristic
different from 2, by the equation x2 + y2 = 1 + dx2y2, where d is not a square. If

Chapter 11. Goppa codes for Edwards curves 79

P + k ·O = D ∈ Div(E) is a divisor of positive degree k+ 1, where P = (a, b), then
dim(L (D)) = k+ 1 and

L (D) =

{
⟨F0, F1, . . . , Fk⟩ if P ̸= O

⟨F0, F2, . . . , Fk+1⟩ if P = O

where F0, F1, . . . , Fk+1 are rational homogeneous functions defined as follows:

F0 =
Z

Z

F1 =

Z

X
if P = O′ = (0,−1)

(X + Z)(Y + Z)

XY
if P = H = (1, 0)

(X −Z)(Y + Z)

XY
if P = H ′ = (−1, 0)

(Y + bZ) ·X
(X − aZ) · (Y −Z)

if P /∈ {O′,H,H ′}

Fi =

Zh

(Y −Z)h
if i = 2h

(Y + Z)Zh

X(Y −Z)h
if i = 2h+ 1

for 2 ≤ i ≤ k+ 1.

Proof. From theorem 3.9, since d is not a square, the two birational maps α and
β in equations (3.19a) and (3.19b), respectively, define an isomorphism between E
and a suitable elliptic curve in Weierstrass form W, as detailed in definition 3.13.
Additionally, as P is distinct from both Ω1 and Ω2, the (surjective) map β induces
an (injective) homomorphism g 7→ g ◦ β from the space L (P + k ·O) to the space
L (α(P) + k ·Ω), because β(div(g ◦ β)) = div(g) for any function g ∈ L (P + k ·O).

Since the elliptic curve W is non-singular, by the formula of Riemann-Roch, the
dimension of the function space L (α(P) + k ·Ω) is equal to k + 1. Thus, it is
sufficient to exhibit k + 1 linearly independent functions belonging to the space
L (P + k ·O), as manifestly the space L (P + (i− 1) ·O) is contained in L (P + i ·O),
for i = 1, . . . , k+ 1.

For i = 0, the result holds trivially, as div
(
Z
Z

)
= 0 and, for any point P ∈ E(K), we

have that the divisor div(F0) + P is effective.

In the case where i = 1, we examine the four distinct cases where P takes on the
value of O′, H, H ′, and the case where P is not equal to either of these three points.
Specifically, we first consider the case where P = O′ = (0,−1). By evaluating the
divisor of Z

X , we have that

div
(
Z

X

)
= (2 ·Ω1 + 2 ·Ω2)− (O+O′ + 2 ·Ω2) = 2 ·Ω1 −O−O′,

hence the divisor div(F1) +O′ +O is effective.

Chapter 11. Goppa codes for Edwards curves 80

Furthermore, in the case where P = H = (1, 0), we have that

div
(
(X + Z)(Y + Z)

XY

)
=

= (2 ·H ′ + 2 ·Ω2 + 2 ·O′ + 2 ·Ω1)− (H +H ′ + 2 ·Ω1 +O+O′ + 2 ·Ω2) =

= H ′ +O′ −H −O,

thus the divisor div(F1) +H +O is effective. Similarly, in the case where P = H ′ =
(−1, 0), we have that

div
(
(X −Z)(Y + Z)

XY

)
=

= (2 ·H + 2 ·Ω2 + 2 ·O′ + 2 ·Ω1)− (H +H ′ + 2 ·Ω1 +O+O′ + 2 ·Ω2) =

= H +O′ −H ′ −O,

thus the divisor div(F1) +H ′ +O is effective. Lastly, when i = 1, we consider the
case in which P = (a, b) is distinct from O′, H, and H ′. In this case, as illustrated
in the fig. 11.1, given the two points R = (a,−b) and R′ = (−a,−b), we have that

div
(

(Y + bZ) ·X
(X − aZ) · (Y −Z)

)
=

= (R+R′ + 2 ·Ω1 +O+O′ + 2 ·Ω2)− (P +R+ 2 ·Ω2 + 2 ·O+ 2 ·Ω1) =

= R′ +O′ − P −O,

thus the divisor div(F1) + P +O is effective.

Figure 11.1: Edwards real curve with d = −8. The points P , R,
and R′ have the following coordinates (a, b), (a,−b), and (−a,−b),

respectively

Below, we prove that the divisor div(Fi) +P + k ·O is effective for any P ∈ E(K) and
k ≥ 2. Specifically, for 2 ≤ i ≤ k+ 1, we claim that div(Fi) + P + i ·O is effective in
both the cases where i ≡ 0 (mod 2) and i ≡ 1 (mod 2). First, if i is an even integer
equal to 2h, then we have that

div
(

Zh

(Y −Z)h

)
= (2h ·Ω1 + 2h ·Ω2)− (2h ·O+ 2h ·Ω1) = 2h ·Ω2 − 2h ·O.

Chapter 11. Goppa codes for Edwards curves 81

Second, if i is an odd integer equal to 2h+ 1, then we remark that F2h+1 = F2h · Y +Z
X ,

and we have that

div
(
(Y + Z)Zh

X(Y −Z)h

)
=

= (2 ·O′ + 2 ·Ω1 + 2h ·Ω1 + 2h ·Ω2)− (O+O′ + 2 ·Ω2 + 2h ·O+ 2h ·Ω1) =

= O′ + 2 ·Ω1 + (2h− 2) ·Ω2 − (2h+ 1) ·O.

Therefore, the divisor div(Fi) + P + i · O is effective in both the cases where i ≡
0 (mod 2) and i ≡ 1 (mod 2).

Thus far, we have proven that for each function Fi, the divisor div(Fi) + P + k ·O
is effective, where P is non necessarily distinct from O. In order to fully prove our
claim, it is necessary to show that all these functions are linearly independent, but
this follows from standard and elementary arguments.

Furthermore, it is also worth noting that when P = O, removing the function F1 and
adding the function Fk+1 will also result in k+ 1 linearly independent functions.

■

Remark 11.1. It should be noted that the proof about L (D) in theorem 11.1 cannot
be extended to the case in which d is not a square, or when P is equal to Ω1 or
Ω2, as the map β is not invertible at these points, as stated in remark 3.15. For
a comprehensive theory on Riemann-Roch spaces on curves with singular points, we
address the reader to §IV.2 in [70].

11.1.1 Computational cost

In this section, we determine the computational cost of evaluating each element of
the basis of the space L (P + (k− 1) ·O) at a point P ∈ E(Fq).

Before proceeding, we recall that the costs of modular addition, multiplication, and
inversion over Fq are O(ln(q)), O

(
ln2(q)

)
, O
(
ln3(q)

)
, respectively.

First, we note that we can compute F2h from F2h−2, and F2h+1 from F2h. More
precisely, we have that

F2h = F2 ·F2h−2 if h ≥ 2,

F2h+1 =
Y + Z

X
F2h if h ≥ 1.

This implies that at each step we have to perform a single multiplication modulo q
by the last (or the second-last) value. Additionally, we can pre-calculate the value
of the function Y +Z

X at P with a cost C
(
Y +Z
X

)
equal to O(ln(q)) + O

(
ln2(q)

)
+

O
(
ln3(q)

)
≈ O

(
ln3(q)

)
in order to further optimize the computation.

Below, to increase readability for the reader, we denote the cost of modular addition
as A, the cost of modular multiplication as M , and the cost of modular inversion as

Chapter 11. Goppa codes for Edwards curves 82

I. Hence, if C (Fi) is the cost of evaluating Fi at P , then we have the following costs:

C (F0) = 0,
C (F1) =M + I if P = O′,
C (F1) = 2A+ 3M + I if P ∈ {H,H ′},
C (F1) = 3A+ 5M + I if P /∈ {O,O′,H,H ′},
C (F2) = A+M + I,

C
(
Y + Z

X

)
= A+M + I,

C (Fi) =M if 2 < i < k.

Since the case in which P /∈ {O,O′,H,H ′} gives the maximum cost for F1, we
consider the latter for the computation of the worst-case cost.

Therefore, the worst-case cost C (L (D)) of evaluating the k functions belonging to
the basis of L (D) is

C (L (D)) = 5A+ (7 + (k− 3))M + 3I = O
(
k · ln2(q) + ln3(q)

)
.

11.2 AG Goppa codes
In this section, we determine the generator matrix and the parity-check matrix for a
[n, k, d]q AG Goppa code for an Edwards curve E over the finite field Fq, and compute
its computational cost.

We adapt the definition of an AG Goppa code in definition 6.10 to our case.

Definition 11.1. Let D be a reduced divisor of positive degree δD = k of an Edwards
curve E over Fq, where q = pt and p is a prime number. Let ⟨F0, F1, . . . , Fk−1⟩
be the basis, computed in section 11.1, of the Riemann-Roch space L (D), let T =
{P1, . . . ,Pn} be a set of n points such that Pj ∈ E(Fq), and Pj /∈ supp(D). The matrix
(Gij) = G ∈ Fq

k×n such that, for i = 1, . . . , k and j = 1, . . . ,n, Gij = Fi−1(Pj), is
the generator matrix for an [n, k, d]q AG Goppa code for the Edwards curve E.

If we order the points in T so that the first k columns of the generator matrix

G =

F0(P1) F0(P2) · · · F0(Pn)

F1(P1) F1(P2) · · · F1(Pn)
...

...
Fk−1(P1) Fk−1(P2) · · · Fk−1(Pn)

 ∈ Fq
k×n

of the Goppa code C are linearly independent, e.g. by applying the Gauss-Jordan
method, then G can be reduced in its standard form [Ik|M], where Ik is the identity
matrix of order k and M ∈ Fq

k×(n−k). Once G is in standard form, the parity-check
matrix H ∈ Fq

(n−k)×n of this Goppa code, that is, the matrix such that G ·HT = 0
and H · yT = 0 for every codeword y ∈ C, is simply H = [−MT |In−k]. Thus, the
code C is also defined as {y ∈ Fq

n : H · yT = 0}.

Chapter 11. Goppa codes for Edwards curves 83

11.2.1 Computational cost of constructing a Goppa code over Ed-
wards curves

In order to compute the generator matrix G, we need to evaluate each of the n points
in the set T for each element of the basis of L (D). This results in a computational
cost of O(n ·C (L (D))), as G is a matrix of dimension k× n. Furthermore, the cost
of computing the parity-check matrix depends on the method used to compute the
nullspace of G. For example, if we use the Gaussian elimination method to reduce
the matrix G to its standard form, then the cost is O

(
max (n, k)3

)
.

Therefore, for n > k, the overall computational cost of constructing an AG Goppa
code for an Edwards curve over Fq is

n ·C (L (D)) +O
(
max (n, k)3

)
≈ O

(
n · (k · ln2(q) + ln3(q))

)
+O

(
n3
)
.

11.3 A small example
In this section, we provide a small example of an AG Goppa code for an Edwards
curve E , defined by the equation x2 + y2 = 1 + dx2y2, over the finite field F17.

Let d be equal to 10. The set of affine points belonging to E(F17) is equal to

{(0, 1), (0, 16), (1, 0), (2, 2), (2, 15), (3, 6),
(3, 11), (5, 8), (5, 9), (6, 3), (6, 14), (8, 5),
(8, 12), (9, 5), (9, 12), (11, 3), (11, 14), (12, 8),
(12, 9), (14, 6), (14, 11), (15, 2), (15, 15), (16, 0)}.

Consider the divisor D = (2, 15) + 4 ·O of degree k = 5, and the set T of n = 7 affine
points equal to

{(5, 8), (5, 9), (6, 3), (6, 14), (8, 5), (8, 12), (9, 5)}.

As stated in theorem 11.1, a basis for L (D) is given by

L (D) = ⟨F0, F1, F2, F3, F4⟩ =

=

〈
1, x(y+ 15)

(x− 2)(y− 1) , 1
y− 1, y+ 1

x(y− 1) , 1
(y− 1)2

〉
.

Additionally, the generator matrix G = (Gij) of the AG Goppa code, defined by
putting Gij = Fi−1(Pj), is equal to

1 1 1 1 1 1 1
16 5 5 4 1 11 4
5 15 9 4 13 14 13
9 13 6 10 14 10 3
8 4 13 16 16 9 16

.

Chapter 11. Goppa codes for Edwards curves 84

Lastly, by reducing the generator matrix G to its standard form, we can compute the
parity-check matrix H, which is represented by the following matrix:(

7 3 1 13 9 1 0
2 12 9 12 15 0 1

)
.

It is worth to note that the lower bound for the minimum distance of this code is
d ≥ n− δD = 7− 5 = 2, whereas, according to the theorem 6.1, the upper bound
for the minimum distance is d ≤ n− k + 1 = 7− 5 + 1 = 3. Hence, the minimum
distance for the above code is either 2 or 3. In particular, two columns of H are
always linearly independent, however, three of them are dependent. For example,
the following linear combination of the first three columns of H is equal to zero:
(7, 2)T + 5 · (3, 12)T + 12 · (1, 9)T = (0, 0)T . As a consequence, the minimum distance
of this code is equal to 3, and the above code is a [7, 5, 3]17 AG Goppa MDS code.

11.4 A small example of a McEliece cryptosystems
As previously discussed in section 6.2, it is not safe to embed AG Goppa codes into the
McEliece protocol. However, for the sake of completeness, in this section, we provide
a toy example by embedding the code computed in section 11.3 into the McEliece
cryptosystem.

As is typical for the illustration of a cryptographic protocol, we refer to the two parties
involved in this scheme as Alice (the receiver) and Bob (the sender).

Bob initiates the communication with Alice, thus Alice generates, for instance, the
[n, k, d]q = [7, 5, 3]17 code computed in section 11.3. Additionally, Alice randomly
generates a non-singular matrix S ∈ Fq

k×k and a permutation matrix P of dimension
n× n. For example, Alice generates the following matrices

S =

4 0 7 5 3
15 12 2 5 2
3 2 3 6 0
9 2 9 0 1
3 9 6 8 9

P =

0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0

.

Therefore, the private-key of Alice is the triple (S,P ,DA), where DA is a suitable
decoding algorithm that computes the codeword x from the word y = x + e, with e
being an error vector, i.e., DA(y) = x.

Additionally, the public-key of Alice is the pair (G⋆, t), where t =
⌊
d− 1

2

⌋
= 1 is the

maximum number of error that this code can correct, and G⋆ = S ·G ·P is a matrix

Chapter 11. Goppa codes for Edwards curves 85

equal to

9 11 16 0 5 9 6
2 0 8 13 0 5 6
9 15 0 8 0 8 2
8 1 5 11 14 13 9
6 15 6 12 13 7 15

.

Bob receives the public-key of Alice and generates the message (3, 8, 4, 6, 5) = m ∈
F17

k and, in order to encrypt m, he generates the error vector (0, 0, 0, 0, 0, 0, 1) =
e ∈ F17

n of weight t = 1. Subsequently, Bob computes the ciphertext

c⋆ = m ·G⋆ + e = (4, 4, 2, 7, 11, 8, 0),

and send it to Alice. In order to decrypt the received message, Alice computes

h = c⋆ · P−1 = m · S ·G+ e · P−1 = (0, 2, 7, 4, 4, 8, 11)

and decodes the vector h using the decoding algorithm DA. Depending on the
type of decoding algorithm used by Alice, she gets back either the codeword
m · S · G = (16, 2, 7, 4, 4, 8, 11) or the word m · S = (9, 8, 14, 0, 8). In the latter
case, Alice computes the message as m = (9, 8, 14, 0, 8) · S−1. On the other hand, in
the former case, Alice has to compute the word m · S by solving the linear system
x ·G = (16, 2, 7, 4, 4, 8, 11). It is worth to note that, if G is taken in standard form,
then the word m · S is simply equal to the first k elements of the vector m · S ·G.

11.5 Implementation

86

12 Goppa codes for hyperelliptic
curves

In this chapter, we propose a method for constructing an Algebraic-Geometric (AG)
Goppa code (as discussed in section 6.3) for hyperelliptic curves [29] using the Mum-
ford representation (see theorem 4.2) of the divisors of the Jacobian of these curves.
We address the reader to appendix A.3 and appendix B.3 for, respectively, the pseu-
docodes and the implementation codes of the algorithms used to compute a basis of
the Riemann-Roch space, and a generator matrix for an AG Goppa code for these
curves.

Specifically, for a given (imaginary) hyperelliptic curve H of genus g ≥ 1, with Weier-
strass point Ω taken as the point at infinity, we determine a basis for the Riemann-
Roch space L (D), where ∆ +m ·Ω = D ∈ J (H), and ∆ is a zero degree divisor
represented in Mumford form. We then construct an AG Goppa code over Fp, with
p ≥ 2, using the basis of L (D).

12.1 The Riemann-Roch space L (D)

Let H be an (imaginary) hyperelliptic curve of genus g ≥ 1 over the field K defined
by the equation

y2 + h(x)y = f(x), (12.1)

where deg(f(x)) = 2g + 1, deg(h(x)) ≤ g, and Ω = [Z : X : Y] = [0 : 0 : 1] is
the point at infinity of H ([56, Prop. 1.2]). Recall that, as stated in remark 4.1,
if char(K) ̸= 2, then one can reduce the defining equation of H to y2 = f(x) by
applying the transformation (x, y) 7→

(
f(x)− h2(x)

4 , y− h(x)
2

)
, while if char(K) = 2,

then it is not possible to reduce h(x) to zero.

Although the reduction of a divisor D to its reduced Mumford form might be an
inconvenient task, involving the application of the Cantor algorithm (see remark 12.1),
this difficulty does not occur in the construction of Goppa codes, as in that case one
can directly take D in the reduced form D = ∆ +m ·Ω.

It is worth noting that since the Riemann-Roch space

L (D) = {f ∈ K(H)∗ : div(f) +D is effective} ∪ {0}.

is null in cases where D has negative degree or where D has degree zero and
D /∈ Princ(H), and L (D) =

〈
F−1

0

〉
in the case where D = div(F0), from now

on we will assume D has positive degree m. Thus, any divisor class D+ Princ(H) ∈

Chapter 12. Goppa codes for hyperelliptic curves 87

Div0(H)/Princ(H) can be reduced to the form

D =
t∑
i=1

Pi + (m− t) ·Ω + div(ψ(x, y))

where t ≤ g is the number of points Pj in H distinct from Ω, and ψ(x, y) is a suitable
function in K(H).

In order to extend the use of Mumford representation to divisors of arbitrary degree,
we will make use of the following observation.

Remark 12.1. Note that any divisor of degree zero, represented as

∆ =
s∑
i=1

li · (xi, yi)− (l1 + . . .+ ls) ·Ω,

on the curve H, where li > 0 for any index i, uniquely determines the polynomial
a(x) =

∏s
i=1 (x− xi)

li and the polynomial b(x) which is the interpolating polynomial
such that b(xt) = yt, with t = 1, . . . , s. The pair (a(x), b(x)) satisfy the property
that b2(x) + h(x)b(x)− f(x) is a multiple of a(x) and the degree of b(x) is less than
the degree of a(x). Conversely, for any pair of polynomials a(x) and b(x) such that
b2(x) + h(x)b(x) − f(x) is a multiple of a(x) and the degree of b(x) is less than
the degree of a(x), there exists a unique divisor of degree zero, represented as ∆ =
div(a(x), b(x)) (cf. [18]). It is worth noting that an intersection point of the curve
with the x-axis is included in the support of ∆ if and only if gcd (a(x), a′(x), b(x)) ̸= 1
(as stated in theorem 4.2). If gcd (a(x), a′(x), b(x)) = 1 and the degree of a(x) is not
greater than the genus g of the curve (or equivalently, if the support of ∆ contains at
most g affine points that are mutually non-opposite), one says that div(a(x), b(x)) is
in the Mumford form (or reduced form).

We note that any divisor D = D1 −D2 (with Di effective of degree mi ∈ Z) can be
written as

D = ∆ +m ·Ω + div(ψ(x, y)),

where m = m1 −m2, ∆ = div(u(x), v(x)) is in Mumford form, and ψ(x, y) is a
suitable function obtained with the following arguments.

First, by considering the vertical lines x−xi passing through the points in the support
of D2, we can write

(−D2) = D′2 − 2m2 ·Ω− div(ϕ),

with ϕ =
∏
(x− xi) and D′2 is an effective divisor. Consequently, we can rewrite D

as follows:
D = D1 −D2 = D3 − 2m2 ·Ω− div(ϕ),

where D3 = D1 +D′2 is an effective divisor of degree m1 +m2, and thus of the form

D3 = div(a(x), b(x)) + (m1 +m2) ·Ω.

Secondly, by applying the reduction step of Cantor’s algorithm (cf. [18], and [49] for
the case where char(K) = 2), we change the divisor D3 with the divisor

D′3 = D3 − div(y− b(x)) = div(a′(x), b′(x)),

Chapter 12. Goppa codes for hyperelliptic curves 88

which belongs to the same divisor class, where

a′(x) =
f(x)− b(x)h(x)− b2(x)

a(x)
,

b′(x) = (−h(x)− b(x)) (mod a′(x)).

This way, one has that deg(a′(x)) < deg(a(x)). Therefore, after finitely many itera-
tions, one obtains deg(b′(x)) < deg(a′(x)) ≤ g, and one can write

D = ∆ +m ·Ω + div(ψ(x, y)),

where ψ(x, y) is the resulting function from the above reduction process.

Finally, the function Φ defined as

Φ : L (D) −→ L (∆ +m ·Ω)

F 7−→ ψ(x, y) · F

is an isomorphism. From here on, up to the latter isomorphism, we will assume that
D = ∆ +m ·Ω, where m > 0.

In the following theorem, we determine a basis for the Riemann-Roch space L (D),
where D = ∆ +m ·Ω, and ∆ = div(u(x), v(x)) is in Mumford representation, with
t := deg(u(x)) ≤ g. Furthermore, the varying of dimension of this space, depending
on m, becomes manifest: in order to determine dim(L (D)), in [24, Lemma 2.1.] it is
distinguished the case m ≥ 2g − t− 1, where dim(L (D)) = m− g + 1, and the case
t ≤ m < 2g− t− 1, where dim(L (D)) =

⌊
m−t

2
⌋
+ 1 (cf. remark 12.2).

Theorem 12.1. Given the hyperelliptic curve H of genus g ≥ 1 and degree d =
2g + 1, defined by the equation (12.1), and given the divisor D = ∆ +m · Ω of
positive degree m on H, as defined in remark 12.1, where ∆ = div(u(x), v(x)) is
in the Mumford representation, let t := deg(u(x)) ≤ g and let

Ψ(x, y) = y+ v(x)

u(x)
if char(K) ̸= 2,

Ψ(x, y) = y+ v(x) + h(x)

u(x)
if char(K) = 2.

If m < d− t, then a basis of L (D) is equal to
〈
xi
〉
, where 0 ≤ i ≤ m−t

2 , otherwise, if
m ≥ d− t, then a basis of L (D) is equal to

〈
xi, Ψ(x, y) · xj

〉
, where 0 ≤ i ≤ m−t

2 and
0 ≤ j ≤ m−(d−t)

2 .

Proof. In order to compute div(Ψ(x, y)), it is necessary to recall that deg(v(x)) <
deg(u(x)) ≤ g and that, in the case where char(K) = 2, deg(h(x)) ≤ g, as well.

Since l = max (deg(v(x)), deg(h(x))) ≤ g, it follows that

deg
(
(−v(x)− h(x))2

)
< deg(f(x)) = d = 2g+ 1.

As a result, there are d intersection points of the curve y + v(x) + h(x) = 0 and H
in the affine plane, with the remaining d(l − 1) intersection points coinciding with

Chapter 12. Goppa codes for hyperelliptic curves 89

Ω. More precisely, t intersection points in the affine plane belong to the support of
the divisor ∆̂ = div(u(x),w(x)) in Mumford representation, where w(x) = (−v(x)−
h(x)) (mod u(x)). Therefore, we have that

div(y+ v(x) + h(x)) = ∆̂ +W + (t+ d(l− 1)) ·Ω,

where W is the effective divisor of degree d− t, whose support consists of the remain-
ing intersection points in the affine plane. Note that, in the case t = 0, the divisor ∆
has the Mumford representation (1, 0), the degree of W is equal to d and the support
of W coincides with the intersections of H with the curve y+ h(x) = 0.

On the other hand, the intersection of u(x) = 0 and H is simply

div(u(x)) = ∆ + ∆̂ + (td) ·Ω.

In summary, we have that

div(Ψ(x, y)) = div(y+ v(x) + h(x))− div(u(x)) =
= W − ∆− (d− t) ·Ω.

(12.2)

In the case where t = 0, this result can be simplified to

div(Ψ(x, y)) = div(y+ h(x))− div(1) = W − d ·Ω,

since ∆ = (1, 0) and Ψ(x, y) = y+h(x). Therefore, for t ≥ 0, the equality in equation
(12.2) holds and

Ψ(x, y) ∈ L (D) if and only if m ≥ d− t. (12.3)

In the remaining part of this proof, we determine a basis for L (D) in the cases
m ≥ d− t, andm < d− t, respectively. Specifically, consider the casem ≥ d− t, which
implies that Ψ(x, y) ∈ L (D). First, if t ∈ {0, 1, 2}, then m ≥ d− 2 and, according to
the theorem of Riemann-Roch, the dimension of L (D) is equal to m− g + 1. Thus,
since the dimension is known, in order to prove that

L (D) =
〈
xi, Ψ(x, y) · xj

〉
, with 0 ≤ i ≤ m− t

2 and 0 ≤ j ≤ m− (d− t)
2 , (12.4)

it is sufficient to note that, for each possible value of the parameters i and j, the
functions in equation (12.4) belong to L (D). Since

1 +
⌊
m− t

2

⌋
+ 1 +

⌊
m− (d− t)

2

⌋
= m− g+ 1,

the claim follows from dimensional considerations. Additionally, we have that

D+ div
(
xi
)
= (∆ +m ·Ω) + i · div(x), (12.5)

and

D+ div
(

Ψ(x, y) · xj
)
= (∆ +m ·Ω) + j · div(x) + (W − ∆− (d− t) ·Ω) =

= W + j · div(x)− (d− t−m) ·Ω,
(12.6)

are effective divisors, as div(x) = div((x− x1)(x− x2), 0), where (xi, 0) ∈ H(K),
hence the functions belong to L (D).

Chapter 12. Goppa codes for hyperelliptic curves 90

Second, in the case where d− t ≤ m < d− 2, the dimension of L (D) is not necessarily
equal to m− g + 1, but still Ψ(x, y) ∈ L (D). In order to proceed, let ϵ and mϵ be
such that 0 ≤ ϵ ≤ t− 2, and m = mϵ = d− 2− ϵ. Then, putting for short

Lϵ := L (∆ +mϵ ·Ω) ,

we have that the space L0 = L (∆ + (d− 2) ·Ω) is generated by the functions xi

and Ψ(x, y) · xj , with 0 ≤ i ≤ m0−t
2 and 0 ≤ j ≤ m0−(d−t)

2 , as established in the
previous case. Equations (12.5) and (12.6) show that Lϵ+1 ≤ Lϵ since the functions
xi and Ψ(x, y) · xj of Lϵ also belong to Lϵ+1 as long as 0 ≤ i ≤ mϵ+1−t

2 , and 0 ≤ j ≤
mϵ+1−(d−t)

2 . Thus, since mϵ+1 = mϵ − 1 and

dim(Lϵ) = 1 +
⌊
mϵ − t

2

⌋
+ 1 +

⌊
mϵ − (d− t)

2

⌋
,

it follows that

dim(Lϵ+1) = 1 +
⌊
mϵ+1 − t

2

⌋
+ 1 +

⌊
mϵ+1 − (d− t)

2

⌋
= dim(Lϵ)− 1.

The missing function is either xi or Ψ(x, y) · xj , as a result of d being odd and thus
changing the parity of mϵ+1 − t and mϵ+1 − (d− t).

In the remaining part of this proof, we consider the cases where m < d− t, that is,
where Ψ(x, y) /∈ L (D), as stated in equation (12.3). Specifically, we focus on the
cases where t = 0 and m ∈ {d− 2, d− 1} or where t = 1 and m = d− 2. In these
cases, on the one hand, we have that

⌊
m−t

2
⌋
= m− g and, on the other hand, by

the theorem of Riemann-Roch, the dimension of L (D) is m− g + 1. Therefore, by
dimensional reason, L (D) =

〈
xi
〉
, where 0 ≤ i ≤

⌊
m−t

2
⌋
.

Finally, in order to prove that L (D) =
〈
xi
〉
, where 0 ≤ i ≤ m−t

2 , we consider the
remaining cases where t ∈ {0, 1} and m < d− 2, or 2 ≤ t ≤ m < d− t. In order to
simplify the notation, we write m = mϵ = d− t− ϵ, with 1 ≤ ϵ ≤ d− 2t, and define

Lϵ := L (∆ +mϵ ·Ω) .

Note that, for ϵ = 0, that is, m = m0 = d− t, by equation (12.4), we have that
L0 =

〈
xi, Ψ(x, y)

〉
, with 0 ≤ i ≤ m0−t

2 .

According to equation (12.3), Ψ(x, y) /∈ Lϵ for any ϵ > 0. Furthermore, as per
equation (12.5), we have that Lϵ+1 ≤ Lϵ for any 0 ≤ ϵ ≤ d− 2t, since the functions
xi of Lϵ belong to Lϵ+1 for 0 ≤ i ≤ mϵ+1−t

2 . Additionally, given that mϵ+1 = mϵ − 1,
it follows that

dim(Lϵ+1) = 1 +
⌊
mϵ+1 − t

2

⌋
=

{
dim(Lϵ) if mϵ − t is odd,
dim(Lϵ)− 1 if mϵ − t is even.

(12.7)

It is worth highlighting that the equalities in equation (12.7) demonstrate, as well,
that the theorem holds true for any value of m. ■

Remark 12.2. It is remarkable that the bounds presented in [24, Lemma 2.1.]
are different from those established in theorem 12.1. Specifically, for m ∈
{2g− t, 2g− t− 1}, our theorem states that dim(L (D)) = 1 +

⌊
m−t

2
⌋
, while in [24,

Chapter 12. Goppa codes for hyperelliptic curves 91

Lemma 2.1.] it is stated that dim(L (D)) = m− g+ 1. It is clear that the two values
are equal for the aforementioned values of m, that is, m ∈ {2g− t, 2g− t− 1}.

Additionally, the necessary condition in [24, Lemma 2.1.] for dim(L (D)) ̸= m−g+ 1,
namely m < d− t− 2, is also sufficient as per our theorem.

Furthermore, an interesting phenomenon occurs when g < m < 2g − 1 and t ∈
{g, g− 1, g− 2}, as in these cases we have that m ≥ d − t − 2, thus leading to
dim(L (D)) = m− g+ 1, regardless of the theorem of Riemann-Roch.

Remark 12.3. Recall that Ω was a given Weierstrass point of the curve H, and in
fact L (2(g− ϵ) ·Ω) = L ((2(g− ϵ) + 1) ·Ω) have both dimension equal to g − ϵ+ 1.
The sequence dim(L (m ·Ω)), where m ≥ 0, is as follows:

1, 1, 2, 2, . . . , g− 1, g− 1, g, g, g+ 1, g+ 2, g+ 3, . . .

It is clear that the numerical semigroup of non-gaps is that of the natural numbers
without the odd numbers smaller than 2g.

12.2 AG Goppa codes
In this section, we construct an AG Goppa code using the basis computed in sec-
tion 12.1.

Remark 12.4. Note that, for p ≤ m−t
2 , the polynomials x and xp

c in the basis of
L (D) assume the same values in the field K = Fpc. Similarly, for p ≤ m−(d−t)

2 , the
polynomials Ψ(x, y) · x and Ψ(x, y) · xpc also assume the same values. It is important
to consider this fact when constructing a Goppa code.

Theorem 12.2. Let F be a field of characteristic p ≥ 2, let u(x) be a monic
polynomial of degree t and v(x) be a polynomial with deg(v(x)) < t, such that
gcd (u(x),u′(x), v(x)) = 1, and let Ps = (xs, ys) be n pairs such that u(xs) ̸= 0,
for all s = 1, . . . ,n.

If g ≥ t, then for any g− t+ 2 ≤ k < n, the matrix G = (γrs) defined by
γrs = xr−1

s for 1 ≤ r ≤ η+ 1

γrs = Ψ(xs, ys) · xr−ηs for η+ 2 ≤ r ≤ k

(
where η =

⌊
k+ g− 1− t

2

⌋)
(12.8)

is the generator matrix of a [n, k, δ] Goppa code, with n− k+ 1− g ≤ δ ≤ n− k+ 1,
and with

Ψ(xs, ys) =
ys + v(xs) + h(xs)

u(xs)

where h(x) = 0 for p > 2, or h(x) is an arbitrary non-zero polynomial with
deg(h(x)) ≤ g for p = 2.

Proof. Consider the polynomial c(x) of degree 2g+ 1− t such that

c(xs) =
v(xs)

2 + h(xs)v(xs)− y2
s − ysh(xs)

u(xs)
,

Chapter 12. Goppa codes for hyperelliptic curves 92

for any (xs, ys) with s = 1, . . . ,n. It is worth noting that the degree of c(x) may
be greater than n, meaning that it may be necessary to introduce additional pairs in
order to compute c(x).

Given the polynomial c(x), we can construct a hyperelliptic curve of genus g defined
by the equation

y2 + yh(x) = f(x) = v(x)2 + h(x)v(x)− c(x)u(x),

that passes through the n points (xs, ys) and the points belonging to the support of
the divisor div(u(x), v(x)).

The claims of the theorem follow from the fact that the functions considered in the
theorem form a basis of the Riemann-Roch space L (D), where D = div(u(x), v(x))+
(k+ g− 1) ·Ω, where the dimension of L (D) is equal to k. ■

Remark 12.5. Note that, as long as k < g − t+ 2 and the n points Ps = (xs, ys)
where the functions of the basis of L (D) are evaluated have distinct abscissæ xs, the
Goppa code coincides with the Reed-Solomon code of parameters [n, k,n− k+ 1] on
the n values {x1, . . . ,xn} ⊂ Fq, where q is a power of a prime number p ≥ 2.

12.3 A small example
In this section, we present a small example of an AG Goppa code for hyperelliptic
curves.

It is noteworthy that for any polynomials u(x) and v(x), where u(x) has degree t, and
v(x) has degree smaller than t, and an arbitrary non-zero polynomial h(x) (if p = 2),
we can construct a hyperelliptic curve of arbitrary genus g ≥ max {t, deg(h(x))},
defined by the equation y2 = v2(x) + v(x)h(x)− c(x)u(x), for any polynomial c(x)
of degree 2g + 1− t, that passes through the support of the divisor D = ∆ +m ·Ω,
with ∆ = div(u(x), v(x)) in Mumford representation. All of these curves determine
the same Riemann Roch space L (D). This means that in order to provide a basis of
the space L (D), one does not have to know the specific curve containing the support
of D. Additionally, one does not need to explicitly provide the points in the support
of D, which is an advantage in the construction of AG Goppa codes, as shown in the
example 5.

Example 5. Let F101 be a finite field, we choose the pair of polynomials (u(x), v(x))
such that deg(v(x)) is less than deg(u(x)) and gcd (u(x),u′(x), v(x)) = 1. More
precisely, we consider the pair (u(x), v(x)) = (x11 + 1,x6 + 1). Next, we consider
the function

Ψ(x, y) = y+ v(x)

u(x)
=
y+ x6 + 1
x11 + 1 .

Additionally, we choose five pairs (xs, ys) such that xr ̸= xl for any r ̸= l, and
u(xs) ̸= 0 for any s. Specifically, we choose (15, 45), (53, 48), (58, 10), (64, 13), and
(80, 2). By evaluating the functions

{
1,x,x2, Ψ(x, y),x ·Ψ(x, y)

}
on the ten points

(15,±45), (53,±48), (80,±2), (58,±10), and (64,±13), one obtains the following

Chapter 12. Goppa codes for hyperelliptic curves 93

matrix

G :=

1 1 1 1 1 1 1 1 1 1
15 15 53 53 80 80 58 58 64 64
23 23 82 82 37 37 31 31 56 56
73 41 35 92 1 45 99 71 48 21
85 9 37 28 80 65 86 78 42 31

,

which is a generator matrix of a code C of length 10, and dimension 5. Since the all
the 5× 5 minors of G have full rank, it follows that the minimal distance of this code
is equal to 6, making C a [10, 5, 6]101 MDS code.

In the following, we explicitly construct a hyperelliptic curve H that realizes the code
C as an AG Goppa Code. First, we note that the genus g of H must be at least equal
to deg(u(x)), that is, the degree of H must be at least equal to 23 (in particular,
the degree of f(x)). By fixing g = deg(u(x)), we have the five points (xs, ys) and
the eleven points (in the affine plane) belonging to the support of div(u(x), v(x)).
As a result, we need eight (23− 11− 5 + 1) additional points in order to construct
the equation that defines the curve H. Specifically, we arbitrarily choose eight pairs
(xs, ys), with s = 6, . . . , 13, such that xr ̸= xl for any r ̸= l, and u(xs) ̸= 0. For
instance, we choose (48, 80), (58, 91), (64, 88), (89, 16), (95, 33), (53, 4), (51, 85),
and (71, 35). Given these 24 points, the curve H of degree 23, which passes through
the 13 points (xs, ys) and the eleven points (in the affine plane) of the support of
div(u(x), v(x)), is given by

y2 = v2(x)− c(x)u(x),

where c(x) is the polynomial such that

c(xs) =
v(xs)

2 − y2
s

u(xs)
,

for s = 1, . . . , 13. Therefore, the curve H realizes the [10, 5, 6]101 MDS code as the
AG Goppa code defined by L (D), where D = div(u(x), v(x)) + 15 ·Ω, and the ten
points (xs,±ys), for s = 1, . . . , 5.

94

13 HL-codes and their decoding
algorithm

In this chapter, we provide a brief introduction to Reed-Muller codes (or RM-codes),
which were developed by D.E. Muller and I.S. Reed in 1954 [62, 64]. Since HL-codes
are sub-codes of Reed-Muller codes, it is important to understand the basics of Reed-
Muller codes. For more detailed information on Reed-Muller codes, we address the
reader to chapter 13 of [57]. We address the reader to appendix A.4 and appendix B.4
for, respectively, the pseudocodes and the implementation codes of the algorithms
used to define our cryptosystem. Additionally, in the latter appendix, we show the
performance of our implementation.

13.1 Reed-Muller codes
The Reed-Muller codes can be easily defined in terms of Boolean functions, which are
multivariate functions whose variables vi are Boolean.

More precisely, Boolean functions are mathematical functions that take on only two
possible values: 1 (true) or 0 (false). They are named after George Boole, an English
mathematician who first formalized the concept of Boolean algebra in 1854, and as far
the study of these functions has had many key contributions by mathematicians and
computer scientists. Moreover, Boolean functions have important properties related
to their algebraic structure, linearity, symmetry and symmetry-breaking, and degree
of nonlinearity. These properties make Boolean functions useful in a wide range of
applications, including digital logic, error-correcting codes, and cryptography. The
study of Boolean functions has been an active area of research for many years and
continues to be an important field of study in computer science, engineering, and
mathematics.

The domain of a Boolean function is typically a set of binary inputs, such as a set
of bits or a set of Boolean variables. In particular, a Boolean function is a function
f : {0, 1}n → {0, 1}, where n is the number of variables of the function, 0 means false,
and 1 means true. The set of all Boolean functions on a given domain is known as
the Boolean algebra of that domain, which has several important properties such as
commutativity, associativity, distributivity, and completeness. The Boolean algebra
is closed under the basic logic operations of conjunction (AND), disjunction (OR),
and negation (NOT) which are defined as follows:

f(x1,x2, . . . ,xn) = x1 ∧ x2 ∧ . . .∧ xn,
g(x1,x2, . . . ,xn) = x1 ∨ x2 ∨ . . .∨ xn,
h(x1,x2, . . . ,xn) = ¬xi,

(13.1)

where ∧ and ∨ are respectively the logical AND and OR operations, and ¬ is the
logical NOT operation. Recall that the conjunction of Boolean variables is true (or

Chapter 13. HL-codes and their decoding algorithm 95

1) if and only if both variables are true (or 1), the disjunction is true (or 1) if at least
one variable is true (or 1), and the negation is true (or 1) if the variable is false (or
0). It is worth to note that the algebraic structure of Boolean functions allows for the
manipulation of Boolean expressions using the same rules as algebraic expressions.

One of the most important properties of Boolean functions is their linearity. A
Boolean function is said to be linear if it satisfies the principle of superposition,
which states that the output of the function is the sum of its inputs modulo 2, that
is, if it satisfies the following equations:

f(cx1, cx2, . . . , cxn) = cf(x1,x2, . . . ,xn),
f(x1 ⊕ y1,x2 ⊕ y2, . . . ,xn ⊕ yn) = f(x1,x2, . . . ,xn)⊕ f(y1, y2, . . . , yn),

(13.2)

where ⊕ is the exclusive OR (XOR) operation, which is equivalent to the following
operations: a⊕ b = (¬a ∧ b) ∨ (a ∧ ¬b), with a and b being two Boolean variables.
Linear Boolean functions have a number of desirable properties, such as the property
that the outputs for each input combination can be represented by a linear combi-
nation of the input variables. This latter property makes easy to implement these
functions in hardware, and having efficient decoding algorithms.

Additionally, Boolean functions have important properties related to their symmetry
and symmetry-breaking. More precisely, a Boolean function is symmetric if it is
invariant under permutations of its input variables. Symmetric Boolean functions are
often used in the design of cryptographic systems (e.g. during the encoding) because
they are resistant to certain types of attacks. On the other hand, symmetry-breaking
Boolean functions are used to construct trapdoor functions, i.e., functions that are
easy to compute in one direction but hard to compute in the reverse direction.

Lastly, Boolean functions also have important properties related to their degree of
nonlinearity, which is a measure of how far the function is from being linear. A
Boolean function with a high degree of nonlinearity is considered to be more resistant
to certain types of attacks, such as linear and differential cryptanalysis.

Boolean functions are closely related to binary operations on binary vectors, i.e.,
vectors whose entries are either 0 or 1, as they can be defined in terms of such
operations. In particular, the equivalence between Boolean functions and binary
vectors can be understood through the concept of a truth table, i.e., a table that lists
all possible input combinations for a Boolean function, along with the corresponding
output value. Each row of the table corresponds to a specific input combination, and
the output value is determined by the Boolean function. Furthermore, together with
the linearity property, the Walsh-Hadamard Transform (WHT) and its inverse ensure
that it is possible to transform any Boolean function into a binary vector and vice
versa, through a linear transformation.

Therefore, a binary vector can also be used to represent a Boolean function, by
specifying the output value of the function for each possible input combination.

The equivalence between Boolean functions and binary vectors can be formalized
through the concept of a Boolean function space, that is, a vector space over the
binary field, where each vector corresponds to a Boolean function. The dimension
of this space is equal to the number of possible input combinations for the Boolean
function.

Chapter 13. HL-codes and their decoding algorithm 96

One of the most fundamental binary operations on binary vectors is the dot product
(×), also known as the scalar product or inner product, which is defined as follows:

f × g =
n∑
i=1

fi × gi, (13.3)

where f = (f1, . . . , fn) and g = (g1, . . . , gn) are binary vectors of length n. The dot
product of two binary vectors is a scalar value, which is also a binary value.

Another important binary operation on binary vectors is the modulo-2 addition (+),
which is defined as follows:

f + g = (f1 + g1, . . . , fn + gn). (13.4)

The result of this operation is also a binary vector of the same length as the input
vectors.

Additionally, one may define the modulo-2 bitwise product (·), which is equivalent to
the bitwise logic AND, between two binary vectors as follows:

f · g = (f1 · g1, . . . , fn · gn). (13.5)

Furthermore, the NOT operation of a binary vector f is equivalent to the complement
to 1 of the vector f , i.e., ¬f = 1 + f = f , where 1 is a vector of ones of the same
length of f .

In summary, there is a correspondence between the logic operations and the binary
operations given by

• f ∧ g = f · g;

• f ⊕ g = f + g;

• f ∨ g = f + g+ (f · g);

• ¬f = f = 1 + f ,

where the left-hand side represents the logic operations between Boolean functions,
while the right-hand side represents the operations between the corresponding binary
vectors. For instance, the logic OR between the Boolean variables f and g, i.e., f ∨ g,
is equivalent to the modulo-2 addition (+) between the binary vectors representing
f , g, and f · g (the bitwise binary product). This correspondence can be verified using
a truth table.

By a well-known theorem of Boolean algebra, any Boolean function f can be uniquely
represented in its so called algebraic normal form (ANF), known also as Reed-Muller
expansion.

Theorem 13.1 (cf. theorem 1 in §13 [57]). Let {v1, . . . , vm} be a set of m Boolean
variables. Any Boolean function f(v1, . . . , vm) can be uniquely expressed as a binary
addition of powers of vi as follows:

f(v1, . . . , vm) =
∑

(e1,...,em)∈{0,1}m

f(e1, . . . , em) · v1
e1 · . . . · vmem =

∑
I⊆{1,...,m}

aI
∏
i∈I

vi,

Chapter 13. HL-codes and their decoding algorithm 97

where f(e1, . . . , em) is the value of f at (e1, . . . , em), the product of viei, for i =
1, . . . ,m, is known as a minterm of f , and viei = vi if ei = 1, otherwise, viei = vi if
ei = 0.

Proof. First, we provide the following property:

f(v1, . . . , vm) = g(v1, . . . , vm−1) + vm · h(v1, . . . , vm−1),

where

g(v1, . . . , vm−1) = f(v1, . . . , vm−1, 0),
h(v1, . . . , vm−1) = f(v1, . . . , vm−1, 0) + f(v1, . . . , vm−1, 1),

which is true as

f(v1, . . . , vm−1, 0) = g = f(v1, . . . , vm−1, 0) if vm = 0,
f(v1, . . . , vm−1, 1) = g+ g+ f(v1, . . . , vm−1, 1) if vm = 1.

Therefore, we can prove the theorem by induction using the property previously
mentioned. Let m be equal to 1, then the claim follows as

f(v1) = f(0) + v1 · (f(0) + f(1)) =
= f(0)(1 + v1) + f(1) =
= f(0)v1 + f(1)v1 =

=
∑

ei∈{0,1}
f(ei)v

ei
1 .

By induction step, it holds that

f(v1, . . . , vm−1) =
∑

(e1,...,em−1)∈{0,1}m−1

f(e1, . . . , em−1) · v1
e1 · . . . · vm−1

em−1 .

Thus, it follows that

f(v1, . . . , vm) = f(v1, . . . , vm−1, 0) + vm · (f(v1, . . . , vm−1, 0) + f(v1, . . . , vm−1, 1)) =
= vm · f(v1, . . . , vm−1, 0) + vm · f(v1, . . . , vm−1, 1).

■

As a consequence of the above theorem, any Boolean function in the Boolean variables
vi can be represented as an expanded polynomial of the form

f(v1, . . . , vm) =
∑

I⊆{1,...,m}
aI
∏
i∈I

vi.

It is important to note that the function f can also be represented as a binary vector
f of length 2m given by the values taken by the function f at all of its 2m argu-
ments. This vector is commonly referred as the corresponding row of the truth table

Chapter 13. HL-codes and their decoding algorithm 98

associated with the function f . For instance, we have that

v3 = 0 0 0 0 1 1 1 1
v2 = 0 0 1 1 0 0 1 1
v1 = 0 1 0 1 0 1 0 1
f = 1 0 0 0 0 1 0 1

.

Thus, by applying the equivalence between Boolean operations and binary operations,
one has that

f ≡ f(v1, . . . , vm) = v1 ∧ v2 ∧ v3
∨
v1 ∧ v2 ∧ v3

∨
v1 ∧ v2 ∧ v3 =

= 1 + v1 + v2 + v3 + v1v2 + v2v3 + v1v2v3.

Note that, as stated in remark 13.1, by representing the Boolean variables vi as their
corresponding binary vectors in the truth table, the above vector f can be written as
1 + v1 + v2 + v3 + v1v2 + v2v3 + v1v2v3.

Remark 13.1. It is important to note that each Boolean variable vi, with i =
1, . . . ,m, can be represented as a binary vector in the truth table. Specifically,
each Boolean variable can be represented as a binary vector in the form vi =(
02i−1 | 12i−1

) n

2i , where 02i−1 is a vector of length 2i−1 consisting of zeros, and 12i−1

is a vector of length 2i−1 consisting of ones. Hence, vi is the concatenation of n
2i

sequences of 2i−1 zeros and 2i−1 ones.

In the following, we define a Reed-Muller code by using Boolean functions.

Definition 13.1 (Reed-Muller code). Let r and m be two positive integers such that
0 ≤ r ≤ m, and let F be the set all binary vectors f such that f(v1, . . . , vm) is a
Boolean function in m variables vi represented as a polynomial of degree at most r
over F2[v1, . . . , vm]/(v2

1 − 1, . . . , v2
m − 1). The set F is a binary Reed-Muller code of

order r, denoted as R(r,m), of parameter [n, k, d], where n = 2m, k =
r∑
i=0

(mi), and

d = 2m−r.

For instance, the R(1,m) code consists of all binary vectors of the form
m∑
i=0

aivi,

where ai ∈ {0, 1} and v0 = 1 ∈ Fn
2 . In general, the R(r,m) code is given by the set

of all the binary vectors of the form

a0v0 +
∑

L⊆{1,...,m}
|L|≤r

aL
∏
i∈L

vi,

where a0, aL ∈ {0, 1}.

This is because the vectors vi are linearly independent and thus represent the basis
vectors of the Reed-Muller code.

In order to clearly define the generator matrix of a Reed-Muller code, we introduce
the following auxiliary functions. For i ∈N, let ν be the function defined as

ν(i) = max
t∈N

i ≥
t∑

j=0

(
m

j

), (13.6)

Chapter 13. HL-codes and their decoding algorithm 99

and let λ be the function defined as

λ(i) = i−
ν(i)∑
j=0

(
m

j

)
. (13.7)

Additionally, let M be the set of integers {1, . . . ,m}, and let (Mj) be the set of j-
combination of the elements in M such that e ∈ (Mj) is a tuple e = (l1, . . . , lj)
of j indices. Furthermore, we define a natural ordering for (Mj) such that, for any
(e1, e2) ∈ (Mj)× (Mj), one has that

(l1,1, . . . , l1,j) = e1 ≤ e2 = (l2,1, . . . , l2,j) ⇐⇒ l1,s ≤ l2,s for all 1 ≤ s ≤ j. (13.8)

In addition, we refer to the i-th element ei of (Mj) as the element such that

ei ≥ ei−1 ≥ . . . ≥ e1,

where e1 is the minimum element in (Mj).

Definition 13.2 (Generator matrix of a Reed-Muller code). Let R(r,m) be a
[n, k, d]2 Reed-Muller code of order r, with 0 ≤ r ≤ m, and let M be the set of
integers {1, . . . ,m}. A generator matrix G ∈ Fk×n

2 for this code is defined such that
the i-th row of G, for i = 0, . . . , k− 1, is Gi =

∏
j∈eλ(i)

vj, where eλ(i) ∈ (M
ν(i)+1).

13.2 HL-codes
The HL-codes are self-dual codes C such that R

(
m
2 − 1,m

)
⊂ C ⊂ R

(
m
2 ,m

)
. For

further details, we address the reader to [27, 38].

In order to properly define HL-codes, we need the following two definitions.

Definition 13.3 (Complement of a binary vector). Let v be a vector in Fn
2 , where

n is a positive integer. The complement at 1 of v is the vector v′ = 1− v, where
1 ∈ Fn

2 .

Definition 13.4 (Complement-free set). Let X be the set of all vectors in Fn
2 of

weight t < n, where n and t are positive integers. A subset Y of X is complement-
free if for each v ∈ Y =⇒ 1− v /∈ Y , where 1 ∈ Fn

2 . If card(Y) = 1
2 (
n
t), then Y is

maximal.

Remark 13.2. Note that, for a complement-free set Y in definition 13.4, if
{j1, . . . , jt} ⊆ {1, . . . ,n} is the set of indices of (y1, . . . , yn) = y ∈ Y such that
yjr = 1, with r = 1, . . . , t, then we may represent y with the tuple (j1, . . . , jt).

From now on, we consider the elements of a complement-free set Y as tuple of indices
as in remark 13.2.

Definition 13.5 (HL-code). Let m be a positive even integer, and let Y be a maximal
random complement-free set whose vectors in Fm

2 have weight equal to m
2 . A HL-code

of parameter n = 2m, k = 2m−1, and d = 2
m
2 is a Reed-Muller code R

(
m
2 − 1,m

)
,

whose generator matrix is extended by the vectors obtained by the products
m
2∏
i=1

vji,

Chapter 13. HL-codes and their decoding algorithm 100

where the vectors vi are the basis vectors of the Reed-Muller code, and
(
j1, . . . , jm

2

)
is the tuple representation of the vectors y ∈ Y as in remark 13.2.

The randomness of the complement-free set Y in definition 13.5 makes these codes
useful for embedding into code-based cryptosystems such as the McEliece cryptosys-
tem [58].

In order to define the generator matrix for a HL-code, we define the following auxiliary
function:

f(i) =

eλ(i) ∈ (M
ν(i)+1) if 1 ≤ i < k− 1

2 (
m

m/2),
eλ(i) ∈ Y -set if k− 1

2 (
m

m/2) ≤ i < k,
(13.9)

where M = {1, . . . ,m}, eλ(i) ∈ (M
ν(i)+1) is taken with the rule in equation (13.8),

and eλ(i) ∈ Y -set is the tuple representation of the λ(i)-th element of the random
complement-free set Y (see remark 13.2).

Example 6. Let m be equal to 6, and let M be the set of integers {1, 2, 3, 4, 5, 6}. If
i = 7, then f(7) = eλ(7) = (1, 2) is the first element (λ(7) = 1) of (M2). Furthermore,
if i = 28, then f(28) = eλ(28) is equal to the sixth element (λ(28) = 6) of the random
complement-free set Y ⊂ (M3).

Definition 13.6 (Generator matrix for a HL-code). Let C be a [n, k, d]2 HL-code,
where n = 2m, k = 2m−1, and d = 2

m
2 , and let Y be the maximal complement-free set

used to construct C. A generator matrix G ∈ Fk×n
2 for C is defined such that the i-th

row of G, for i = 0, . . . , k − 1, is Gi =
∏

j∈f (i)
vj, where f is the function in equation

(13.9).

Note that, every codeword belonging to a linear code can be represented as a linear
combination of the rows of the generator matrix of the code. Specifically, a codeword
x of a HL-code can be written as

x = a ·G = a0v0 +
k−1∑
i=1

ai

 ∑
j∈f (i)

vj

, (13.10)

where (a0, . . . , ak−1) = a ∈ Fk
2 is a binary weight vector, and f is the function in

equation (13.9).

13.3 Decoding
In this section, we describe the process of decoding a Reed-Muller code.

Definition 13.7 (Decode a linear code). Let C be a [n, k, d]q a linear code whose
generator matrix is G ∈ Kk×n, where K is a finite field of cardinality equal to a prime
power q. Decoding a word x = a ·G+ e, where a ∈ Kk, and e ∈ Kn is an error word
whose Hamming weight wt(e) is at most

⌊
d−1

2

⌋
, consist in computing the error word

e and returning the correct codeword a ·G or the word a.

The Reed-Muller decoding algorithm is a majority-based binary decoding
method that relies on the structure of the generator matrix G.

It should be noted that, as stated in equation (13.10), a codeword x of a HL-code
may be represented a linear combination of bitwise products of the basis vector vi of
the code. A bitwise product of j different vectors vi is considered to be an element

Chapter 13. HL-codes and their decoding algorithm 101

of degree j for the codeword x. Hence, every coefficient ai in equation (13.10) is
the coefficient of degree j of (mj) bitwise binary products of the basis vectors vi,
where 1 ≤ i ≤ m.

Given the expression in equation (13.10), it is possible to determine a set of binary
equations, known as redundancy relations, that are related to each coefficient ai.
These equation takes the form:∑

e∈I1

xe,
∑
e∈I2

xe, . . . ,
∑
e∈Il

xe

 (13.11)

where (x0, . . . ,xn−1) = x represents the codeword, and for 1 ≤ s ≤ l, Is ̸= ∅,
l⋃

s=1
Is = {0, 1, . . . ,n− 1}, and Ih ∩ Is = ∅ whenever h ̸= s. Having the set in equation

(13.11), if r is the number of the equations in (13.11) whose outcome is equal to 1,
then

ai =

{
1 if r > l

2 ,
0 if r < l

2 .

Note that if r = l
2 , then it is not possible to determine the correct value of ai (as

stated in theorem 13.2 and corollary 13.3).

Theorem 13.2. Let aj be a coefficient of the word x = a ·G+ e, where G ∈ Fk×n
2 is

the generator matrix of a HL-code, and e is an error vector of weight t ≤
⌊
d−1

2

⌋
. Let

Si =
∑
e∈Ii

xe, 1 ≤ i ≤ l,

be the i-th redundancy relation of aj, where Ii ̸= ∅, for every i,
l⋃

i=1
Ii = {1, . . . ,n},

and Ih ∩ Is = ∅ whenever h ̸= s. There are at least l − t redundancy relations for
aj with the same outcome, that is, Sh = Ss for any h, s ∈ R ⊆ {1, . . . , l}, with
|R| ≥ l− t.

Proof. Since the redundancy relations for each coefficient aj form a partition of the
n components of the vector x, we have that each the component ei = 1 of e affects
only one of the redundancy relations. Therefore, if the weight of e is equal to 1, then
only one relation has a different outcome compared to the other outcomes.

If the weight of e is equal to 2, then either zero or two relations outcomes differ from
the other outcomes. This is because, if er = 1 and es = 1 affects the same relation Si,
then in Si, one has that er + es = 0 and the outcome of Si does not change. However,
if er = 1 and es = 1 affects two different relations, then both relations outcomes differ
from the other outcomes.

In general, by induction, if the weight of the error vector e is equal to t, then there
are at least l− t relations with the same outcome. ■

Corollary 13.3. Let aj be a coefficient of degree u of the word x = a ·G+ e, where
G ∈ Fk×n

2 is the generator matrix of a HL-code whose parameter m is an even number,
with n = 2m, and e is an arbitrary binary error vector of weight t ≤

⌊
d−1

2

⌋
. Let l

be the number of redundancy relations for aj, and let r be the number of redundancy

Chapter 13. HL-codes and their decoding algorithm 102

relations for aj whose outcomes are equal to 1. If r > l
2 , then aj = 1, while if r < l

2 ,
then aj = 0.

Proof. Given that m is an even number, it follows that t ≤
⌊
d−1

2

⌋
=

⌊
2

m
2 −1
2

⌋
=

2
m
2 −1 − 1. Additionally, it can be easily verified that l = n

2u = 2m

2u = 2m−u (see
equation (13.15)), where 1 ≤ u ≤ m

2 . As a result, we have that 2
m
2 ≤ l ≤ 2m−1 and

t < l
2 . In light of this and theorem 13.2, there are at least r = l− t > l

2 redundancy
relations with the same outcome b ∈ {0, 1}, and aj is exactly equal to b. ■

Remark 13.3. As a consequence of theorem 13.2 and corollary 13.3, if one has
that wt(e) ≤

⌊
d−1

2

⌋
, then the number l of redundancy relations for aj with the same

outcome cannot be exactly equal to l
2 . More specifically, for the coefficient aj with

j = 1, . . . , k− 1, if r = l
2 , then wt(e) >

⌊
d−1

2

⌋
and it is not possible to determine the

correct value of aj.

The decoding process begins with the highest-degree coefficients ai and proceeds
iteratively to the lowest-degree ones.

Specifically, since the elements of highest-degree in a HL-code have a degree equal to
m
2 (in particular, the elements from the complement-free set defined in definition 13.4),
these elements have to be decoded from x = a ·G+ e, and then removed from x in
order to repeat the decoding process on

x′ = x−
∑

T∈Y -set
aT
∏
i∈T

vi,

where Y -set is the complement-free set of indices T associated with the coefficients aT
of degree m

2 . Since it is possible to determine the value of each aT from corollary 13.3,
this process is repeated by identifying the next highest-degree coefficients ai, and
removing them from x′. At the end of this process, one is left with the vector
x′ = a0v0 + e. However, since v0 = 1 ∈ Fn

2 , in order to find a0, one has to count the
number r of ones in x′ (as stated in theorem 13.4). Since x′ ∈ F2

n, one has that

a0 =

{
1 if r > n

2 ,
0 if r < n

2 .

Note that if r = n
2 , then a0 cannot be determined and, as a result, the decoding of x

is unsuccessful. Once the value of a0 is determined, the error vector can be computed
as e = x′ − a0v0, and the codeword can be recovered as a ·G = x− e.

Theorem 13.4. Let a = (a0, a1, . . . , ak−1) be an arbitrary binary weight vector, and
let x = a ·G+ e be the codeword a ·G modified by an arbitrary binary vector e such
that wt(e) ≤

⌊
d−1

2

⌋
, where G ∈ Fk×n

2 is the generator matrix of a HL-code. The
value of the coefficient a0 can be determined by evaluating the weight of the vector
a0v0 + e. Specifically, if wt(a0v0 + e) > n

2 , then a0 = 1, while if wt(a0v0 + e) < n
2 ,

then a0 = 0.

Proof. According to theorem 13.2 and corollary 13.3, it is possible to determine each
coefficient aj , for j = 1, . . . , k− 1, by using the redundancy relations of aj . Therefore,

one can compute the vector x′ = x−
k−1∑
i=1

ai
∏

j∈f (i)
vj = a0v0 + e ∈ Fn

2 . Given that the

Chapter 13. HL-codes and their decoding algorithm 103

weight t of the error vector is such that t ≤ 2
m
2 −1 − 1 and n

2 = 2m−1, it follows that
t < n

2 . Therefore, if a0 = 0, then x′ = e and wt(x′) = t < n
2 , while if a0 = 1, then

x′ = v0 + e and wt(x′) = n− t > n
2 . ■

Remark 13.4. Note that theorem 13.2, corollary 13.3 and theorem 13.4 demonstrate
that the majority rule can correctly determine each coefficient aj, for j = 0, . . . , k− 1.

Remark 13.5. Given that the correct value of each coefficient aj can be determined
at each step, it is possible to store these results in order to directly return the weight
vector a, thus avoiding the computation of a from the vector a ·G.

The redundancy relations related to a coefficient ai can be determined by a recursive
relation (denoted as ∆ by I.S. Reed in [64]). In order to describe this relation, we
define the function

ψ : N×N −→ {0, 1}
(i, k) 7−→ ik−1

, (13.12)

where ik−1 is the k-th least significant bit (LSB) of the binary representation of the
integer i, that is, i = (in−1, . . . , ik, . . . , i1, i0)2, and the function

ϕ : N×N −→N

(i, k) 7−→ i+ (−1)ψ(i,k) · 2k−1 . (13.13)

Hence, ϕ(i, k) changes the k-th LSB of the integer i. Specifically, if ψ(i, k) is equal
to 0, then ϕ(i, k) = i+ 2k−1, while if ψ(i, k) is equal to 1, then ϕ(i, k) = i− 2k−1.

We also extend the function ϕ as follow:

Φ : N×Nl −→N

(i, (k1, . . . , kl)) 7−→ i+
l∑

j=1
(−1)ψ(i,kj) · 2kj−1 . (13.14)

Therefore, the function Φ(i, (k1, . . . , kl)) changes, for s = 1, . . . , l, the ks-th LSB of
the integer i.

Hence, the recursive relation used to find the redundancy relations is as follows:

∆
j
xi = xi + xϕ(i,j),

∆
(j1,...,jt)

xi = ∆
(j1,...,jt−1)

xi + ∆
(j1,...,jt−1)

xϕ(i,jt),
(13.15)

for i = 0, . . . , k− 1, and (j1, . . . , jt) ∈ (Mt), where M = {1, . . . ,m}.

More specifically, by applying the recursion in equation (13.15), one obtains that

∆
(j1,...,jt)

xi = xi +
t∑

r=1

 ∑
e∈(M

r)

xΦ(i,e)

. (13.16)

The operator ∆ calculates the redundancy relations for each coefficient aj in the
word x = a ·G + e, with G the generator matrix of the code. In particular, for
i = 0, . . . , k − 1, if 1 ≤ j ≤ m, then the redundancy relations for the coefficients aj

Chapter 13. HL-codes and their decoding algorithm 104

are computed with ∆
j
xi, while if m < j < k, then the redundancy relations for the

coefficient aj are computed with ∆
(j1,...,jt)

xi, where (j1, . . . , jt) ∈ (Mt).

In the following example, we show how to find the redundancy relations for each
coefficient ai both with and without the use of the operator ∆.

Example 7. Let m be equal to 4, so n = 2m = 16, and k = 2m−1 = 8. Furthermore,
suppose for simplicity that the Y -set is equal to ((1, 4), (1, 3), (1, 2)) in this order (see
remark 13.2). In this case, we have that

G =

v0

v1

v2

v3

v4

v1 · v4

v1 · v3

v1 · v2

=

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

.

Therefor, we have that

a ·G = a0v0 + a1v1 + a2v2 + a3v3 + a4v4 + a5v1 · v4 + a6v1 · v3 + a7v1 · v2.

In order to determine each ai, one does not take into account the error vector e,
that is, one takes x = a ·G, and not x = a ·G+ e, as the majority rule for the
redundancy relations will give back the correct value of each coefficient ai. Therefore,
the components xi of the vector x = a ·G are

x0 = a0,
x1 = a0 + a1,
x2 = a0 + a2,
x3 = a0 + a1 + a2 + a7,
x4 = a0 + a3,
x5 = a0 + a1 + a3 + a6,
x6 = a0 + a2 + a3,
x7 = a0 + a1 + a2 + a3 + a6 + a7,

x8 = a0 + a4,
x9 = a0 + a1 + a4 + a5,
x10 = a0 + a2 + a4,
x11 = a0 + a1 + a2 + a4 + a5 + a7,
x12 = a0 + a3 + a4,
x13 = a0 + a1 + a3 + a4 + a5 + a6,
x14 = a0 + a2 + a3 + a4,
x15 = a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7.

(13.17)

Chapter 13. HL-codes and their decoding algorithm 105

Initially, we begin by determining the redundancy relations of the highest-degree coef-
ficients a5, a6, and a7 using the equation (13.17). We find that

a5 = x0 + x1 + x8 + x9 =

= x2 + x3 + x10 + x11 =

= x4 + x5 + x12 + x13 =

= x6 + x7 + x14 + x15,

a6 = x0 + x1 + x4 + x5 =

= x2 + x3 + x6 + x7 =

= x8 + x9 + x12 + x13 =

= x10 + x11 + x14 + x15,

a7 = x0 + x1 + x2 + x3 =

= x4 + x5 + x6 + x7 =

= x8 + x9 + x10 + x11 =

= x12 + x13 + x14 + x15.

(13.18)

In order to proceed to the next highest-degree coefficient, we consider the word

x′ = x− (a5v1 · v4 + a6v1 · v3 + a7v1 · v2).

Since a5 = a6 = a7 = 0 for x′, we can remove them from the equation (13.17) and
we find that

x′0 = a0,
x′1 = a0 + a1,
x′2 = a0 + a2,
x′3 = a0 + a1 + a2,
x′4 = a0 + a3,
x′5 = a0 + a1 + a3,
x′6 = a0 + a2 + a3,
x′7 = a0 + a1 + a2 + a3,

x′8 = a0 + a4,
x′9 = a0 + a1 + a4,
x′10 = a0 + a2 + a4,
x′11 = a0 + a1 + a2 + a4,
x′12 = a0 + a3 + a4,
x′13 = a0 + a1 + a3 + a4,
x′14 = a0 + a2 + a3 + a4,
x′15 = a0 + a1 + a2 + a3 + a4.

(13.19)

We determine the redundancy relations of the next coefficients a1, a2, a3 and a4 from
the equation (13.19), and we find that

a1 = x′0 + x′1 = x′2 + x′3 = x′4 + x′5 = x′6 + x′7 =

= x′8 + x′9 = x′10 + x′11 = x′12 + x′13 = x′14 + x′15,

a2 = x′0 + x′2 = x′1 + x′3 = x′4 + x′6 = x′5 + x′7 =

= x′8 + x′10 = x′9 + x′11 = x′12 + x′14 = x′13 + x′15,

a3 = x′0 + x′4 = x′1 + x′5 = x′2 + x′6 = x′3 + x′7 =

= x′8 + x′12 = x′9 + x′13 = x′10 + x′14 = x′11 + x′15,

a4 = x′0 + x′8 = x′1 + x′9 = x′2 + x′10 = x′3 + x′11 =

= x′4 + x′12 = x′5 + x′13 = x′6 + x14 = x7 + x15.

(13.20)

Therefore, using the equations (13.18) and (13.20) on x and x′ respectively, we de-
termine

x′′ = x′ − (a1v1 + a2v2 + a3v3 + a4v4) = a0v0.

Chapter 13. HL-codes and their decoding algorithm 106

Recall that, as stated in theorem 13.2, corollary 13.3 and theorem 13.4, if x = a ·G+
e, then the majority rule guarantees that x′′ = a0v0 + e.

From here on, we apply the operator ∆ in order to compute the redundancy relations
of each coefficient ai. For instance, we directly find the first relation of a1 as

∆
1
x0 = x0 + xϕ(0,1) = x0 + x1.

Recall that, as previously stated in equation (13.11), the redundancy relations form a
partition of the components {x0, . . . ,x15} of the vector x. Therefore, the next relation
of a1 is given by

∆
1
x2 = x2 + xϕ(2,1) = x2 + x3.

Hence, after the computation of each redundancy relation, one is aware of the next
component xi to consider. Note that calculating ∆

1
x1 is futile as

∆
1
x1 = x1 + xϕ(1,1) = x1 + x0 = ∆

1
x0.

In order to summarize, by using the function f defined in equation (13.9), we have
that the redundancy relations for each coefficient ai are as follows:

a1 = ∆
f (1)

x0 = ∆
f (1)

x2 = ∆
f (1)

x4 = ∆
f (1)

x6 =

= ∆
f (1)

x8 = ∆
f (1)

x10 = ∆
f (1)

x12 = ∆
f (1)

x14,

a2 = ∆
f (2)

x0 = ∆
f (2)

x1 = ∆
f (2)

x4 = ∆
f (2)

x5 =

= ∆
f (2)

x8 = ∆
f (2)

x9 = ∆
f (2)

x12 = ∆
f (2)

x13,

a3 = ∆
f (3)

x0 = ∆
f (3)

x1 = ∆
f (3)

x2 = ∆
f (3)

x3 =

= ∆
f (3)

x8 = ∆
f (3)

x9 = ∆
f (3)

x10 = ∆
f (3)

x11,

a4 = ∆
f (4)

x0 = ∆
f (4)

x1 = ∆
f (4)

x2 = ∆
f (4)

x3 =

= ∆
f (4)

x4 = ∆
f (4)

x5 = ∆
f (4)

x6 = ∆
f (4)

x7,

a5 = ∆
f (5)

x0 = ∆
f (5)

x2 = ∆
f (5)

x4 = ∆
f (5)

x6,

a6 = ∆
f (6)

x0 = ∆
f (6)

x2 = ∆
f (6)

x8 = ∆
f (6)

x10,

a7 = ∆
f (7)

x0 = ∆
f (7)

x4 = ∆
f (7)

x8 = ∆
f (7)

x12.

(13.21)

Chapter 13. HL-codes and their decoding algorithm 107

For instance, the first redundancy relation for a6 is computed as ∆
f (6)

x0. Since f(6) =

eλ(6) = e2 = (1, 3) ∈ Y -set, we have that

∆
f (6)

x0 = ∆
(1,3)

x0 = ∆
1
x0 + ∆

1
xϕ(0,3) =

=
(
x0 + xϕ(0,1)

)
+
(
xϕ(0,3) + xΦ(0,(1,3))

)
=

= x0 + x1 + x4 + x5 =

= x0 +
2∑
r=1

 ∑
e∈((1,3)

r)

xΦ(0,e)

 = x0 + xΦ(0,(1)) + xΦ(0,(3)) + xΦ(0,(1,3)),

where the last equality comes from the expansion of the operator ∆ in equation (13.16).
Note that, by using the operator ∆, it is not necessary to explicitly find the redundancy
relations as in equations (13.17) and (13.19).

108

Conclusions

In this chapter, we present the conclusions drawn from the research conducted for this
thesis. In part II, we provided an explicit map to define easily the group law for an
elliptic curve in Weierstrass form with the ground field Z/pkZ. We also extended the
exponential map Exp for elliptic curves in Weierstrass form to Edwards curves over
local fields. Based on this extension, we produced an article that has been published
in [31]. Additionally, we provided the inverse of the exponential map, denoted as
Log, for elliptic curves in Weierstrass form to define a new algorithm to compute the
elliptic curve discrete logarithm by exploiting the structure of JZ/pkZ(W). Lastly,
we extended the results obtained for elliptic curves in Weierstrass form over local
fields to hyperelliptic curves. In this case, however, we have seen that the extension
is not possible using the Cantor-Koblitz algorithm to add two divisors belonging to
the Jacobian of these curves since this algorithm requires computing the greatest
common divisor (GCD) between two polynomials, and the GCD does not commute
with the modulo-reduction operation.

In part III, we focused on coding theory. Specifically, we provided a basis for the
Riemann-Roch space L (D) for a divisor D belonging to the Jacobian of either an
Edwards curve or a hyperelliptic curve over finite fields. Moreover, we used these bases
to compute the generator matrices for an algebraic-geometric Goppa code for these
curves. We proved that a basis for the Riemann-Roch space for hyperelliptic curves
involves the Mumford representation of the divisors of the Jacobian of these curves. In
particular, the Mumford representation provides an elegant and simple formulation
for the theorems that we provided, freeing the user to effectively know the points
belonging to the support of the divisor used to compute the basis. This property is
particularly useful when one wants to construct an algebraic-geometric Goppa code, as
one may generate a pair of random polynomials that, under particular assumptions,
allows computing a generator matrix for this code. Lastly, we extended the basic
decoding algorithm for Reed-Muller codes to the HL-codes to develop a quantum-
safe code-based cryptosystem. We rewrote the original Reed’s decoding algorithm
to provide a simplified formulation and gave theorems and corollaries that prove its
correctness. We implemented this algorithm and embedded it into a cryptosystem
of McEliece-type, showing that its performance is competitive with other code-based
cryptosystems of the same type. The results of the chapters in part III have been
collected in three articles submitted for possible publication.

In conclusion, this thesis provides original insights into the area of cryptography. The
results of our work can find application to enhance the security of modern cryptosys-
tems. While there are limitations to our study, it can contribute to a more compre-
hensive understanding of these fields. For future research, it would be interesting to
explore other methodologies to extend our results in chapter 8 to hyperelliptic curves
to overcome the non-commutativity of the GCD and the modulo-reduction operations
between polynomials. Furthermore, it is essential to investigate the lifting problem

Chapter 13. HL-codes and their decoding algorithm 109

further to ensure that the security of modern cryptosystems based on the difficulty
of the ECDLP will not be threatened by the algorithm proposed in section 8.4.

110

Part IV

Appendices and index

111

A Pseudocodes

In this chapter, we show all the pseudocodes for the algorithms used throughout this
thesis.

A.1 ECDLP using the Log function
In this section, we present the pseudocodes used to compute the Exp function (see
algorithm 3), the Log function (see algorithm 4), and the elliptic curve discrete loga-
rithm over Z/pkZ (see algorithm 5). We address the reader to appendix B.1 for the
codes used for our implementation.

Specifically, in algorithm 2, we compute the s-th coefficient of the series expan-
sion of ℘(z) as in equation (3.7). Then, in algorithm 3, we compute the point[
z3 : z3℘(z) : z

3

2 ℘
′(z)

]
∈ Im

(
ExpW

)
for an elliptic curve in short Weierstrass form W

over Z/pkZ, where p | z. In particular, we compute the point
[
z3 : z3℘(z) : z

3

2 ℘
′(z)

]
by determining the p-adic evaluation of the terms of the series expansion of ℘′(z) mul-
tiplied by z3, since its convergence radius greater than ℘(z), as recalled in equation
(7.3).

In algorithm 4, we compute the inverse of the map Exp by using the reduction modulo
a small power of p by using the series expansions of ℘(z) and ℘′(z) modulo p5.
Specifically, we have that

℘(z) ≡ 1
z2 +

g2
20z

2 +
g3
28z

4
(
mod p5

)
,

1
2℘
′(z) ≡ −1

z3 +
g2
20z +

g3
14z

3
(
mod p5

)
.

Since [Z : X : Y] = P ∈ Im
(
ExpW

)
is such that X

Z ≡ ℘(z), and Y
Z ≡

1
2℘
′(z), by

multiplying both sides of the above equations by z3, we get

z3X

Z
≡ z3℘(z) ≡ z

(
mod p5

)
,

z3Y

Z
≡ z3

2 ℘
′(z) ≡ −1 + g2

20z
4
(
mod p5

)
.

Thus, the first equivalence implies that z2 ≡ Z
X

(
mod p5), while the second equiva-

lence yields

z3Y

Z
≡ z Z

X

Y

Z
≡ −1 + g2

20z
4 ≡ −1 + g2

20

(
Z

X

)2 (
mod p5

)
,

which implies

z ≡ X

Y

(
−1 + g2

20

(
Z

X

)2
) (

mod p5
)
.

Appendix A. Pseudocodes 112

Remark A.1. Since p | z, the solution we obtain is modulo p5−νp(z), where νp(z) is
the p-adic valuation of z.

Furthermore, if Z = 0 or k ≤ 4, then the logarithm of P is X
Y

(
mod pk

)
. Since

we have a solution modulo p5, we can find the real z as z + h · p5 for some h ∈ N.
We can then compute the value of z modulo p6, p7, and so on, until we determine
the logarithm of the point P ∈ Im

(
ExpW

)
modulo pk. In order to determine this

reduction, we computed the series expansion of ℘(z) modulo pi for i = 6, . . . , k, since
X
Z ≡ ℘(z)

(
mod pi

)
.

Finally, in algorithm 5, we compute the discrete logarithm for a point Q ∈ W(Q)
such that Q = h⊗P , where P ∈ W(Q). In order to determine the discrete logarithm
of Q, we use the approximation over W

(
Z/pkZ

)
. Specifically, we compute the

reduction of h modulo the t = ord(Modp(P)) of Modp(P)−Ω ∈ JZ/pZ

(
W
)
. Since

Q = h⊗ P , the points R = Q⊖ (a⊗ P) and S = t⊗ P belong to Im
(
ExpW

)
, where

h ≡ a (mod t). As proven in subsec. 8.4.1, by computing the logarithm of the points
R and S, we can determine the discrete logarithm of Q.

Algorithm 2: Get-Exp-Coefficient
Function Get-Exp-Coefficient(c, g2, g3, s) { // this function computes the coefficient of the

s-th term of the series expansion of ExpW (z)
{

Data: c is the list over
(

Z/pkZ
)

of the previous coefficients of the series expansion, g2 and g3 are
the elliptic invariants for the function, and s ∈ N

Result: the coefficient c of the s-th term of the series expansion
if (s < 2)
{

return 0
}
elif (s = 2)
{

return g2
20

}
elif (s = 3)
{

return g3
28

}
else
{

c←− 0 // initialize coefficient
for(i = 2 to s− 2)do
{

if (i ≤ s− i)
{

if (i ̸= s− i)
{

c←− c + 2 · ci · cs−i

}
else
{

c←− c + ci · cs−i

}
}

}
c←− c · 3

(2s+1)(s−3)
return c

}
}

Appendix A. Pseudocodes 113

Algorithm 3: Exp
Function Exp(W, p, k, z) { // this function computes the series expansion of ExpW (z) for an

elliptic curve W in short Weierstrass form over Z/pkZ
{

Data: W is an elliptic curve in short Weierstrass form given by the equation y2 = x3 + ax+ b, p is
an odd prime number, k ∈ N, and z ∈ N such that p | z

Result: ExpW (z) =
[

z3 : z3℘(z) : z3

2 ℘
′(z)
]

(a, b)←− Get-Params(W) // get the parameters of the curve W
// compute the elliptic invariants g2 and g3 for the elliptic curve given by the equation(

1
2℘

′(z)
)2

= ℘3(z)− g2
4 ℘(z)−

g3
4

g2 ←− −4a
g3 ←− −4b
s←− 2 // initial power of z in the series expansion
℘z ←− 0 // initialize the value of z3 · ℘(z)
℘′

z ←− −2 // initialize the value of z3 · ℘′(z)
c←− (0, 0) // initialize vector of coeffients c = (c0, c1, c2, . . .) of the series expansion
// initialize the p-adic evaluation for the s-th term of the series expansion of z3 · ℘′(z)
e←− 0
e1 ←− max {1, P-Adic-Evaluation(z, p)} // compute the p-adic evaluation of z
while(e < k)do
{

// compute the s-th coefficient of the series expansion and append it to the vector c

c←− Concat(c, Get-Exp-Coefficient(c, g2, g3, s))
// compute the p-adic evaluation of the s-th element of c
r ←− P-Adic-Evaluation(cs, p)
// compute the exponent of the z for the s-th term of the series expansion for z3 · ℘′(z)
e2 ←− 2s− 2
// compute the p-adic evaluation of the s-th term of the series expansion for z3 · ℘′(z)
e←− e1 · ((e2 − 1) + 3) + r
if (e < k)
{

// ze ̸≡ 0
(

mod pk
)

℘z ←− ℘z + cs · z3 · ze2

℘′
z ←− ℘′

z + e2 · cs · z3 · ze2−1

}
s←− s + 1

}
return

[
z3 : ℘z : 1

2℘
′
z

]
}

Appendix A. Pseudocodes 114

Algorithm 4: Log
Function Log(W, p, k, P) { // this function computes the inverse of ExpW (z) for an

elliptic curve W in short Weierstrass form over Z/pkZ
{

Data: W is an elliptic curve in short Weierstrass form given by the equation y2 = x3 + ax+ b, p is
an odd prime number, k ∈ N, and P ∈ ExpW (z) for some suitable z

Result: z ∈ N such that P = ExpW (z)

(a, b)←− Get-Params(W) // get the parameters of the curve W
// compute the elliptic invariants g2 and g3 for the elliptic curve given by the equation(

1
2℘

′(z)
)2

= ℘3(z)− g2
4 ℘(z)−

g3
4

g2 ←− −4a
g3 ←− −4b
(X,Y ,Z)←− Get-Projective-Coordinates(P)
if (k ≤ 4 or Z = 0)
{

return −X
Y

(
mod pk

)
}
z←− X

Y
·
(
−1 + g2

20 ·
(

Z
X

)2
) (

mod p5
)

if (k = 5)
{

return z
}
C←− {z} // initialize the set of elements which are equivalent to z modulo pk

for(i = 6 to k)do
{

Ccurr ←− ∅
foreach(z ∈ C)do
{

for(j = 0 to p− 1)do
{
zcurr ←− z + j · pi−1

if (℘(zcurr) ≡ X
Z

(
mod pi

)
)

{
if (P ≡ Exp(zcurr))
{

return zcurr
}
else
{

Ccurr ←− Ccurr ∪ {zcurr}
}

}
}

}
C←− Ccurr

}
foreach(z ∈ C)do
{

if (z < pk and P ≡ Exp(z))
{

return z
}

}
return (Error: it was not possible to compute z)

}

Appendix A. Pseudocodes 115

Algorithm 5: ECDLP
Function ECDLP(W, p, k, P , Q, o) {
{

Data: W is an elliptic curve in short Weierstrass form given by the equation y2 = x3 + ax+ b, p is
an odd prime number, k ∈ N, P ,Q ∈ JQ

(
W
)

, and o is the cardinality of JZ/pZ

(
W
)

Result: h ∈ N such that P = hQ

if (P ≡ Q)
{

return 1
}
// compute the integer h reduced modulo O

(
P
)

a←− 0
P ←− ModW (P)

Q←− ModW (Q)

for(i = 1 to o)do
{

if (Q = i⊗ P)
{
a←− i

}
}
i←− 2
h←− a
R←− Q⊖ (a⊗ P) // R is a point belonging to Im

(
ExpW

)
S ←− o⊗ P // S is a point belonging to Im

(
ExpW

)
while(h⊗ P ̸= Q)do
{
Smod ←− Modpi (S) // reduce S modulo pi

Rmod ←− Modpi (R) // reduce R modulo pi

l1 ←− Log(W, p, i, Smod)
p

// compute the logarithm of S modulo pi

l2 ←− Log(W, p, i, Rmod)
p

// compute the logarithm of R modulo pi

if (l1 ̸= 0)
{
m←− i− 1
if (l2

l1
is a unit of Z/pmZ)

{
r ←− l2

l1
(mod pm)

h←− a+ r · o
}

}
i←− i+ 1

}
return h

}

A.2 AG Goppa codes for Edwards curves
In this section, we present the pseudocode for the algorithm used to compute a basis
of the Riemann-Roch space L (D) for an Edwards curve E (see algorithm 6), where
P + t ·O = D ∈ J 0

Z/pZ(E), with t ∈N, and O = (0, 1). Additionally, we present the
pseudocode for the algorithm used to compute a generator matrix for an algebraic-
geometric Goppa code for Edwards curves (see algorithm 7). We address the reader
to appendix B.2 for the codes used for our implementation.

Appendix A. Pseudocodes 116

Algorithm 6: Edwards-Riemann-Roch-Basis
Function Edwards-Riemann-Roch-Basis(P , t) {
{

Data: P is a point belonging to an Edwards curve given by the equation x2 + y2 = 1 + dx2y2 over
Z/pZ, and t+ 1 is the number of functions to compute

Result: the set of functions F defining a basis for L (P + t ·O)

(a, b)←− Get-Projective-Coordinates(P)
F0 ←− X

X

F2 ←− Z
Y −Z

F3 ←− Y +Z
X
·F2

if (P = O = (0, 1))
{

F←− (F0, F2, F3)
t←− t+ 1

}
elif (P = O′ = (0,−1))
{

F1 ←− Z
X

F←− (F0, F1, F2, F3)
}
elif (P = H = (1, 0))
{

F1 ←− (X+Z)(Y +Z)
XY

F←− (F0, F1, F2, F3)
}
elif (P = H′ = (−1, 0))
{

F1 ←− (X−Z)(Y +Z)
XY

F←− (F0, F1, F2, F3)
}
else
{

F1 ←− X·(Y +bZ)
(X−aZ)(Y −Z)

F←− (F0, F1, F2, F3)
}
while(Length(F) < t)do
{
i←− Length(F)
h←−

⌊
i
2

⌋
if (i ≡ 0 (mod 2)) // i = 2h
{

Fi ←− F2 ·F2h−2
}
else // i = 2h+ 1
{

Fi ←− Y +Z
X
·F2h

}
F←− Concat(F, Fi)

}
return F

}

Appendix A. Pseudocodes 117

Algorithm 7: Goppa-Edwards-Generator-Matrix
Function Goppa-Edwards-Generator-Matrix(P, F, p) {
{

Data: P = {P1, . . . ,Pm} is a set of m points belonging to an Edwards curve given by the equation
x2 + y2 = 1 + dx2y2 over Z/pZ such that Pi /∈ supp

(
Fj
)

for any Fj ∈ F, and
F = {F1, . . . , Fn} is a basis for a Riemann-Roch space L (Q+ n ·O), where Q,O ∈ E(Z/pZ),
and O = (0, 1)

Result: the generator matrix G for an algebraic-geometric Goppa code for E
G←− 0 ∈ Z/pZn×m

for(i = 1 to n)do
{

for(j = 1 to m)do
{
Gi,j ←− Fi(Pj) // evaluate Fi at Pj

}
}
// reduce G to its standard form, i.e. G = [In |M]
G←− Echelon-Form(G)
return G

}

A.3 AG Goppa codes for hyperelliptic curves
In this section, we present the pseudocode for the algorithm used to compute a basis
of the Riemann-Roch space L (D) for a hyperelliptic curve H, where D = ∆ + n ·Ω,
with ∆ = (u(x), v(x)) be the Mumford representation of a divisor in JZ/pZ(H) for
a randomly chosen pair of suitable polynomials (u(x), v(x)), and n ∈ N. We also
use the same pseudocode to compute a generator matrix for an algebraic-geometric
Goppa MDS-code for hyperelliptic curves (see algorithm 8 and algorithm 9). The
code used for our implementation can be found in appendix B.3.

Specifically, in algorithm 8, we obtain a basis for L (D) using a randomly chosen pair
of suitable polynomials (u(x), v(x)), as described in section 12.1. On the other hand,
in algorithm 9, we obtain a list of m randomly chosen linearly independent points
Pi to compute a generator matrix for an AG Goppa MDS-code. Specifically, we
choose a random divisor R = α1 · P1 + . . .+ αm · Pm, where Pi ∈ H(Z/pZ), subject
to the following conditions: for all i, αi = 1, Pi does not belong to the support
of the functions in the basis of L (D), and the polynomial u(x) does not vanish at
x = xPi . As the algorithm is random, it may choose a set of linearly dependent points.
Therefore, we check whether the code generated by the basis F and the set of points
belonging to supp(R) is MDS. If this test fails for MAX-TRIES times, we discard the
points in supp(R) and repeat the process to obtain another set of m points. Note that
if card(H(Z/pZ)) is sufficiently large, the probability of computing an MDS-code is
high.

Appendix A. Pseudocodes 118

Algorithm 8: Goppa-MDS-HEC-Generator-Matrix - Part 1
Function Goppa-MDS-HEC-Generator-Matrix(n, m, s, p) {
{

Data: n ∈ Z is a positive integer defining the number of elements for a basis of the Riemann-Roch
space for a hyperelliptic curve of genus at least s over Z/pZ, and m ∈ N is the number of
random points used to compute the generator matrix G ∈ Z/pZn×m

Result: the generator matrix G for an algebraic-geometric Goppa code for a hyperelliptic curve H
such that ∆ ∈ JZ/pZ(H)

if (s = 0)
{
u(x)←− 1
v(x)←− 0

}
else
{
l←− Random-Integer(0, s - 1) // compute a random integer in [0, s− 1]
u(x)←− 1
for(i = 1 to s)do
{
u(x)←− u(x) · (x− Random-Integer(1, p))

}
v(x)←− Random-Polynomial(l) // compute a random polynomial in Z/pZ[x] of degree l

while(gcd
(
u(x),u2(x), v(x)

)
̸= 1)do

{
v(x)←− Random-Polynomial(l)

}
}
// compute the true genus of the curve
g ←− s
while((2g + 2)− s−

⌊
m
2

⌋
− (m (mod 2)) < 0)do

{
g ←− g + 1

}
δ1 ←− 2g + 1
δ2 ←− n+ g− 1
h←−

⌊
δ2−s

2

⌋
k ←−

⌊
δ2−(δ1−s)

2

⌋
Ψ(x, y)←− y+u(x)

v(x)

// compute the set of functions F defining a basis for L (∆ + n ·Ω), where ∆ = (u(x), v(x))
F←− () // initialize an empty list
for(i = 0 to h)do
{

F←− Concat(F, xi)
}
for(j = 0 to k)do
{

F←− Concat(F, Ψ(x, y) · xj)
}
// continue on algorithm 9

}

Appendix A. Pseudocodes 119

Algorithm 9: Goppa-MDS-HEC-Generator-Matrix - Part 2
Function Goppa-MDS-HEC-Generator-Matrix(n, m, s, p) {
{

// see algorithm 8 for the first part of the algorithm

P←− () // empty list
// initialize e as {0} to not include the abscissa x = 0
e←− {0} // the set of already used abscissas
c←− 0 // counter for guesses
MAX-TRIES←− 10 // maximum number of guesses in finding points to get a MDS-code
// compute m random points Pi such that, for j = 1, . . . ,n,, Pi /∈ supp

(
Fj
)

, u(xPi
) ̸= 0, and

xPi
/∈ e

while(Length(P) < m)do
{
P ←− Random-Point(F, u(x), e)
if (m ≡ 1 (mod 2) and Length(P) + 1 = m)
{

R←− Concat(P, (xP , yP)) // append (xP , yP) to P
}
else
{

R←− Concat(P, (xP , yP), (xP ,−yP)) // append (xP , yP) and (xP ,−yP) to P
}
// the function Check-MDS check if the code generated by F and R is MDS
if (Length(P) ≥ n− 2 and Check-MDS(F, R) is false)
{

// the set R contains linearly dependent points
c←− c+ 1

}
else
{
c←− 0
P←− Copy(R)
e←− e∪ {xP }

}
if (c ≥ MAX-TRIES)
{

// reset points
P←− ()
e←− {0}

}
}
G←− 0 ∈ Z/pZn×m

for(i = 1 to n)do
{

for(j = 1 to m)do
{
Gi,j ←− Fi(Pj) // evaluate Fi at Pj

}
}
// reduce G to its standard form, i.e. G = [In |M]
G←− Echelon-Form(G)
return G

}

A.4 HL-codes
In this section, we present the pseudocodes to compute the generator matrix G of a
HL-code, as defined in definition 13.6, and for determining all redundancy relations
for each aj . Additionally, we provide the pseudocodes to decode a received word
x = a ·G+ e, where e is an error word such that wt(e) =

⌊
d−1

2

⌋
, d is the minimum

distance of the HL-code, and wt(·) is the function that gives in turn the (Hamming)
weight of a vector. We address the reader to appendix B.4 for the results of our
implementation for HL-code with parameters m = 10, and m = 12.

Appendix A. Pseudocodes 120

First, we defined a function in algorithm 10 that computes

ϕ(i, k) = i+ (−1)ψ(i,k) · 2k−1,

where ψ and ϕ are the functions defined in equations (13.12) and (13.13), respectively.

Algorithm 10: Change-Bit
Function Change-Bit(i, k) { // this function computes ϕ(i, k)
{

Data: i ∈ N, k ∈ N

Result: i± 2k−1

(jn−1, jn−2, . . . , j1, j0)2 ←− i // get the binary representation of i
if (jk−1 = 1) // jk−1 == 1
{

return i− 2k−1

}
else // jk−1 == 0
{

return i + 2k−1

}
}

In algorithm 11, we defined a pseudocode that computes the functions λ and ν as de-
fined in equations (13.7) and (13.6), respectively. Specifically, this algorithm returns
the tuple (λ(i), ν(i)) for a given integer i ∈ {0, . . . , k− 1}.

Algorithm 11: Row-To-Comb-Index
Function Row-To-Comb-Index(i, m) { // this function computes λ(i)
{

Data: i ∈ {0, . . . , k− 1}, m ∈ N, where i is the row of the generator matrix G ∈ F2
k×n, k = 2m−1,

and n = 2m

Result: (i′, t) such that ei′ ∈
(

M
t+1

)
or ei′ ∈ Y -set

t←− −1
s←− 0
s′ ←− 0
while (i ≥ s) {
{
s′ ←− s
t←− t + 1
s←− s +

(m
t

)
}

// t− 1 is the maximum integer such that i ≥ s′ =
t−1∑
j=0

(m
j

)
return (i− s′, t− 1)

}

In algorithm 12, we defined the pseudocode to compute f(i) as outlined in equation
(13.9). In particular, the pseudocode returns the tuple (i), if 1 ≤ i ≤ m, the λ(i)-th
element of the set ({1,...,m}

ν(i)+1) (sorted according to the rule defined in equation (13.8)),
if m < i < k − 1

2 (
m

m/2), and the λ(i)-th element of the complement-free set Y , if
k− 1

2 (
m

m/2) ≤ i < k.

Appendix A. Pseudocodes 121

Algorithm 12: Row-To-Comb
Function Row-To-Comb(i, m, Y -set) { // this function computes f (i)
{

Data: i ∈ {1, . . . , k− 1}, m ∈ N, where i is the row of the generator matrix G ∈ F2
k×n, k = 2m−1,

and n = 2m

Result: f (i), where f is the funcion in equation (13.9)
if (1 ≤ i ≤ m)
{

return (i)
}
k′ ←− k− 1

2

(m
m/2

)
(i′, t)←− Row-To-Comb-Index(i, m)
if (m < i < k′)
{

return ei′ ∈
({1,...,m}

t+1

)
}
else
{

return ei′ ∈ Y -set
}

}

In algorithm 13, we computed the operator ∆
e
xi, where e ∈ Nl, for a coefficient

aj . We used the recursive definition in equation (13.15) for this operator because
it is more efficient than the iterative definition in equation (13.16). Specifically, the
recursive definition allows for easy implementation of caching, where the previously
computed results can be stored and reused to avoid recomputation. For instance, we
have that

∆
(1,2,3,4)

x0 = ∆
(1,2,3)

x0 + ∆
(1,2,3)

x8 =

=

(
∆

(1,2)
x0 + ∆

(1,2)
x4

)
+

(
∆

(1,2)
x8 + ∆

(1,2)
x12

)
=

=

(
∆
1
x0 + ∆

1
x2 + ∆

1
x4 + ∆

1
x6

)
+

(
∆
1
x8 + ∆

1
x10 + ∆

1
x12 + ∆

1
x14

)
.

Therefore, starting from a1 to ak−1, one can cache all the intermediate results of the
operator ∆ in order to speed up the subsequent computations. For instance, in the
above example, by caching the results of ∆

(1,2,3)
x0 during a previous computation, it

is possible to compute only a half of the elements in ∆
(1,2,3,4)

x0. In contrast, it is not

straightforward to implement caching with the iterative definition of ∆.

Additionally, in order to improve the efficiency of algorithm 14 (explained below),
we return ∆

e
xi as a set of indices of the components of x taken into account. For

instance, ∆
(1,2,3,4)

x0 =
15∑
i=0

xi will be represented as the set {0, . . . , 15}.

In algorithm 14, we computed the set of all redundancy relations of aj as defined in
equation (13.11). As the redundancy relations of aj form a partition of the n com-
ponents of the word x = a ·G+ e, we used a set of indices In = {0, . . . ,n− 1} to
determine the next component xi of x to be considered. For each computed redun-
dancy relation, we remove the components xj that considered in the last computed

relation from In. For instance, ∆
(1,2,3,4)

x0 =
15∑
i=0

xi, therefore we remove the indices

Appendix A. Pseudocodes 122

Algorithm 13: Redundancy-Relation
Function Redundancy-Relation(e, i, C) { // compute ∆

e
xi for aj, with f (j) = e

{
Data: (j1, . . . , jt) = e = f (j) for some j, i ∈ {1, . . . ,n}, C, where n = 2m, and C is a dictionary used

to cache the already computed redundancy relations
Result: the set of indices of the components of x in ∆

e
xi

if (t = 0)
{

return (∅, C)
}
if ((e, i) is in C) // check if the pair (e, i) was already computed
{

// return the cached value C(e, i) = C((j1, . . . , jt), i) and the cache C
return (C(e, i), C)

}
if (t = 1) // if t == 1, then return ∆

j1
xi = xi + xϕ(i,j1) and C

{
i′ ←− Change-Bit(i, j1)
R←− {i, i′} // set of indices i and i′

return (R, C)
}
else // if t > 1, then compute ∆

e
xi by recursion

{
e′ ←− (j1, . . . , jt−1)
i′ ←− Change-Bit(i, jt)
(R1, C)←− Redundancy-Relation(e′, i, C) // compute ∆

e′
xi

C(e′, i)←− R1 // update cache with ∆
e′
xi

(R2,C)←− Redundancy-Relation(e′, i′, C) // compute ∆
e′
xi′

R←− R1 ∪R2
C(e′, i′)←− R2 // update cache with ∆

e′
xi′

C(e, i)←− R // update cache with ∆
e
xi

// return the set of indices of the components of x in ∆
e
xi and the cache C

return (R, C)
}

}

{0, . . . , 15} from In.

Algorithm 14: Redundancy-Relations
Function Redundancy-Relations(j, m, Y -set, C) { // compute the set of all redundancy

relations for aj

{
Data: j ∈ {1, . . . , k− 1}, m ∈ N, Y -set, C, where k = 2m−1, and C is a dictionary used to cache the

already computed redundancy relations
Result:

{
∆
e
xi

}
for i = 0, . . . ,n− 1, e and the updated cache C

n←− 2m

R←− empty list
In ←− {0, . . . ,n− 1}
e←− Row-To-Comb(j, m, Y -set)
while (In is not empty) {
{

i←− lowest element in In

(Rc, C)←− Redundancy-Relation(e, i, C)
append Rc to R
In ←− In \Rc // remove the set of indices in Rc from In

}
return (R, e, C)

}

Appendix A. Pseudocodes 123

In algorithm 15, we computed all the redundancy relations for each aj , where j =
jstart, . . . , jend, and we store them in a dictionary indexed by the coefficient degree
of aj . The reason for this choice is that, by definition, the first k − 1

2 (
m

m/2) rows of
the generator matrix G are fixed, meaning that two different generator matrices will
have the same first k − 1

2 (
m

m/2) rows. Hence, to optimize the process, we compute
aj , for 0 ≤ j < k − 1

2 (
m

m/2), and save the cache and the redundancy relations in
a file. Since the last 1

2 (
m

m/2) rows of the generator matrix are random and depend
on the complement-free set Y , during the key-generation phase, we can compute
the remaining redundancy relations, specifically the redundancy relations of aj , for
k− 1

2 (
m

m/2) ≤ j < k. In order to save the results in a file, we run the algorithm with
jstart = 0 and jend = k− 1

2 (
m

m/2)− 1, and during the key-generation phase, we run the
algorithm with jstart = k− 1

2 (
m

m/2) and jend = k− 1.

Algorithm 15: Redundancy-Relations-Set
Function Redundancy-Relations-Set(m, Y -set, C, jstart, jend) { // compute the set of all

redundancy relations for all aj, for j = jstart, . . . , jend
{

Data: C is the cache, m ∈ N, Y -set, jstart ∈ N, jend ∈ N, with 0 ≤ jstart < jend < k, and Y -set is the
complement-free set from Complement-Free-Set

Result:
{

∆
e
xi

}
for each aj , with i = 0, . . . , 2m − 1, j = jstart, . . . , jend

R←− empty dictionary
for (j = jstart to jend) {
{

(Rc, e, C)←− Redundancy-Relations(j, m, Y -set, C)
r←− Length(e) // r is the degree of the coefficient aj

if (R has not key r)
{

R(r)←− empty list
}
insert (j,Rc) into R(r) // insert (j,Rc) into R with key r

}
return R

}

In algorithm 16, we computed the complement-free set Y . Specifically, we list all the
element of ({1,...,m}

m/2) and sort them according to the rule defined in equation (13.8).
We refer to this list as the X-set. It is clear that the first half of the X-set is the
complement of the second half in reverse order. In particular, if A is the first half
of the X-set and B is the second half of the X-set in reverse order, then Ai is the
complement of Bi, where Ai and Bi are the i-th element of A and B, respectively.
Therefore, we can compute the complement-free set Y by randomly choosing an
element from A or B. In order to add some randomness, we shuffle the two lists in
the same way.

In algorithm 17, we define a pseudocode to compute the basis vector vi by using
the exponentiation by squaring, as previously noted in remark 13.1. Specifically, if
r = (0|1), with 0, 1 ∈ F2

2i , then vi = r
n

2i+1 . For instance, if n = 8 and r = (0|1),
then i = 0 and v1 = r

8
2 = (0|1)4 = (0, 1, 0, 1, 0, 1, 0, 1).

In algorithm 18, we computed the first k− 1
2 (

m
m/2) rows of the generator matrix G. In

particular, we compute the first m+ 1 rows using algorithm 17. We then compute the

Appendix A. Pseudocodes 124

Algorithm 16: Complement-Free-Set
Function Complement-Free-Set(m) { // build the partial generator matrix a the HL-code of

parameter m
{

Data: m ∈ N, where m | 2
Result: The complement-free Y -set
Y -set←− empty list
M←− {0, . . . , m− 1}
// compute all m

2 -combination of elements in M
X-set←− sorted list of e ∈

(M
m/2

)
// if we take all e in

(M
m/2

)
such that e1 ≤ e2, then the second half of X-set is the

complement of its first half
t←−

(m
m/4

)
// half of the size of X-set

A←− first t elements of X-set
B←− last t elements of X-set
B←− reverse B // B = (et+1, . . . , e2t) 7→ (e2t, . . . , et+1)
A←− shuffle A
// shuffle B such that Bj is always the complement of Aj

B←− shuffle B as A
for (j = 1 to t) {
{

r←− random binary number // r ∈ {0, 1} random
if (r = 0)
{

append Aj to Y -set // append the j-th element of A to Y -set
}
else // r == 1
{

append Bj to Y -set // append the j-th element of B to Y -set
}

}
return Y -set

}

Algorithm 17: Build-V-Vector
Function Build-V-Vector(i, n) {
{

Data: i ∈ N, n ∈ N, with n | 2i+1

Result: (0|1| . . . |0|1) = v ∈ F2
n, where 0, 1 ∈ F2

2i

s←− n
2i+1

v′ ←− empty vector
z←− 0 ∈ F2

2i

u←− 1 ∈ F2
2i

v←− (z|u)
while (s > 1) {
{

if (s is odd)
{
v′ ←− (v′|v) // concatenate v′ and v
s←− s− 1

}
v←− (v|v) // concatenate v with itself
s←− s

2
}
v←− (v|v′) // v = (0|1)

n
2i+1

return v
}

remaining k − 1
2 (

m
m/2)− (m+ 1) rows by computing all the pairwise products of the

vectors vi, for i = 1, . . . ,m, taking all the combinations of indices ({1,...,m}
j) (sorted

according to the rule defined in equation (13.8)), for j = 2, . . . , m2 − 1. As these rows
do not change, we save this matrix into a file. During the key generation phase,
we will read the matrix from the saved file to complete the remaining rows of the

Appendix A. Pseudocodes 125

generator matrix.

Algorithm 18: Build-HL-Partial-Generator-Matrix
Function Build-HL-Partial-Gen-Matrix(m) { // build the partial generator matrix a the

HL-code of parameter m
{

Data: m ∈ N, where m | 2
Result: The partial generator matrix G ∈ F2

k×n of an HL-code, where n = 2m, and k = 2m−1

n←− 2m

k←− 2m−1

G←− empty binary matrix of dimension k× n
G0 ←− 1 ∈ F2

n

for (i = 1 to m) {
{

Gi ←− Build-V-Vector(i− 1, n) // set the i-th row of G as (0|1)
n
2i

}
t←− m + 1
M←− {0, . . . , m− 1}
// compute all the pairwise products of the rows at j of G, with j = 1, . . . , m
for (i = 2 to m

2 − 1) {
{

// get all the ordered combinations in
(M

i

)
forall (e in

(M
i

)
)do

{
Gt ←−

∏
j∈e

Gj // pairwise products of rows

t←− t + 1;
}

}
return G

}

In algorithm 19, we computed the complete generator matrix of the HL-code by
using the complement-free set Y computed in algorithm 16, and the partial generator
matrix that was computed using the algorithm 18.

Algorithm 19: Build-HL-Generator-Matrix
Function Build-HL-Gen-Matrix(m, G, Y -set) { // build the full generator matrix a the HL-code

of parameter m
{

Data: m ∈ N, G ∈ F2
k×n, where m | 2, n = 2m, k = 2m−1, G is the partial generator matrix from

Build-HL-Partial-Gen-Matrix, and Y -set is the complement-free set from
Complement-Free-Set

Result: The full generator matrix G ∈ F2
k×n of an HL-code

// compute the index of the first row of G to insert the pairwise product from Y -set

i←−
m
2 −1∑
j=0

(m
j

)
+ 1

forall (e in Y -set)do
{

Gi ←−
∏
j∈e

Gj // pairwise products of rows

i←− i + 1;
}
return G

}

In order to decode the word x = a ·G+ e, we need to apply a multilevel decoding
starting with the coefficient aj of highest-degree. In algorithm 20, we decoded the
word x for the coefficient of degree r, which was computed using algorithm 15. We

Appendix A. Pseudocodes 126

also set the appropriate aj to the vector a′, which, in the end of algorithm 15, will
be equal to the weighted vector a in x one is looking for.

Note that, it is not necessary to count exactly how many redundancy relations for aj
have outcome equal to 1. Specifically, let s be the number of redundancy relations for
aj , if the number of ones (or the number of zeros) is greater than s

2 , then the value
of aj is equal 1 or 0, respectively.

Algorithm 20: Decode-Level-R
Function Decode-Level-R(R, r, x, G) {
{

Data: R, x ∈ F2
n, G ∈ F2

k×n, where x is the vector to decode, G is the generator matrix of the
HL-code, and R is the dictionary of the redundancy relations for the coefficients aj of degree r
as in Redundancy-Relations-Set

Result: a′ and v
k←− get the number of rows of G
n←− get the number of columns of G
a′ ←− 0 ∈ F2

k

v←− 0 ∈ F2
n

forall ((j,Rj) in R(r))do
{

t←− 0
u←− 0 // counter for the 1
z←− 0 // counter for the 0
s←− Length(Rj) // number of rendundancy relations for aj

// count how many e ∈ Rj are equal to 1, and how many are equal to 0
while (u ≤ s

2 and z ≤ s
2) {

{
// h is sum the components of x according to the t-th redundancy relation Rj

(t) of aj

h←−
∑

e∈Rj
(t)

∑
i∈e

xi

if (h = 1)
{

u←− u + 1
}
else
{

z←− z + 1
}
t←− t + 1

}
if (u = z)
{

// it is not possible to determine the proper value of aj

return Error!
}
elif (u > z) // aj = 1
{

v←− v + Gj // vj = Gj
a′j ←− 1 // set the j-th element of a′ as 1

}
else
{

// aj = 0
}

}
return v, a′

}

Finally, in algorithm 21, we fully decode the word x = a · G + e by calling the
algorithm 20 starting with the highest-degree coefficients. Specifically, we first reverse
sort the keys of the dictionary of redundancy relations computed in algorithm 15.
Since the keys of the dictionary are the degrees of the coefficients, the first element in

Appendix A. Pseudocodes 127

the list L is the highest degree, and the last element of L is the lowest degree. Next,
we call algorithm 20 for each degree in L, subtracting the resulting word from the
previous one. In particular, we call algorithm 20 with the word v, which is

• x before the first call of algorithm 20;

• x−x′ after the first call of algorithm 20, where x′ is the result of algorithm 20,
that is, x′ =

∑
aivi for each coefficient ai of highest degree.

After the loop, the vector v will be equal to a0v0 + e. In order to decode a0, we
count the number of bits in v that are equal to 1. If the number of ones is greater
then n

2 , then a0 is equal to 1, while if the number of ones is lower than n
2 , then a0 is

equal to 0.

Algorithm 21: Decode
Function Decode(x, G, R) {
{

Data: a ·G + e = x ∈ F2
n, G ∈ F2

k×n, R, where x is the vector to decode, G is the generator matrix of
the HL-code, and R is the dictionary of the redundancy relations for the coefficients aj of
degree r as in Redundancy-Relations-Set

Result: a ·G
k←− get the number of rows of G
n←− get the number of columns of G
a←− 0 ∈ F2

k

v←− x
L←− reverse sort the keys in R
forall (r in L)do
{

(v′, a′)←− Decode-Level-R(R, r, v, G)
v←− v− v′ // v−

∑
ajvj

a←− a + a′

}
// v = a0v0 + e
u←− count how many components of v are equal to 1
if (u = n

2)
{

// it is not possible to determine the proper value of a0
return Error!

}
elif (u > n

2) // a0 = 1
{

v←− v−G0 // v0 = G0
a0 ←− 1 // set the first element of a as 1

}
else
{

// a0 = 0
}
// now v = e and x− v = a ·G
return x− v, a

}

In summary, in order to optimize the overall process, we have divided our algorithm
into two steps. First, we compute the partial generator matrix using the algorithm 18,
and we save it to a file. Additionally, we calculate the redundancy relations for aj , with
1 ≤ j < k − 1

2 (
m

m/2), and save them along with the cache to a file. Once the partial
generator matrix and redundancy relations have been saved, we use the McEliece
protocol to encrypt/decrypt a message. Specifically, we define protocol 1, protocol 2,
and protocol 3.

Appendix A. Pseudocodes 128

Protocol 1: Key-Gen
Input: The parameter m ∈N of the HL-code
Result: Return the private-key and the public-key

1 Retrieve the partial generator matrix for m from the file, and get its dimension
k× n;

2 Compute a random complement-free set Y using algorithm 16, and determine
the last rows of the generator matrix G using algorithm 19;

3 Retrieve the redundancy relations for a HL-code of parameter m from the file,
and compute the remaining redundancy relations using algorithm 15 with
jstart = k− 1

2 (
m

m/2), and jend = k− 1. We refer to R as the complete dictionary
of all the redundancy relations;

4 Compute an invertible matrix S ∈ F2
k×k, and its inverse S−1;

5 Compute a permutation ρ ∈ Sym({1, . . . ,n}), and its inverse ρ−1;
6 Return the private-key (S−1, ρ−1,G,R) and the public-key G′ = ρ(S ·G), which

consists of the ρ-permutation of the columns of S ·G.

Protocol 2: Encrypt
Input: The public-key G′ ∈ F2

k×n, the parameter m of the code, and a message
h ∈ F2

k

Result: Return the encrypted message
1 Compute the minimum distance d = 2

m
2 , and t =

⌊
d−1

2

⌋
;

2 Compute a random word e ∈ F2
n such that wt(e) = t;

3 Return the encrypted message c = h ·G′ + e.

Protocol 3: Decrypt
Input: The private-key (S−1, ρ−1,G,R), the parameter m of the code, and the

encrypted message h ·G′ + e = c ∈ F2
n

Result: Retrieve the message m from the encrypted message c
1 Decode the word ρ−1(c) using algorithm 21, and get the word a = h · S;
2 Return the message h = a · S−1.

129

B Implementations and
benchmarks

In this appendix, we show the implementation codes and the results of the algorithm
described in appendix A using Python V3.6, and the SageMath library V9.0. Fur-
thermore, we benchmarked our algorithms using the function perf_counter (which
measures the WALL-time) of the library time of Python, and plotted the results
using the libraries plotly and matplotlib of Python.

Lastly, the hardware specifications of the machine used for these implementations are
provided in table B.1.

Table B.1: Hardware

SSD SAMSUNG 850 EVO - 256 GB

RAM 12 GB - 1600 MHz

Processor i5-5200U 2.2 GHz

B.1 ECDLP using the Log function
In this section, we show the results of our implementation of the pseudocodes in
appendix A.1. Specifically, in script B.1, we show our implementation codes using
the library SageMath, and the library gmpy2 (a Python’s wrapper of the library
GMP) to implement the computation over Q. Note that, in our implementation,
although in (7.3) we defined the p-adic evaluation differently, we forced the p-adic
evaluation of 0 to be equal to zero in order to easy handle the case Exp(0).

In fig. B.1 and fig. B.2, we plot the performance of the ECDLP algorithm discussed
in subsec. 8.4.1. Specifically, we computed the discrete logarithm for the elliptic
curve in short Weierstrass form given by the equation y2 = x3 − x+ 1

4 over Z/pkZ

for p = 3, p = 5, p = 17, and p = 37. It is noteworthy that, for p = 37, there
is a significant decrease in performance due to the high computational cost of the
operation n ⊗ P over Q (as outlined in section 8.2). Nonetheless, as n increases
(denoted as “logarithm” in the x-axis), there is an exponential slowdown, but for
p = 3, this growth is much smaller since the order of the Jacobian of this curve is
small.

https://www.sagemath.org/

Appendix B. Implementations and benchmarks 130

Figure B.1:
Benchmark for p = 3

and p = 37

Figure B.2:
Benchmark for p = 3,
p = 5 and p = 17

Figure B.3: Benchmark of the ECDLP for the elliptic curve given
by the equation y2 = x3 − x+ 1

4 over Z/pkZ

1 import gmpy2
2
3
4 # this function computes the p-adic evaluation of an integer
5 def p_adic_eval(a, p):
6 # a -> an integer
7 # p -> a prime number
8 if a == 0:
9 return 0 # if a = 0, then return 0

10 i = 0
11 while a % (p ** (i + 1)) == 0: # if p^(i + 1) divides a, then increment i
12 i += 1
13 return i
14
15
16 # this function computes the p-adic evaluation of a rational number
17 def p_adic_eval_fraction(a, p):
18 # a -> a rational number
19 # p -> a prime number
20 return p_adic_eval(a.numerator, p) - p_adic_eval(a.denominator, p)
21
22
23 # this function transforms an integer "a" in (+a) or (-a)
24 def mod_transform(a, q):
25 # a -> an integer
26 # q -> an integer
27 if a <= q // 2: # if a <= q / 2
28 return a
29 else: # if a > q / 2
30 return - (q - a)
31
32
33 # this function transforms a point P, whose projective coordinates are over the rationals,
34 # into an equivalent point Q reduced modulo p^k
35 def reduce_point(P, p, k):
36 # P -> point belonging to an elliptic curve W
37 # p -> an odd prime number
38 # k -> a positive integer
39
40 q = p ** k
41 # g = GCD(Z_P, X_P, Y_P)
42 g = gmpy2.gcd(gmpy2.gcd(P[0].numerator, P[1].numerator), P[2].numerator)
43 (Z, X, Y) = (P[0] / g, P[1] / g, P[2] / g)
44 z = (Z.numerator * gmpy2.invert(Z.denominator, q)) % q # z = Z (mod p^k)
45 x = (X.numerator * gmpy2.invert(X.denominator, q)) % q # x = X (mod p^k)
46 y = (Y.numerator * gmpy2.invert(Y.denominator, q)) % q # y = Y (mod p^k)
47 return (z, x, mod_transform(y, q))
48
49
50
51 # this function computes the s-th coefficient of the series expansion of wp(z)
52 def get_exp_coefficient(g2, g3, s, coefficients):
53 # s -> integer
54 # g2, g3 -> elliptic invariants defining an elliptic curve in short Weierstrass form
55 # given by the equation (1/2 wp’(z))^2 = wp(z)^3 - g2 * wp(z) - g3
56 # coefficients -> list of the already computed coefficients of the series expansion
57
58 if s < 2:
59 return gmpy2.mpq(0)
60 elif s == 2:
61 return gmpy2.mpq(g2, 20) # g2 / 20
62 elif s == 3:
63 return gmpy2.mpq(g3, 28) # g3 / 28

Appendix B. Implementations and benchmarks 131

64 c = gmpy2.mpq(3, (2 * s + 1) * (s - 3)) # c = 3 / ((2 * s + 1) * (s - 3))
65 return c * sum([2 * coefficients[m] * coefficients[s - m] if m != s - m else

coefficients[m] * coefficients[s - m] for m in range(2, s - 2 + 1) if m <= s - m])
66
67
68 # this functions computes the series expansion of wp(z) for an elliptic
69 # curve in short Weierstrass form W
70 def weierstrass_p(W, p, k, z):
71 # W -> Elliptic curve in short Weierstrass form over Z / p^k z
72 # z -> integer such that p divides z
73
74 a, b = W
75 g2, g3 = - 4 * a, - 4 * b
76 z = gmpy2.mpq(z)
77 wp_z = z # z^3 * wp(z) = z (mod p)
78 s, e, e_1 = 2, 0, max(1, p_adic_eval_fraction(z, p))
79 # list of the coefficients
80 # set coefficients[0] as 0
81 # set coefficients[1] as 0
82 coefficients = [gmpy2.mpq(0), gmpy2.mpq(0)]
83 while e < k:
84 c_s = get_exp_coefficient(g2, g3, s, coefficients)
85 coefficients.append(c_s)
86 r = p_adic_eval_fraction(c_s, p) # max j such that p^j divides c_s
87 e_2 = 2 * s - 2 # exponent of the s-th term of the series expansion of wp(z)
88 e = e_1 * e_2 + r # p-adic evaluation of the s-th term of the series expansion of wp

(z)
89 if e < k: # c_s z^(e_2) is not zero modulo p^k
90 wp_z += c_s * (z ** e_2) # wp(z) = wp(z) + c_s * z^(2s - 2)
91 s += 1
92 return wp_z # wp(z)
93
94
95 # this functions computes a point belonging to Im(Exp_W), where W is an elliptic
96 # curve in short Weierstrass form
97 def exp(W, p, k, z):
98 # W -> Elliptic curve in short Weierstrass form over Z / p^k z
99 # z -> integer such that p divides z

100
101 a, b = W
102 g2, g3 = - 4 * a, - 4 * b
103
104 z = gmpy2.mpq(z)
105 z3 = z ** 3
106 # z^3 * wp(z) = z (mod p)
107 # z^3 * wp’(z) = -2 (mod p)
108 wp_z, der_wp_z = z, gmpy2.mpq(-2)
109 s, e, e_1 = 2, 0, max(1, p_adic_eval_fraction(z, p))
110 # list of the coefficients
111 # set coefficients[0] as 0
112 # set coefficients[1] as 0
113 coefficients = [gmpy2.mpq(0), gmpy2.mpq(0)]
114 while e < k:
115 c_s = get_exp_coefficient(g2, g3, s, coefficients)
116 coefficients.append(c_s)
117 r = p_adic_eval_fraction(c_s, p) # max j such that p^j divides c_s
118 e_2 = 2 * s - 2 # exponent of the s-th term of the series expansion of wp(z)
119 e = e_1 * ((e_2 - 1) + 3) + r # p-adic evaluation of the s-th term of the series

expansion of (z^3 * wp’(z))
120 if e < k: # c_s z^3 z^(e_2 - 1) is not zero modulo p^k
121 wp_z += c_s * (z ** (e_2 + 3)) # wp(z) = wp(z) + c_s * z^3 * z^(2s - 2)
122 der_wp_z += e_2 * c_s * (z ** (e_2 + 3 - 1)) # wp’(z) = wp’(z) + (2s - 2) * c_s

* z^3 * z^(2s - 2 - 1)
123 s += 1
124 P = (z3, wp_z, der_wp_z / 2) # P = [z^3 : z^3 * wp(z), z^3/2 wp’(z)]
125 return reduce_point(P, p, k)
126
127
128 # this functions checks if the projective point P is equivalent to the projective point Q
129 def are_equals(P, Q, mod=None):
130 # P -> point belonging to an elliptic curve W
131 # Q -> point belonging to an elliptic curve W
132
133 zp, xp, yp = P
134 zq, xq, yq = Q
135 if mod is None:
136 return xp * zq == xq * zp and yp * zq == yq * zp and xp * yq == xq * yp
137 else:
138 return (xp * zq - xq * zp) % mod == (yp * zq - yq * zp) % mod == (xp * yq - xq * yp

) % mod == 0
139
140
141 # this functions computes the inverse of the function "exp"
142 def log(W, p, k, P):
143 # W -> Elliptic curve in short Weierstrass form over Z / p^k z
144 # P -> point belonging to Im(Exp_W)

Appendix B. Implementations and benchmarks 132

145
146 a, b = W
147 q = p ** k # q = p^k
148 g2, g3 = - 4 * a, - 4 * b
149 Z, X, Y = P
150 if k <= 4 or Z == 0:
151 XY = gmpy2.mpq(-X) / Y # XY = - X / Y
152 z = (XY.numerator * gmpy2.invert(XY.denominator, q)) % q # z = (- X / Y) mod (p ^ k)
153 return gmpy2.mpq(z)
154 p5 = p ** 5 # p5 = p ^ 5
155 z = gmpy2.mpq(X, Y) * (-1 + gmpy2.mpq(g2, 20) * gmpy2.mpq(Z ** 2, X ** 2)) # z = (X / Y

) * (-1 + (g2/20) * (Z / X)^2)
156 z = gmpy2.mpq((z.numerator * gmpy2.invert(z.denominator, p5)) % p5) # z = z (mod p^5)
157 if k == 5:
158 return z
159 c_set = set([z]) # init c_set as a singleton with z (mod p^5)
160 for i in range(6, k + 1):
161 curr_c_set = set([])
162 p_i_prev = p ** (i - 1) # p_i_prev = p ^ (i - 1)
163 p_i_curr = p * p_i_prev # p_i_curr = p ^ i
164 for z in c_set:
165 # computes the conjugates of z in c_set
166 for j in range(p):
167 z_curr = gmpy2.mpq(z + j * p_i_prev) # z_curr = z + j * p^(i - 1)
168 wp_z_curr = weierstrass_p(W, p, k, z_curr) # wp(z_curr) (mod p^k) = L / M
169 # check if wp(z_curr) is equivalent to X / Z modulo p^i, that is,
170 # check if L * Z - M * X = 0 (mod p^i)
171 if (Z * wp_z_curr.numerator - X * wp_z_curr.denominator) % p_i_curr == 0:
172 if are_equals(P, exp(W, p, k, z_curr), mod=q): # if P = exp(z_curr) mod p

^k
173 return z_curr
174 else: # z_curr is a conjugate but not the full logarithm of P
175 curr_c_set.add(z_curr)
176 c_set = curr_c_set.copy() # c_set = curr_c_set
177 for z in c_set:
178 if z < q and are_equals(P, exp(W, p, k, z), mod=q):
179 return z
180 raise Exception("The logarithm of {} not exists modulo {}^{}".format(P, p, k))
181
182
183 # this functions computes the projective opposite of a point P belonging to an
184 # elliptic curve in short Weierstrass form W
185 def projective_opposite(P):
186 zp, xp, yp = P
187 return (zp, xp, -yp)
188
189
190 # this function checks if P is the point at infinity
191 def is_infinity_point(P):
192 if P[0] == P[1] == 0 and P[2] != 0:
193 return True
194 return False
195
196
197 # this functions computes the projective sum P + Q for an
198 # elliptic curve in short Weierstrass form W
199 def projective_add(W, P, Q, O):
200 # W -> Elliptic curve in short Weierstrass form over rationals
201 # P -> point belonging to W
202 # Q -> point belonging to W
203 # O -> the point at infinity
204
205 if is_infinity_point(P): # if P = Omega
206 return Q
207 if is_infinity_point(Q): # if Q = Omega
208 return P
209
210 a4, a6 = W
211
212 zp, xp, yp = P
213 zq, xq, yq = Q
214
215 zpzq = zp * zq
216 xpzq, xqzp = xp * zq, xq * zp
217 ypzq, yqzp = yp * zq, yq * zp
218
219 if xpzq == xqzp and ypzq == - yqzp: # if P = -Q
220 return O
221
222 if xpzq == xqzp and ypzq == yqzp: # if P = Q -> doubling formulas
223 E = 3 * xp * xp + a4 * zp * zp
224 D = zp * (2 * yp)
225 else: # if P is different from Q -> add formulas
226 E = yqzp - ypzq
227 D = xqzp - xpzq
228

Appendix B. Implementations and benchmarks 133

229 D2 = D ** 2
230 H = zpzq * E * E - D2 * (xpzq + xqzp)
231 F = zq * D2 * (xp * E - D * yp) - H * E
232 z, x, y = zpzq * D2 * D, H * D, F
233 return (z, x, y)
234
235
236 # this functions computes n * P for an elliptic curve in short Weierstrass form W
237 def projective_mul(W, P, n):
238 # W -> Elliptic curve in short Weierstrass form over rationals
239 # P -> point belonging to W
240 # n -> integer
241
242 # if n < 0, then set P as its opposite according to the group law of W
243 P = P if n >= 0 else projective_opposite(P)
244 one = (gmpy2.mpq(0), gmpy2.mpq(0), gmpy2.mpq(1)) # one = Omega
245 Q = (gmpy2.mpq(0), gmpy2.mpq(0), gmpy2.mpq(1)) # Q = Omega
246 n = abs(int(n)) # n = |n|
247 for d in bin(n)[2:]: # d = binary representation of n
248 Q = projective_add(W, Q, Q, one) # Q = Q + Q
249 if d == "1":
250 Q = projective_add(W, Q, P, one) # Q = Q + P
251 return Q
252
253
254 # this functions transforms a point P, whose projective coordinates are rationals,
255 # in an equivalent point Q, whose projective coordinates are integers
256 def normalize(P):
257 # compute the LCM of the denominators of the projective coordinates of P
258 t = gmpy2.lcm(gmpy2.lcm(P[0].denominator, P[1].denominator), P[2].denominator)
259 Q = (P[0] * t, P[1] * t, P[2] * t)
260 # compute the GCD of the numerators of the projective coordinates of Q
261 t = gmpy2.gcd(gmpy2.gcd(Q[0].numerator, Q[1].numerator), Q[2].numerator)
262 Q = (Q[0] / t, Q[1] / t, Q[2] / t)
263 return Q
264
265
266 # this functions computes the discrete logarithm of a point Q = n * P, for some integer n,
267 # belonging to an elliptic curve in short Weierstrass form W over the rationals
268 def ecdlp(W, P, Q, p, order):
269 # W -> Elliptic curve in short Weierstrass form over rationals
270 # P -> point such that (P - Omega) is a generator of Jacobian(W)
271 # Q -> point such that (Q - Omega) = h * (P - Omega)
272 # order -> order of Jacobian(W) over Z / p Z
273
274 if are_equals(P, Q): return 1
275 F = GF(p)
276 W_a4, W_a6 = gmpy2.mpq(str(W.a4())), gmpy2.mpq(str(W.a6()))
277
278 # compute the value "a" such that h = a (mod order)
279 a = 0
280 P_mod = P.change_ring(F) # P (mod p)
281 try:
282 Q_mod = Q.change_ring(F) # Q (mod p)
283 except ZeroDivisionError:
284 # the discrete logarithm of Q is a multiple of order
285 # Q = j * order * P, for some integer j
286 curve = P.parent() # get curve W from P
287 omega = curve(0) # point at infinity
288 Q_mod = omega.change_ring(F) # set Mod(Q) as the point at infinity over GF(p)
289 while a < order and Q_mod != a * P_mod:
290 a += 1
291
292 mP_list = normalize([gmpy2.mpq(str(e)) for e in (1,) + (-P).xy()]) # -P
293 P_list = normalize([gmpy2.mpq(str(e)) for e in (1,) + P.xy()]) # P
294 Q_list = normalize([gmpy2.mpq(str(e)) for e in (1,) + Q.xy()]) # Q
295
296 O = (gmpy2.mpq(0), gmpy2.mpq(0), gmpy2.mpq(1)) # O = Omega
297 aP = projective_mul((W_a4, W_a6), mP_list, a) # aP = - a * P
298 R = projective_add((W_a4, W_a6), Q_list, aP, O) # R = Q - a * P
299 S = projective_mul((W_a4, W_a6), P_list, order) # S = order * P
300
301 h, i = a, 2
302 while h * P != Q:
303 F_i = Zmod(p ** i) # Z / p^i Z
304 # a4 -> W_a4 (mod p^i)
305 # a6 -> W_a6 (mod p^i)
306 a4, a6 = gmpy2.mpq(str(F_i(W_a4))), gmpy2.mpq(str(F_i(W_a6)))
307 R_mod = tuple([gmpy2.mpq(str(F_i(e))) for e in R]) # R (mod p^i)
308 S_mod = tuple([gmpy2.mpq(str(F_i(e))) for e in S]) # S (mod p^i)
309 l1 = log((a4, a6), p, i, S_mod) / p # l1 = (Log(S) (mod p^i)) / p = (Log(order * P)

(mod p^i)) / p
310 l2 = log((a4, a6), p, i, R_mod) / p # l2 = (Log(R) (mod p^i)) / p = (Log(Q - a * P)

(mod p^i)) / p
311 if l1 != 0:
312 m = i - 1 # solution modulo p^(i - 1)

Appendix B. Implementations and benchmarks 134

313 F_m = Zmod(p ** m)
314 l2l1 = l_2 / l1 # l2 / l1
315 if F_m(l2l1.denominator).is_unit(): # check if l2 / l1 is invertible modulo p^(i

- 1)
316 r = int(F_m(l2 / l1)) # r = (l2 / l1) (mod p^(i - 1))
317 h = int(a + r * order) # h = a + r * order
318 i += 1
319 return h
320
321
322 # this function checks if the implemented funcion "ecdlp" works for
323 # the elliptic curve in short Weierstrass form given by the equation
324 # y^2 = x^3 - x + 1/4
325 def test_ecdlp():
326 p = 3
327 h = 57
328 a4, a6 = (gmpy2.mpq(-1), gmpy2.mpq(1, 4))
329 E = EllipticCurve(QQ, (a4, a6)) # y^2 = x^3 - x + 1/4
330 curve_order_mod_p = 7 # card(J(E) over GF(p)) = 7
331 P = E.point((2, 5/2)) # (2, 5/2)
332 Q = h * P
333 computed_h = ecdlp(E, P, Q, p, curve_order_mod_p)
334 print("Real h −> {}".format(h))
335 print("Computed h −> {}".format(computed_h))
336
337
338 if __name__ == "__main__":
339 test_ecdlp()

Script B.1: Python code that implements the algorithms in
appendix A.1

B.2 AG Goppa codes for Edwards curves
In this section, we show our implementation code in script B.2 of the algorithms in
appendix A.2. Additionally, the function test_goppa compute the generator matrix,
and the parity-check matrix that we used in section 11.3.

1 # this function computes a basis for the Riemann-Roch space L(D) over
2 # GF(p), where D = P + (t - 1) O, with O = (0, 1)
3 def edwards_rr_basis(P, p, t):
4 # P -> point belonging to an Edwards curve E
5 # p -> odd prime defining the charactestic of the ground field of E
6 # t -> integer defining the degree of the divisor D = P + (t - 1) * O
7 # used to compute the basis of L(D)
8
9 R.<X, Y> = PolynomialRing(GF(p)) # GF(p)[X, Y]

10 (a, b) = P
11 F_0 = R(1)
12 F_2 = 1 / (Y - 1)
13 F_3 = ((Y + 1) / X) * F_2
14 if P == (0, 1): # if P = O
15 F = [F_0, F_2, F_3]
16 t += 1
17 elif P == (0, -1): # if P = O’
18 F_1 = 1 / X
19 F = [F_0, F_1, F_2, F_3]
20 elif P == (1, 0): # if P = H
21 F_1 = ((X + 1) * (Y + 1)) / (X * Y)
22 F = [F_0, F_1, F_2, F_3]
23 elif P == (-1, 0): # if P = H’
24 F_1 = ((X - 1) * (Y + 1)) / (X * Y)
25 F = [F_0, F_1, F_2, F_3]
26 else: # if P is different from O, O’, H, and H’
27 F_1 = (X * (Y + b)) / ((X - a) * (Y - 1))
28 F = [F_0, F_1, F_2, F_3]
29 while len(F) < t:
30 i = len(F)
31 # h = floor(i / 2)
32 # m = i (mod 2)
33 h, m = divmod(i, 2)
34 if m == 0: # i = 2h
35 F_i = F_2 * F[2*h - 2]
36 else: # i = 2h + 1
37 F_i = ((Y + 1) / X) * F[2 * h]
38 F.append(F_i)
39 return F
40
41

Appendix B. Implementations and benchmarks 135

42 # this function computes a generator matrix for an algebraic-geometric
43 # Goppa code for an Edwards curve E
44 def goppa_edwards_gen_matrix(P, F, p):
45 # P -> list of point belonging to an Edwards curve E defined over GF(p)
46 # F -> list of basis functions belonging to the Riemann-Roch space L(D),
47 # where D = Q + m O, with Q and O = (0, 1) belonging to E
48 # p -> characteristic of the ground field of E
49 n, m = len(F), len(P)
50 G = matrix.zero(GF(p), n, m)
51 for i in range(n):
52 for j in range(m):
53 x, y = P[j]
54 G[i, j] = F[i](x, y)
55 return G.echelon_form() # compute the standard form of G
56
57
58 def test_goppa():
59 t = 5 # degree of the divisor D used to compute the basis of L(D)
60 p = 17 # characteristic of the ground field of the Edwards curve
61 P = (2, 15) # point belonging to the Edwards curve E defined by the equation x^2 + y^2 =

1 + 10 x^2 y^2
62 F = edwards_rr_basis(P, p, t) # compute the basis of L(P + (t - 1) O), where O = (0, 1)
63 # Q -> list of points belonging to the Edwards curve E
64 Q = [(5, 8), (5, 9), (6, 3), (6, 14), (8, 5), (8, 12), (9, 5)]
65 # compute the generator matrix (in standard form) of the algebraic-geometric Goppa code
66 # for the Edwards curve E by using the list of points in "Q",
67 # and the functions in "F"
68 G = goppa_edwards_gen_matrix(Q, F, p)
69 r = len(Q) - t
70 # compute the parity-check matrix of the code
71 # matrix.identity(r) -> identity matrix of order "r"
72 # -G[:, -r:].T -> takes the opposite of the transpose of the last "r" columns of "G"
73 H = (-G[:, -r:].T).augment(matrix.identity(r))
74 print("Basis functions −> {}".format(F))
75 print("\nGenerator matrix −>")
76 print(G)
77 print("\nParity−check matrix −>")
78 print(H)
79
80
81 if __name__ == "__main__":
82 test_goppa()

Script B.2: Python code that implements the algorithms in
appendix A.2

B.3 AG Goppa codes for hyperelliptic curves
In this section, we show our implementation code in script B.3 of the algorithms in ap-
pendix A.3. Additionally, the function test_goppa compute the generator matrix, and
the parity-check matrix for an algebraic-geometric Goppa code for an hyperelliptic
curve H of genus g ≥ s = 11 over GF(101).

1 import itertools
2 import functools
3 import operator
4
5
6 set_random_seed(1871) # set the seed for the pseudo-random number generator used by Sage
7
8
9 # this function computes a random pair (x_r, y_r) such that u(x_r) is different

10 # from zero, x_r is not in the set "evals"
11 def get_random_point(F, ux, evals):
12 # F -> field used to generate a random pair (x_r, y_r)
13 # ux -> polynomial u(x) used to check if u(x_r) is different from zero
14 # evals -> set of abscissas such that x_r not belongs to "evals"
15 x_r = F.random_element()
16 while ux(x_r) == 0 or x_r in evals: # if u(x_r) = 0 or x_r is an element of "evals",

then generate a new "x_r"
17 x_r = F.random_element()
18 y_r = F.random_element()
19 while y_r == 0: # reject any pair such that y_r = 0
20 y_r = F.random_element()
21 return (x_r, y_r)
22
23
24 # this function checks if an algebraic-geometric Goppa code for the set of
25 # functions "funcs", and the set of "points" is MDS

Appendix B. Implementations and benchmarks 136

26 def check_MDS(F, funcs, points):
27 # F -> GF(p)
28 # funcs -> set of functions belonging to a basis of the Riemann-Roch space
29 # L(D) for an hyperelliptic curve H over F
30 # points -> set of points belonging to the curve H
31
32 n, m = len(funcs), len(points)
33 G = matrix.zero(F, n, m) # matrix of zeros over the field F, whose dimensions are n x m
34
35 # computes the generator matrix by using the points passed to this function
36 try:
37 for i in range(n):
38 for j in range(m):
39 x_r, y_r = points[j]
40 G[i, j] = funcs[i](x=x_r, y=y_r)
41
42 # check if all the minors of order "n" of G are full rank
43 ranks = {}
44 for cols in itertools.combinations(range(G.ncols()), n):
45 GG = G.matrix_from_columns(cols)
46 r = GG.rank()
47 ranks[r] = ranks.get(r, []) + [cols]
48 return len(list(ranks)) == 1 and n in ranks
49 except ZeroDivisionError:
50 return False
51
52
53 # this function computes a basis of the Riemann-Roch space L(D), where
54 # D = ((u(x), v(x)) + (n + g - 1) Omega) is a divisor belonging to the Jacobian of
55 # an hyperelliptic curve H, whose genus "g" is greater or equal to "s", over GF(p).
56 # Additionally, this function determines "m" random points in order to compute
57 # the generator matrix for an algebraic-geometric Goppa code for the curve H
58 def goppa_hec_generator_matrix(n, m, p, s):
59 # m -> number of random points to determine
60 # n -> dimension of the basis of the Riemann-Roch space
61 # p -> characteristic of the ground field of the hyperelliptic curve H of genus "g"
62 # given by the equation (v(x))^2 = f(x) + k(x) u(x), for some k(x) in GF(p)[x]
63 # s -> integer such that g >= s
64
65 F = GF(p)
66 R.<x, y> = PolynomialRing(F) # GF(p)[x, y]
67 GFx = PolynomialRing(F, ’x’) # GF(p)[x]
68
69 if s == 0:
70 ux, vx = GFx(1), GFx(0)
71 else:
72 l = randint(0, s - 1) # l is a random integer in [0, s - 1]
73 ux = GFx(1)
74 x_var = GFx.gen() # x of GF(p)[x]
75 for i in range(s):
76 x_i = F.random_element()
77 ux *= (x_var - x_i)
78 vx = GFx.random_element(l) # random polynomial of degree l in GF(p)[x]
79 # if v(x_i) = 0 for multiple abscissas x_i,
80 # then (u(x), v(x)) is not a Mumford representation of a divisor
81 while gcd(gcd(ux, ux.derivative()), vx) != 1:
82 vx = GFx.random_element(l)
83
84 # compute the minimal genus for the hyperelliptic curve
85 # with these parameters
86 g = s
87 while (2 * g + 2) - s - (m // 2) - (m % 2) < 0:
88 g += 1
89
90 degfx = 2 * g + 1 # degree of the polynomial f(x)
91 degD = n + g - 1 # deg(D)
92
93 h = (degD - s) // 2
94 k = (degD - (degfx - s)) // 2
95
96 psi = (y + vx) / ux # psi = (y + v(x)) / u(x)
97 funcs = [x^i for i in range(0, h + 1)] + [psi * x^j for j in range(0, k + 1)]
98
99 points = []

100 evals = set([0])
101 counter, MAX_TRIES = 0, 10
102 while len(points) < m:
103 x_r, y_r = get_random_point(F, ux, evals)
104 if m % 2 == 1 and len(points) + 1 == m:
105 R = points + [(x_r, y_r)]
106 else:
107 R = points + [(x_r, y_r), (x_r, - y_r)]
108 if len(points) >= n - 2 and not check_MDS(F, funcs, R):
109 counter += 1
110 else:
111 counter = 0

Appendix B. Implementations and benchmarks 137

112 points = R[:] # points = copy(R)
113 evals.add(x_r) # evals = evals U {x_r}
114 if counter >= MAX_TRIES:
115 points = []
116 evals = set([0])
117
118 # computes the generator matrix for the AG Goppa code
119 G = matrix.zero(F, n, m)
120 for i in range(n):
121 for j in range(m):
122 x_r, y_r = points[j]
123 G[i, j] = funcs[i](x=x_r, y=y_r)
124 return G.echelon_form()
125
126
127 def test_goppa():
128 # OUTPUT OF THIS FUNCTION
129 # Generator matrix ->
130 # [1 0 0 0 0 23 54 2 90 87]
131 # [0 1 0 0 0 78 84 35 98 0]
132 # [0 0 1 0 0 81 83 32 65 5]
133 # [0 0 0 1 0 20 21 72 88 47]
134 # [0 0 0 0 1 1 62 62 64 64]
135 #
136 # Parity-check matrix ->
137 # [78 23 20 81 100 1 0 0 0 0]
138 # [47 17 18 80 39 0 1 0 0 0]
139 # [99 66 69 29 39 0 0 1 0 0]
140 # [11 3 36 13 37 0 0 0 1 0]
141 # [14 0 96 54 37 0 0 0 0 1]
142
143 s = 11
144 p = 101
145 n, m = 5, 10
146 G = goppa_hec_generator_matrix(n, m, p, s)
147 r = m - n
148 H = (-G[:, -r:].T).augment(matrix.identity(r))
149 print("Generator matrix −>")
150 print(G)
151 print("\nParity−check matrix −>")
152 print(H)
153
154
155 if __name__ == "__main__":
156 test_goppa()

Script B.3: Python code that implements the algorithms in
appendix A.3

B.4 HL-codes
In this section, we show the implementations codes in script B.4, and the bench-
mark results of our implementation with respect to the algorithms and protocols in
appendix A.4. Specifically, we ran the protocols 2 and 3 one hundred times on ran-
dom codewords, and measured the WALL time needed to encrypt and decrypt those
codewords, respectively.

Since we implemented our algorithms in Python, we optimize the code represent-
ing each redundancy relation as an integer of n = 2m bits. More precisely,
for a given word x = a · G + e = (x0,x1, . . . ,xn−1), we associated each redun-
dancy relation ∆

e
xi =

∑
xj to an integer such that its j-th most significant bit

(MSB) is equal to 1. For instance, if n = 16 and the redundancy relation is
x0 + x1 + x4 + x5 (that is, the first redundancy relation of a6 in equation (13.18)),
then x0 + x1 + x4 + x5 = (1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)2 = 52224. By using
this representation, we pre-computed the bit-arrays for each component of x and used
them to optimize algorithm 14 and algorithm 20. In particular, in the algorithm 14,
we composed the redundancy relation as a bitwise-OR (|) of the corresponding bit-
arrays. For example, x0 + x1 is equivalent to the bitwise-OR of the bit-array of
x0 and the bit-array of x1, which are (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)2 = 32768

Appendix B. Implementations and benchmarks 138

and (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)2 = 16384 respectively, that is, x0 + x1 =
32768|16384 = 49152. In this way, the set of redundancy relations for each aj is a set
of integers. Moreover, in algorithm 20, we also represented the word x as an integer
and the evaluation of each redundancy relation is equivalent to counting the number
of bits equal to 1 in

(
∆
e
xi
)

& x, where (&) is the bitwise-AND between the two
integer representations. For instance, in order to evaluate the redundancy relation
x0 + x1 + x4 + x5, we count the number of bits equal to 1 in the integer 52224 & x.
In particular, since 1 + 1 = 0 in binary arithmetic, it follows that the outcome of
the redundancy relation is equal to 1 if and only if the number of ones among of the
involved components is odd. Therefore, if the number of ones in

(
∆
e
xi
)

& x is odd,
then the outcome of ∆

e
xi is equal to 1.

In fig. B.4 and fig. B.5, we plot the encryption and the decoding times (in seconds)
respectively, using our algorithms for a random HL-code with parameter m = 10.
Additionally, in fig. B.7 and fig. B.8, we plot the encryption and the decoding times
(in seconds) respectively, using our algorithms for a random HL-code with parameter
m = 12.

Finally, in table B.2, we show the mean times for the encryption and the decryption, as
well as the time for the key-generation phase. It is worth recalling that in protocol 1,
we retrieve the partial generator matrix (computed using algorithm 18) from the disk.
In particular, for m = 12, we have that protocol 1 required 6.59 seconds, with 3.2
seconds spent on reading the matrix from the disk.

Figure B.4: En-
cryption times for an
HL-code of parameter

m = 10

Figure B.5: De-
cryption times for an
HL-code of parameter

m = 10

Figure B.6: WALL-time for an HL-code of parameter m = 10

Figure B.7: En-
cryption times for an
HL-code of parameter

m = 12

Figure B.8: De-
cryption times for an
HL-code of parameter

m = 12

Figure B.9: WALL-time for an HL-code of parameter m = 12

Appendix B. Implementations and benchmarks 139

Table B.2: Mean time for the protocol

m Key-Gen (s) Mean encryption time (s) Mean decryption time (s)

10 0.3297 0.0023 0.1758

12 6.5884 0.0094 3.5341

1 import os
2 import time
3 import pickle
4 import shutil
5 import operator
6 import itertools
7 import functools
8 import numpy as np
9 from sage.coding.decoder import Decoder

10 from sage.matrix.constructor import random_unimodular_matrix
11 from plotly.graph_objs import Layout, Figure, Bar, Scattergl # For OpenGL
12
13
14 DEBUG = False
15 ENABLE_FILE_LOG = False
16 LOG_FILE = "./infosetdec.txt"
17
18
19 # this function computes the current wall time
20 def get_time(perf=False):
21 return time.process_time() if not perf else time.perf_counter()
22
23
24 # this function prints the text into a log file or to console
25 def print_log(text):
26 if ENABLE_FILE_LOG:
27 with open(LOG_FILE, "a") as file:
28 file.write("{}\n".format(text))
29 else:
30 print(text)
31
32
33 # this function computes the standard form of a generator matrix
34 # for an error-correcting code
35 def canonical_form(M, d):
36 LCode = codes.encoders.LinearCodeSystematicEncoder(LinearCode(M, d=d))
37 P = Permutation(LCode.systematic_permutation()).to_matrix()
38 M = LCode.generator_matrix() * P
39 return M, LCode.systematic_permutation()
40
41
42
43 # class used to save data on disk
44 class HLCodeRelationData(object):
45 def __init__(self, data):
46 self.data = data
47 def get_data(self):
48 return self.data
49
50
51 # this class handles the redundancy relations for a HL-code
52 class HLCodeRelation(object):
53 def __init__(self, m):
54 # m -> parameter of the HL-code
55 self.m = m
56 # n = 2^m
57 # k = 2^(m - 1)
58 self.n, self.k = 1 << m, 1 << (m - 1)
59 # bitmasks for every integer in [0, n - 1]
60 self.bit_mask = {i: 1 << (self.n - 1 - i) for i in range(self.n)}
61 self.bit_mask_all = (1 << self.n) - 1
62 @staticmethod
63 # this function gets the saved redundacy relations from the disk
64 def get_database(DIR, m):
65 start = get_time()
66 filepath = os.path.join(DIR, "{}".format(m))
67 if not os.path.exists(filepath):
68 D = HLCodeRelation(m)
69 D.build_partial_relations()
70 return (D.positions, D.comb_relations)
71 with open(filepath, "rb") as f:
72 D = pickle.load(f)
73 data = D.get_data()

Appendix B. Implementations and benchmarks 140

74 end = get_time() - start
75 print_log("Got database in {}s".format(end))
76 return data
77 # this function computes a subset of the redundacy relations and save them on the disk
78 def build_database(self, DIR):
79 if DIR is not None and not os.path.exists(DIR):
80 os.mkdir(DIR)
81 self.build_partial_relations()
82 D = HLCodeRelationData((self.positions, self.comb_relations))
83 with open(os.path.join(DIR, "{}".format(self.m)), "wb") as f:
84 pickle.dump(D, f, protocol=-1)
85 # this function computes the complete set of redundacy relations
86 def build_relations(self, Y_set, DIR=None):
87 start = get_time()
88 self.relations = [{} for _ in range(1, self.m // 2)]
89 if DIR is None:
90 self.build_partial_relations()
91 else: # get relations from the disk
92 self.positions, self.comb_relations = HLCodeRelation.get_database(DIR, self.m)
93
94 l = int(1)
95 for e in sorted(self.comb_relations, key=len):
96 m = int(len(e) - 1)
97 self.relations[m][l] = list(v for k, v in self.comb_relations[e].items() if k in

self.positions[e])
98 l += 1
99

100 y_start = get_time()
101 curr_relations = {}
102 # compute the redundancy relations related to the Y-set
103 for indices in Y_set:
104 self.__compute_relation_comb(indices)
105 curr_relations[l] = list(v for k, v in self.comb_relations[indices].items() if k

in self.positions[indices])
106 l += 1
107 self.relations.append(curr_relations)
108 self.relations = self.relations[::-1]
109 end = get_time()
110 y_end = end - y_start
111 end = end - start
112 print_log("Built partial relations for Y−set in {}s".format(y_end))
113 print_log("Built relations in {}s".format(end))
114 # this function computes a subset of the redundacy relations
115 def build_partial_relations(self):
116 start = get_time()
117 self.positions = {}
118 self.comb_relations = {}
119 for m in range(1, self.m // 2):
120 for indices in itertools.combinations(range(1, self.m + 1), m):
121 int_indices = tuple(int(e) for e in indices)
122 self.__compute_relation_comb(int_indices)
123 end = get_time() - start
124 print_log("Built partial relations in {}s".format(end))
125 @functools.lru_cache(maxsize=None)
126 # this function toggles the k-th LSB of idx
127 def __get_k_mod(self, idx, k):
128 i_k = (idx >> (k - 1)) & 1
129 add_part = 1 << (k - 1)
130 return idx + (- add_part if i_k == 1 else add_part)
131 # this function computes the redundancy relations for a combination of rows
132 # of the generator matrix
133 def __compute_relation_comb(self, comb):
134 var_set = 0
135 self.positions[comb] = set([])
136 self.comb_relations[comb] = {}
137 if DEBUG: print_log("a_{} = ".format(comb))
138 n = self.bit_mask_all
139 while n != 0:
140 j = int(self.n - int(n).bit_length())
141 a = int(self.__compute_relation_idx(comb, j))
142 n ^^= a
143 self.comb_relations[comb][j] = a
144 self.positions[comb].add(j)
145 if DEBUG:
146 s = " + ".join("x_{}".format(e) for e in sorted(a))
147 print_log(" {}".format(s))
148 # this function computes the operator DELTA(idx) for "comb",
149 # where DELTA is the Reed’s DELTA operator
150 def __compute_relation_idx(self, comb, idx):
151 if comb in self.comb_relations:
152 if idx in self.comb_relations[comb]:
153 return self.comb_relations[comb][idx]
154 if len(comb) == 0: return 0
155 elif len(comb) == 1:
156 new_idx = self.__get_k_mod(idx, comb[0])
157 if DEBUG:

Appendix B. Implementations and benchmarks 141

158 print_log("\u0394 {} ({}) = {}".format(comb, idx, set([idx, new_idx])))
159 return self.bit_mask[idx] | self.bit_mask[new_idx]
160 else:
161 t_comb = comb[:-1]
162 if t_comb not in self.comb_relations:
163 self.comb_relations[t_comb] = {}
164 new_idx = self.__get_k_mod(idx, comb[-1])
165 if DEBUG:
166 print_log("\u0394 {} ({}) = \u0394 {} ({}) + \u0394 {} ({})".format(comb, idx,

comb[:-1], idx, comb[:-1], new_idx))
167 a = self.__compute_relation_idx(t_comb, idx)
168 self.comb_relations[t_comb][idx] = a
169 b = self.__compute_relation_idx(t_comb, new_idx)
170 self.comb_relations[t_comb][new_idx] = b
171 if DEBUG:
172 print_log("\u0394 {} ({}) = {} + {}".format(comb, idx, a, b))
173 return a | b
174
175
176 # this class handles the decoding for a HL-code
177 class HLCodeDecoder(Decoder):
178 def __init__(self, code, Y_set, m, DIR=None):
179 # code -> the code class
180 # Y_set -> the Y-set used for this code
181 # m -> the parameter of the HL-code
182 # DIR -> directory path used to locate the redundacy relations already computed
183 super(HLCodeDecoder, self).__init__(
184 code, code.ambient_space(), code.encoder().__class__.__name__)
185 self.m = m
186 self.Y_set = Y_set
187 start = get_time()
188 self.G, self.H = self.__parity_check_matrix()
189 end = get_time() - start
190 print_log("\nParity−check matrix in {}s".format(end))
191 self.F = self.G.base_ring()
192 self.k, self.n = self.G.nrows(), self.G.ncols()
193 self.zero_vector_k = vector(self.F, self.k)
194 self.zero_vector_n = vector(self.F, self.n)
195 self.zero_syndrome = vector(self.F, self.n - self.k)
196
197 if DIR is not None and not os.path.exists(DIR):
198 os.mkdir(DIR)
199 self.DIR = DIR
200
201 start = get_time()
202 self.__compute_relations()
203 end = get_time() - start
204 print_log("\nSetup in {}s".format(end))
205 def _repr_(self):
206 return "HL−code decoder for the %s" % self.code()
207 def _latex_(self):
208 return "\textnormal{HL−code decoder for the } %s" % self.code()
209 def __eq__(self, other):
210 return isinstance((other, HLCodeDecoder) and self.code() == other.code())
211 def decoding_radius(self):
212 return (self.code()._minimum_distance - 1) // 2
213 # this funcion computes the parity-check matrix for a HL-code
214 # by determining the standard form for the generator matrix G
215 def __parity_check_matrix(self):
216 if hasattr(self, "H"): return self.G, self.H
217 G = self.code().generator_matrix()
218 k, n = G.nrows(), G.ncols()
219 if max(k, n) > 256: return G, None
220 G, P = canonical_form(G, self.code()._minimum_distance)
221 H = (-G[:, -(n-k):].T).augment(matrix.identity(G.base_ring(), n - k))
222 if DEBUG: assert G * H.T == matrix.zero(G.base_ring(), k, n - k)
223 if DEBUG: assert self.code().generator_matrix() * (H * Permutation(P).inverse().

to_matrix()).T == matrix.zero(G.base_ring(), k, n - k)
224 return self.code().generator_matrix(), H * Permutation(P).inverse().to_matrix()
225 # this function computes the complete set of redundancy relations for this code
226 def __compute_relations(self):
227 rel = HLCodeRelation(self.m)
228 rel.build_relations(self.Y_set, DIR=self.DIR)
229 self.relations = rel.relations
230 # this function determines the errors for a "word", and for a
231 # set of redundancy relations passed to this functions.
232 # additionally, this function computes the proper decoding at this stage
233 def __error_from_relations(self, word, relations):
234 start = get_time()
235 curr_a = copy(self.zero_vector_k)
236 error_vector = copy(self.zero_vector_n)
237 for i in relations:
238 curr_relations = relations[i]
239 # count the number of redundancy relations equals to one for "word"
240 one_count, zero_count = 0, 0
241 j, mid_size = 0, len(curr_relations) // 2

Appendix B. Implementations and benchmarks 142

242 while zero_count <= mid_size and one_count <= mid_size:
243 one_count += bin(word & curr_relations[j])[2:].count("1") % 2
244 zero_count = j + 1 - one_count
245 j += 1
246 if one_count == zero_count:
247 raise Exception("Unable to decode")
248 if one_count > zero_count:
249 error_vector += self.G.row(i)
250 curr_a[i] = 1
251 end = get_time() - start
252 if DEBUG:
253 print_log("\nComputed errors in {}s".format(end))
254 return error_vector, curr_a
255 # this function decodes a word "y" by applying a multilevel decoding
256 def decode_to_code(self, y):
257 # y = x + e = a G + e
258 # a = (a_1, ,, a_k)
259 if self.H is not None and self.H * y == self.zero_syndrome: return y
260
261 a_vector = copy(self.zero_vector_k) # the word to decode
262 # multilevel decoding
263 error_vector = copy(y)
264 for relation in self.relations:
265 prev_error = copy(ZZ(list(error_vector)[::-1], base=2))
266 # curr_e -> error vector for the set "relation"
267 # curr_a -> decoded word for the set "relation"
268 curr_e, curr_a = self.__error_from_relations(prev_error, relation)
269 error_vector -= curr_e
270 a_vector += curr_a
271
272 # determine the value of the first bit of the decoded word
273 j, mid_size = 0, len(error_vector) // 2
274 one_count, zero_count = 0, 0
275 while zero_count <= mid_size and one_count <= mid_size:
276 one_count += int(error_vector[j])
277 zero_count = j + 1 - one_count
278 j += 1
279
280 if one_count == zero_count:
281 raise Exception("Unable to decode")
282 if one_count > zero_count:
283 error_vector -= self.G.row(0)
284 a_vector[0] = 1
285
286 codeword = y - error_vector
287 if DEBUG:
288 print_log("Error vector −> {}".format(error_vector))
289 if self.H is not None:
290 assert self.H * codeword == self.zero_syndrome
291 return codeword, a_vector
292
293
294 HLCodeDecoder._decoder_type = {"hard−decision", "unique"}
295
296
297 # this class is used to save the partial data on disk
298 class ReedMullerData(object):
299 def __init__(self, data):
300 self.data = data
301 def get_data(self):
302 return self.data
303
304
305 # this function permutes a vector "v" according to a
306 # permutation P
307 def permute_vector(P, v):
308 r = copy(v)
309 for i, j in enumerate(P):
310 r[i] = v[j - 1]
311 return r
312
313
314 # this function computes the pairwise-product of two vectors
315 def pairwise_prod(a, b):
316 # a -> [a_0, a_1, ..., a_n]
317 # b -> [b_0, b_1, ..., b_n]
318 # returns [a_0 b_0, a_1 b_1, ..., a_n b_n]
319 return a.pairwise_product(b)
320
321
322 # this function computes the generator matrix for a Reed-Muller code of parameter m
323 def build_reed_muller_code(m):
324 if m % 2 != 0:
325 raise Exception("m have to be even")
326
327 main_start = get_time()

Appendix B. Implementations and benchmarks 143

328 F2 = GF(2)
329
330 mid_m = m // 2
331 # n = 2^m
332 # k = 2^(m - 1)
333 # d = 2^(m / 2)
334 n, k, d = 1 << m, 1 << (m - 1), 1 << mid_m
335
336 print_log("Building a [{}, {}, {}] linear code...".format(n, k, d))
337
338 M = matrix.zero(F2, k, n)
339 row_count = 0
340
341 print_log("Computing first {} rows...".format(m + 1))
342 start = get_time()
343 # compute first (m + 1) rows of the generator matrix
344 zero_vec = vector(F2, [0] * n)
345 M.set_row(row_count, vector(F2, [1] * n))
346 row_count += 1
347 for l in range(m):
348 i = int(1 << l)
349 row = copy(zero_vec)
350 for j in range(i, n, 2*i):
351 row[j:j + i] = [1] * i
352 M.set_row(row_count, row)
353 row_count += 1
354 end = get_time() - start
355 print_log("End in {}s".format(end))
356
357 # compute the remaining rows of the generator matrix
358 # as a pairwise product of subsets the first (m + 1) rows
359 print_log("\nComputing products...")
360 start = get_time()
361 for i in range(2, mid_m):
362 if DEBUG: print_log("i −> {}, size −> {}".format(i, binomial(m, i)))
363 for indices in itertools.combinations(range(1, m + 1), i):
364 if DEBUG: print_log(indices)
365 v = vector(F2, M.row(indices[0]))
366 for idx in indices[1:]:
367 v = v.pairwise_product(M.row(idx))
368 M.set_row(row_count, v)
369 row_count += 1
370 end = get_time() - start
371 print_log("\nEnd in {}s".format(end))
372
373 end = get_time() - main_start
374 print_log("\nEnding in {}s\n".format(end))
375 # returns the generator matrix, the number of the rows computed,
376 # and the minimum distance of the code
377 return M, row_count, d
378
379
380 # this function computes a random complement-free set of parameter "m"
381 def gen_complement_free_set(m):
382 X_set = []
383 for indices in itertools.combinations(range(m), m // 2):
384 v = [0] * m
385 for i in indices: v[i] = 1
386 X_set += [(tuple([i + 1 for i in indices]), v)]
387 t = len(X_set) // 2
388 A, B = X_set[:t], X_set[t:][::-1]
389
390 # shuffle A and B in the same way
391 seed = random()
392 set_random_seed(seed)
393 shuffle(A)
394 set_random_seed(seed)
395 shuffle(B)
396
397 Y_set, Y_set_indices = [], []
398 for i in range(t):
399 if randint(0, 1) == 0:
400 indices, v = A[i]
401 else:
402 indices, v = B[i]
403 Y_set += ["".join(map(str, v))]
404 Y_set_indices += [indices]
405 return Y_set, Y_set_indices
406
407
408 # build an HL-code with n = 2^m, k = 2^(m - 1), d = 2^(m / 2)
409 def build_hl_code(m, DIR=None):
410 main_start = get_time()
411
412 mid_m = m // 2
413 if DIR is None:

Appendix B. Implementations and benchmarks 144

414 # compute the first "row_count" rows from a Reed-Muller code
415 M, row_count, d = build_reed_muller_code(m)
416 else:
417 # load the partial generator matrix from the disk
418 filepath = os.path.join(DIR, "rm_{}".format(m))
419 if not os.path.exists(filepath):
420 M, row_count, d = build_reed_muller_code(m)
421 else:
422 with open(filepath, "rb") as f:
423 D = pickle.load(f)
424 M, row_count, d = D.get_data()
425
426 n, k = M.ncols(), M.nrows()
427
428 print_log("\nComputing complement−free Y set...")
429 start = get_time()
430 Y_set, Y_set_indices = gen_complement_free_set(m)
431 end = get_time() - start
432 print_log("Y set size −> {}".format(len(Y_set)))
433 print_log("End in {}s".format(end))
434
435 if DEBUG:
436 print_log("\nY set:")
437 for a in Y_set:
438 print_log(a)
439
440 # compute the remaining rows of the generator matrix by using the Y-set
441 print_log("\nComputing last rows...")
442 start = get_time()
443 for indices in Y_set_indices:
444 res = reduce(pairwise_prod, [M.row(idx) for idx in indices])
445 M.set_row(row_count, res)
446 row_count += 1
447 end = get_time() - start
448 print_log("End in {}s".format(end))
449
450 end = get_time() - main_start
451 print_log("\nEnding in {}s\n".format(end))
452 # returns the generator matrix, the Y-set as a set of indices,
453 # and the minimum distance of the code
454 return M, Y_set_indices, d
455
456
457 # this function computes the generator matrices for the Reed-Muller codes
458 # of parameter m, where m = m_start, m_start + 1, m_end,
459 # the redundancy relations for these rows, and save these data on the disk
460 def build_datasets(DIR, m_start, m_end):
461 if DIR is not None and not os.path.exists(DIR):
462 os.mkdir(DIR)
463 for m in range(m_start, m_end + 1, 2):
464 print("\nBuilding datasets for m = {}...".format(m))
465 with open(os.path.join(DIR, "rm_{}".format(m)), "wb") as f:
466 pickle.dump(ReedMullerData(build_reed_muller_code(m)), f)
467 HL = HLCodeRelation(m)
468 HL.build_database(DIR)
469
470
471 # this function decodes ntests random words by using a HL-code of parameter "m"
472 def decoding_test(m, ntests, DIR=None, DATADIR=None):
473 if DATADIR is not None and not os.path.exists(DATADIR):
474 os.mkdir(DATADIR)
475
476 wall_start = get_time(perf=True)
477 cpu_start = get_time()
478
479 F2 = GF(2)
480 G, Y_set, d = build_hl_code(m, DIR=DIR)
481 k, n = G.nrows(), G.ncols()
482 t = (d - 1) // 2
483 matrix_space = sage.matrix.matrix_space.MatrixSpace(F2, k)
484
485 curr_start = get_time()
486 perms = Permutations(n) # permutations of the indices in [1, n]
487 while True:
488 # compute a random invertible matrix
489 S = matrix_space.random_element()
490 if S.is_invertible(): break
491 end = get_time() - curr_start
492 print("S generated in {}s".format(end))
493 curr_start = get_time()
494 P = perms.random_element() # generate a random permutation in [1, n]
495 end = get_time() - curr_start
496 print("P generated in {}s".format(end))
497 curr_start = get_time()
498 inv_P = P.inverse() # compute the inverse of the permutation P

Appendix B. Implementations and benchmarks 145

499 end = get_time() - curr_start
500 print("P inverse in {}s".format(end))
501 curr_start = get_time()
502 inv_S = S.inverse() # compute the inverse of the matrix S
503 end = get_time() - curr_start
504 print("S inverse in {}s".format(end))
505 # compute the matrix G’ = S * G * P used to encript a vector
506 curr_start = get_time()
507 GG = S * G
508 GG.permute_columns(P) # permute the columns of (S * G) according to P
509 end = get_time() - curr_start
510 print("S G P computed in {}s".format(end))
511
512 LCode = LinearCode(G, d=d)
513
514 # initialize the class to add a random error vector of weight "t"
515 channel = channels.StaticErrorRateChannel(LCode.ambient_space(), t)
516 DEC = HLCodeDecoder(LCode, Y_set, m, DIR=DIR)
517
518 cpu_end = get_time()
519 wall_end = get_time(perf=True)
520 init_cpu_time = cpu_end - cpu_start
521 init_wall_time = wall_end - wall_start
522
523 enc_wall_times, dec_wall_times = [], []
524 enc_cpu_times, dec_cpu_times = [], []
525 decoded_message = None
526
527 print("\nParameters −> {}".format((n, k, d, t)))
528 for j in range(ntests):
529 print("Test #{}".format(j + 1), end="\r")
530 message = random_vector(F2, k) # random vector over GF(2) of length k
531
532 wall_start = get_time(perf=True)
533 cpu_start = get_time()
534 codeword = message * GG # codeword = m S G P
535 ciphertext = channel(codeword) # ciphertext = m S G P + e, for a random vector "e"

of weight "t"
536 cpu_end = get_time()
537 wall_end = get_time(perf=True)
538 enc_cpu_times.append(cpu_end - cpu_start)
539 enc_wall_times.append(wall_end - wall_start)
540
541 wall_start = get_time(perf=True)
542 cpu_start = get_time()
543 c_inv_P = permute_vector(inv_P, ciphertext) # c_inv_P = ciphertext * P^(-1) = m S G

+ e P^(-1)
544 mSG, mS = DEC.decode_to_code(c_inv_P) # decode c_inv_P
545 decoded_message = mS * inv_S
546 cpu_end = get_time()
547 wall_end = get_time(perf=True)
548 dec_cpu_times.append(cpu_end - cpu_start)
549 dec_wall_times.append(wall_end - wall_start)
550 if message != decoded_message:
551 raise Exception("Unable to decode")
552
553 mean_enc_wall_time, mean_dec_wall_time = np.mean(enc_wall_times), np.mean(

dec_wall_times)
554 mean_enc_cpu_time, mean_dec_cpu_time = np.mean(enc_cpu_times), np.mean(dec_cpu_times)
555 print("\nParameters −> {}".format((n, k, d)))
556 print("Init time (WALL) −> {}s".format(init_wall_time))
557 print("Init time (CPU) −> {}s".format(init_cpu_time))
558 print("Enc time (WALL) −> {}s".format(mean_enc_wall_time))
559 print("Enc time (CPU) −> {}s".format(mean_enc_cpu_time))
560 print("Dec time (WALL) −> {}s".format(mean_dec_wall_time))
561 print("Dec time (CPU) −> {}s\n".format(mean_dec_cpu_time))
562
563 # save results if a file *.csv
564 if DATADIR:
565 filepath = os.path.join(DATADIR, "{}.txt".format(m))
566 filepath_mean = os.path.join(DATADIR, "{}_mean.txt".format(m))
567 with open(filepath_mean, "w") as f:
568 f.write("Init time (WALL); Init time (CPU); Encryption time (WALL); Encryption

time (CPU); Decryption time (WALL); Decryption time (CPU)\n")
569 f.write("{}; {}; {}; {}; {}; {}\n".format(init_wall_time, init_cpu_time,

mean_enc_wall_time, mean_enc_cpu_time, mean_dec_wall_time,
mean_dec_cpu_time))

570 with open(filepath, "w") as f:
571 f.write("Encryption time (WALL); Encryption time (CPU); Decryption time (WALL);

Decryption time (CPU)\n")
572 with open(filepath, "a") as f:
573 for (enc_wall, enc_cpu, dec_wall, dec_cpu) in zip(enc_wall_times, enc_cpu_times,

dec_wall_times, dec_cpu_times):
574 f.write("{}; {}; {}; {}\n".format(enc_wall, enc_cpu, dec_wall, dec_cpu))
575 return plot_data(enc_wall_times, dec_wall_times)

Appendix B. Implementations and benchmarks 146

576
577
578 # this function plots the wall times of coding and decoding
579 def plot_data(enc_wall_times, dec_wall_times):
580 x_axes = list(range(0, len(enc_wall_times)))
581 enc_data = Scattergl(x=x_axes, y=enc_wall_times, name="Encryption (WALL) Time (s)")
582 dec_data = Scattergl(x=x_axes, y=dec_wall_times, name="Decryption (WALL) Time (s)")
583
584 enc_layout = Layout(
585 showlegend=False,
586 autosize=True,
587 hovermode=’closest’,
588 title="Encryption Wall Time",
589 xaxis=dict(
590 title="i−th loop",
591 titlefont=dict(
592 family=’Roboto’,
593 size=18,
594 color=’#212121’
595)),
596 yaxis=dict(
597 title=’Time (s)’,
598 titlefont=dict(
599 family=’Roboto’,
600 size=18,
601 color=’#212121’
602)))
603
604 dec_layout = Layout(
605 showlegend=False,
606 autosize=True,
607 hovermode=’closest’,
608 title="Decryption Wall Time",
609 xaxis=dict(
610 title="i−th loop",
611 titlefont=dict(
612 family=’Roboto’,
613 size=18,
614 color=’#212121’
615)),
616 yaxis=dict(
617 title=’Time (s)’,
618 titlefont=dict(
619 family=’Roboto’,
620 size=18,
621 color=’#212121’
622)))
623
624 return [
625 Figure(data=enc_data, layout=enc_layout).show(renderer="notebook_connected"),
626 Figure(data=dec_data, layout=dec_layout).show(renderer="notebook_connected")]
627
628
629 DEBUG = False
630 set_random_seed(1587)
631 build_datasets("./hl_code", 4, 12)
632 decoding_test(12, 100, DIR="./hl_code", DATADIR="./hl_data")

Script B.4: Python code that implements the algorithms in
appendix A.4

147

Bibliography

[1] Milton Abramowitz and Irene A. Stegun. “Weierstrass Elliptic and Related
Functions”. In: Handbook of Mathematical Functions with Formulas, Graphs
and Mathematical Tables. Ed. by Milton Abramowitz and Irene A. Stegun.
New York: Dover Publications, Inc., 1972. Chap. 18, pp. 627–671. isbn: 978-
0486612720 (cit. on p. 25).

[2] Jeff Achter. On Computing the Rank of Elliptic Curves. https://www.math.
colostate.edu/~achter/math/brown.pdf. 1992-05 (cit. on p. 26).

[3] Tom Mike Apostol. In: Modular functions and Dirichlet series in number theory.
2nd ed. Graduate texts in mathematics 41. New York: Springer Verlang, 1996.
Chap. 1.6 - 1.11, pp. 9 –14. isbn: 978-0387971278 (cit. on p. 25).

[4] Diego F. Aranha et al. A note on high-security general-purpose elliptic curves.
Cryptology ePrint Archive, Paper 2013/647. https://eprint.iacr.org/2013/647.
2013. url: https://eprint.iacr.org/2013/647 (cit. on p. 11).

[5] Paulo S. L. M. Barreto et al. “Efficient pairing computation on supersingu-
lar Abelian varieties”. In: Designs, Codes and Cryptography 42.3 (2007-03),
pp. 239–271. issn: 1573-7586. doi: 10.1007/s10623-006-9033-6. url: https:
//doi.org/10.1007/s10623-006-9033-6 (cit. on p. 46).

[6] E. Berlekamp, R. McEliece, and H. van Tilborg. “On the inherent intractability
of certain coding problems (Corresp.)” In: IEEE Transactions on Information
Theory 24.3 (1978), pp. 384–386. doi: 10.1109/TIT.1978.1055873 (cit. on
p. 50).

[7] Daniel J. Bernstein and Tanja Lange. “Failures in NIST’s ECC standards”. In:
2015. url: https://cr.yp.to/newelliptic/nistecc-20160106.pdf (cit. on p. 11).

[8] Daniel J. Bernstein and Tanja Lange. “Faster Addition and Doubling on Elliptic
Curves”. In: Advances in Cryptology – ASIACRYPT 2007. Ed. by Kaoru
Kurosawa. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 29–50.
isbn: 978-3-540-76900-2. doi: 10.1007/978-3-540-76900-2_3 (cit. on pp. 20,
27, 29, 31, 32).

[9] Daniel J. Bernstein and Tanja Lange. “Inverted Edwards Coordinates”. In:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Ed. by Ser-
dar Boztaş and Hsiao-Feng (Francis) Lu. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 20–27. isbn: 978-3-540-77224-8. doi: 10.1007/978-3-540-
77224-8_4 (cit. on pp. 20, 27).

[10] Daniel J Bernstein and Tanja Lange. “Post-quantum cryptography”. In: Nature
549.7671 (2017), pp. 188–194. doi: 10.1007/978-3-540-88702-7 (cit. on p. 3).

[11] Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe curves for
elliptic-curve cryptography. 2013. url: http://safecurves.cr.yp.to (cit. on
p. 11).

[12] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. “Attacking and De-
fending the McEliece Cryptosystem”. In: Post-Quantum Cryptography. Ed. by

https://www.amazon.com/exec/obidos/ASIN/0486612724/ref = nosim/ericstreasuretro
https://www.amazon.com/exec/obidos/ASIN/0486612724/ref = nosim/ericstreasuretro
https://www.math.colostate.edu/~achter/math/brown.pdf
https://www.math.colostate.edu/~achter/math/brown.pdf
http://www.amazon.com/exec/obidos/ASIN/0387971270/ref = nosim/ericstreasuretro
https://eprint.iacr.org/2013/647
https://eprint.iacr.org/2013/647
https://doi.org/10.1007/s10623-006-9033-6
https://doi.org/10.1007/s10623-006-9033-6
https://doi.org/10.1007/s10623-006-9033-6
https://doi.org/10.1109/TIT.1978.1055873
https://cr.yp.to/newelliptic/nistecc-20160106.pdf
https://doi.org/10.1007/978-3-540-76900-2_3
https://doi.org/10.1007/978-3-540-77224-8_4
https://doi.org/10.1007/978-3-540-77224-8_4
https://doi.org/10.1007/978-3-540-88702-7
http://safecurves.cr.yp.to

Bibliography 148

Johannes Buchmann and Jintai Ding. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2008, pp. 31–46. isbn: 978-3-540-88403-3. doi: 10.1007/978-3-540-
88403-3_3 (cit. on p. 50).

[13] Daniel J. Bernstein et al. Elligator: Elliptic-curve points indistinguishable from
uniform random strings. Cryptology ePrint Archive, Paper 2013/325. 2013.
doi: 10.1145/2508859.2516734. url: https://eprint.iacr.org/2013/325 (cit. on
p. 11).

[14] Daniel J. Bernstein et al. “Twisted Edwards Curves”. In: Progress in Cryptology
– AFRICACRYPT 2008. Ed. by Serge Vaudenay. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 389–405. isbn: 978-3-540-68164-9. doi: 10.1007/
978-3-540-68164-9_26 (cit. on p. 35).

[15] Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart. Advances in Elliptic Curve
Cryptography. London Mathematical Society Lecture Note Series. Cambridge
University Press, 2005. doi: 10.1017/CBO9780511546570 (cit. on pp. 20, 45,
46).

[16] Fedor A. Bogomolov and Hang Fu. “Division polynomials and intersection of
projective torsion points”. In: European Journal of Mathematics 2.3 (2016-09),
pp. 644–660. issn: 2199-6768. doi: 10.1007/s40879-016-0111-7 (cit. on p. 26).

[17] Victor Buchstaber and Dmitry Leykin. “Hyperelliptic Addition Law”. In: Jour-
nal of Nonlinear Mathematical Physics 12.Supplement 1 (2005), pp. 106–123.
doi: 10.2991/jnmp.2005.12.s1.10 (cit. on p. 37).

[18] David Cantor. “Computing in the Jacobian of a hyperelliptic curve”. In: Math-
ematics of Computation - American Mathematical Society 48 (1987), pp. 95–
101. doi: 10.1090/S0025-5718-1987-0866101-0 (cit. on pp. 20, 37, 87).

[19] David G. Cantor. “On the analogue of the division polynomials for hyperelliptic
curves.” In: 1994.447 (1994), pp. 91–146. doi: doi:10.1515/crll.1994.447.91.
url: https://doi.org/10.1515/crll.1994.447.91 (cit. on p. 26).

[20] Xavier Caruso. “Computations with p-adic numbers”. In: Les cours du CIRM
5 (2017-01). doi: 10.5802/ccirm.25 (cit. on p. 55).

[21] J. W. S. Cassels. LMSST: 24 Lectures on Elliptic Curves. London Mathematical
Society Student Texts. Cambridge University Press, 1991. doi: 10.1017/CBO
9781139172530 (cit. on pp. 20, 55).

[22] Craig Costello and Kristin Lauter. “Group Law Computations on Jacobians of
Hyperelliptic Curves”. In: Selected Areas in Cryptography. Ed. by Ali Miri and
Serge Vaudenay. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 92–
117. isbn: 978-3-642-28496-0. doi: 10.1007/978-3-642-28496-0_6 (cit. on
p. 37).

[23] Alain Couvreur, Irene Márquez-Corbella, and Ruud Pellikaan. “A polyno-
mial time attack against algebraic geometry code based public key cryptosys-
tems”. In: 2014 IEEE International Symposium on Information Theory. 2014,
pp. 1446–1450. doi: 10.1109/ISIT.2014.6875072 (cit. on p. 50).

[24] Mario A. de Boer. “The generalized Hamming weights of some hyperelliptic
codes”. In: Journal of Pure and Applied Algebra 123.1 (1998), pp. 153–163.
issn: 0022-4049. doi: https://doi.org/10.1016/S0022-4049(97)00160-6. url:
https://www.sciencedirect.com/science/article/pii/S0022404997001606 (cit.
on pp. 88, 90, 91).

[25] Hang Dinh, Cristopher Moore, and Alexander Russell. “McEliece and Nieder-
reiter Cryptosystems That Resist Quantum Fourier Sampling Attacks”. In:
Advances in Cryptology – CRYPTO 2011. Ed. by Phillip Rogaway. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 761–779. isbn: 978-3-642-
22792-9. doi: 10.1007/978-3-642-22792-9_43 (cit. on p. 50).

https://doi.org/10.1007/978-3-540-88403-3_3
https://doi.org/10.1007/978-3-540-88403-3_3
https://doi.org/10.1145/2508859.2516734
https://eprint.iacr.org/2013/325
https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1017/CBO9780511546570
https://doi.org/10.1007/s40879-016-0111-7
https://doi.org/10.2991/jnmp.2005.12.s1.10
https://doi.org/10.1090/S0025-5718-1987-0866101-0
https://doi.org/doi:10.1515/crll.1994.447.91
https://doi.org/10.1515/crll.1994.447.91
https://doi.org/10.5802/ccirm.25
https://doi.org/10.1017/CBO9781139172530
https://doi.org/10.1017/CBO9781139172530
https://doi.org/10.1007/978-3-642-28496-0_6
https://doi.org/10.1109/ISIT.2014.6875072
https://doi.org/https://doi.org/10.1016/S0022-4049(97)00160-6
https://www.sciencedirect.com/science/article/pii/S0022404997001606
https://doi.org/10.1007/978-3-642-22792-9_43

Bibliography 149

[26] MJ Dworkin et al. “Advanced Encryption Standard (AES); Federal Inf”. In:
Process. Stds.(NIST FIPS) 197 (2001). doi: 10.6028/NIST.FIPS.197 (cit. on
p. 3).

[27] Pál Dömösi, Carolin Hannusch, and Géza Horváth. “A Cryptographic System
Based on a New Class of Binary Error-Correcting Codes”. In: Tatra Mountains
Mathematical Publications 73.1 (2019), pp. 83–96. doi: doi:10.2478/tmmp-
2019-0007. url: https://doi.org/10.2478/tmmp-2019-0007 (cit. on p. 99).

[28] Harold Edwards. “A normal form for elliptic curves”. In: Bulletin of The
American Mathematical Society - BULL AMER MATH SOC 44 (2007-07),
pp. 393–423. doi: 10.1090/S0273-0979-07-01153-6 (cit. on pp. 20, 27).

[29] Giovanni Falcone and Giuseppe Filippone. Mumford representation and Rie-
mann Roch space of a divisor on a hyperelliptic curve. 2023. arXiv: 2303.08441
[math.AG] (cit. on pp. 5, 86).

[30] Cédric Faure and Lorenz Minder. “Cryptanalysis of the McEliece cryptosystem
over hyperelliptic codes”. In: ACCT 2008 (2008-01), pp. 99–107. url: http:
//www.moi.math.bas.bg/acct2008/b17.pdf (cit. on p. 50).

[31] Giuseppe Filippone. “Exp function for Edwards curves over local fields”. In:
Advances in Mathematics of Communications (2023). issn: 1930-5346. doi:
10.3934/amc.2023012. url: https://www.aimsciences.org/article/doi/10.
3934/amc.2023012 (cit. on pp. 5, 108).

[32] Giuseppe Filippone. Goppa codes over Edwards curves. 2023. arXiv: 2301.09309
[math.AG] (cit. on pp. 5, 78).

[33] Giuseppe Filippone. On the Discrete Logarithm Problem for elliptic curves over
local fields. 2023. arXiv: 2304.14150 [math.AG] (cit. on pp. 5, 73).

[34] G. Frey, M. Muller, and H.-G. Ruck. “The Tate pairing and the discrete log-
arithm applied to elliptic curve cryptosystems”. In: IEEE Transactions on
Information Theory 45.5 (1999), pp. 1717–1719. doi: 10.1109/18.771254 (cit.
on p. 46).

[35] Pierrick Gaudry. “Index calculus for abelian varieties of small dimension and the
elliptic curve discrete logarithm problem”. In: Journal of Symbolic Computation
44.12 (2009). Gröbner Bases in Cryptography, Coding Theory, and Algebraic
Combinatorics, pp. 1690–1702. issn: 0747-7171. doi: https://doi.org/10.1016/
j.jsc.2008.08.005 (cit. on p. 46).

[36] Victor Gayoso Martínez, Lorena González-Manzano, and Agustín Martín
Muñoz. “Secure Elliptic Curves in Cryptography”. In: Computer and Net-
work Security Essentials. Ed. by Kevin Daimi. Cham: Springer International
Publishing, 2018, pp. 283–298. isbn: 978-3-319-58424-9. doi: 10.1007/978-3-
319-58424-9_16. url: https://doi.org/10.1007/978-3-319-58424-9_16 (cit. on
p. 46).

[37] Carolin Hannusch and Giuseppe Filippone. Decoding algorithm for HL-codes
and performance of the DHH-cryptosystem – a candidate for post-quantum cryp-
tography. 2023. arXiv: 2303.09820 [cs.CR] (cit. on p. 5).

[38] Carolin Hannusch and Piroska Lakatos. “Construction of self-dual binary
2ˆ2k,2ˆ2k-1,2ˆk-codes”. In: Algebra and Discrete Mathematics 21.1 (2016),
pp. 59–68. url: https://admjournal.luguniv.edu.ua/index.php/adm/article/
view/25/pdf (cit. on p. 99).

[39] F. Hess, N.P. Smart, and F. Vercauteren. “The Eta Pairing Revisited”. In:
IEEE Transactions on Information Theory 52.10 (2006), pp. 4595–4602. doi:
10.1109/TIT.2006.881709 (cit. on p. 46).

https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/doi:10.2478/tmmp-2019-0007
https://doi.org/doi:10.2478/tmmp-2019-0007
https://doi.org/10.2478/tmmp-2019-0007
https://doi.org/10.1090/S0273-0979-07-01153-6
https://arxiv.org/abs/2303.08441
https://arxiv.org/abs/2303.08441
http://www.moi.math.bas.bg/acct2008/b17.pdf
http://www.moi.math.bas.bg/acct2008/b17.pdf
https://doi.org/10.3934/amc.2023012
https://www.aimsciences.org/article/doi/10.3934/amc.2023012
https://www.aimsciences.org/article/doi/10.3934/amc.2023012
https://arxiv.org/abs/2301.09309
https://arxiv.org/abs/2301.09309
https://arxiv.org/abs/2304.14150
https://doi.org/10.1109/18.771254
https://doi.org/https://doi.org/10.1016/j.jsc.2008.08.005
https://doi.org/https://doi.org/10.1016/j.jsc.2008.08.005
https://doi.org/10.1007/978-3-319-58424-9_16
https://doi.org/10.1007/978-3-319-58424-9_16
https://doi.org/10.1007/978-3-319-58424-9_16
https://arxiv.org/abs/2303.09820
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/25/pdf
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/25/pdf
https://doi.org/10.1109/TIT.2006.881709

Bibliography 150

[40] Toshiro Hiranouchi. “Local torsion primes and the class numbers associated to
an elliptic curve over Q.” In: arXiv: Number Theory (2017). arXiv: 1703.08275v3
(cit. on p. 57).

[41] Huseyin Hisil and Craig Costello. “Jacobian Coordinates on Genus 2 Curves”.
In: Journal of Cryptology 30.2 (2017-04), pp. 572–600. issn: 1432-1378. doi:
10.1007/s00145-016-9227-7 (cit. on p. 37).

[42] Yan Huang et al. “Quantum algorithm for solving hyperelliptic curve discrete
logarithm problem”. In: Quantum Information Processing 19.2 (2020-01), p. 62.
issn: 1573-1332. doi: 10.1007/s11128-019-2562-5 (cit. on p. 45).

[43] James E. Humphreys. Linear Algebraic Groups. 1st ed. Vol. 21. Graduate
Texts in Mathematics. Springer-Verlag New York, 1975, pp. XVI, 248. doi:
10.1007/978-1-4684-9443-3 (cit. on p. 12).

[44] Dale Husemöller. Elliptic Curves. Vol. 111. Graduate Texts in Mathematics.
Springer-Verlag New York, 2004, pp. XXII, 490. doi: 10.1007/b97292 (cit. on
pp. 20, 22, 68).

[45] Michael Jacobson, Alfred Menezes, and Andreas Stein. “Solving elliptic curve
discrete logarithm problems using Weil descent”. In: J. Ramanujan Math. Soc.
16.3 (2001), pp. 231–260. issn: 0970-1249. url: https://eprint.iacr.org/2001/
041 (cit. on p. 46).

[46] Heeralal Janwa and Oscar Moreno. “McEliece Public Key Cryptosystems Using
Algebraic-Geometric Codes”. In: Designs, Codes and Cryptography 8.3 (1996-
06), pp. 293–307. issn: 1573-7586. doi: 10.1023/A:1027351723034 (cit. on
p. 50).

[47] Anthony W. Knapp. Elliptic Curves. (MN-40), Volume 40. Princeton Univer-
sity Press, 1992. doi: 10.2307/j.ctv346st5. (Visited on 01/16/2023) (cit. on
p. 20).

[48] Neal Koblitz. “Elliptic curve cryptosystems”. In: Mathematics of Computation
- American Mathematical Society 48 (1987), pp. 203–209. doi: 10.1090/S0025-
5718-1987-0866109-5 (cit. on p. 45).

[49] Neal Koblitz. “Hyperelliptic cryptosystems”. In: Journal of Cryptology 1.3
(1989-10), pp. 139–150. issn: 1432-1378. doi: 10 .1007/BF02252872. url:
https://doi.org/10.1007/BF02252872 (cit. on pp. 20, 38, 87).

[50] Neal Koblitz, Alfred Menezes, and Scott Vanstone. “The State of Elliptic Curve
Cryptography”. In: Des. Codes Cryptography 19 (2000-03), pp. 173–193. doi:
10.1023/A:1008354106356 (cit. on p. 46).

[51] Michiel Kosters and René Pannekoek. “On the structure of elliptic curves over
finite extensions of Qp with additive reduction”. In: (2017-03). doi: 10.48550/
ARXIV.1703.07888 (cit. on p. 57).

[52] Tanja Lange. “Edwards Curves”. In: Encyclopedia of Cryptography and Secu-
rity. Ed. by Henk C. A. van Tilborg and Sushil Jajodia. Boston, MA: Springer
US, 2011, pp. 380–382. isbn: 978-1-4419-5906-5. doi: 10.1007/978-1-4419-
5906-5_243 (cit. on p. 20).

[53] Tanja Lange. “Formulae for Arithmetic on Genus 2 Hyperelliptic Curves”. In:
Applicable Algebra in Engineering, Communication and Computing 15.5 (2005-
02), pp. 295–328. issn: 1432-0622. doi: 10.1007/s00200-004-0154-8 (cit. on
pp. 37, 39).

[54] Frank Leitenberger. “About the group law for the Jacobi variety of a hyperel-
liptic curve.” eng. In: Beiträge zur Algebra und Geometrie 46.1 (2005), pp. 125–
130. url: http://eudml.org/doc/229233 (cit. on p. 37).

[55] Franck Leprévost et al. “Generating anomalous elliptic curves”. In: Information
Processing Letters 93.5 (2005), pp. 225–230. issn: 0020-0190. doi: https://doi.

https://arxiv.org/abs/1703.08275v3
https://doi.org/10.1007/s00145-016-9227-7
https://doi.org/10.1007/s11128-019-2562-5
https://doi.org/10.1007/978-1-4684-9443-3
https://doi.org/10.1007/b97292
https://eprint.iacr.org/2001/041
https://eprint.iacr.org/2001/041
https://doi.org/10.1023/A:1027351723034
https://doi.org/10.2307/j.ctv346st5
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1007/BF02252872
https://doi.org/10.1007/BF02252872
https://doi.org/10.1023/A:1008354106356
https://doi.org/10.48550/ARXIV.1703.07888
https://doi.org/10.48550/ARXIV.1703.07888
https://doi.org/10.1007/978-1-4419-5906-5_243
https://doi.org/10.1007/978-1-4419-5906-5_243
https://doi.org/10.1007/s00200-004-0154-8
http://eudml.org/doc/229233
https://doi.org/https://doi.org/10.1016/j.ipl.2004.11.008
https://doi.org/https://doi.org/10.1016/j.ipl.2004.11.008
https://doi.org/https://doi.org/10.1016/j.ipl.2004.11.008

Bibliography 151

org/10.1016/j.ipl.2004.11.008. url: https://www.sciencedirect.com/science/
article/pii/S0020019004003527 (cit. on p. 46).

[56] P. Lockhart. “On the Discriminant of a Hyperelliptic Curve”. In: Transac-
tions of the American Mathematical Society 342.2 (1994), pp. 729–752. issn:
00029947. doi: 10.2307/2154650. url: http://www.jstor.org/stable/2154650
(visited on 01/17/2023) (cit. on p. 86).

[57] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes.
2nd. North-holland Publishing Company, 1978 (cit. on pp. 94, 96).

[58] R. J. McEliece. “A Public-Key Cryptosystem Based On Algebraic Coding
Theory”. In: Deep Space Network Progress Report 44 (1978-01), pp. 114–116.
url: https ://ui .adsabs .harvard .edu/abs/1978DSNPR . .44 . .114M (cit. on
pp. 50, 100).

[59] A.J. Menezes, T. Okamoto, and S.A. Vanstone. “Reducing elliptic curve loga-
rithms to logarithms in a finite field”. In: IEEE Transactions on Information
Theory 39.5 (1993), pp. 1639–1646. doi: 10.1109/18.259647 (cit. on p. 46).

[60] Victor S. Miller. “Use of Elliptic Curves in Cryptography”. In: Advances in
Cryptology — CRYPTO ’85 Proceedings. Ed. by Hugh C. Williams. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1986, pp. 417–426. isbn: 978-3-540-
39799-1 (cit. on p. 45).

[61] P. L. Montgomery. “Speeding the Pollard and elliptic curve methods of fac-
torization”. In: Mathematics of Computation 48 (1987), pp. 243–264 (cit. on
pp. 20, 27).

[62] D. E. Muller. “Application of Boolean algebra to switching circuit design and
to error detection”. In: Transactions of the I.R.E. Professional Group on Elec-
tronic Computers EC-3.3 (1954), pp. 6–12. doi: 10.1109/IREPGELC.1954.
6499441 (cit. on p. 94).

[63] David Mumford. Abelian Varieties. 2nd ed. Vol. 7. Tata Institute of Funda-
mental Research Studies in Mathematics. https ://bookstore .ams.org/tifr -
13. London: Oxford University Press: Tata Institute of Fundamental Research,
1974, p. 242 (cit. on p. 37).

[64] I. S. Reed. “A class of multiple-error-correcting codes and the decoding scheme”.
In: Transactions of the IRE Professional Group on Information Theory 4.4
(1954), pp. 38–49. doi: 10.1109/TIT.1954.1057465 (cit. on pp. 94, 103).

[65] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. New York, NY, USA, 1978-02. doi:
10.1145/359340.359342. url: https://doi.org/10.1145/359340.359342 (cit. on
p. 3).

[66] Takakazu Satoh and Kiyomichi Araki. Fermat Quotients and the Polynomial
Time Discrete Log Algorithm for Anomalous Elliptic Curves. 1998-06. doi:
10.14992/00009878. url: https://doi.org/10.14992/00009878 (cit. on p. 46).

[67] J. Scholten and F. Vercauteren. “An Introduction to Elliptic and Hyperelliptic
Curve Cryptography and the NTRU Cryptosystem”. In: https://www.cse.iitk.
ac.in/users/nitin/courses/WS2010-ref4.pdf. 2004 (cit. on p. 46).

[68] I. A. Semaev. “Evaluation of Discrete Logarithms in a Group of P-Torsion
Points of an Elliptic Curve in Characteristic p”. In: Math. Comput. 67.221
(1998-01), 353–356. issn: 0025-5718. doi: 10.1090/S0025-5718-98-00887-4.
url: https://doi.org/10.1090/S0025-5718-98-00887-4 (cit. on p. 46).

[69] Jean-Pierre Serre. Local fields. Vol. 67. Graduate Texts in Mathematics. Trans-
lated from the French by Marvin Jay Greenberg. New York: Springer-Verlag,
1979, pp. viii+241. isbn: 0-387-90424-7. doi: https://doi.org/10.1007/978-1-
4757-5673-9 (cit. on p. 54).

https://doi.org/https://doi.org/10.1016/j.ipl.2004.11.008
https://doi.org/https://doi.org/10.1016/j.ipl.2004.11.008
https://doi.org/https://doi.org/10.1016/j.ipl.2004.11.008
https://doi.org/https://doi.org/10.1016/j.ipl.2004.11.008
https://www.sciencedirect.com/science/article/pii/S0020019004003527
https://www.sciencedirect.com/science/article/pii/S0020019004003527
https://doi.org/10.2307/2154650
http://www.jstor.org/stable/2154650
https://ui.adsabs.harvard.edu/abs/1978DSNPR..44..114M
https://doi.org/10.1109/18.259647
https://doi.org/10.1109/IREPGELC.1954.6499441
https://doi.org/10.1109/IREPGELC.1954.6499441
https://bookstore.ams.org/tifr-13
https://bookstore.ams.org/tifr-13
https://doi.org/10.1109/TIT.1954.1057465
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.14992/00009878
https://doi.org/10.14992/00009878
https://www.cse.iitk.ac.in/users/nitin/courses/WS2010-ref4.pdf
https://www.cse.iitk.ac.in/users/nitin/courses/WS2010-ref4.pdf
https://doi.org/10.1090/S0025-5718-98-00887-4
https://doi.org/10.1090/S0025-5718-98-00887-4
https://doi.org/https://doi.org/10.1007/978-1-4757-5673-9
https://doi.org/https://doi.org/10.1007/978-1-4757-5673-9

Bibliography 152

[70] Jean-Pierre Serre. “Singular Algebraic Curves”. In: Algebraic Groups and Class
Fields. New York, NY: Springer New York, 1988, pp. 58–73. isbn: 978-1-4612-
1035-1. doi: 10.1007/978-1-4612-1035-1_4 (cit. on p. 81).

[71] P.W. Shor. “Algorithms for quantum computation: discrete logarithms and fac-
toring”. In: Proceedings 35th Annual Symposium on Foundations of Computer
Science. 1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700 (cit. on p. 4).

[72] Joseph H. Silverman. “Lifting and Elliptic Curve Discrete Logarithms”. In: Se-
lected Areas in Cryptography. Ed. by Roberto Maria Avanzi, Liam Keliher, and
Francesco Sica. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 82–
102. isbn: 978-3-642-04159-4. doi: 10 .1007/978- 3 - 642- 04159- 4_ 6. url:
https://doi.org/10.1007/978-3-642-04159-4_6 (cit. on p. 73).

[73] Joseph H. Silverman. The Arithmetic of Elliptic Curves. 2nd ed. Vol. 106.
Graduate Texts in Mathematics. New York: Springer Verlang, 2009. isbn: 978-
0-387-09493-9. doi: 10.1007/978-0-387-09494-6 (cit. on pp. 20, 22, 26, 46,
57).

[74] N. P. Smart. “The Discrete Logarithm Problem on Elliptic Curves of Trace
One”. In: Journal of Cryptology 12.3 (1999-06), pp. 193–196. issn: 1432-1378.
doi: 10.1007/s001459900052. url: https://doi.org/10.1007/s001459900052
(cit. on p. 46).

[75] ChunMing Tang, MaoZhi Xu, and YanFeng Qi. “Cryptography on twisted
Edwards curves over local fields”. In: Science China Information Sciences 58.1
(2015-01), pp. 1–15. issn: 1869-1919. doi: 10.1007/s11432-014-5155-z. url:
https://doi.org/10.1007/s11432-014-5155-z (cit. on p. 73).

[76] Rosa Winter. Elliptic curves over Qp. Bachelor thesis, Mathematisch Instituut,
Universiteit Leiden. https : / / www . universiteitleiden . nl / binaries / content /
assets/science/mi/scripties/bachwinter.pdf. 2011-08 (cit. on p. 57).

[77] MaoZhi Xu et al. “Cryptography on elliptic curves over p-adic number fields”.
In: Science in China Series F: Information Sciences 51.3 (2008-03), pp. 258–
272. issn: 1862-2836. doi: 10.1007/s11432-008-0014-4. url: https://doi.org/
10.1007/s11432-008-0014-4 (cit. on p. 73).

[78] Zhi Hong Yue and Mao Zhi Xu. “Hierarchical Management Scheme by Local
Fields”. In: Acta Mathematica Sinica 27.1 (2010-12), pp. 155–168. issn: 1439-
8516. doi: https : //doi . org /10 . 1007/ s10114 - 011 - 9110 - 2. url: https : //
actamath.cjoe.ac.cn/Jwk_sxxb_en/EN/10.1007/s10114-011-9110-2 (cit. on
p. 73).

https://doi.org/10.1007/978-1-4612-1035-1_4
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/978-3-642-04159-4_6
https://doi.org/10.1007/978-3-642-04159-4_6
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/s001459900052
https://doi.org/10.1007/s001459900052
https://doi.org/10.1007/s11432-014-5155-z
https://doi.org/10.1007/s11432-014-5155-z
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachwinter.pdf
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachwinter.pdf
https://doi.org/10.1007/s11432-008-0014-4
https://doi.org/10.1007/s11432-008-0014-4
https://doi.org/10.1007/s11432-008-0014-4
https://doi.org/https://doi.org/10.1007/s10114-011-9110-2
https://actamath.cjoe.ac.cn/Jwk_sxxb_en/EN/10.1007/s10114-011-9110-2
https://actamath.cjoe.ac.cn/Jwk_sxxb_en/EN/10.1007/s10114-011-9110-2

153

Index

j-invariant, 21
p-adic evaluation, 56
p-adic integers, 56
p-adic metric, 55
p-adic norm, 56
p-adic numbers, 55
p-adic order, 56

abelian group, 22
abelian variety, 20
Advanced Encryption Standard, 3
AES, 3
affine algebraic curve, 17
affine algebraic plane curve, 17
affine algebraic set, 17
affine space, 13
affine variety, 17
AG Goppa code, 52, 82
algebraic group, 20
algebraic normal form, 96
algebraic variety, 17
algebraic-geometric Goppa codes, 50
algebraically closed field, 17
ANF, 96
anomalous curve, 46
Archimedean, 54
asymmetric-key, 7
authenticated, 5

Baby-step giant-step, 26
backdoor, 11
binary Goppa codes, 50
birationally equivalent, 33
block ciphers, 8
Boolean algebra, 94
Boolean function space, 95
Boolean functions, 94
brute force attack, 9

canonical forms, 30
canonical height, 60, 61
Cantor-Koblitz algorithm, 37
chord-and-tangent rule, 22

ciphertext, 4, 7
ciphertext-only attack, 4
codeword, 49
Coding theory, 48
cofactor, 46
complement-free, 99
complete, 54
completion, 18
complex projective plane, 24
composition, 38
cryptanalysis, 11
cryptographic attack, 9
Cryptography, 3
Curve25519, 27, 66

decryption method, 7
degenerate cubic, 40
degree, 18
dehomogenization, 15
dehomogenize, 13, 15
Diffie-Hellman protocol, 46
discrete logarithm problem, 45
discriminant, 21
divisor, 18
DLP, 45

ECC, 45
ECDLP, 45
Ed25519, 27
EdDSA, 27, 35
Edwards curve, 27
Edwards-curve Digital Signature

Algorithm, 35
effective divisor, 19
ElGamal encryption, 47
elliptic curve, 20
Elliptic Curve Cryptography, 45
elliptic curve discrete logarithm

problem, 45
elliptic invariants, 24
encryption method, 7
Enigma machine, 3

INDEX 154

error-correction codes, 48
errors, 49
exhaustive search, 9

factorization of the function, 15
finitely generated abelian group, 25
floating point operations per second,

10
FLOPS, 10
free abelian group, 18
free group, 18

Gauss-Jordan method, 49
Gaussian elimination, 83
generalized Weierstrass form, 21
generator matrix, 49
genus, 20
good reduction, 21
group law, 20

half-periods, 24
Hamming distance, 49
Hasse’s bound, 26
Hasse’s theorem, 26
HCC, 46
HCDLP, 46
HECDLP, 45
height, 60
homogeneous polynomial, 15
homogeneous rational function, 15
homogenization, 15
homogenize, 15
hyperelliptic curve, 36
hyperelliptic curve cryptography, 46
hyperelliptic curve discrete logarithm

problem, 45
Hyperelliptic Curve DLP, 46

imaginary hyperelliptic curves, 36
improper point, 14
Index Calculus, 46
inverse limit, 56
irreducible, 17

Jacobian, 19

key agreement, 45
key expansion, 7

lattice, 24
least significant bit, 103
linear code, 49
local field, 54

logarithmic height, 60, 61
LSB, 103

maximal, 99
Maximum Distance Separable, 78
Maximum Distance Separable code, 50
MDS, 78, 84
MDS code, 50
million instructions per second, 10
minimum (Hamming) distance, 49
minterm, 97
MIPS, 10
mono-alphabetic, 4
Montgomery curve, 27
Mordell-Weil theorem, 25
morphism, 20
most significant bit, 137
MSB, 137
multiplicity, 18
Mumford representation, 37

National Institute of Standards and
Technology, 3, 11

neutral element, 28
NIST, 3, 11
non-Archimedean, 54
non-singular, 20
non-smooth, 21, 27
non-supersingular, 22
normalized valuation, 55
NP-hard, 50
Néron–Tate height, 61

one-time pad, 4
order, 23
ordinary elliptic curves, 36
ordinary singular points, 28
OTP, 4

parity-check matrix, 49
perfect secrecy, 4
perfect secrecy cipher, 4
plaintext, 4, 7
plaintext attacks, 9
point at infinity, 14
pole, 16
Pollard’s rho, 45, 46
poly-alphabetic, 4
post-quantum cryptography, 50
principal divisor, 19
principle of superposition, 95
private-key, 7

INDEX 155

PRNG, 5
projective algebraic curve, 17
projective algebraic plane curve, 17
projective algebraic set, 17
projective line, 14
projective plane, 14
projective point, 13
projective resolution, 33
projective space, 13
projective variety, 17
proper point, 14
pseudo-random number generators, 5
public-key, 7
public-key encryption algorithm, 8
Puiseux series, 61

quantum computers, 3
qubits, 3

randomization, 50
rank, 25
real hyperelliptic curves, 36
reduced divisor, 36
reduction, 38
Reed-Muller codes, 94
Reed-Muller expansion, 96
regular function, 20
residue field, 54, 55
restriction, 18
ring of integers, 55
RM-codes, 94
RSA, 3

Schoof’s algorithm, 26
Schoof–Elkies–Atkin’s algorithm, 26
scytale, 3

secret key, 47
secure, 7, 10
security level, 10
security strength, 10
security tests, 8
semi-reduced divisor, 39
shared key, 7
shared-key encryption algorithm, 8
Shor’s algorithm, 4, 50
short Weierstrass form, 21
singular, 21
smooth, 20
standard form, 49, 82
statistical analysis, 4
stream ciphers, 8
supersingular, 22
support, 18
symmetric-key, 7

torsion subgroup, 25
torsion-free generating set, 26
torus, 24
twisted Edwards curve, 34

uniformizer, 55
units, 55

Vernam cipher, 4

Weierstrass uniformizing map, 25
weight, 49

X25519, 27

zero, 16
zero degree divisor, 19
zero set, 17

	Declaration of Authorship
	Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	I Mathematical background
	Cryptography
	Algebraic curves
	Projective space
	Homogeneous rational functions
	Algebraic variety
	Divisor of algebraic curves

	Elliptic curves
	Elliptic curves in Weierstrass form
	Group law
	Elliptic curves in Weierstrass form over the field of complex numbers
	Elliptic curves in Weierstrass form over the field of rational numbers
	Elliptic curves in Weierstrass form over finite fields

	Montgomery curves
	Edwards curves
	Group law
	Equivalence between Edwards curves and Elliptic curves in Weierstrass form
	Twisted Edwards curves

	Hyperelliptic curves
	Group law
	Meaning of the Cantor-Koblitz algorithm
	Doubling of divisors without Cantor-Koblitz algorithm

	Elliptic curves cryptography
	Diffie-Hellman and ElGamal

	Code-based cryptography
	Coding theory
	McEliece cryptosystem
	Algebraic-geometric Goppa codes

	II Curves over Qp
	Local fields
	The p-adic numbers

	Elliptic curves over local rings
	The case K = Qp
	Group law over Qp
	The Log function
	ECDLP exploiting the map Log of W
	Refinement of the ECDLP over Qp

	ECDLP from Q to Qp

	Hyperelliptic curves over Qp
	"Weaknesses" of Cantor-Koblitz algorithm

	Edwards curves over Qp
	The map Exp over local fields
	The map Exp over Qp

	III Coding theory
	Goppa codes for Edwards curves
	The Riemann-Roch space L(D)
	Computational cost

	AG Goppa codes
	Computational cost of constructing a Goppa code over Edwards curves

	A small example
	A small example of a McEliece cryptosystems
	Implementation

	Goppa codes for hyperelliptic curves
	The Riemann-Roch space L(D)
	AG Goppa codes
	A small example

	HL-codes and their decoding algorithm
	Reed-Muller codes
	HL-codes
	Decoding

	Conclusions

	IV Appendices and index
	Pseudocodes
	ECDLP using the Log function
	AG Goppa codes for Edwards curves
	AG Goppa codes for hyperelliptic curves
	HL-codes

	Implementations and benchmarks
	ECDLP using the Log function
	AG Goppa codes for Edwards curves
	AG Goppa codes for hyperelliptic curves
	HL-codes

	Bibliography
	Index

