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ABSTRACT This paper proposes a transmitter system based on direct antenna amplitude-shift keying modulation for 

point-to-point microwave link. The proposed system is formed from a conventional microstrip antenna and a novel 

reconfigurable metasurface layer (RMSL). The proposed RMSL has two states: OFF (or Logic-0) and ON (or Logic-1) 

where each switching scenario provides a certain gain level. This is achieved through controlling the proposed RMSL 

switching configuration to control the amplitude of the transmitted signal. Results show that such a system can modulate 

electromagnetic signals directly by varying the antenna’s gain from about 2 dBi for Logic-0 to 13.8 dBi for Logic-1. An 

analytical model-based ray-tracing technique is invoked to explain the operation of the proposed antenna system. To 

demonstrate the operation of the proposed system, both the antenna and the RMSL structures were fabricated, assembled 

and tested. Measurements show good agreement with the theoretical model and numerical simulations obtained using CST 

Microwave Studio software package. The overall system has dimensions of 25×25×7.3 cm3. 

 

INDEX TERMS ASK modulation, direct antenna modulation, microstrip antenna, reconfigurable metasurface. 

 

1. Introduction 
Amplitude-shift keying (ASK) is a digital 

modulation scheme that was invented for modern wireless 

communication networks where the amplitude of the carrier 

wave is varied in accordance with the baseband data source 

[1]. In any wireless communication system, the carrier 

wave, which is a sinusoidal signal of a high frequency 

corresponding to the radio frequency (RF) channel of 

interest, is modulated with the baseband data prior to 

transmission. The digital signal is upconverted using a 

mixer, which is a nonlinear device. The output of the mixer 

needs to be filtered to remove intermodulation artifacts 

generated in the modulation process and the resulting signal 

is amplified with a power amplifier (PA) before 

transmission [1]. Unfortunately, high peak-to-average-

power ratio of the baseband signals can cause the PA, 

which is a nonlinear device to generate spuria responses 

that can interfere with other wireless systems. To eliminate 

this issue a relative new technique has been developed and 

is referred to as direct antenna modulation (DAM) [2]. This 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3297264

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:*Corresponding%20Authors:%20tahaelwi82@almamonuc.edu.iq,%20mohammad.alibakhshikenari@uc3m.es
mailto:giovanni.pau@unikore.it


                                                                                                                                     
 

 

modulation scheme uses the baseband data to control the 

radiation properties of an antenna to generate a modulated 

signal.  

 

Various approaches of DAM have been presented in 

literature [3]-[6]. Many researchers achieved ASK-DAM by 

controlling the antenna input impedance. In [7] it is shown 

that although reconfigurable antenna systems could fulfil 

the requirements for smart communication systems 

however, they have limitations for application in most types 

of modulation schemes. The authors in [8] designed a DAM 

based on array of switchable passive reflectors. Pulse 

duration modulation was achieved directly with a 

multiple/input-multiple/output (MIMO) system through 

timed switching for antennas [9].  

In [10] a new feed mechanism is proposed for an 

electrically small antenna. Using this technique, an arbitrary 

amplitude-modulated waveform can be transmitted through 

a high-Q electrically small transient-state antenna. In [11] 

and [12] a new strategy involving direct transmission of 

data via programmable coding RMSL is employed to 

modulate a signal. In [13] it is shown that the use of 

metasurface structures can be used to enhance the 

performance of an antenna as well as the electromagnetic 

wave characteristics.  Moreover, it is shown that 

metasurface can be used to for beam forming applications. 

In [14], a high gain RMSL-antenna is presented. This 

antenna was further developed in [15] to realize gain 

variation by changing the metasurface array dimensions. A 

reprogrammable hologram was produced based on a one-bit 

metasurface for imaging applications in [16]. In [17] 

microwave imaging is proposed based on 2-bit 

programmable metasurface for a single sensor at a single 

frequency. Scattering diffusion is improved in [18] using an 

active metasurface at THz frequencies. The authors of [19] 

presented dual band metasurface operating at microwave 

frequencies. In [20], a digital coding transmissive RMSL is 

proposed that produces multiple beams. In [21] and [22], a 

multifunctional coding RMSL has been suggested as a 

means of producing dual-circularly polarized beams. 

In this paper, the design of an ASK-modulator based 

on patch antenna-RMSL is presented for point-to-point 

microwave link. The proposed ASK-modulator technique 

addresses the nonlinearity issue with power amplifiers and 

reduces the complexity and expense of the transmitter. The 

proposed system can be used in many wireless 

communication applications including near-field [8], fixed 

point-to-point microwave link, Radar [23], remote sensing 

[24], DAM [25] and medical applications [26]. 

 

2. System Operation 
The proposed system basically consists of two 

components, i.e., a microstrip antenna having a gain of about 

1 dBi gain (Gt), and a RMSL consisting of 5×5 unit cells. 

The unit cells are controlled by a group of light-dependent 

resistors (LDR). The RMSL is used to enhance the gain of 

the microstrip antenna, which is controlled by the activation 

status of the LDR. If the LDR devices are OFF, the 

microstrip antenna gain is about 2 dBi, however when LDR 

devices are ON, the microstrip antenna gain is enhanced to 

about 13.8 dBi. The resultant gain achieved is thus: 

 

Gt = {
2   dBi       status: OFF

13.8  dBi    status: ON  
                          (1) 

 

The gain improvement in the ON state results by the 

improvement of the impedance matching of the metasurface 

layer and the increase in the effective aperture area of the 

antenna. In [27] it’s shown how metasurface can change the 

radiation phase of a patch antenna to an in-phase profile 

such that the antenna radiates like a planar wave thus 

enhancing the antenna’s performance.  

The received power (Pr) at the proposed antenna for 

a fixed point-to-point microwave link is given by Friis 

transmission equation [28]  

Pr = Pt + Gr + 20 log (
𝜆

4πR
) + {

2 dBi   status: OFF

13.8 dBi  status: ON  
  (2) 

 

Where Pt is the transmitted power (dB), Gr is the receiver 

gain (dBi), 𝜆 is the wavelength (m) and R is the distance 

between the transmitter and the receiver (m). Equation (2) 

clearly shows that using the proposed RMSL, the 

transmitted power can be boosted according to the 

activation status of the LDR devices. If the RMSL is 

managed via a data source via a microcontroller, the 

transmitted power will represent the data. Fig. 1 illustrates 

the proposed system as an ASK-modulator. 

 

 
 

Fig. 1. System schematic of the proposed ASK modulator. 

 

3. Antenna Design 
The proposed antenna is based on the design of a 

standard microstrip patch antenna where the width (W) and 
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the length (L) can be determined from the following 

expressions [28]: 

𝑊 =
𝑐

2𝑓𝑜
√

2

𝜀𝑟 + 1
                 (3) 

      

𝐿 =
𝑐

2𝑓𝑜√𝜀𝑒𝑓𝑓 
− 0.824ℎ [

(𝜀𝑒𝑓𝑓 + 0.3) (
𝑊
ℎ

+ 0.264)

(𝜀𝑒𝑓𝑓 − 0.258) (
𝑊
ℎ

+ 0.8)
]  (4) 

 
Where   

𝜀𝑒𝑓𝑓 =
𝜀𝑟 + 1

2 
−

𝜀𝑟 − 1

2 

[
 
 
 

1

√1 + 12
ℎ
𝑊]

 
 
 

                (5) 

 

Fig. 2 shows the design of the proposed microstrip 

antenna at 2.45 GHz, where the patch antenna is directly fed 

through a coaxial probe of a 50 Ω SMA port. The patch 

geometry is based on a truncated rectangular structure that 

was inspired by [29]; however, the patch edges have been 

etched to create corrugated slots. The purpose for this is to 

reduce unwanted surface effects that can compromise the 

antenna’s impedance matching characteristics. It should be 

noted that the slots have been known to affect the symmetry 

of the radiation pattern [15]. The FR4 material with 𝜀𝑟 =
4.3, tan 𝛿 = 0.025, and thickness of 2 mm was chosen to 

implement the antenna. The corresponding dimensions of the 

slot in terms of wavelength are as follows: 7.5 mm = 

0.061𝜆𝑜, 3.5 mm = 0.028𝜆𝑜, 4.5 mm = 0.036𝜆𝑜, and 1.2 mm 

= 0.0098𝜆𝑜 where 𝜆𝑜 is the center frequency. The rectangular 

grove has a width of 0.008𝜆𝑜, larger side length of 0.01𝜆𝑜 

and shorter side length of 0.01𝜆𝑜. These values were 

obtained through optimization using CST Microwave Studio 

(MWS). 

 

 
Fig. 2. Microstrip antenna patch details in millimeter scale. 

 

4. RMSL Design 
The unit cell, which is shown in Fig. 3, is constructed 

from microstrip-lines, cross with T-shaped ends also 

commonly referred to a crutch cross, and U-shaped resonant 

structures. The motion of the electrical current over the 

structure is controlled by the four LDR devices which 

eliminate the limitations of the traditional patches [30]. The 

LDR devices provide a mechanism to control the antenna 

gain in both the azimuth and zenith planes. The dimensions 

of the unit cell are approximately λ/2 at the operating 

frequency according to the criterion given in [31].  

Electromagnetic characterization of the proposed unit 

cell was investigated numerically using CST MWS in [32]. 

To evaluate the constitutive characteristics of the unit cell, it 

was located at the center of a virtual waveguide, as illustrated 

in Fig. 4. The top and bottom sides (perpendicular to the y-

axis) of the boundary conditions are chosen as Perfect-

Magnetic-Conductors (PMC), while the left and right sides 

are chosen as Perfect-Electric-Conductors (PEC) 

(perpendicular to x-axis).  

 

 
Fig. 3 Metasurface unit cell structure in millimeter scale. 

 

According to Fig. 4, two ports along the z-axis are used to 

stimulate the TEM mode. The magnitude fluctuation of S21 
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for the ON and OFF situations is depicted in Fig. 4(a). It is 

important to note that the resonant frequency at Logic-1 was 

required to be at 2.56 GHz for the given design 

specifications, however in the case of Logic-0, the frequency 

resonance is eliminated from the frequency of interest. As a 

result, only Logic-1 can achieve the maximum power transfer 

at 2.45 GHz, and Logic-0 results in no power transmission. 

The corresponding phase variation of the forward 

transmission coefficient (S21) is plotted in Fig. 4(b) for both 

ON and OFF states. For the ON case, the matching 

impedance occurs at the resonant frequency of 2.56 GHz 

where the phase is 0o. This phenomenon declares that 

imaginary part of the impedance to vanish, and it confirms 

that the result of maximum-power-transfer can be obtained at 

Logic-1 [10]. The ON and OFF states of the LDR determine 

the sections of the metasurface unit cell structure, shown in 

Fig. 5, that are connected. In the ON state, the LDR makes 

the unit cell appear bigger and the corresponding frequency 

drops, however the vice versa applies when the LDR is in the 

OFF state. 

 
 

 

 
Fig. 4. Unit cell performance characterization, (a) S21 magnitude spectra, and (c) S21 phase response. 

 

The transmission-line model in [30] and [33] has been 

modified to manage the proposed RMSL design. The 

modifications comprise addition of an extra-capacitance 

(Cextra) parallel with the switch (Sextra), as shown in Fig. 5. 

When the LDR of the reconfigurable metasurface unit cell is 

in the OFF state, four new capacitances appear due to the 

gaps in the reconfigurable metasurface unit cell structure. 

Therefore, Cextra in Fig. 5 represents the equivalent 

capacitance of the four capacitances. Sextra represents the 

four LDR devices. By switching the unit cell to the OFF 

state, the frequency resonance must vanish from the 

frequency band of interest. On the other hand, in the ON 

state, the four LDR devices leads to eliminate the four gaps. 

In this case, the proposed RMSL provides a well-defined 

frequency response at 2.56 GHz. 

Based on the unit cell's geometrical dimensions, the 

following equations can be used to calculate the lumped 

circuit components [33]: 

Cg ≈
2 𝜖° 𝜖𝑟𝑒𝑓𝑓𝐿

𝜋
(
𝐿ℎ

𝐿
) ln [

1

𝑠𝑖𝑛 (
𝜋𝑔
2𝐿

)
]         (6a) 

Lg ≈
𝜇°𝐿

2𝜋
(
𝐿𝑣

𝐿
) ln [

1

𝑠𝑖𝑛 (
𝜋L2

2𝐿
)
]                   (6b) 

𝜖𝑟𝑒𝑓𝑓 =
𝜖𝑟 + 1

2
+ 

𝜖𝑟 − 1

2
{[1 + 12 (

ℎ

𝑤
)] −0.5

+  [1 − (
𝑤

ℎ
)] 2}                        (6c) 

 

 
Fig. 5. The equivalent circuit of the proposed RMSL. 

 

 

where Lg is the total inductance of the metasurface layer, and 

Cg is the total capacitance of the metasurface layer, which is 

mostly due to the fringing capacitance. The substrate 

thickness and microstrip-line width are represented by h and 

w. The gap between the two neighboring unit cell’s and 
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between the center and edges, respectively, are represented 

by L and g. Lengths 𝐿ℎ = 2L3 + L4 and 𝐿𝑣 = 2L3 + 𝑔2. For 

a very thin metasurface substrate, 𝜖𝑟𝑒𝑓𝑓  can be assumed to 

equate to unity from equation (6c). From the equivalent 

circuit model given in Fig. 5, the resonance frequency 𝑓𝑟  can 

be obtained using the following expression [33]: 

 

𝑓𝑟 =
1

2𝜋
√ 

Cg + Cextra

CgCextraLg

                   (7) 

 

For the ON state, the calculated equivalent circuit 

parameters are as follows:  Cg = 0.1953 pF, Lg =

21.241 nH and  𝑓𝑟 = 2.47 GHz. For the OFF state, Cextra 

appears in series with Cg which results in reducing the value 

of equivalent capacitance and shift-up the resonance 

frequency. A small capacitance value of Cextra is expected by 

considering the physical gap. In fact, Cextra has a value 

of 0.08  pF and as a result, the resonance frequency 𝑓𝑟 shifts 

up in frequency to 4.4 GHz.  

The surface current distributions over the proposed 

metasurface unit cell structure in the ON and OFF LDR 

states are shown in Fig. 6. The surface current over the 

antenna structure is due to the flow of electrical charge over 

the antenna structure. The non-uniform distribution of 

surface current is due to the changing electromagnetic field 

impinging on the antenna and the interaction between the 

adjacent metasurface unit cells. Nevertheless, in the case of 

ON state, the surface current distribution reaches a 

maximum magnitude of 29 dBA/m, as shown in Fig. 6(a), 

at a resonance frequency of 2.45 GHz. In the OFF state, the 

surface current distribution is observed to be around 0 

dBA/m, as shown in Fig. 6(b).  

 

 
Fig. 6. Surface current distributions of the proposed unit 

cell; (a) status-ON; (b) status-OFF. 

 

The proposed RMSL is based on an array of 5×5 unit 

cells distributed uniformly. The RMSL that is constructed 

from the proposed unit cell is mounted on a FR4 substrate 

(𝜀𝑟 = 4.3, tan 𝛿 = 0.025) with a thickness of 1 mm. The 

dimensions of the individual unit cell are 50×50 mm2 where 

outer physical dimensions of the conductor region are 45×36 

mm2 and the space between the conductors of neighbor unit 

cells are 10 mm and 14 mm along x- and y-axes, respectively. 

To ensure minimum coupling between the unit cells, the 

periodicity of the unit cell was adjusted to 50 mm (~λ/2) [31]. 

A perspective view of the proposed antenna and RMSL 

structure is shown in Fig. 7. 
 

 
Fig. 7. The proposed RMSL structure. 

 

One of the key points in the design of the RMSL 

was the determination of focal length (𝐹) under ON and 

OFF LDR states. While optimal gain may be obtained when 

the distance between the RMSL and the antenna is set to 

achieve the paraxial rays, proper focal length selection is 

essential. The unit cell in the ON and OFF scenarios has a 

distinct focal length. We achieved the greatest increase in 

antenna gain when RMSL was placed at the focus point. 

When the RMSL was switched to the OFF state, the focal 

length changes to a different value and the antenna gain 

drops. The gap between the RMSL and antenna was held 

constant in this study. 

In this work, two methods are introduced to find the 

value of the focal point. The first approach uses ray-tracing 

analysis, which was motivated by optical theory in [34]. 

The authors performed the necessary computations while 

imagining the metasurface layer as a lens mounted antenna 

to investigate the basic workings of the layer. The RMSL's 

dimensions were kept the same as the ground plane of the 

microstrip antenna to reduce the side-lobe levels. Moreover, 

the phase difference between the central unit cell and the 

diagonal unit cell on the metasurface layer were made to be 

(2𝑛 + 1)𝜋 rad (𝑛 is an integer). This condition is necessary 

to guarantee the maximum possible deconstructive 

interference of the radiated electromagnetic waves from the 

layer’s unit cells at the rim. From the illustrated in Fig. 8 it 

can be shown that the phase difference is given by [35]. 

 

𝑘[𝑅𝑖 − (𝑟𝑖 . �̂�°)] = 𝜓𝑖 − 𝜓°           (8) 
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Fig. 8. Ray-tracing based phase difference. 

 

where 𝑘 is the propagation constant in free space. The 

distance from the center of the patch antenna to the center of 

the 𝑖𝑡ℎ element is represented by 𝑅𝑖, and 𝑟𝑖 is the position 

vector of the  𝑖𝑡ℎ element. The direction vector of the main 

beam is  �̂�°. To meet this condition, the term 𝜓𝑖 − 𝜓° must be 

adjusted to be 3𝜋 rad. The other clue at the broadside 

direction is that both 𝑟𝑖 and �̂�° are almost perpendicular, 

which means that the dot product between 𝑟𝑖 and �̂�° is null. 

Therefore, the value of  𝑅𝑖 is found to be 153 mm, 𝜃1 =
67.6°. RMSL is mounted at a focal point (𝐹) distance of 70 

mm.  

Based on CST MWS simulations, the second 

approach is determined by the focal length. To achieve the 

greatest gain increase, CST MWS is used to investigate the 

ideal metasurface placement, array size, and orientation of 

the microstrip patch antenna. By changing the 

reconfigurable metasurface array configuration size from 

1×1, 3×3, and 5×5, the antenna gain is found to change 

significantly as shown in Fig. 9.  

 

 
Fig. 9. A parametric study for the proposed system 

performance. 

 

5. Measurements and Validation 
The antenna and RMSL were constructed and 

installed, as shown in Fig. 10, following the determination of 

the ideal system design parameters. Chemical etching using 

PCB technology is used to create the antenna and RMSL. 

Four plastic screws, each measuring 70 mm in length, are 

used to install the RMSL. It is important to note that LDR are 

not soldered while making RMSL. Instead, two distinct 

layers are constructed to show the ON and OFF states. A 

common measuring system is used to assess the antenna 

performance in terms of S11 spectra and radiation patterns. 

Coaxial cables, an Agilent PNA 8720 series vector network 

analyzer, and an 82357A USB to GPIB interface that is 

linked to an external computer make up the measurement 

setup. As shown in Fig. 10, the antenna is mounted on a 

rotating holder which is located inside an RF anechoic 

chamber. 

 

 
Fig. 10. The fabricated prototypes and measurement setup. From left to right: Fabricated microstrip antenna, top view of the 

RMSL, and antenna measurement setup inside the RF anechoic chamber. 

 

The simulated and measured S11 variation as the 

function of frequency and the antenna radiation pattern at 

𝜑 = 0° and 𝜑 = 90° planes are shown in Fig.11. Fig. 11(a) 

shows S11 of the antenna without RMSL. It is observed from 

this figure that the antenna radiation pattern covers a wide 3-

dB beamwidth of 136o with a gain of about 1 dBi at 2.45 

GHz. The spectra of S11 for the antenna with RMSL in the 

OFF state is shown in Fig. 11(b) together with radiation 
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patterns at perpendicular planes. The antenna resonates 

frequency at 2.45 GHz with a gain of about 2 dBi and 

exhibits a 3-dB beamwidth of 113o. The final set of 

measurements is presented in Fig. 11(c) for the antenna with 

RMSL in the ON state. It is found from this figure that the 

antenna exhibits a gain of about 13.8 dBi at 2.45 GHz. In this 

case, the antenna’s 3-dB beamwidth is significantly reduced 

to 26o. 

 
Fig. 11. Measured and simulated results of the proposed antennas, (a.1) S11 spectra of the antenna without RMSL, (a.2), and 

(a.3) radiation pattern of the antenna without the RMSL at 𝜑 = 0° and 𝜑 = 90°, respectively, (b.1) S11 spectra of the antenna 

with RMSL in the OFF state, (b.2), and (b.3) radiation pattern of the antenna with RMSL in the OFF state at 𝜑 = 0° and 𝜑 =
90°, respectively, (c.1) S11 spectra of the antenna with RMSL in the ON state, (c.2), and (c.3) radiation pattern of the antenna 

with RMSL in the ON state at 𝜑 = 0° and 𝜑 = 90°, respectively. 

 

Total efficiency of the antennas was investigated in 

this study. The total efficiency of the antenna was 20% 

when RMSL is not employed. However, by assembling the 

RMSL on the microstrip antenna, the total efficiency 

improved to 28% in the OFF state but in the ON state the 

efficiency significantly increased to 45%. The reason for 
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the improvement in total efficiency in the ON state is 

because the reactive part of the RMSL at its resonance 

frequency, i.e., operating frequency, is negated. Hence, 

optimum power is transferred through the RMSL. 

RMSL does not have the same symmetry along 𝑥 and 

𝑦-planes. Thus, to observe the effects of RMSL placement 

on the antenna performance, RMSL is rotated 90° with 

respect to the microstrip antenna on 𝑥-𝑦 plane around its 

center. The antenna parameters are listed in Table 1 for 

non-rotated and 90°-rotated cases. When the RMSL is 

rotated 90°, the antenna gain obtained is 2.6 dBi and 10 dBi 

for the OFF and ON states, respectively. The difference in 

the gain between the ON and OFF states is 7.4 dB. An 

optimum gain of 9 dB was obtained at 0° orientation. 

Therefore, 0° orientation was chosen as the optimal case. The 

simulated antenna gain was 11.8 dB. The discrepancy 

between the measured and simulated results is attributed to 

manufacturing tolerance and the inaccuracy of the simulation 

models. Front-to-back ratio (F B⁄ ) change is insignificant by 

the orientation of the RMSL.  

 

Table 1 Effects of RMSL rotation on the antenna performance. 

At orientation = 0° 

status 
fr 

(GHz) 

S11 

(dB) 

Gain 

(dBi) 

F B⁄  

(dB) 

Total 

efficiency (%) 

Radiation 

efficiency (%) 

OFF 2.45 -24 2 7.5 28 29 

ON 2.45 -21 13.8 5.2 44 45 

At orientation = 90° 

status 
fr 

(GHz) 

S11 

(dB) 

Gain 

(dBi) 

F B⁄  

(dB) 

Total 

efficiency (%) 

Radiation 

efficiency (%) 

OFF 2.45 -25 2.3 7.4 28 29 

ON 2.45 -20 13.6 6.5 39 39 

 

Previous antenna research has essentially paid 

attention to improving the antenna gain. The performance 

of the proposed antenna is compared with other published 

works in Table 2. It is evident from the table that the 

proposed antenna exhibits exceptional gain improvement 

resulting from the use of the reconfigurable RMSL. In this 

work, the application intended for the proposed antenna is 

for controlling the antenna gain required direct antenna 

modulation schemes. According to authors’ knowledge, the 

proposed work is the first of its kind on intelligent 

metasurface layer for amplitude modulation technology.  

 

Table 2 Comparison of the proposed work with other published results. 

Reference fr (GHz) Substrate Size (mm2) Number of layers Gain enhancement (G) (dB) 

[15] 2.45 FR4 240 × 240 2 layers 5.1 

[35] 2.65 Taconic 360 × 360 2 layers (Octagon) 7.8 

[36] 5.8 FR4 50 × 50 1 layer 1.2 

[37] 11.38 Polymer 50 × 50 1 layer 7.9 

[38] 5.2 FR4 50 × 50 1 Layer 4.5 

[39] 2.65 Taconic 360 × 360 2 layers (circular) 6.0 

proposed work 2.45 FR4 250 × 250 1 layer 9.0 

 
6. Channel Performance Results 

In this section, the proposed antenna system is 

evaluated in terms of bit error rate (BER) and channel 

capacity (CC). ASK schema was applied to the antenna 

directly by reconfiguring the RMSL. This was achieved by 

switching the status of the LDR devices. The BER 

performance was determined at various signal-to-noise 

ratios (SNR) and in the ON/OFF LDR scenarios. In the 

MATLAB computation Additive white Gaussian noise 

(AWGN) was considered. The maximum BER is placed at 

100 and the maximum number of bits is taken as 1×107. 

The BER behavior as a function of S/N and RMSL array 

size is shown in Fig. 12(a). The performance of the 

proposed antenna system in terms of CC as a function of 

S/N and RMSL array size is shown in Fig. 12(b). It was 

discovered that significant variation in CC could occur with 

changing the switching scenarios at the frequency band of 

interest. 
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Fig. 12. Channel performance: (a) BER for 12 bits/s/Hz, and (b) CC evaluations. 

 

7. Conclusions 
Proposed here is an ASK transmitter system based on 

microstrip antenna and RMSL for point-to-point microwave 

link. When the RMSL is turned on (Logic-1), the proposed 

antenna system offers a gain of 13.8 dBi. However, when the 

RMSL is turned off (Logic-0), the gain only reaches 2 dBi in 

relation to cycles of the modulation period. Digital coding 

can regulate the transmitted electromagnetic power from the 

proposed antenna system by electrically switching each unit 

cell in the RMSL. The operating principle is explained using 

an analogous circuit model and optical ray-tracing analysis. 

By changing the metasurface layer, the antenna gain can be 

controlled. The antenna system was practically evaluated. 

The measured findings show excellent agreement with the 

numerical predictions. Rotating the RMSL in relation to the 

microstrip antenna around its center allowed one to see how 

the positioning of the RMSL affects the antenna’s 

performance. It was discovered that the radiation pattern and 

gain could be significantly altered by 90o rotation of the 

metasurface layer with respect to the patch antenna's normal 

axis. It was discovered that when the RMSL is switched to 

the OFF state, the surface current over the structure is 

reduced and vice-versa in the ON state. The phase variation 

of the forward transmission coefficient shows impedance 

matching at the resonant frequency at the ON state. In this 

case, the phase is zero and the imaginary part of the 

impedance is negligible. As a result, maximum power 

transfer is obtained at Logic-1. Finally, the efficiency of the 

antenna system was found to be significantly enhanced by 

switching the RMSL to the ON state. This was because the 

reactive component of the antenna is negated at its 

resonance frequency. As a future work, the proposed 

RMSL structure needs to be analyzed using different 

modulation processes. Also, investigation needs to be 

conducted to realize beam splitting for space division 

multiple access applications. 
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