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Abstract

Visual object tracking plays a crucial role in various vision systems, including
biometric analysis, medical imaging, smart traffic systems, and video surveil-
lance. Despite notable advancements in visual object tracking over the past
few decades, many tracking algorithms still face challenges due to factors like
illumination changes, deformation, and scale variations.

This thesis is divided into three parts. The first part introduces the vi-
sual object tracking problem and discusses the traditional approaches that
have been used to study it. We then propose a novel method called Track-
ing by Iterative Multi-Refinements, which addresses the issue of locating the
target by redefining the search for the ideal bounding box. This method
utilizes an iterative process to forecast a sequence of bounding box adjust-
ments, enabling the tracking algorithm to handle multiple non-conflicting
transformations simultaneously. As a result, it achieves faster tracking and
can handle a higher number of composite transformations.

In the second part of this thesis we explore the application of reinforce-
ment learning (RL) to visual tracking. Presenting a general RL framework
applicable to problems that require a sequence of decisions. We discuss var-
ious families of popular RL approaches, including value-based methods, pol-
icy gradient approaches, and Actor-Critic Methods. Furthermore, we delve
into the application of RL to visual tracking, where an RL agent predicts
the target’s location, selects hyperparameters, correlation filters, or target
appearance. A comprehensive comparison of these approaches is provided,
along with a taxonomy of state-of-the-art methods.

The third part presents a novel method that addresses the need for online
tuning of offline-trained tracking models. Typically, offline-trained models,
whether through supervised learning or reinforcement learning, require ad-
ditional tuning during online tracking to achieve optimal performance. The
duration of this tuning process depends on the number of layers that need
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training for the new target. However, our thesis proposes a pioneering ap-
proach that expedites the training of convolutional neural networks (CNNs)
while preserving their high performance levels.

In summary, this thesis extensively explores the area of visual object
tracking and its related domains, covering traditional approaches, novel method-
ologies like Tracking by Iterative Multi-Refinements, the application of rein-
forcement learning, and a pioneering method for accelerating CNN training.
By addressing the challenges faced by existing tracking algorithms, this re-
search aims to advance the field of visual object tracking and contributes to
the development of more robust and efficient tracking systems.
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Chapter 1

Introduction

Visual object tracking represents one of the most important fields
of computer vision since is used in many applications, such as
video surveillance, autonomous driving, human-machine interac-
tion and activity recognition. The success of these applications is
related to the goodness of the visual object tracking algorithms.
Furthermore, when talking about visual tracking, approaches de-
pend on the camera setting: single (static, PTZ or mobile) camera
or camera network (with overlapping or non-overlapping fields of
view). This thesis focuses on visual object tracking (VOT) with
a single mobile camera.

1.1 Overview

The formulation of the VOT problem is quite simple: given the
initial location and size of the target in a frame, the visual tracker
aims to estimate the target’s position in the subsequent video
frames.

The main components of the visual tracking process are: tar-
get initialization, appearance model, motion prediction, and model
update, motion model. Target initialization happens on the first
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frame of the video and aims at defining the initial target’s loca-
tion in terms of bounding box, PTZ camera parameters, or tar-
get’s contours, depending on the camera setting and application at
hand. Appearance model is the representation of the target taken
from the initialization. It is designed to be discriminative as much
as possible to distinguish the target from the other elements in the
scene (the background), and to characterize the visual appearance
of the target. Motion prediction is an important aspect of visual
object tracking, as it involves forecasting the future position of
an object based on its previous motion. Model update aims to
update the target appearance representation during tracking by
using the last status detected on the last frames. Recently, state
of the art trackers allow skipping this part by speeding up the
entire tracking process. The motion model is an important com-
ponent of motion prediction in visual object tracking. It describes
how the position of the object changes over time and is used to
forecast its future position. The motion model parameters are
estimated using machine learning techniques such as regression
or deep learning, or optimization techniques such as the Kalman
filter or particle filter.

To predict the status of the target, the tracker relies on the ap-
pearance model and during the years the methods used to extract
the target’s feature representation are changed a lot. Broadly
speaking, we can divide the extracted visual features into two
categories: handcrafted features and deep features.

Before the breakout of Deep Neural Networks(DNNs), features
were extracted from the images depicting the target by hand-
crafted methods such as Histogram of Oriented Gradients (HOG)[1],
Scale-Invariant Feature Transform (SIFT)[2], color histograms,
bag-of-features[3].
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Compared to the handcrafted methods, features extracted by
DNNs are more invariant to the appearance changes, and the suc-
cess of such models seems to be ascribable to their capability of
extracting higher-level features through their multiple layer struc-
ture and their non-linearity. The typical neural network used
for the Visual Tracking are the Convolutional Neural Networks
(CNNs).

Regardless of the methods of extracting features, three main
strategies are used for visual object tracking: tracking-by-detection,
tracking-by-regression, and tracking-by-detection and regression.

Tracking-by-detection approaches [4, 5] are classification meth-
ods, which aim to discriminate between target and background.
A large number of candidate target bounding boxes are drawn
around the last known target location. The one yielding to the
highest classification score is selected. As a result, performance is
closely linked to the sampling strategy.

Tracking-by-regression approaches [6, 7] use regression to lo-
cate the bounding box in subsequent frames by minimizing an
objective function such as least-squared error.

Tracking-by-detection and regression methods [6, 8, 9, 10] are
hybrid approaches whose goal is detecting the most similar region
to the target, and then refining the region through regression.

Tracking-by-segmentation approaches [11, 12, 13, 14] aim at
tracking objects while producing a mask of the target object for
each frame of the processed video.

Despite CNNs are more discriminative and robust to represent
the appearance, they require an huge amount of data that in some
cases are difficult to obtain, but in the last few years many bench-
marks have been released in computer vision especially in visual
object tracking field allowing to fill this lack. Nonetheless, some
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well noted problems of the visual tracking still remain unsolved
such as illumination change, scale variation, occlusion, etc. So far,
the state of the art (SOTA) tracker have not completely solved
these issues, but since the performance of the visual object track-
ing algorithms are increasing, the applications on real world are
growing too.

1.2 Applications

There are many applications of the visual object tracking in real
world. The typical applications are video surveillance and au-
tonomous driving.

Video Surveillance intervention in tracking a particular object.
Video surveillance has been grouped into three types, namely
manual, semi-autonomous, and self-autonomous. Manual video
surveillance involves the analysis of the video content by a hu-
man. Such systems are currently widely used. Semi-autonomous
video surveillance involves some form of automatic video process-
ing, but with significant human intervention. Typical examples
are systems that perform simple motion detection. Only in the
presence of significant motion, the video is recorded and sent for
analysis to the human expert. In a fully autonomous system, the
only input is the video sequence taken at the scene where surveil-
lance is performed. In such a system, there is no human interven-
tion, and the system does both the low-level tasks, such as motion
detection and tracking, and also high-level decision-making tasks,
such as abnormal event detection and gesture recognition.[15]

Autonomous Driving represents one of the ambitious applica-
tions of visual tracking especially in the last decade since it is be-
coming more attractive for companies and academia. Autonomous
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Figure 1.1: Visual tracking has numerous applications across various fields.
For instance, Image A depicts an example of visual tracking used in au-
tonomous driving, whereas Image B showcases its utilization in video surveil-
lance. In Image C, we see visual tracking applied to sports analysis, demon-
strating the versatility of this technique.

11



driving means that a car is able to sense the environment and per-
form actions as a consequence of what it perceived without the
help of human. Sensing the environment means that the car has
to avoid eventual risks by using several sensors. The perception
system usually consists of multi-sensors including LIDAR, GPS re-
ceiver, cameras and radars. All sensors give information about the
position of the obstacles; cameras and visual tracking algorithms
allow to calculate the trajectories of the obstacles by predicting
their future movements. This information is important to help
the autonomous car to plan paths and avoid obstacles [16].

Traffic monitoring is a popular application of visual object
tracking (VOT) that involves tracking vehicles or pedestrians in
real-world traffic scenarios helping to improve road safety [17] or
optimize traffic flow [18]. Different approaches that have been
proposed for traffic monitoring using VOT. These could include
traditional feature-based trackers, deep learning-based trackers,
or hybrid methods that combine both.

Motion analysis of athletes in sports has gained considerable
attention from researchers. Traditionally, analysis has relied on
data collected from live observation or post-event video analysis
[19], which necessitates manual recording and analysis. Thus, au-
tomating this manual process with visual tracking is highly sought
after. In Figure 1.1, visual tracking is used to track football play-
ers, who move rapidly with unpredictable changes in direction,
making manual collection even more challenging. Visual track-
ing can predict player trajectories and provide their positions at
each time instant, enabling applications such as strategy planning,
team management, and individual performance evaluation. These
benefits extend to both players and coaches.

The multitude of applications and the persistent challenges
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present in this field have ignited my enthusiasm to undertake this
thesis. By delving into the complexities and possibilities of visual
object tracking, I aim to contribute to the existing knowledge and
advancements in this dynamic area of research.

1.3 Motivation

Visual Object Tracking still represents a challenge for the com-
puter vision community due to well known problems such as il-
lumination changes, fast (non-linear) motion, scale variation, oc-
clusions, target rotation and pose changes. The data acquisition
process itself is imperfect and the target appearance is affected by
the environment where the target moves. In particular, an unre-
liable appearance model affects the performance and it becomes
harder for the visual tracker making the correct prediction on the
position of the target. We have already claimed that appearance
features are nowadays extracted through CNNs. Therefore, how
CNNs learn and what they learn could represent a breakthrough
point to propose novel visual tracker capable of facing the current
challenges.

Essentially, we can distinguish different types of learning of
CNNs: supervised, unsupervised and reinforcement learning.

Supervised learning (SL) algorithms exploit a dataset in which
a label or a scalar is associated to each example. Traditional goals
of SL are the solution of regression and classification problem. In
classification problem, the trained model predicts the class among
a finite number of known ones to which the input sample belongs.
In regression problem, the goal of the model is to predict numerical
values.

Unsupervised learning (UL) algorithms exploit a dataset to
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highlight features of the data structure. Usually UL algorithms
aim to learn the entire probability distribution that generated the
data as in density estimation, or implicitly, for tasks-like synthesis
or denoising. Other unsupervised learning algorithms are used to
cluster data of similar examples.

The basic idea in reinforcement learning (RL) is letting the
system, called Agent, to partially exploit its experience or ex-
plore new possibilities during training. While in SL exemplars
and corresponding expected answers are given, in RL the Agent is
rewarded a posteriori for the effective behaviors, and penalized for
the ineffective ones. Reinforcement Learning can solve problems
by using a variety of machine learning methods and techniques,
from decision trees to SVMs, to neural networks. The latter is
what the “deep" part of deep reinforcement learning (DRL) [20]
refers to. DRL has been applied in several computer vision prob-
lems such as visual tracking [21], activity localization [22], object
detection [23], video recognition [24] and segmentation [25].

Despite the DRL for tracking is applied in different ways, from
target location prediction to hyper-parameters setting, there are
still limitations and open problems to solve. In facts, analysis
of DRL-based tracking algorithms shows that, in general, DRL-
based visual tracking approaches are often below the state-of-the-
art.

The use of DRL for tracking could be useful to learn behav-
iors that allows the agent to maximize reward generating samples
he needs to make more confident decisions during tracking (ex-
ploration). In this way, the agent is allowed to self-correct its
behavior. From another point of view, it would be interesting to
understand if an agent trained using the DRL is able to generalize
a behavior in visual tracking better than an agent trained using
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SL.
This question drove me to investigate the DRL methods applied

to visual object tracking and at the same time do a comparison
between the learning paradigms DSL (deep SL) and DRL applied
to visual object tracking.

In visual tracking there are three types of algorithms, those
that update the appearance model during tracking by updating
the parameters of the network in an online manner, those that
make only one update on the first available target appearance and
those that use the first template of the target available without
any updates.

Considering the amount of data available for visual tracking
and the time required to train the CNNs, we investigated the
possibility to speed up the learning of CNNs using a sort of ap-
proximation learning.

1.4 Research contributions

The goals of this thesis are manifold: comparing SL and RL learn-
ing paradigms for visual object tracking by highlighting pros and
cons of each approach, proposing a novel method for visual object
tracking, and proposing a new method to speed up the training of
CNNs for visual tracking algorithms and other neural networks.

Throughout the experimental process, it was observed that sig-
nificant improvements could be achieved in a visual tracker by
employing iterative refinements of the candidate bounding box for
the target. By iteratively refining the bounding box within the
same frame until the optimal configuration was attained, track-
ing performance could be enhanced. As a result, a novel method
was developed to select multiple refinements of the bounding box.
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This approach not only accelerated the tracking system but also
improved overall tracking performance. The details of this method
were published in [26].

This thesis also delves into the investigation of different learn-
ing paradigms that enable deep model learning and generalization
in visual tracking. The primary objective was to determine the ap-
plicability of Deep Reinforcement Learning (DRL) in the context
of visual object tracking. A comprehensive study was conducted
to explore the use of DRL in visual tracking, and the findings were
published in [27].

In pursuit of the objective to update the deep model online
during tracking while enhancing time performance, thorough in-
vestigations were conducted to expedite the training of Convolu-
tional Neural Networks (CNNs). Drawing inspiration from pre-
vious works in this domain, a novel method was proposed. This
approach involved analyzing the gradient of the loss with respect
to the model parameters to determine the opportune moments
and locations for truncating the CNN. Additionally, it leveraged
the feature maps extracted by the last layer before the truncation.
Although this work has been submitted for publication, it is yet
to be officially published.

Each chapter of this thesis details some scientific contribution,
which can be summarized as following:

• Comparison of SL and RL learning paradigms for visual ob-
ject tracking by analysing the characteristics of each method
and investigating pros and cons.

• A new method for visual object tracking based on multiple
transformations of the bounding box to speed up the tracking
process. As a consequence, a higher number of composite
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transformations can be handled by the model without any
increases of its complexity;

• A new framework is proposed to speed up the training of
CNNs by looking at the gradient magnitude of the weights
of the CNN. The framework generalize to several fields.

1.5 Structure of the thesis

After introducing the visual tracking problem and providing a
general overview on the challenges to solve and on the most com-
mon applications in the real world, this thesis is organized as it
follows. Chapter 2 provides a deeper background on the visual ob-
ject tracking problem by presenting traditional methods and state
of art approaches. The chapter also illustrates how deep learning
is used in visual tracking. It also details how the tracking problem
is approached when using SL methods and DRL.

In Chapter 3, the visual tracking problem is formulated as iter-
ative refinements on the same frame to find the optimal bounding
box. The presented method adopts SL to train the model.

In Chapter 4, we provide an introduction to RL and its appli-
cation in visual tracking. We discuss the different DRL paradigms
used in this area and present an overview of all the existing DRL
visual tracking methods.

In Chapter 5, a framework is formulated to speed up the train-
ing of CNNs. We compare different metrics to analyse where and
when truncating the CNNs.

In Chapter 6, we will delve into the findings from the previous
chapters.

Finally, Chapter 7 discusses the thesis’s contributions and po-
tential directions for future work.
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Chapter 2

Visual Object Tracking

Visual tracking is an active research area in computer vision. For-
mally, the problem can be formulated as the one of analyzing a
video, namely a sequence of N images v = {I1, I2, . . . , IN}, and
estimating the target’s location li = (xi, yi) with i ∈ [1, N ] in-
dexing the image frames. The problem can also be extended to
the 3D when a world coordinate system is known or can be esti-
mated. However, this thesis focuses on methods devised for 2D
object tracking with a single camera.

The performance of existing techniques is still challenged by
various factors such as occlusions and abrupt changes in the visual
appearance of the target. To better understand how to deal with
visual tracking, in this chapter are summarized the most popular
approaches starting from the traditional ones up to the state of
the art methods.

2.1 Traditional methods

Taking inspiration from control systems, for years tracking has
been modeled by linear dynamical systems and approaches such
as Kalman filter [28] have been adopted [29]. Since targets gener-
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Figure 2.1: In tracking-by-detection, feature representations of image patches
sampled around the last known target location are extracted, then the clas-
sifier is used to discriminate between target/non-target.

ally do not move linearly, advanced techniques such as Extended/
Unscented Kalman Filter [30, 31] and Monte Carlo based Bayesian
filters like particle filter [32] have been adopted as well [33, 30, 34].
The above approaches modeled the target motion dynamics, and
appearance models were used as correction tools, in the Kalman
filter, or to estimate the observational likelihood in the particle fil-
ter framework. Hence, an unreliable appearance model affects the
performance of such methods; this has led to many studies about
people re-identification, whose goal is to re-identify persons from
just one or few shots. Such methods aim at modeling reliably the
target appearance by devising novel hand-crafted feature repre-
sentations or defining/learning similarity functions to be used to
establish matches among pedestrian images [35].

2.1.1 Tracking-by-detection

Some methods are based on the tracking-by-detection paradigm [36,
37]. These trackers are trained on test sequences and the de-
tector is specialized in recognizing the target in the scene, turn-
ing the visual tracking problem in a binary classification of tar-
get/background. These trackers are based on strong feature repre-
sentations, a classifier, an online procedure to re-train the classifier
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at test time, a strategy to assemble an appropriate training set of
positive and negative samples collected at test time. Fig. 2.1 shows
the typical application of tracking-by-detection algorithms. First,
feature representations of image patches sampled around the last
known target location are extracted, then the classifier is used to
discriminate between target/non-target. The patch with the most
confident positive response of the classifier may be chosen as the
new target location. The training strategy used to retrain the
classifier with the new target appearance brings uncertainty that
generally results in drifting of the tracker.

2.1.2 Tracking-by-correlation

Another approach to visual tracking is template matching [38].
Given a template of the target, tracking is performed by corre-
lating the template with the next image representation to predict
the target location using the peaks in the correlation results [39].

In some cases, the matching is established by the sum of squared
differences [38] of the pixel intensities/ feature representations.
Despite simple, in practice, this approach fails due to the inabil-
ity of the tracker to adapt to the target appearance changes and
may not be able to discriminate between target and background.
Interesting results can be achieved by overturning the problem
and learning the template that allows localizing the target in the
training images. Training may be performed in a discriminative
way to estimate a template able to respond to the target rather
than to the background [40]. This idea is at the basis of the cor-
relation filters used in recent years in visual tracking. Training
of the correlation filter (the template) can be done in the Fourier
space where correlation turns into an element-wise product. Su-
pervision to the Average of Synthetic Exact Filters (ASEF) [40] is
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provided in terms of heatmap whose peak indicates the location
of the target in the original image and can be represented in terms
of a Gaussian distribution. Correlation filters (CFs) estimated for
each image in the training set are then averaged.

ASEF-like CFs require many training samples and might not be
ideal for tracking in real-time. Minimum Output Sum of Squared
Error (MOSSE) [41] was proposed to learn ASEF-like filters with
limited samples to be specifically used in visual tracking. The
main difference between ASEF [40] and MOSSE [41] filters is that
training the latter entails a least-square minimization problem for
which a closed-form solution can be found and computed in an
efficient way.

CFs assume there is a periodicity in the images that can pro-
duce unwanted boundary effects, and the detection scores are ac-
curate only near the center of the region. To alleviate this prob-
lem, spatially regularized discriminative CF (SRDCF) [42] penal-
izes CF coefficients based on the a priori known spatial extent of
the filter. Overall, as shown in Fig. 2.2, to train CFs, the search
region is element-wise multiplied with a 2D weight function; its
FFT is element-wise multiplied with the CF and IFFT allows com-
puting an heatmap whose peak indicates the target location. An
image sample set is built around the target location and used to
retrain the CF.

2.2 Recent Trends in Deep Visual Tracking

Since CNNs have taken their place in image processing, their use
has expanded to include visual tracking.

With the term deep learning, we refer to a class of methods
(generally, artificial neural network (ANN)) that processes data
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by a cascade of non-linear functions (referred as layers in ANN)
to progressively extract higher-level features. Training deep mod-
els aims at estimating the parameters of these non-linear functions
such that an error function is minimized. Since each non-linear
function transforms its input into more general representations to
feed subsequent non-linear functions, training results in learning
a feature representation of the input. It is believed that deeper
models (i.e, networks with high number of layers) are able to ex-
tract better features than shallow models [43].

In computer vision, where inputs are mostly images, CNN [44]
are in general adopted. In such networks (see Fig. 2.3(a)), the
basic operation is the image convolution, and training learns the
convolutional kernel weights.

CNNs have demonstrated to be well suited for pattern recogni-
tion, image segmentation and object detection. Several architec-
tures have been proposed, among which VGG [45], AlexNet [46],
GoogleNet [47]. In some cases, fully convolutional neural net-

Figure 2.2: Training of a CF. The search region is element-wise multiplied
with a 2D weight function, then FFT is computed and element-wise mul-
tiplied with the CF. The IFFT allows computing an heatmap whose peak
indicates the target location. Based on such target location, an image sample
set is assembled to retrain the CF.
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Figure 2.3: The most commonly adopted architectures for tracking. (a) CNN
model where convolutional layers are followed by fully connected (FC) ones.
(b) Fully convolutional model can output feature maps. (c) Autoencoder can
encode and decode its input. (d) In the Siamese network, the two branches
share the same architecture and parameters. A layer is used to merge the
branch outputs. Additional FC layers can be also added. (e) LSTM works
like a memory of its inputs (generally from a CNN). Additional FC layers
can be added to the model.

work [48], where no fully-connected layer is adopted, have been
used (see Fig. 2.3(b)). In autoencoders, the first part of the net-
work, encoder, has the goal of extracting a compact feature rep-
resentation of the input. The second part of the architecture,
decoder, is used to reconstruct the input from the compact fea-
ture representation. Since the training of the model is unsuper-
vised, sometimes autoencoders have been used to pre-train deep
models [49]. Another famous architecture is the Siamese network
(see Fig. 2.3(d)). Firstly proposed in [50] for face verification, the
Siamese network can learn similarity functions to compare two
inputs. It is composed of two branches sharing the same architec-
ture and parameters. On top of the two branches, a layer is used
to merge the outputs from the two branches and further process-
ing layers can be added to estimate the output of the network.
In visual tracking, such architecture has been extensively used by
providing in input to the network a target template and a search
area image.

Recurrent Neural Networks (RNN) [51, 52] are usually adopted
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to process sequences of data among which temporal relationships
exist. A widely used RNN is the Long Short Term Memory
(LSTM) [53], which uses its internal state to implement a dou-
ble memory, respectively long and short term memories. In video
processing [54], LSTM uses information from previous frames to
represent the information in the future ones. Generally, the input
to a RNN is the output of a CNN (see Fig. 2.3(e)).

In recent years, generative adversarial network (GAN) [55]
have been used to generate realistic-looking images from random
noise. The model consists of two networks playing the roles of dis-
criminator and generator. The former network aims at discrim-
inating between real and fake images; the latter takes in input
noise and generates fake images to fool the discriminator without
using any supervision at training time. GANs are used to aug-
ment data in the image space and have recently been used also in
the tracking domain [56].
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Chapter 3

Visual Object Tracking:
Supervised approach

After the introduction of CNNs, it was not immediately apparent
the best way to use CNN for visual tracking. CNNs have been ini-
tially designed for image classification and trained on large dataset
to be used, at test time, on single images. Time required for train-
ing the model is in general very high. On the other hand, visual
tracking requires models to process online a sequence of images
by taking into account the dynamics of the target. Ideally, the
model should be adapted at test time to the target appearance
changes. The above requirements make the use of CNNs appar-
ently unsuitable.

However, during the years, CNNs have proved to be more ef-
fective than traditional methods, and more sophisticated deep ap-
proaches have been developed by following two directions: track-
ing by test-time model adaptation and tracking by pre-trained
models. In the latter approaches, the model parameters are not
updated at test time.

This chapter, first reviews the most common supervised ap-
proaches falling in these two categories, then presents a novel su-
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pervised method to track objects by test-time model adaptation.

3.1 Tracking by test-time model adaptation

First attempts to adapt deep models to the target appearance
changes were re-training the model from time-to-time on posi-
tive/negative patches cropped from each frame around the target
location.

Multi-domain tracking (MDNet) [57] focuses on extracting target-
specific features from shared, general feature representations. The
model is based on a set of CNNs, each one trained off-line on a
specific video, regarded as a domain. All CNNs share the same
structure and parameters but differ for the last fully-connected
(FC) layers, which account for the target-specific features. At
test time, only the shared part is retained while FC layers are
retrained to recognize between target/ non-target. The network
takes in input candidate target images (cropped images around
the previous target position) and returns its confidence on each
image. MDNet may not discriminate among similar objects and
classifies several patches to locate the target. Nonetheless, the
MDNet strategy of only retraining the last FC layers has been
frequently adopted in deep tracking.

In real-time MDNet (RT-MDNet) [58], the tracking process is
speed-up by including a RoiAlign layer 1 to improve target lo-

1RoiAlign layer [59] was originally introduced for object detection to improve RoIPool.
In [60], a CNN produces a feature map for the input image. The RoI pooling layer
(RoIPool) [60] uses max-pooling to compute a small fixed-size feature map from the fea-
tures within a region of interest (RoI, it represents an object proposal) and speedups the
feature extraction process for all object proposals. Since the size of the pooling operator
depends on the size of the RoI and is computed by quantization, misalignments between
RoI and extracted features are introduced. The RoIAlign layer [59] removes the harsh
quantization of RoIPool by using bilinear interpolation.
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calization during tracking. Fully convolutional layers are used
for learning shared feature representations; an adaptive RoIAlign
layer computing a denser feature map by dilated convolutions is
used for extracting features of each region of interest (RoI); FC
layers are adapted at test time based on the selected RoI. To
improve the discriminative capabilities of the shared representa-
tions, the network is trained to keep targets of different videos
apart from each other.

MDNet [57] and RT-MDNet [58] re-train only part of the net-
work, but tracking performance might degrade considering that
the samples used to re-train the network are uncertain and, in
the long-term, this may lead to tracking drift. The work in [61]
proposes to regard a CNN as an ensemble where each kernel is
considered a base learner and updated using a different loss crite-
rion to avoid that the learned features are highly correlated with
each other. At test time, fine-tuning of the CNN built upon a
pre-trained network is then formulated as a sequential ensemble
learning problem.

Other works have replaced the fine-tuned FC layers with cor-
relation filters. In [62], discriminative CFs are trained on convo-
lutional features from a pre-trained VGG model. It is shown that
features from the first layer provide superior tracking performance
compared to the ones from deeper layers. In [63], CFs are adap-
tively trained on the outputs of each CNN layer to use semantics
and fine-grained details for handling large appearance variations.
Linear interpolation is used to accommodate the varying feature
map size along the network depth. Target location is estimated
by a coarse-to-fine searching approach.

Recently, in ATOM [64], three modules are used. The target
estimation module is trained offline to predict the intersection over
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union (IoU) overlap with the target. From this output, target-
specific appearance information is extracted. The IoU predictor
module receives such target features and proposal bounding boxes
in the test frame and estimates the IoU for each input box. Finally,
the target classification module is trained at test time to output
target confidences in a fully convolutional way.

In Vital [56], adversarial learning is used within the tracking-
by-detection framework to augment data in the feature space
rather than in the image space. The main goal is that of exploiting
robust features over time to track the target. Such robust features
are generated by letting the generator to produce a weight mask to
be applied to the extracted features. Each mask represents a spe-
cific appearance variation. While the model learning progresses,
the generated mask focuses on more and more discriminative tar-
get features. At test time, the model is incrementally updated
frame-by-frame.

Recently, the work in [65] (DiMP) highlights limitations of the
Siamese learning framework such as the inability to consider back-
ground information when discriminating between target and back-
ground, the fact that the learned similarity measure may not be
reliable for objects not included in the training set, the difficulty
to update the Siamese network parameters at test time. DiMP
proposes a two branch network; one of the branch is used to pre-
dict a model of the target appearance in terms of weights of a
convolutional layer. This convolutional layer is used to perform
target classification on the feature map extracted from the test
frame by the second branch. Since the method learn to produce
target appearance models, it can be considered a meta-learning
approach.

The method has been improved in [66] by integrating a re-
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gression formulation into both branches of DiMP. The model is
trained by minimizing the KL divergence.

3.2 Tracking by ad-hoc pre-trained models

Instead of adapting the models online, another approach is to
use pre-trained model trained (Siamese network) [67, 68, 69, 70]
to find the target location processing the search region using the
target features as appearance information.

The available implementations differ in the output of the net-
work. Indeed, at test time, the network can predict the target’s
bounding box by ranking proposed candidate boxes [67], regress-
ing it directly from images [70], estimating its centre position and
scale [69, 68].

In SINT [67], each branch of the Siamese network takes in in-
put an image and several bounding box proposals. A RoiPool
layer [60] is used to speed-up the feature extraction for each pro-
posal. The network incorporates optical flow to improve track-
ing. At test time, a radius sampling strategy is used to sample
bounding boxes at different scales around the last predicted target
location. The bounding box that best matches the input target
image is selected and refined through a regressor trained on the
first video frame.

Branches of the Siamese network in SiamFC [68] are fully con-
volutional and the last layer of the model computes a cross-correlation
map whose highest value should indicate the target location. Large
displacements are penalized by multiplying the score map by a
cosine window and the score map is up-sampled to the original
frame size by bicubic interpolation to improve target localization
accuracy. The target is searched at different scales.
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Instead of processing multiple images, GoTurn [70] uses the
last FC layer to regress the target bounding box location and size,
and can easily handle scale and aspect ratio changes. To account
for the invariance to translation typical of CNN, the training set
is augmented to show the target at different locations within the
search area.

YCNN [69] combines shallow features (from the first convolu-
tional layer) with deeper features. The Siamese network returns a
prediction map in which each point indicates how likely is that the
target appears in the search image. Since the last layers are fully
connected, the size of the search region cannot be dynamically
adapted.

In Siamese region proposal network (Siamese-RPN) [71], a tem-
plate branch and a detection branch are trained end-to-end on a
large dataset of image pairs. The template branch encodes the
target appearance information into the RPN [72] feature map. At
test time, meta-learning is used by reinterpreting the output of the
template branch as parameters to predict the detection kernels.
Only the detection branch is retained, thus yielding to a speed up
of the tracking process. One-shot detection is done in the other
frames by using the detection kernel estimated on the first one.

In [73], it is noted that the performance of the Siamese net-
work based tracking algorithm can improve when using deeper net-
works if some precautions are taken in their development. Firstly,
padding in deep networks tends to destroy the translation invari-
ance property. Secondly, RPN [72] requires asymmetrical features.
To account for such issues, a novel sampling strategy is proposed
to ensure spatial invariance. Furthermore, multi-branch features
are extracted from various layers of the network to infer the target
location. Finally, depth-wise correlation is included in the model
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to reduce computational cost. The resulting model is referred to
as Siam-RPN++

Instead of using a Siamese net, the work in [74] uses a conv-
LSTM on top of a fully convolutional CNN. The network takes in
input a cropped target image and the LSTM produces a target-
specialized filter. The target location is predicted by convolving
the estimated filter to the feature map of the next frame to esti-
mate the target response map.

3.3 Tracking by iterative refinements

Currently, the state-of-the-art performance in visual tracking is
achieved by utilizing deep learning methods [75, 76].

As already mentioned, one such algorithm is MDNet, which
was proposed in[57]. MDNet is a tracking-by-detection and regres-
sion algorithm that involves categorizing a set of bounding boxes,
sampled every frame around the last known target location, into
either target or background. The bounding box with the highest
classification confidence score is then adjusted through regression.

The CNN used in MDNet is trained in a multi-domain fashion.
Despite not being the most recent tracker, MDNet still achieves
state-of-the-art performance on the well-known OTB benchmark [77].
However, MDNet has two primary limitations: first, it requires
sampling and classification of several bounding boxes at each frame
to select the optimal one; second, it uses a regression model to re-
fine the chosen bounding box.

Recent studies have attempted to enhance the performance
of MDNet by redefining the search for the ideal bounding box
through either an iterative process, where a discrete sequence of
bounding box adjustments is forecasted to locate the target, as
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demonstrated in [78, 79, 80, 81, 82], or by regressing the bound-
ing box coordinates at each frame, as seen in [83].

In [23, 78, 84], the bounding box is refined iteratively at each
frame through shift (moving right/left/up/down on the image
plane) and scale (reducing/enlarging the bounding box size) ad-
justments. The identity transformation is also incorporated to
account for cases in which the bounding box must be accepted
as it is. To implement this approach, the deep learning model
receives the image patch that corresponds to the presently esti-
mated target bounding box as input and produces, as output, the
likelihood associated with each possible bounding box refinement.
The refinement with the highest probability value is applied to
the bounding box, and the process is repeated until either a max-
imum number of iterations or the null transformation is selected.
The process is summarized in Figure 3.1A.

In this thesis we focus on improving these types of approaches
after observing that the iterative process described above has sev-
eral disadvantages. Firstly, only one transformation can be ap-
plied per iteration, which results in a high computational cost to
determine the optimal bounding box. Secondly, the strategy in-
troduces ambiguity during the model parameter learning process.

Specifically, supervised training of the model is carried out by
providing the target patch and the bounding box refinement type
that should be applied to enhance the tracking result. However,
the effect of applying a transformation can be measured by es-
timating the intersection-over-union (IoU) value of the resulting
bounding box and the ground-truth, as shown in Figure 3.2.

Often, more than one transformation can result in an improved
target localization, but this is typically ignored by the supervised
training procedure in [78, 84, 79], which uses the 1-hot encoding
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Figure 3.1: (A) In iterative single refinement, starting from an initial bound-
ing box, a sequence of transformations to the bounding box is predicted and
applied to locate the target. (B) With multiple refinements, a sequence of
multiple non-conflicting transformations is predicted and applied.
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schema to select the refinement and prioritize bounding box re-
finement over another by considering the first transformation with
the highest IoU. One of the key contributions of this thesis is to
enable the selection of multiple transformations during training,
using multiple 1-hot encoding to indicate the transformations that
might be applied to enhance the bounding box. Additionally, it
should be noted that bounding box transformations may cancel
each other out, resulting in conflicting transformations, such as
shifting the bounding box to the left and right. As mentioned in
[84], such refinements canceling each other out can cause cycling
behaviors.

This thesis proposes a new approach to address the issues
present in the traditional method of selecting the bounding box
refinement during target tracking. In particular,

• It introduces the concept of conflicting refinements and train
our model to handle them.

• It formulates the problem in such a way that multiple non-
conflicting transformations can be applied simultaneously,
leading to faster tracking with the ability to handle a higher
number of composite transformations.

• It eliminates ambiguity during the training procedure by
avoiding giving priority to some refinements over others.

3.4 Multi-Refinements of the Bounding Box

At time t, the candidate target bounding box is defined as a 4-
dimensional vector bt = [xt, yt, wt, ht], where (xt, yt) is the cen-
ter coordinates and wt, ht represent the width and height of the
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Figure 3.2: Image (A) shows the IoU values calculated after each of the pos-
sible refinements. Image (B) shows how 1-hot-encoding is used to annotate
the data in single and multiple bounding box refinements.

bounding box, respectively. Given an image frame Ft, the image
patch pt is obtained by cropping Ft based on the bounding box bt
through the selection patch function fb(·). The function can also
include pre-processing steps to adapt the resulting image patch to
the network input:

pt = fb(bt, Ft). (3.1)

Let V be the number of basic linear transformations that can be
used to refine the bounding box b. These transformations define
the space Φ of allowed discrete bounding box transformations. Let
φ be a subset of k transformations φ = {ϕ1, ϕ2, . . . , ϕk} ⊆ Φ. A
transformation θ(·) ∈ Φ is conflicting with the transformations in
φ if

b = γi(θ(b)) (3.2)
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where γi indicates any sequence of transformations in φ. In other
words, bounding box changes operated through the refinement θ
are canceled out by some of the refinements in φ.

If instead, for any sequences γi

b ̸= γi(θ(b)), (3.3)

then θ(.) is non-conflicting with the transformations in φ.
Keeping in mind the above definitions, we propose to split the

bounding box refinements into N groups such that each transfor-
mation in one group is not in conflict with the transformations
in all the other ones. We include within each of these groups a
null transformation, namely, the identity transformation. In the
following, the obtained groups are named non-conflicting groups.

As an example, let us consider the following discrete bounding
box transformations: Φ = {Left(∆), Right(∆), Up(∆), Down(∆)},
where the name of the transformation indicates the shifting direc-
tion of direction into which shifting the bounding box, while ∆
represents the number of pixels by which the bounding box is
shifted. A possible partition into two non-conflicting groups, Gh

and Gv, is Gh = {Left(∆), Right(∆)} and Gv = {Up(∆), Down(∆)}.

3.4.1 Output Layer for Non-Conflicting Refinements

To deal with multiple non-conflicting refinements of the bound-
ing box, we need to properly design the output layer of the deep
model used within the tracking strategy. Figure 3.3 shows, on
the top, the typical deep model used for iterative bounding box
refinements [23, 78, 84]. At each iteration, the model takes as
input an image patch and provides the probabilities of each of
the V transformations ϕi ∈ Φ. Only the transformation with the
highest probability is applied.
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Figure 3.3: On the top, the model estimates the probability distribution over
all the transformations. On the bottom, the model estimates N probability
distributions, one for each group of transformations.

On the bottom, Figure 3.3 shows how the model needs be
adapted to deal with N non-conflicting transformation groups.
The network will provide N probability distributions over the ki
transformations belonging to each group, with i varying in [1, N ].
The distributions are computed independently from each other,
and N different non-conflicting transformations are applied, one
from each group.
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Figure 3.4: Architecture of our model. On the left, the arrow indicates the
flow of frames. At time t, starting from the bounding box estimated at time
t−1, the method iterates a sequence of multiple transformations highlighted
in red on the right side. The transformations are applied to the bounding
box, which is used to get a new image patch to feed the model.

3.5 Tracking by Iterative Multi-Refinements

To demonstrate our idea, we implemented our own tracker. Our
tracking architecture is template-free, and requires online fine-
tuning of the parameters to adapt the model to the target ap-
pearance changes over time. As shown in Figure 3.4, our tracker
takes advantage of one network with multiple output branches
sharing the convolutional layers and the first dense layer. The
first N output branches, namely, the subnet Transformation-Net,
estimate N probability distributions over the refinements within
the N non-conflicting groups of transformations. In the figure,
N = 3. The last output branch network, namely, the subnet
Confidence-Net, provides a confidence score of the classification
of the image patch into background/target.

At time t, starting from the target bounding box estimated
at time t − 1, our method uses the networks to estimate a se-
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quence of linear transformations of the bounding box to locate
the target in the image frame. The process ends when, for each
non-conflicting transformation group, the null transformation is
selected or a maximum number of iterations is reached.

The final confidence score is used to assess if the tracking failed,
and in this case, a re-detection procedure based on particle filter is
used. The entire tracking procedure is presented in Algorithm 1.
In the following, we present details about the various steps per-
formed by our tracker.

3.5.1 Designing Non-Conflicting Refinements

In our implementation, each basic transformation depends on pa-
rameters calculated based on the size of the current bounding
box, similarly to what has been done in [78]. In particular, at
the k-th iteration, we consider the values ∆wk

t = σ · wk−1
t and

∆hk
t = σ ·hk−1

t , where σ is a constant value equals to 0.03. These
parameters represent the number of pixels by which modifying
the center coordinates or the width/height of the bounding box.
Based on our experiment, considering the structure of the adopted
CNN (a VGG-M), σ equals to 0.03 is the minimum value for the
network to notice the effect of the transformations to the bounding
box.

We also consider N = 3 non-conflicting groups of refinements,
each including two basic transformations. The first group, Gh =
{Left(∆wk

t ), Right(∆wk
t )}, shifts the bounding box to the left or

to the right by adding/subtracting the value ∆wk
t to the coordi-

nate xk−1t .
The second group, Gv = {Up(∆hk

t ), Down(∆hk
t )}, shifts the

bounding box up or down by adding/subtracting the value ∆hk
t

to the coordinate yk−1t .
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Finally, Gs = {Enlarge(∆wk
t ,∆hk

t ), Reduce(∆wk
t ,∆hk

t )}, re-
scales the bounding box to decrease or increase its size by adding
or subtracting the value ∆wk

t and ∆hk
t to the bounding box width

and height, respectively. Each of the above groups is augmented
to also include the null transformation. These groups were cre-
ated starting from the transformations used in ADNet [78], sep-
arating them into non-conflicting groups and excluding double
shifts. The introduction of double shifts, namely, shifting trans-
formations with a doubled value of σ, did not produce significant
improvements in our experiments.

3.5.2 Deep Model

The structure of our network is described in Figure 3.4. Sim-
ilarly to former approaches [57, 78], the first four convolutional
layers (conv1–conv4), with weights (w1−w4), are taken from the
VGG-M network [85]. The input layer is adapted to our input
dimension and subsequent features maps; we used the same input
size as in [57]. The fully-connected layer fc5, with weights w5, is
shared by both the Confidence- and Transformation-Net. Layers
fc6–fc8, with weights (w6 −w8), provide the probability distribu-
tions for each of the transformation groups we defined and apply
softmax activation functions. Layer fc9, with weights w9, belongs
to the Confidence-Net; with 2 units, it applies a softmax activa-
tion function.

3.5.3 Supervised Training of the Model

Offline training: An offline training procedure is used to learn
the parameters (w1 − w5). This procedure is based on multi-
domain learning [57] where layers (conv1-fc5) dealing with domain-
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Algorithm 1 Online tracking algorithm.
Input: Pre-trained CNN (w1,...,w5)

Initial target b∗0
Sequence of V frames {F0;F1; ...;Ft; ..., FV }

Output: Estimated sequence of target bounding-boxes {b∗t}Vt=1

1: Randomly initialize parameters w6-w9

2: Draw training samples X0 around b∗0, MS.push(X0), ML.push(X0)
3: Update parameters w4-w9

4: for t = 1, . . . , V do
5: b0t ← b∗t−1

6: for k = 1, ...,max_iter do
7: pkt = fb(b

k−1
t , Ft)

8: Select N refinements φi based on Transformation-Net(pkt )
9: Apply φi with i ∈ [1, N ] to the bounding-box to estimate bkt

10: end for
11: Evaluate confidence score q∗ = Confidence-Net(fb(bkt , Ft)))
12: if q∗ > 0.5 then
13: b∗t ← bkt
14: Draw sample Xt around b∗t
15: Update MS and ML by adding Xt and limiting their size
16: end if
17: if q∗ <= 0.5 then (failure!) apply Re-detection to find b∗t
18: Evaluate confidence score q∗ =Confidence-Net(fb(b∗t , Ft))
19: end if
20: if q∗ <= 0.5 then Update w4 − w9 by using MS

21: else if t mod 10 = 0 then Update w4 − w9 by using ML

22: end if
23: end for

independent information (such as motion blur, illuminations changes,
and scale variations) and domain-specific layers (fc6–fc9) are treated
differently. In particular, while the former are shared among
all videos, the latter are initialized and trained for each video.
The number of domains is equal to the number of videos con-
tained in the training dataset. At each training iteration we
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use X = [Xc, Xb], where Xc indicates the data used to train
the Confidence-Net, and Xb indicates the data used to train the
Transformation-Net. The entire model is trained by alternat-
ing the training of the Transformation-Net (while freezing the
Confidence-Net) and the training of the Confidence-Net (while
freezing the Transformation-Net).

Online training: At test time, parameters (w6−w9) are ran-
domly initialized for each video sequence to be adapted online
to the target appearance changes, and parameters (w1 − w3) are
fixed and not trained online to speed up the online training, and
to limit overfitting of the network. Online parameter adaptation is
done every s frames (s = 10) and, whenever a tracking failure has
been detected, a re-detection step is performed. A failure is de-
tected whenever the model predicts a confidence score lower than
0.5. Inspired by the works in [78, 57], we update the parameters
by using a long-term memory ML every s frames. This memory
stores random samples from the last memL = 1000 frames. In
case of tracking failures, to speed up the model adaptation to the
current target appearance, we update the parameters by using
a short-term memory MS. This memory stores random samples
from the last memS = 20 frames.

3.5.4 Sample Generation

Considering N groups of k transformations (including the iden-
tity one), there are overall kN composite transformations. In our
implementation, kN = 33 = 27. To train the Transformation-Net,
we used balanced mini-batches of 81 samples where the 27 com-
posite transformations were equally represented. A grid sampling
approach over the 4-dimensional space with a discrete uniformly
distributed random step has been used.
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To generate balanced mini-batches of 64 samples for training
the Confidence-Net, we referred mainly to the technique used
by [57]. We used the sampling methods reported in the public
code, which slightly differs from the one described in the paper.
The sampling is based on normal distributions whose mean and
variance depend on the bounding box estimated at the previous
iteration. If the sample comes from the first frame, it is consid-
ered positive if it yields to IoU > 0.7. Otherwise, it is considered
positive if the predicted confidence value is >0.5. Furthermore,
we used hard negative sampling, meaning that we randomly se-
lected a large number of negative samples from the short memory
MS and select 32 samples with the highest positive classification
score. This procedure improves the discriminative abilities of the
Confidence-Net.

3.5.5 Implementation Details

Whenever a failure occurs, similarly to the works in [57, 78],
we sample 256 candidate target bounding boxes with the same
schema adopted to generate mini-batches for training the Confidence-
Net. The confidence score of these bounding boxes is evaluated,
and the candidate with the highest score is selected as the pre-
dicted target bounding box.

As loss function, we adopted the categorical cross-entropy. The
learning rate is fixed to 0.001 and the network is trained with SGD
with a momentum of 0.9 and weight decay parameter of 0.0005.
During offline training of the model, we used 287 domains, that
is, 287 videos from the ALOV300 dataset [86]. In particular, for
a number of 3 iterations, we sampled 5 frames from each video.
For each frame we trained the model for 5 iterations. Training
has been done alternating the domains.
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At the first frame, layers (conv4-fc9) are trained for 30 iter-
ations on samples generated based on the known target. The
Transformation-Net is initialized by sampling 6 times all the pos-
sible composite transformations, for a total of 162 samples for
each iteration. Online adaptation of the parameters was done for
10 iterations. During tracking, at each frame, 15 negative samples
and all transformed bounding boxes with a confidence score > 0.5
were stored in the long and short memories.
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Chapter 4

Visual Object Tracking:
Reinforcement learning approach

In the previous chapter, we delved into supervised approaches
for visual tracking and introduced a novel method. Building
upon that foundation, this chapter focuses on the application
of Reinforcement Learning (RL) to problems involving sequential
decision-making. We begin by presenting the general RL frame-
work, which serves as a versatile tool for tackling such problems.

Subsequently, we explore several prominent families of RL ap-
proaches, namely value-based methods, policy gradient approaches,
and Actor-Critic Methods. These methods have garnered consid-
erable attention and have proven effective in various domains.

Moving forward, the chapter specifically examines the diverse
applications of RL in visual tracking. Within the tracking con-
text, RL agents play a vital role in predicting the target’s loca-
tion within a frame and selecting relevant factors such as hyper-
parameters, correlation filters, or target appearance.

To provide a comprehensive overview of the field, this chapter
not only compares the aforementioned approaches but also pro-
poses a taxonomy of the state-of-the-art methods.
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4.1 Reinforcement Learning Framework

In RL, the sequential decision problem is cast into an optimization
one where the agent learns to take actions by maximizing the
expected discounted reward obtained for its future decisions:

Gt =
∞∑
k=0

γkRt+k+1 (4.1)

where γ is a discount rate 0 ≤ γ ≤ 1. Since each reward depends
on the state and the selected action, the goal of the agent is to de-
termine a policy π, namely a mapping from the perceived state to
the action to take when in the given state. Hence, the policy fully
defines the agent’s behavior. When states and actions are both
discrete, the policy can be designed as a lookup table. Whenever
states are continuous values, the policy can be defined in terms of
continuous variable functions.

Let S and A(s) be the sets of states and actions that the agent
can take in state s ∈ S respectively. The value function is defined
as :

vπ(s) = Eπ[Gt|St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s

]
= Eπ[Rt+1 + γGt+1|St = s],∀s ∈ S

(4.2)

Such a function depends on the immediate reward for the taken
action and on the discounted value of future rewards. In other
words, the value function vπ(s) measures how good is for the agent
being in state s.

The action-value function, denoted by qπ(s, a) and called also
Q-function, is the agent’s expected return when, after selecting
action a while in state s, it starts following the policy π thereafter:
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qπ(a, s) = Eπ [Gt|St = s, At = a]

= Eπ

[ ∞∑
k=0

γkRt+k+1|St = s, At = a

]
,

∀s ∈ S, a ∈ A(s)

(4.3)

Value functions are used to establish if a policy is optimal.
When following an optimal policy, we can write the optimal value
function q∗ in terms of the optimal value function v∗ as follows:

q∗(s, a) = E [Rt+1 + γv∗(St+1)|St = s, At = a] . (4.4)

The optimal value function in finite MDP satisfies the Bellman
equation, and dynamic programming-based or heuristic search ap-
proaches can be devised to learn the optimal value function from
experience [87, 88]. Such methods are called model-based ap-
proaches. Model-free methods do not rely on a model of the envi-
ronment and are explicitly trial-and-error learners generally based
on Monte Carlo and temporal-difference methods. Three main
families of model-free approaches can be identified: value-based
methods, policy gradient methods and actor-critic approaches.

4.1.1 Rewarding the agent

In RL, the reward signal is independent of what the agent’s cor-
rect action should be. The correct action is in general unknown
and the reward assesses the agent’s progress in achieving its goal.
Designing the reward function is crucial for the success of RL
algorithms and sometimes a learning acceleration is achieved by
providing an initial guess for the value function or by “behavioral
shaping" where reward function is refined with the agent’s learn-
ing progresses [89, 87].
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The reward can also be assigned by comparing the agent’s de-
cisions to those of an “expert”, which can be represented by either
another agent or a trained system. Methods of this type are of-
ten called imitation learning, learning from demonstration and
apprenticeship learning.

A different problem is that of learning a reward function. This
problem takes the name of inverse reinforcement learning (IRL),
and learns an unknown reward function under which the expert’s
behavior is optimal. Eventually, by using direct reinforcement
learning and the learned reward function, it is possible to learn
an optimal policy for the RL-agent. However, IRL problems are
in general ill-posed as every policy is optimal for the null reward.
Furthermore, there might be many reward functions under which
the expert behavior is optimal and the problem becomes that of
choosing a proper reward function formulation.

4.2 Value-based approaches

Methods in such category aim at learning iteratively the policy by
estimating the Q-function. In general, given the current estimate
of the Q-function and a state s, the action a is chosen based on
a policy The action a might be selected by an ϵ - greedy policy:
randomly from the set of possible actions with probability ϵ or
a = argmaxaQ(s, a) otherwise. Q-functions different than the
learned one can be adopted as well. This strategy helps the agent
to trade-off between the need of exploiting its experiences and
exploring new possible solutions. Once a has been taken, the Q-
function is updated.

If the sequence of decisions to improve the Q-function is gen-
erated by the learned policy then we have an on-policy learning
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method; If a different policy is used instead, we have an off-policy
learning method.

Learning of the policy can be achieved by adopting Monte
Carlo-based approaches; However, the resulting learning process
can be slow because the Q-function is updated only after the
whole sequence of decisions is observed. In contrast, in Temporal-
Difference (TD) learning, updates are done at every step (namely,
after an action is taken) without waiting for the whole sequence
of decisions to be observed. A popular TD-learning approach is
the Q-learning algorithm [90].

In Q-learning, the Q-function is updated independently of the
actual future action a′ selected in s′:

Q(s, a) = Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
. (4.5)

Thus, the method is off-policy. However, since action selection
and Q-function updating are both based on the maximum of the
Q-function itself, the learning process can led to a biased esti-
mation. To make the method more robust, in double Q-learning
algorithms, two independent estimates of the Q-function, Q1 and
Q2, are maintained. Actions can be selected via the Q1 function
and assessed by the Q2 function. During learning, with a given
probability (say 0.5), only one of the two Q-functions is updated.

4.2.1 Deep Q-Learning

The former techniques can be generalized by replacing the tabular
functions with functions parameterized by a weight vector w ∈ Rd

such as those computed by deep models. Given a policy π, if the
true action-value function qπ(s, a) is known, then the approximate
action-value function q̂(s, a, w) could be learned by minimizing the
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mean squared value error defined as

L(w) =
∑
s,a

µ(s, a)[qπ(s, a)− q̂(s, a, w)]2 (4.6)

where µ(s, a) represents the state-action distribution. Given a
training set in which state-action pairs appear with a given distri-
bution µ, the above error can be minimized by stochastic gradient
descent (SGD) that yields to the following weight updating rule:

wt+1 = wt + α[qπ(st, at)− q̂(st, at, wt)]∇q̂(st, at, wt). (4.7)

The target action-value qπ(st, at) can be substituted with the dis-
counted expected return Gt.

The advantage of the former model is that it accommodates
for continuous value states, while actions are, in general, still dis-
crete values. In Deep Q-Learning (DQL), training of the net-
work might be done, in theory, by minimizing iteratively the
error function on the approximated target value yt = EX[r +
γmaxa′hatq(s′, a′, wt)] of the Q-function. This leads to the fol-
lowing parameter updating:.

wt+1 = wt + α[rt+1 + γmax
a′

q̂(st+1, a
′, wt)+

−q̂(st, at, wt)]∇q̂(st, at, wt).
(4.8)

In practice, the above training strategy fails because the se-
quential states are strongly correlated and the target value is al-
ways changing during training. This leads to divergence of the Q-
function. Problems in approximating the value function by neural
network were pointed out in [91], where it is noted that changes
of the parameters during training affect globally the whole policy
and make the learning unsuccessful. To account for such issue,
it has been proposed to endure new updates while also exploiting
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previous experience. This mechanism is known as experience re-
play where updates are not done sample-by-sample but through
batch on a set of transition experiences collected in the form of
(s, a, r, s′). However, the work in [91] proposes to accumulate all
past experience, which has a computational cost proportional to
the dataset size.

The work in [20] was the first proposing to apply DRL by train-
ing the network end-to-end directly from visual data. Differently
than [91], it proposes to sample a minibatch of tuple (s, a, r, s′)
from the replay memory. Randomization of the samples breaks
correlation among them and reduces the variance of the updates.
As a consequence, learning is smoother and oscillations of the pa-
rameters, that may led to divergence of the Q-function, are lim-
ited. As an alternative to experience replay, multiple agents were
asynchronously executed in parallel to decorrelate the data used
to update the model weights in several RL approaches, including
deep Q-learning [92].

As for the changing target value yt from iteration to itera-
tion, a target network different than the optimized one can be
used [20] and updated by the learned network parameters every
C steps [93].

Later on, in [94], Double DQL implements the concept of dou-
ble Q-learning to avoid that action-values get overestimated. The
only change required to transform the DQN algorithm in dou-
ble DQL is in the computation of the target, which yields to
yt ≃ E[r + γq̂(s′, argmaxa′ q̂(s

′, a′, wt), w
−)] where w− are the

parameters of the target network, possibly updated every C steps.
To accelerate the training of the DQN, Dueling DQL (DDQL) [95]

proposes to decouple the estimation of the value of the state v(s)
and of the advantage A(s, a) of taking an action a in state s. In
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practice, the Q-value can be decomposed in the sum Q(s, a) =
v(s) +A(s, a). This approach does not modify the learning algo-
rithm itself but, instead, it modifies the architecture of the net-
work that will be composed of two branches.

Finally, in [96], a continuous variant of the Q-learning algo-
rithm, named Normalized Advantage Function (NAF), is pro-
posed. The approach also decomposes the Q-function into value
and advantage functions. However, being the actions continu-
ous value, the advantage function is parameterized as a quadratic
function of nonlinear features of the state.

4.3 Policy Gradient Methods

Another family of model-free approaches approximate the policy
with a function depending on a learnable weight vector θ ∈ Rd.

Once θ has been learned, the policy function provides for each
action a the probability π(a∥s, θ) of taking action a when in state
s. Since the probability must sum 1, in general a softmax function
is used to produce valid probability values.

Parameters θ are learned by maximizing a performance mea-
sure J(θ) such that, by the gradient ascent algorithm, the param-
eters can be iteratively updated by:

θt+1 = θt + α∇J(θt). (4.9)

When a finite sequence of decisions is given, such that we know
s0, a0, r1, s1, a1, . . . , sT−1, aT−1, rT , sT with the last state sT being
a terminal state1, then the function J(θ) can be defined in terms
of vπ(θ)(s0), which is the expected return in state s0 for all future

1This sequence is often called episode or trial.
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decisions. In such a case, with µ(s) =
∑

a µ(s, a), the policy
gradient theorem [87] establishes that:

∇J(θ) ∝
∑
s

µ(s)
∑
a

[qπ(s, a) + b(s)]∇π(a∥s, θ)

= Eπ

[∑
a

[qπ(st, a)− b(st)]∇π(a∥st, θ)

] (4.10)

where b(s) is an arbitrary baseline that does not depend on
the action a and contributes to reduce variance of the learning
approaches. The Eq. 4.10 is used to develop the most widely
adopted algorithm for policy learning: the REINFORCE algo-
rithm [97, 87]. In REINFORCE, by taking advantage of Eq. 4.3
and remembering that the baseline does not depend on the policy
π, the gradient of the performance measure J(θ) is computed as:

∇J(θ) = Eπ

[∑
a
π(a∥st, θ) [qπ([st, a)− b(st)]

∇π(a∥st,θ)
π(a∥st,θ)

]
(4.11)

= Eπ [[Gt − b(st)]∇ ln π(a∥st, θ)] (4.12)

and the parameters θ are updated based on the following equation:

θt+1 = θt + α[Gt − b(st)]∇ ln π(a∥st, θt). (4.13)

A possible choice for the baseline is that of using b(s) = v̂(s, w),
a functional learnable approximation of the value function. To
implement such modification, we would modify the architecture of
the policy network by adding one more output value representing
the value of the state (hence policy and value networks might
share the rest of the architecture and parameters).

The above methods handle finite number of discrete actions.
When actions vary in a continuous space and are infinite number,
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the methods can be adapted to determine the statistics of a prob-
ability distribution over the actions, such as mean and variance.

4.4 Actor-Critic methods

Actor-critic (AC) methods jointly learn approximation functions
for both the policy and the value function. The ‘actor’ learns
the policy function, and the ‘critic’ assesses the actor’s decisions
by estimating the value function v̂(s, w) (or, in other variants,
the Q-function q̂(s, a, w) ). In contrast to the REINFORCE [97]
with baseline algorithm, in the actor-critic method the estimated
value function is used to assess the effect of the taken action, and
parameters of the policy network are updated by the following
rule:

yt = Rt+1 + γv̂(st+1, w)

θt+1 = θt + α[yt − v̂(st, w)]∇ lnπ(a∥st, θt)
(4.14)

A variant of AC methods is the Deterministic Policy Gradient
algorithm (DPG) [98], where the policy is deterministic and ap-
proximated by a function π(·, θ) parameterized such that, given
the state s, action a is determined through the policy a = π(s, θ).
DPG is the limiting case, as policy variance tends to zero, of the
stochastic policy gradient [98]. During off-policy learning, the de-
terministic target policy is trained by using a stochastic behaviour
policy that ensures exploration. The critic is a differentiable Q-
function q̂(s, a, w) and the actor is improved also in the direction
of the approximate Q-function gradient with respect to the policy
parameters ∇π(·)q̂(s, a, w). Hence, parameters θ of the policy and
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w of the Q-function are updated as follow:

at+1 = π(st+1, θt)

yt = Rt+1 + γq̂(st+1, at+1, wt)

wt+1 = wt + α[yt − q̂(st, at, wt)]∇wq̂(st, at, wt)

θt+1 = θt + α[yt − q̂(st, at, wt)]∇θπ(st, θt)∇π(·)q̂(st, at, wt)

(4.15)

where the chain rule is used to differentiate the Q-function with
respect to the policy network parameters.

4.4.1 DRL-based Actor-Critic Methods

In the deep versions of the AC methods, both actor and critic
are typically represented by CNN. The Asynchronous Advantage
Actor-Critic (A3C) algorithm [92] maintains a policy π(at, st, θ)
and a value function v(st, w). The method performs parallel train-
ing where multiple agents, in parallel environments, independently
follow and update the policy. This helps breaking correlations
among samples. Furthermore, entropy of the policy is added to
the objective function as regularization term. A2C is a variant
of the A3C algorithm that does not take advantage of the asyn-
chronous updating.

Deep Deterministic Policy Gradient (DDPG) [99] adapts DPG
and the main ideas in DQL, including the use of experience re-
play memory and target network, to the learning of a policy for the
continuous action domain. To improve exploration during learn-
ing, noise is added to the deterministic policy. DDPG is sensitive
to the hyper-parameters choice and can led to overestimated Q-
values. Twin Delayed DDPG (TD3) [100] improves over DDPG
by including double Q-learning, and delaying policy updates with
respect to the Q-function update (the Q-function is updated more
frequently than the policy).
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Figure 4.1: In RL, an agent interacts with the environment. Information
about the environment at time t is encoded in the state St. Based on the
learned policy, the agent takes the action At, which will have an impact on
the environment and will determine the new state St+1. During training,
the agent receives a reward Rt+1 depending on At and St that modifies the
agent’s value function and the policy.

In Trust Region Policy Optimization (TRPO) [101], a surro-
gate objective function, defined in terms of the advantage func-
tion and the gain of the new policy with respect to the old one, is
maximized by constraining the scale of the Kullback-Leibler diver-
gence between the old and the new policy. Such constraint helps
to avoid the maximization problem to move towards excessively
large policy update. In contrast, in Proximal Policy Optimization
(PPO) [102], the KL-divergence penalty/constraint is not used
and the minimum between the objective function and its clipped
version is maximized instead. The clip function aims at simplify-
ing the learning process.
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4.5 Modeling Visual Tracking by DRL

The goal of reinforcement learning (RL) is to obtain a policy to
maximise the expected rewards by taking sequential actions inter-
acting with the environment from interactions.

In a typical RL setting, shown in Fig. 4.1, there is an agent
that interacts with the environment at discrete time steps, t =
0, 1, 2, .... At each time t, the agent decides on the action to per-
form, At based the state St, that encoding the agent’s perceived
environment (whatever information is available to the agent about
the environment). Rt+1 measuring the goodness of the taken de-
cision in state St. The state transition T brings a new observation
state St+1 depending by the state St taken the action At.

Fig. 4.2, shows all possible ways in which RL can be applied to
visual tracking. The tracker can be a RL-agent predicting location
of the target in a frame or the RL can be used to solve other tasks,
selecting some hyper-parameters, select one correlation filter on a
set, or in some case selecting the target appereance.

Normally, is spread to use as the state an image patch called
"search region", extracted based on the hypothetical target bound-
ing box, i.e. the estimated target location at the previous frame,
and taking as action set the possible changes of the bounding box
coordinates through horizontal/vertical shifts, and scale adjust-
ment. These action can be discrete or continuous, on the first
case at each frame, iteratively, the bounding box is refined based
on the sequence of actions taken by the agent until a stop action is
selected, and the final estimated target location is used to process
the next frame, one the second case at each the frame is processed
only once, namely the sequence of actions taken by the agent has
a length equals to the number of frames in the video.

As we claimed before, the RL application in the visual tracking

57



can be different, it’s also possible to use RL agent to take account
the target appereance changes or decide the tracking strategy, in
the first case the RL action can be select the the target template
to feed in input to the model or the correlation filter to use from a
pool of pre-existing filters, or of a specific tracker from an ensem-
ble, in the second case the agent can decide to track or re-detect
the target or to enlarge the search area to improve the target lo-
calization. There are also interesting approaches where the agent
has to decide the (continuous value) hyper-parameters (i.e., scale
step, learning rate, window weight, etc.) on which the tracking
results greatly depend on.

Figure 4.2: The agent can take decisions about the target bounding box,
the tracking strategy to adopt, or the target appearance model. The bound-
ing box can be refined by iterative discrete changes or by continuous values
changes. Agents can also select the tracking hyper-parameters, the search
region where to locate the target or, especially in multi-object tracking, the
tracker state, namely re-initialize, update or delete the tracker from the pool
of active ones. Finally, the agent can decide when to update the appearance
model or what model to select from a pool of available ones.
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Regardless the decision of the agent, the features are extracted
using CNNs, generally the output of the CNN represents the pol-
icy of the agent. The reward normally can be defined in two ways,
the intersection-over-union of the estimated bounding box and the
true bounding box or the distance between the coordinates of the
estimated bounding box and the true bounding box, hence, the
bounding box annotation is always necessary to compute the re-
ward.

In the following section we summarize some DRL based visual
tracking method categorising them in three sub section depending
of the decision of the agent.

4.6 DRL-based Visual Tracking

First attempts to use RL for visual tracking have focused on fea-
ture/appearance model selection [103, 104], PTZ camera parame-
ter estimation [105], tracking strategy selection [106, 107] or track-
ing hyper-parameters estimation [108]. They have mostly adopted
the Q-learning algorithm and have greatly suffered from the diffi-
culty of properly representing the environment state.

An attempt to use IRL is proposed in [109], where the life of
a target is modeled as a MDP. Target state values are: active,
lost, tracked, inactive. State transitions are deterministic and
pre-defined; actions represent the switch from a state to another.
The trained reward function is the confidence returned by a clas-
sifier/detector and depends on the current target state. A similar
idea is employed in [110], where the agent also decides whether
updating or no the discriminative Correlation Filter (CF) used to
detect the target. Hierarchical discriminative CF (HCF) [63] are
learned from convolutional features computed by a pre-trained
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CNN. The merit of these works is that of modeling the visual
tracking problem as a sequential decision one. However, the use
of RL for tracking has become popular after the introduction of
DRL.

In the following, we summarize DRL-based visual tracking ap-
proaches based on the categorization shown in Fig. 4.2. First,
we discuss works that estimate the target bounding box through
discrete or continuous-value actions; Then we consider methods
that affect the tracking strategy by acting on the agent’s state
transition during tracking, tracking hyper-parameters or search
area extension; Finally, we describe methods operating choices on
the selection or updating of the target appearance model. When
summarizing such works, we also refer to the categorization in
Figure 4.3 where the same works are analysed under the DRL-
algorithm used to implement the method. As shown in the figure,
methods can take advantage of some form of adaptation at test
time (re-training of part of the network or of the employed CFs)
or can use models pre-trained for tracking purposes without pa-
rameters adaptation at test-time (blue and yellow circles respec-
tively). The methods differ for the adopted RL framework: Deep
Q-learning (DQL), Deep Policy gradient (D-PG) and Actor-Critic
(AC) approaches.

Where not diversely specified, the agent’s reward is defined as a
function of the Intersection-over-Union (IoU) of the predicted and
annotated target bounding boxes. Sometimes, the improvement
of the IoU measured before and after taking action at is used. In
some approaches, pre-training of the neural networks is done in a
supervised form where the instantaneously optimal action to select
is derived based on the ground-truth available with the training
data.
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Figure 4.3: Categorization of DRL-based visual tracking approaches. Meth-
ods can take advantage of some form of test time adaptation or can be ad-hoc
pre-trained (blue and yellow circles respectively). The methods differ for the
adopted RL framework: Deep Q-Learning (DQL), Deep policy gradient (D-
PG) and Deep Actor-Critic (AC) methods.

4.6.1 Deciding Bounding Box Adjustments

The target bounding box can be adjusted frame-by-frame by a se-
quence of discrete actions representing bounding-box shifts/scaling,
or by a single continuous-value action representing changes in the
bounding box coordinates.

Iterative, Discrete Bounding Box Adjustments

When iterative, discrete bounding box adjustments are operated,
the agent’s action determines the direction (left/right/top/down)
of the bounding box shift and/or the scale factor (enlarge/shrink).
Iterative actions are applied to the bounding box on the same
frame until a stop action is not taken. Methods differ in the
number of pixels or proportionality factors adopted to define the
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agent’s actions.
The methods in [84, 111, 112, 113] adopts DQL [20] to train

the agent, while [78, 114, 115, 116] use the REINFORCE algo-
rithm [97] (D-PG). The methods take all advantage from test-time
updates of the model with the only exception of [113, 112, 116]
that use an ad-hoc pre-trained tracking models.

In [84], the method, which we name BBCorrection, aims at cor-
recting the target bounding box by exploiting features extracted
by a CNN. The method adapts the work in [23] for object detec-
tion to visual tracking. Given an initial detection of the target, a
pre-trained deep network (derived from the VGG-16 model [45])
is used to extract features from the bounding box. These features,
together with a memory of the last 10 actions, represent the state;
the agent is trained to shift and scale the bounding box to the tar-
get location by multiple interactions at a pixel level; Hence, a large
number of iterations are required to converge to the target loca-
tion. During tracking, whenever the agent get stacked into a local
optimum (i.e., the agent selects pairs of actions cancelling each
other for 10 steps continuously), the bounding box is randomly
moved.

The work in[111], RDNet, adopts two agents: a movement and
a scaling agent both implemented as a Siamese Network receiv-
ing in input the current state and a search region. The agents
are individually trained by DDQN [95]. Motivated by the way
humans would accomplish the same task, first the bounding box
is moved to center the target by a sequence of shifting actions
of the movement agent. Later, the bounding box is re-scaled by
the scaling agent to capture most of the target information. The
movement agent is rewarded based on the improvement of the Eu-
clidean distance before and after the selected action is performed.
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The tracking success might depend on the initial bounding box.
At test time, the search of the target starts from three different
initial bounding boxes, and the average target bounding box is
then used. If none of the three searches is successful, Kalman fil-
ter is used to locate the target. Differently than other approaches
using Siamese network, where inputs are cropped from different
frames, RDNet takes inputs from the current frame. The other
interesting aspect is about the training strategy. The policy is rep-
resented by the last FC layer and the model is end-to-end off-line
trained. Every new video, the policy is re-initialized to uniform
parameters. At test time, the convolutional layer parameters are
kept fixed, the policy is re-initialized and retrained by DRL on
the first frame.

The method in [113], DADRL, takes advantage of the coopera-
tion of two different agents for deformable face tracking: the track-
ing agent is implemented by a CNN and aims at generating the
face bounding box by estimating at each step how to move the cur-
rent bounding box (horizontal/vertical shifts and scale changes),
the alignment agent estimates the face landmarks and is based on
the hourglass network [117] for pose estimation. It takes the deci-
sion of continuing to adjust the face region or stopping. The two
agents interact over time by exchanging features. A LSTM stor-
ing the effects on landmark detection of the past tracking agent’s
actions is used in the model. The landmark detection accuracy is
used as reward. The network is pre-trained in a supervised way,
by providing the correct actions derived from the ground-truth.

The work TSAS [112] uses two networks in cascade to predict
how to shift the target bounding box. The first network predicts
the best discrete action to take to locate the target; this net-
work is trained in a supervised way by considering as label the
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action that allows achieving a higher IoU. The second network
models a Q-function and is trained by RL to assess the action
value. The search of the target is performed in three steps. First,
multiple candidates surrounding the last known target location
are processed and shifted based on the first network output by
considering a stride D. Later on, the largest confident bounding
boxes are reprocessed by taking half the stride. The process is
repeated other two times and it terminates with the selection of
the highest confident locations. Later on, a regressor is used to
refine the estimation. The regressor is trained independently of
the model. During tracking, both the model and the regressor are
fine-tuned based on the annotation in the first frame.

In [78, 118], the target bounding box is estimated by repetitive
actions selected by means of an action-decision network (ADNet).
The state is represented by the cropped target image and the his-
tory of the last 10 selected actions represented by one-hot encod-
ing. The target image is fed to the policy network (a CNN), which
outputs the action probability distribution. The policy network
is pre-trained in a supervised way. The network also estimates a
confidence score, which is used to decide when the tracking has
to be re-initialized. At test time, supervised adaptation of the
latest fully connected layers is performed to make the model more
robust to appearance changes. ADNet was later improved in IAD-
Net [114]. At training time, the action is sampled from the esti-
mated action distribution to ensure higher exploration. Instead of
rewarding the agent only when the terminal action is selected, dif-
ferent rewards are given on a frame basis. To improve robustness
of the tracker, multi-domain learning in [57] is also included such
that, during the supervised learning stage, a shared feature rep-
resentation is learned. An online adaptive update strategy based
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on meta-learning is used to estimate the most appropriate model
parameters such that the parameters are closer to the optimal
ones.

The work in [115] proposes an Hierarchical Tracker composed
of a ad-hoc pre-trained motion model (CNN and LSTM), and
an appearance model based on HCF [63] that is updated at test
time. The motion model takes in input the cropped target image
representing the state st. Similarly to ADNet [78], the motion
model provides the action probabilities. Furthermore, the network
also provides a confidence score. After a sequence of actions, the
resulting target image is processed by the HCF to get a coarse-
to-fine target verification. The peak in the correlation map is
chosen as new target location. Failures are detected by analyzing
the correlation values around the target location. If a failure is
detected, a number of surrounding samples are fed in input to the
motion model, and the one having the highest confidence score
is chosen as predicted target location. In this work, only the
HCF is adapted at test-time. In their ablation study, authors
show that the RL-based motion model contributes to the tracking
performance.

Instead, in [116], a set of single-target trackers are used (Mot-
DRL) to iterativelly adjust the target bounding box. The state is
represented by a crop image and the last 10 selected actions.

Continuous-Value Bounding Box Adjustments

The works in [119, 120, 121, 122] adopt the Actor-Critic framework
to handle with continuous-value action prediction, while [123, 124]
adopt the REINFORCE algorithm [97]. Among the former works,
only the methods in [119, 120, 122] take advantage of test-time
adaptation of the model.
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In the Actor-Critic tracker (ACT) [119] and in TD3T [120],
the state is defined as the cropped target image based on the
bounding box detected at the previous frame. The actor network
provides continuous actions to update the past bounding box to
the new target location in the current frame. The critic takes in
input the state and the selected action and provides the Q-values
and a verification score representing the decision reliability. In
ACT [119], whenever the verification score provided by the critic is
below zero, the critic is used on samples around the previous target
location to select the one with the highest score. During tracking,
the actor is fine-tuned in a supervised way through the annotation
in the first frame. The critic is updated any 10 frames based on
the collected target detections. The whole framework is trained
by DDPG [99]. During training, with an annealed probability
ϵ, the agent can take an action based on an expert guidance (for
example, the ground-truth annotation). In TD3T [120], the policy
is learned by means of the TD3 algorithm [100], which aims at
getting more accurate Q-values estimation by using double Q-
learning. Hence, during training, two critic networks assess the
actor’s decisions; at test time, one of the two critics is used to
estimate the bounding box confidence. The training and updating
strategies in TD3T are similar to those of ACT [119].

In [122], the particle filter framework is used to perform track-
ing (PF-DRL). The work proposes a motion-aware RL agent that
guides the particle sampling. In this sense, the work revisits the
MDNet model [57] which tracks adaptively the target by evaluat-
ing a number of samples drawn around the past target location.
Such samples can be regarded as particles. The proposed motion-
aware network takes in input the cropped target image and the
action history, and outputs a continuous action representing pa-
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rameters to estimate the mean and covariance matrix of a Gaus-
sian distribution to be used to sample the particles. The critic
network estimates the Q-value of the selected action. The model
is trained by DDPG [99]. At training time, supervised learning
is adopted to consider the annotation in the first frame of each
sequence and, similarly to [119], an expert guidance is required.
At test time, the model is fine-tuned in a supervised way by using
the annotation in the first frame. During test, adaptation of the
model is done as in MD-Net [57].

Also A3CT in [121] proposes to train the RL agent under
the guidance of an expert tracker. The network is composed of a
Siamese network and a LSTM. The output of the LSTM is used
to fed the actor and the critic, which estimates the V-function.
Actions are continuous values used to update the target bound-
ing box. The expert tracker (SiamFC [68]) performs tracking by
generating a sequence of states (estimated target locations) and
actions (changes to the target locations). The RL agent is trained
based on the imitation loss, which accumulates the L1 norm be-
tween the RL agent and the expert actions whenever the agent
performed worse than the expert. In practice, the agent learns
to behave better that the expert. As a variant, in A3CTD the
tracker takes advantage of the expert tracker also at test time.
The interesting aspect of this work is that the rewards are com-
puted independently than the ground-truth. However, a form of
supervision is provided by the expert, which has been trained in
a supervised way.

The above works are interesting in that the training procedure
mixes both supervised and reinforcement learning. This implic-
itly suggests that, with a huge continuous action space, RL alone
might fail. The works also highlight the importance of having
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balanced sample sets where the balancing refers to the presence
of both positive and negative rewards.

In [123], a DRL-based Tracking algorithm (DRLT) adopting
a Recurrent CNN is proposed. Given in input the whole frame,
the CNN extracts a feature representation. Such representation is
augmented with the target location and fed in input to the RNN.
The RNN approximates the policy function and predicts the new
target location. The main advantages of this approach are: the
tracker can use contextual information, since the whole frame is
processed; the tracker predicts the current bounding box without
any iterative procedure; no action history is needed since dynamics
are embedded in the RNN. However, training RNN requires a large
dataset.

The work in [124] proposes JDTracker, a policy-based jump-
diffusion process for visual tracking. Stochastic jump-diffusion
processes are used to sample a probabilistic distribution over a
mixture of sub-spaces of varying dimensions. The jump allows to
move from a subspace to another. In JDTracker, the state de-
composes into a discrete sub-space encoding the target visibility
(target visible, occluded or invisible), and a continuous sub-space
encoding the target location. The method learns two sub-policies
(two CNNs), the first designed on the discrete sub-space and the
other on the continuous sub-space. Each CNN takes in input a
cropped target image, the current target location, the past ac-
tion sequence, and estimates a distribution probability over the
discrete actions (i.e., switching into a new discrete state) or the
continuous value changes to the bounding box (shift and scale val-
ues). For discrete actions, the reward is 1 if the visibility state
equals the ground-truth, 0 otherwise. Training is performed by a
variant of the REINFORCE algorithm [97] with accumulated gra-
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dients to learn the parameters of the two policy networks. At the
early stage of training, supervised heuristics are used to initialize
the model. Visibility is defined based on the detector confidence,
and continuous actions are derived from the ground-truth.

Camera Parameters Adjustments

There are also works [125, 126] on active tracking that model ac-
tions as continuous value camera parameters changes. They both
employ the actor-critic framework and do not adapt the model at
test time.

In [127, 125], the tracker (Active-DRL) consists of a CNN, a
LSTM, and an actor-critic network to derive the agent’s action
and estimate the state value (V-function). Given the location and
orientation of the target on the image plane, the reward function is
designed such that its maximum value is achieved when the target
stands in front of the camera within a predefined distance and no
rotation intervenes. The method has been tested only in a virtual
environment and the model is trained from scratch, without any
supervision.

Virtual environments are also used in Asymmetric Dueling Vi-
sual Active Tracking (AD-Vat) [126, 128], which proposes an
adversarial RL method involving two agents: the tracker and the
target agents playing the role of opponents during the training.
Thanks to the adversarial learning strategy adopted, the target
attempts to find the weakness of the tracker and the tracker be-
comes stronger. The reward function is 0 near range (when target
location and tracker estimate are close) and is non zero otherwise
in order to penalize the target agent to run too far from the tracker
estimation. The target agent knows what the tracker is observing
and what actions is deciding, and is trained with the further goal
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of estimating the tracker reward.

4.6.2 Deciding the Tracking Strategy

In this section we discuss works where the agent decides the track-
ing hyper-parameters, the search region where to locate the target,
or the tracker state transition, which may imply to re-initialize,
update or delete the tracker.

Tracking Hyper-Parameters Adjustments

In [129] (HP-Siam), it is noted that hyper-parameters, such as
scale step, scale penalty, scale learning rate, window weight and
template learning rate, also play a crucial role in tracking pro-
cess and dynamically changing such hyper-parameters at a frame
level may led to great improvement of the tracking results. Since
ground-truth values of hyper-parameters is not available, the prob-
lem of estimating continuous values of the hyper-parameters is
modeled as a MDP. In particular, a policy network estimates
the hyper-parameter values, and another network assesses the Q-
function value. Learning is accelerated by using NAF [96]. The
work is extended in [130] (HP-BACF) where the proposed network
is combined with a real-time correlation filter-based tracker [131].
Training of the whole model is done in three subsequent steps:
first, a supervised training of the action network (which estimates
the hyper-parameters) is performed by using the default values
of the hyper-parameters; then, the action network is frozen and
Value and Q networks are trained. Finally, the whole model is
fine-tuned to improve the tracking results.

An hybrid approach that allows to estimate both the new target
location and the tracking hyper-parameters is proposed in [132],

70



DP-Siam. This model is composed of three networks. A Siamese
network takes in input the target template and the search area im-
age and produces an heatmap representing the per-pixel likelihood
of finding the target in the search area. The Agent Network ap-
proximates a continuous-value policy; it takes in input the search
area image and the heatmap and estimates the action, namely
the new target position in the search area. Such action produces
a state change represented as a novel target bounding box. The
Environment network approximates the Q-function and estimates
the Q-value of the new state and a confidence value. The latter
FC layer of the Q-network is augmented with the policy network
output. The Q-network provides the tracking hyper-parameters
(scale penalty, scale learning rate, window weight, template learn-
ing rate). Learning is done by a modified Q-learning approach
that uses alternate training of the Agent and Environment net-
works. During tracking, 20 candidates are considered based on
the heatmap returned by the Siamese network. The candidate
with the highest score is selected as target. The choice of con-
sidering many candidates makes unclear the contribution of the
Agent Network during the tracking process.

Tracker State Transition

Methods in [21, 133] learn a policy to decide when to track the tar-
get/reinitialize the tracking, and if to update the target appearance-
model. The former method is based on DQL [20], the latter is
based on the AC-framework. Both the methods take advantage
of model updates at test-time.

Since actions depends on the full history, in [21], P-Track, a
memory of past actions (action history) is maintained and pro-
cessed by the model. Training of the network is interactive, with
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manually annotated frames in strides of 50. The base tracker is a
fully convolutional network tracker (FCNT) [134] whose parame-
ters are adapted at test time, while the Q-function is approximated
by a small network initialized by heuristically guided Q-learning
through the minimization of a supervised loss function. One of
the positive aspects of the approach is that the training can be
done with limited annotations. On the other hand, it is reported
that a large number of videos (of unknown length) need to be used
to make the model converge.

In the method [133], DRL with iterative shift (DRL-IS), three
network are used: the prediction network, the actor and the critic.
These networks share all convolutional layers. Appearance fea-
tures of the target are explicitly maintained and online updated.
The prediction network adjusts the target location in an iterative
way (shifting and scaling of the target bounding box). The actor
network takes in input the cropped target image, the target lo-
cation in the previous frame and the target appearance features.
The actor makes decisions on the tracking status, whether or not
to update the target representation and the prediction network,
or even restart tracking. The target appearance representation is
updated by the output of one of the convolutional layers. The
critic takes in input the action distribution estimated by the ac-
tor, the values estimated by the prediction network and the target
representation at the current frame and at the previous one. It
returns a value assessing the state-action pair. If the actor select
the action restart, a set of patches is sampled and assessed by the
critic; the one yielding to the highest Q-value is chosen as new tar-
get location. As for the training strategy, the prediction network
is pre-trained in an end-to-end manner. The actor-critic model is
trained considering different rewards based on the selected action.
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The model is updated at test-time by using DRL.
Finally, we also include in this category the work in [135], which

proposes a decision controller (DC) implemented by a Siamese
network to choose between two trackers’ results. The controller,
trained by REINFORCE [97], takes in input the patches corre-
sponding to the trackers’ predictions. The reward is the difference
between the IoU of the selected prediction and the IoU of the other
one. Another decision controller is proposed whose goal is that of
deciding whether to track the target (by Siamese-FC [68]) or to
detect it (by SSD [136]), namely to re-initialize the target tracker
whenever drifting occurs.

Search Area Adjustments

While works in [137, 138] aim at adjusting the search area through
discrete shift/scale actions, the work in [139] proposes a data aug-
mentation techniques where the goal is determing the area to oc-
clude to generate hard samples. The methods in [137, 139] adopt
the DQL framework [20], while CRAC uses the actor-critic one
coupled with GAN [55]. This latter method takes advantage of
model updating at test-time.

The work in [137], G&M, proposes to estimate the optimal
search area to fed into a Siamese network-based tracker. Two
modules are available: the matching and the guessing modules.
The first one is a Siamese network that, given in input a template
image and a search area, provides the heatmap of the new target
location by cross-correlation. The guessing module has the goal of
providing a rough estimation of the target location by using the
current state image, the coordinates of the center of the target
in the past five frames, and the action history. The agent has
to decide how to move the bounding box such that the matching
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module will be able to detect the target within it. In combination
with other pre-trained trackers (such as SiamFC [68]), the strategy
of estimating a rough target location to better center the search
area has proved to improve the tracking results.

An interesting work (CRAC) designed for unsupervised vehicle
tracking in drone videos is proposed in [138]. The actor takes
in input observations from an image and the action history. It
determines the window size of the search area (contextual region
around the target) by selecting actions such as enlarge, shrink,
or terminate. The critic assesses the action-state pair according
to the tracking score of the new generated images. The actor-
critic model is trained by A3C [92] on ground-view dataset. The
knowledge is then transferred to adapt for the drone-view videos
by using two GANs [55]. One GAN (T-GAN) generates the drone
views by preserving the local discriminative features; tracking is
performed by a pre-trained tracker (such as MDNet [57]). Another
GAN generates attention maps. The latter GAN is re-trained at
test time. The reward for the agent is computed based on the
tracking score provided by T-GAN.

Differently than the above approaches, SINT++ in [139] cou-
ples reinforcement and adversarial learning to augment the train-
ing set with hard positive samples and improve the robustness
of the SINT algorithm [67]. For each video, a variational au-
toencoder is trained and used to generate samples of the target
that did not occur in training data. A Hard Positive Transfor-
mation Network allows to add occlusions on the target objects by
using image patches extracted from the background. The latter
module is trained by DQL [20] and the agent’s actions entail the
movements of the patch over the target. Despite interesting, it is
unclear whether the resulting occluded images are enough realis-
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tic, but experimental results show the added occlusions improve
tracking results.

4.6.3 Deciding Appearance Model Selection/Update

The agent can also take decisions concerning the target appear-
ance model management. In particular, it can select the appear-
ance model to use from a pool of available models, can decide
whether to update the appearance model or no, or can decide
which tracking results to consider in case of a pool of expert track-
ers is available. All these methods use discrete actions. Whenever
the appearance model is represented in terms of CF [41], then the
methods take advantage of the appearance model update at test
time.

The EArly Stopping Tracker (EAST) [140], aims at speeding
up deep Siamese trackers in an adaptive way by choosing the op-
timal layer outputs to use for tracking. It is based on the intuition
that complex scenario may require deeper features, while simpler
scenario may need the first layer output. The agent decides if
using the representation of the current layer or moving to the
next one. The state represents the average score map obtained
by cross-correlating the feature maps at each layer preceding the
selected one and the action history. Agent’s discrete actions in-
clude various scaling operations of the target bounding box whose
center is found based on the cross-correlation map. Several candi-
date bounding boxes are considered around the estimated region
from previous frame. The action set include also terminal/non-
terminal actions. If a non-terminal action is selected, the process
is re-iterated by considering the next layer along the forward-pass.
The maximal number of iterations depends on the network depth,
which makes the iteration number a-priori limited by the archi-
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tecture structure. The method is based on DQL [20]. Somehow
related is the work in [141] (TS-Dist), which aims at distilling a
small, fast Siamese tracker from a large one by transferring knowl-
edge from a teacher to multiple student networks. The framework
is composed of several modules. The first one extracts a reduced
network representing the “dull" student and learns a policy to se-
quentially shrink the Siamese network layers. The reward function
measures the compression rate and tracking accuracy. This is not
the first work using RL to define the network structure, but is the
only one we have found that does it to build a tracker. Learning
is based on policy gradient methods.

The works in [142, 143] adopt CF as target appearance mod-
els, the work in [144] is concerned with the choice of the better
heatmap to use in tracking, and [145] represents the target ap-
pearance in terms of template images.

The method in [143] (MT-Exp) models the multi-tracker track-
ing problem as a decision-making task where a DQL-based expert
selects the best tracker to use from a pool of CFs by taking their
response maps in input to estimate the reliability of each tracker
(value function). The network is pre-tained in a supervised way
by letting the network regress the IoU on a single heatmap. Then,
RL is used to refine the network parameters.

In [142] (CF-AC), it is noted that older CFs may yield to bet-
ter results and it is proposed to maintain several past CFs. It
uses the actor-critic framework to learn a policy for selecting the
optimal appearance model (i.e., CF) to locate the target. The
policy network takes in input all response maps and provides a
beta probability distribution over all available filters. This dif-
fers from MT-Exp [143], where the state is the response map of
a single CF and multiple evaluation are required. In CF-AC, the
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critic is used to assess the policy decision. The policy network is
trained by PPO [102]. The pool of CFs include the initial (never
updated) CF, various updated CFs, and an accumulated (always
updated) CF.

In RDT [144], policy gradient is used to select the target tem-
plate from a pool of past observations. The matching between the
target template and the new frame is established by a Siamese
Network, which produces a heatmap. The agent has to decide,
for each template, if the estimated heatmap is reliable or no.
The most reliable heatmap is used to locate the target. In prac-
tice, the model helps maintaining an updated an effective appear-
ance model represented in terms of an ensemble of templates. Of
course, the performance of such strategy strongly depends on the
adopted Siamese network.

The method in [145] (VOS) considers the problem of video
object tracking and segmentation. Given a pool of candidate tar-
get detection, obtained through an instance segmentation network
such as YOLACT [146] or Mask R-CNN [59], the AC-based agent
has to decide whether to update or no the target template. The
choice of which matching strategy to use between a fast one (IoU-
based) and a slow but accurate one (appearance-based) is taken
based on the agent’s action history. The agent takes in input
an image where only the pixels within the object bounding box
are left while the others are blackened, and an image where only
the pixels within the segmentation are unchanged while the others
are blackened. Deep features for the two images are extracted and
concatenated. The reward is defined based on the segmentation
results. The work demonstrates empirically that RL-based model
greatly outperforms the SL-based one.
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Chapter 5

Accelerating learning of deep
models

The tracking models trained offline, whether through a supervised
approach or reinforcement learning, often necessitate online tun-
ing to achieve optimal performance. Tracking tasks often involve
dynamic and changing environments where the appearance and
behavior of the tracked object may vary over time. Offline trained
models might not be able to adapt effectively to these changes
without online tuning. By fine-tuning the model online, it can
better adapt to the specific characteristics of the current environ-
ment, leading to improved tracking performance. The duration of
this tuning process is contingent on the number of layers requir-
ing training for the new target audience. However, we propose
a pioneering approach in this thesis that expedites the training
of CNNs while simultaneously preserving their high performance
levels. However, it is important to note that our new approach
has not been specifically tested on visual tracking datasets. In-
stead, we have evaluated its performance on various other types
of datasets to showcase its ability to generalize beyond the train-
ing data. By conducting experiments on diverse datasets, we aim
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to demonstrate the versatility and robustness of our approach in
different problem domains. Although direct evaluation on visual
tracking datasets is pending, the results obtained from these al-
ternative datasets provide valuable insights into the potential ef-
fectiveness of our approach across various applications.

5.1 Introduction

The use of deep learning models is increasing over time, since they
perform well in various areas, such as computer vision, natural
language processing, and speech recognition. In computer vision,
the most used deep learning models are the Convolutional Neural
Networks (CNNs), which consist of very deep models with many
different layers processing the input by mapping it to the expected
output [147].

The training time of CNNs is sometimes very long and could
last hours, days or even weeks depending on the task, the size of
the dataset and the available hardware. Nowadays, the trend is
to increase the depth and size of architectures [148]; This usually
leads to better performance despite a heavy computational cost.

Although modern deep CNNs are composed of a variety of layer
types, convolutional layers are the building blocks of CNNs, and
contribute greatly to the overall computational load of the net-
work. In recent times, the deep learning community has focused
on how to improve the efficiency of CNNs while saving time, com-
putational costs, and energy without compromising the accuracy
of the results [148].

We can divide the methods that improve the efficiency of CNN
into two categories[148], depending on the stage in which they
seek to achieve better efficiency:
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• methods for inference efficiency: this category includes meth-
ods that compress the network during the training phase to
use a more compact model during inference [149, 150, 151,
152, 153];

• methods for training efficiency: fall into this category meth-
ods that improve the efficiency of model training only, for
example by freezing some layers during training but con-
tinuing to use the entire model during the inference phase
[154, 155, 156].

At first glance, one might think that methods for inference ef-
ficiency are the most relevant because a model is trained once
and used to infer multiple times. However, there are applica-
tions where new data arrives sequentially and the model has to be
adapted and retrained using this new data. An example is visual
tracking where the model is often used to represent the target
appearance. Since appearance changes over time, it is required
that the model adapt to such changes. In that case, slow re-
training of the network may affect the real-time capabilities of the
tracker. Also, recommendation systems or large language mod-
els (LLM) must be regularly retrained, and the training can last
several weeks

Motivated by the above considerations, in this thesis we focus
only on training efficiency by proposing to gradually compress
the neural network during the training phase by dropping some
convolutional layers and using the entire model (with all its layers)
during the inference phase. We analyze the method on some of
the most popular CNNs such as VGG [157] and ResNet [158] by
observing their learning behaviour through gradient monitoring.

The two main steps in neural network training are forward
and backward propagation; both steps have a high computational
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cost, which increases according to the complexity of the network.
In general, forward propagation is the process of passing data
through the network from one layer to another. In each layer,
the input data is processed taking into account the weight matrix
of the layer itself and a suitable activation function to produce
the layer output. The output of each layer becomes the input of
the next layer repeating this process until the output of the final
layer is produced. The back-propagation algorithm [147] is used
to train a neural network by updating its weights to minimize the
error between the predicted and expected output. The algorithm
computes the gradient of the loss function with respect to each
weight via the chain rule, starting at the output layer and propa-
gating the gradient backwards through the network from one layer
to another.

The magnitude of the gradient permits to understand how the
parameters of the model vary during training: the closer it is an
optimal point, the lower the value of the gradient. The variation
of the gradient magnitude across the epochs provides a learning
curve that can be calculated separately for each layer of the net-
work. We have empirically found similarities among these learning
curves when analyzing different CNNs and, in particular, we have
found that the layers’ parameters are learned sequentially from
the first to the last layer. Thus, in this Thesis we propose to
sequentially eliminate the convolutional layers during the train-
ing phase. Layers to drop are selected based on a metric related
to the layer gradient. The adopted metric gives us an indication
of which layer has stopped learning and can, therefore, be tem-
porally eliminated from the model. However, when we drop a
layer, we have to find a way to feed the next layer to continue its
training. This is done by feeding the remaining model (the one
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without the deleted layers) with the feature maps produced from
the last dropped layer. We stress here that dropping the layers
has a double consequence: the weights of the removed layers are
no longer modified and, moreover, a compressed model is trained
in the next epochs. During the test, the entire model is used and
each layer will have as weights those obtained when the layer was
selected for dropping. This method shows an huge acceleration of
the training process. We can summarize the main contributions
of this thesis as it follows:

• A new method to improve the efficiency of training CNNs by
dropping layers based on the metric derived from gradients.

• A significant speed-up of the training process of CNNs com-
pared to state-of-art methods, given by the possibility of pro-
cessing directly feature maps extracted from dropped layers
and calculating the back-propagation only for the remaining
layers. We empirically show that, by using our technique,
the training time of a CNN is more than halved.

5.2 Related Work

In recent years, many works have focused on how to reduce the
parameter size of deep learning models. This is quite a challenge
considering the energy impact of training large networks. The
goal of compression techniques is to achieve a more efficient rep-
resentation in a neural network, improving the generalization of
the model if the model is overly parameterized. Model optimiza-
tion is performed with respect to model size or training time in
exchange for as little accuracy loss as possible. A popular method
of reducing the complexity of neural networks is to permanently
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remove neurons, filters, or layers for training. This technique is
called pruning. Pruning can be performed based on different as-
pects of neural networks, for example it may be possible to remove
parameters with low saliency scores from a pre-trained network.
These techniques are often referred to as Optimal Brain Damage
or Optimal Brain Surgeon, and were first introduced by LeCun
et al. [159] and Hassibi et al. [160], respectively. The goal of
this process is to minimize the impact of compressing the network
on its performance, as measured by its validation loss. OBD ap-
proximates the saliency score by using a second-derivative of the
parameters (∂

2L
∂w2

i
), where L is the loss function, and wi is the candi-

date parameter for removal. In [161], it is suggested that a greedy
method be used to determine the minimum set of neurons needed
to minimize the reconstruction loss, but this approach has a high
computational cost. Other methods that prune by “saliency" con-
sider the magnitude of the weights [162, 163]. The previously
described methods for removing sparse neurons are examples of
unstructured pruning methods. On the other hand, structural
pruning aims at reducing the number of filters as in [164] where the
L1-norm is used to select the filters to be removed without affect-
ing the accuracy of the classification. A similar idea is presented
in [165] where the feature map channels that do not contribute to
the result are removed.

In addition to pruning filters and channels, there are also meth-
ods of pruning entire layers [166, 167, 168]. Using different cri-
teria, the selected layers from the network are removed to obtain
a compact model. These methods claim that the model obtained
from layer pruning require less inference time and memory usage
at runtime with similar accuracy values than the model obtained
from filter pruning methods. The work by Chen et al. in [166]
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uses independently trained linear classifiers per layer to rank their
importance. After ranking, they remove less important layers and
fine-tune the remaining model. However, their method requires
additional rank training. All the previously described methods
fall into the category of inference efficiency methods because they
produce compressed model to be used at inference time.

In other efficiency training approaches like in [169], the gradi-
ent computation through the chain rule is stopped. To speed-up
training and increase accuracy in very deep networks, AFNet [169]
investigates a different use of back-propagation. Only a subset
of layers are trained while the others are frozen. Frozen lay-
ers weights do not need to be updated during back-propagation.
In [154], a metric F , named Freezing Rate, is defined as a function
of the gradient values of the set of weights of a layer. This metric
is used in [154] to decide which layer should be frozen during the
training. The frozen layers must be subsequent to not break the
layers chain, and therefore the freezing of the layers start from the
first layer and advances to the subsequent ones. During training,
the layers are not removed and therefore the computational ad-
vantage of the method concerns only limiting the calculation of
the gradient and the modification of the weights of the frozen lay-
ers. Our approach is inspired by [154], in the sense that we adopt
the same metric F . However, unlike the method in [154], our
method consists in performing a layer elimination (drop) during
the training phase. Once a layer is removed, the remaining model
is fed through the feature maps produced by the last deleted layer.
This speeds up both forward propagation, since there is no need to
recalculate the feature maps of the deleted layers, and backward
propagation, since the gradient is not calculated in the dropped
layers and there is no need to update their weights. Our experi-
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Figure 5.1: The two graphs represent the average absolute partial derivative
value of each convolutional layer in the VGG-11 (left) and ResNet-18 (right)
models on the MNIST dataset. The average absolute partial derivative value
is indicated on the y-axis and the epoch on the x-axis. Each curve represents
a different layer with colors from purple, for layers closest to the input, to
red, for layers closest to the output. The figure suggests that weights in the
first layers undergo much higher changes than the weights in the layers clos-
est to the output, especially at the beginning of the training. Thus, partial
derivative values can help understanding if the weights of a layer are still
changing or not. However, using directly the average absolute partial deriva-
tive values could be misleading since the weights may have small magnitude
but still change.

ments demonstrate how this approach increases training efficiency
by gradually reducing the number of FLOPs over the epochs. At
the same time our method is different from classic pruning meth-
ods, as our method does not permanently remove the layers by
performing a network compression but only temporarily drops
them during the training phase. In fact, in the test phase, the
model will contain all the layers of the one originally created.

5.3 Dropping Layers for Training Efficiency

Our method is described in Algorithm 2 and its main steps are:

• Compute the “Layer Importance metric" based on the gradi-
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ent of the layer’s weights;

• Apply the “Fast Learning" algorithm, the core of our method.
The algorithm consists of steps to: (1) select the layers to be
dropped, (2) split the network into a “tail", composed of the
dropped layers, and a “head", composed of the layers to still
train, (3) compute and store output feature maps from the
tail, (4) train the head by using output feature maps from
the tail.

5.3.1 Layer importance

Our layer dropping method is based on the observation of the
loss function gradients ∇g. Generally, the gradient values can
be interpreted as the rate of change of the weights. The sign of
the partial derivatives represents instead the inverse direction in
which weights should be changed to reach a minimum.

Given a neural network with layers L = {l0, l1, ..., lL}, the av-
erage absolute partial derivative value g

(k)
l corresponding to the

weights of the l-th layer is calculated as:

g
(k)
l =

1

N

N∑
i=1

M∑
j=1

| g(k)lij | (5.1)

where N is the number of weights in layer l, M is the number
of iterations in epoch k, and g

(k)
lij is the partial derivative of the

loss function with respect to the i-th weight in layer l at the j-th
iteration in epoch k. Fig. 5.1 shows two graphs representing the
average absolute partial derivative value g(k)l of each convolutional
layer in the VGG11 and ResNet18 models. The layers closest to
the input in both networks have a greater average partial deriva-
tive value than the layers closest to the output. In practice, the
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figure suggests that weights in the first layers undergo much higher
changes than the weights in the layers closest to the output, es-
pecially at the beginning of the training.

Thus, partial derivative values can help understanding if the
weights of a layer are still changing or not. However, using directly
the average absolute partial derivative values could be misleading
since the weights may have small magnitude but still change.

Hence, we decided to adopt the metric proposed in [154], and
define for the l-th layer the score:

P
(k)
l = 1−

∑N
i=1 |

∑M
j=1 g

(k)
lij |∑N

i=1

∑M
j=1 | g

(k)
lij |

(5.2)

with 0 ≤ P
(k)
l ≤ 1, where P

(k)
l measures the degree of changes of

the weights in layer l at the k-th epoch. P (k)
l will be 1 if the partial

derivatives cancel each other across the M iterations. In such a
case, within the epoch the layer weights do not change much and,
intuitively, the layer has stopped to learn. P

(k)
l will tend to 0 if

most of the partial derivatives are in the same direction across
iterations. In this case, layer weights are changing during the
epoch. Thus, the layer is learning something about the problem to
solve. We note here that the normalization factors make the scores
comparable across the layers despite the different magnitude of the
weight’s partial derivatives.

Under this point of view, the score P
(k)
l is measuring the im-

portance of the layer during training. Layers with a score close
to 0 must be trained. Layer with a score approaching 1 are not
learning much and probably can be dropped to speed up the model
training. Unlike [154], where this score is used to freeze the layer
and stop the back-propagation computation up to the l-th convo-
lutional layer, our algorithm uses Pl to drop the l-th convolutional
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layer. The feature maps produced by the last dropped layer are
used as input to the remaining model.

5.3.2 Improving training efficiency

In our approach, the removal of layers from the model to improve
the training efficiency must take place in sequential order. At the
k-th epoch, the layers to be dropped are selected based on the
importance score P

(k)
l .

Thus, our fast learning algorithm works as it follows:

1. At the end of epoch k, the metric P
(k)
l is calculated for each

layer l. The score values are then standardized:

P ′l =
Pl − P

σp
(5.3)

where P and σp represent the average score over the lay-
ers and the standard deviation respectively. We omitted the
apex k for simplicity.

Ideally, we want to drop all subsequent layers for which the
parameters do not change much anymore starting from the
first layer of the network. The standardized scores P ′l can
have positive and negative values. Positive values indicate
that the layer’s weights are changing less than the average
(hence the layer is likely not learning much), while negative
values indicate that the layer’s weights are changing more
than the average (hence the layer is still learning something).

The problem of selecting the subsequent layers to drop start-
ing from the first layer turns into the problem of finding the
sub-vector of maximum sum starting from the first element
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of an array. In our case, the array represents the list of scores
P ′l with l ∈ L.
Let us assume that the current layers in the model are L =
{lz, lz+1, . . . , lL}. Candidate layers to drop are lz...ln∗ with
n∗ computed as:

n∗ = min
t
{t ∈ [z, . . . , L− 1] : P ′lt > 0 ∧ P ′lt+1

< 0}. (5.4)

2. As soon the candidate layers to drop lz...ln∗ are found, to
avoid dropping them too early, we estimate the median Mc

of the scores P ′lt with lt ∈ lz...ln∗ (namely the scores of the
candidate layers to drop), and compare it with the median
Md of the scores P ′lt with lt ∈ l0...lz−1 (namely the scores of
the layers dropped in previous iterations and estimated when
the decision of dropping the layers was taken). We perform
layer dropping if Mc ≥ Md. In this way, we limit the effects
that early layer dropping may have on the network accuracy
value.
Once the layers to drop are identified, the network is split into
two parts: the “tail", composed of the layers in the network
up to ln∗, and the “head", composed of the layers from ln∗+1

to the network output.

3. In epoch k+1, the tail is used to extract feature maps. These
feature maps are stored on a memory, such as a disk, and are
also used to feed the head to continue its training.

4. In epoch k + 2, the stored feature maps are retrieved from
the memory and used to train the head.

These 4 steps are within an iterative procedure repeated until the
maximum number of epochs is reached or the convolutional layers
are exhausted, namely the head does not have any layer.
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Our approach differs from the one in [154]. In the latter ap-
proach, layers with a high score are not “physically" removed from
the network but their weights are not trained. The main limitation
of the approach in [154] is that, during forward propagation, the
data must be processed at each iteration even by layers for which
the weights are not updated. Our approach overcomes this limita-
tion by removing layers in order starting with the first. We have
experimentally demonstrated the advantages of this approach in
significantly reducing the computational cost of the training pro-
cess.

Furthermore, in [154] layers to exclude from the training are
selected after a prefixed number of epochs based on the vec-
tor f = [f1, f2, ..., fn]. Each value fi indicates the number of
epochs between one freezing and another at a specific learning
rate. Hyper-parameters in f are empirically defined and change
over the adopted datasets. In our approach, the decision to drop
a layer is fully automatic. After each epoch, the method analyzes
the scores P (k)

l to detect candidate layer to be dropped and, as al-
ready described, the decision to remove the layers or not depends
also on the median of the estimated scores.

5.4 Fast-Training Algorithm

Our approach is described in Algorithm 2. It starts with a few
warm-up epochs e1 where the model is trained to move from the
initial random weights. After this warm-up, the weights of model
are copied to the head model, which is initially equal to model,
while the tail model is empty. From now on, only the head model
is trained. The tail model stores the dropped layers and is used
to estimate the features maps needed to feed the head model.
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Each time the head model is trained, the corresponding weights
in the model are updated accordingly. In practice, model always
contain all layers, whose weights are iteratively updated based
on the weights learned by the head model. The save_features
flag is used to indicate whether the tail model should be used to
estimate feature maps using the dropped layers. Data stores the
data for training the model. Initially, Data stores the training
images. When layers are dropped, Data stores the features maps
produced by the dropped layers, i.e. the tail model. At each
iteration, the layer importance P ′l is recomputed only for each
layer of the head model as described in Equations 5.2 and 5.3.

Then, n∗ is computed based on Eq. 5.4. Layer dropping is
performed if it is found a maximum-sum sub-sequence of scores P ′l
starting from the first layer of the head that includes at least one
layer and the median value of the scores in the found sub-sequence
is greater than the median score of the previously dropped layers.
The scores of the dropped layer are not recomputed every time
but stored during the training process and kept updated till the
layer is not dropped. The index n∗ is also used to further compress
the head model. In particular, the tail model stores the dropped
layers, namely the first n∗ layers of the head model. These same
layers are pulled out from the head model, resulting in a reduced
model.

The described process is iterated until only the last convolu-
tional and dense layers remain; they continue to train till the
maximal number of epochs e2 is not reached.

We emphasize that the whole model (model) is tested on a
validation set; this proves that removing the layers does not affect
the accuracy of the original model. The model is optimized using
SGD method in order to maintain a fixed learning rate over the
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Figure 5.2: The two plots show the scores P
(k)
l on the MNIST dataset for

a VGG-11 trained with batch normalization (on the left) and without batch
normalization (on the right). Adding a bath normalization reverses the order
of the score curves computed for each layer across the epochs.

different iterations. This is not a limitation, and other optimizers
might be used as well. Also, early stopping may be included in
the algorithm to add more regularization. In our experiments, we
did not use early stopping to compare different training strategies
on equal terms of number of epochs.
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Figure 5.3: The image shows how dropping takes place in the ResNet at
any residual block. The saved feature maps come from the layers in red,
corresponding to the layers inside the residual block on the main track and
on the skip connection. The layers on the left of the red dotted line are
dropped and belong to the tail. The extracted feature maps are saved to
the memory. From the next epoch, the head model (on the right of the red
dotted line) will directly use the feature maps from the memory for training
purposes.
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Algorithm 2 Fast Learning by layer dropping
Require:

model, a model of L layers with randomly initialized parameters;
e1 > 0, number of warm-up epochs;
e2 > 0, number of training epochs;
L0, number of dense layers + 1;

Ensure:
Trained model;

1: Initialize models head and tail
2: Initialize Data with the training images
3: save_features = False.
4: Train model for e1 epochs on Data
5: L = model.layers.length()
6: head.layers = model.layers[0 : L− 1]
7: tail.layers = []
8: features_maps = []
9: Initialize P ′

l with l in head
10: for k = 0 to e2 do
11: if save_features then
12: save_features = False
13: features_maps = tail(Data)
14: Train head on features_maps
15: Update model weights based on head
16: store features_maps to memory
17: else
18: if features_maps! = [] then
19: Initialize Data with features_map
20: features_maps = []
21: end if
22: Train head for 1 epoch on Data
23: Update model weights based on head
24: if L > L0 then
25: for ∀ conv. layer l in head do
26: update P ′

l (Eqs. 5.2& 5.3)
27: end for
28: Find n∗ (Eq. 5.4) for layer dropping
29: Estimate median values Mc and Md

30: if n∗ > 1 ∧Mc ≥Md then
31: save_features = True
32: tail.layers = head.layers[0 : n∗]
33: head.layers.pop(0 : n∗)
34: L = head.layers.length()
35: end if
36: end if
37: end if
38: validate model on validation set
39: end for
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Chapter 6

Experimental Results

This Chapter discusses and summarizes:

• A concise overview of the widely adopted public benchmarks
for single object tracking, providing valuable insights into
their characteristics. Additionally, we summarize the recom-
mended experimental protocols to follow when utilizing these
benchmarks.

• The advantages of adopting iterative approaches for refin-
ing the target bounding-boxes are thoroughly discussed and
supported by experimental results on widely used tracking
benchmarks.

• The state-of-the-art results in deep reinforcement learning
based tracking approaches are presented, along with mod-
ifications to existing approaches. While the superiority of
DRL-based approaches over SL-based methods has not been
conclusively demonstrated in this thesis, the potential bene-
fits of such methods are explored.

• Lastly, a novel method for accelerating the training of CNNs
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is presented, emphasizing its potential to improve the effi-
ciency and effectiveness of object tracking algorithms.

6.1 Datasets and Perfomance Measurements for
VOT

We provide a brief overview of the most adopted public bench-
marks for single object tracking. We also summarize the experi-
mental protocols suggested when using these benchmarks.

Two main benchmarks are adopted to validate tracking algo-
rithms: the Object Tracking Benchmark (OTB-2013) [170], and
the Visual Object Tracking (VOT) dataset [171] of which several
extensions/variants are provided each year, being the dataset part
of an annual challange.

The OTB-2013 includes 50 fully annotated videos characterized
by several attributes (Illumination Variation, Scale Variation, Oc-
clusion, Motion Blur, etc.). The benchmark was expanded in [172]
to include further 50 annotated trajectories (some videos have
more than one annotated object). The 100 annotated trajectories
are indicated with the name OTB-100; a subset of such trajec-
tories, named OTB-50, includes the more challenging videos and
differs from the set of videos in OTB-2013.

The VOT challenges [171] started in 2013 and the publicly
available dataset grew over time (25 videos for short-term track-
ing in 2014, 60 since 2015, additional 35 sequences for long-term
tracking in 2018). Based on the final reports of each competition,
we have found that: VOT 2016 used the same videos as in VOT
2015 but with a more accurate annotation; VOT 2017 replaced the
least challenging videos in VOT 2016 with newer sequences and
further improved the annotation; videos/annotations for short-
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term tracking in VOT 2018/ 2019 are the same as in 2017. In the
following, we summarize results on VOT-16 and VOT-18.

There are other more recent benchmarks that could have been
used to assess DRL-based methods, such as LaSOT [173], Track-
ingNet [174], TC [175], and GOT-10k [176]. Such benchmarks
would have allowed to validate the methods on long video se-
quences. The analysis of the reviewed papers revealed that G&M [137]
is validated on TrackingNet and LaSot, A3CTD [121] is validated
on LaSOT and Got-10k, DRL-IS [133] and PF-DRL [122] are vali-
dated on TC. Since these evaluation results are too sparse, they do
not allow drawing conclusions on the effectiveness of DRL-based
trackers in long videos.

For training purposes, ImageNet videos (ILSCRC) [177], ALOV300+ [178]
and VOT are often used. As reported in [67], 12 sequences in the
ALOV300++ overlap with the OTB dataset, and overlapping se-
quences are also in VOT-16. Most of the reviewed papers clearly
claim to have excluded the overlapping sequences from the train-
ing set [78, 114, 115, 133, 139, 58]). Other adopted datasets for
training purposes are reported in Table 6.5.

Experimental Protocols

OTB and VOT benchmarks have different evaluation protocols.
For the mathematical formulation of the evaluation metrics, we
refer the reader to the papers [170, 172, 171]. Here, we provide
a high level description of the methodology to use for assessing
tracking algorithms on these two benchmarks.

In OTB, each tracker starts from an initial annotated bound-
ing box and runs till the end of the video without re-initialization
in case of tracking failure. This methodology is referred as one-
pass evaluation (OPE). Other methodologies (Temporal robust-
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ness evaluation and Spatial Robustness Evaluation) are proposed
in [170] but rarely adopted in practice. In VOT, whenever a track-
ing failure occurs, the tracker is re-initialized.

In the OTB benchmark, two performance measures are sug-
gested: IoU to measure tracking accuracy, and RMSE of the tar-
get center location to measure the tracker precision. The two
measures are used to draw the success and precision plots respec-
tively. The success plot represents the percentage of frames with
IoU > κ for varying thresholds κ ∈ [0, 1]. The area under curve
(AUC) of the success plot serves to rank the algorithms. In [179],
it is proved that this AUC is in fact the average overlap (AO) over
the sequence.

The precision plot shows the percentage of frames in which the
target distance to the ground-truth location is below a varying
threshold. The precision score with threshold equals to 20 pixels
is used to rank the trackers.

In VOT, stochastic trackers are run 15 times on each sequence.
Three measurements are computed [171]: the expected average
overlap (EAO), accuracy (A), and robustness (R). Robustness
metric evaluates the tracking failure rate; a failure occurs when
the IoU is not greater than 0. In such cases, the tracker is re-
initialized 5 frames after the failure by using the ground-truth,
and 10 frames after the re-initialization are ignored when measur-
ing the performances. The accuracy metric measures the AO over
all successfully tracked frames. Some works report the accuracy
and robustness raw scores, while others report the average ranking
of the method over a set of trackers. Due to these discrepancies,
we only report the EAO values.

EAO estimates the tracker accuracy by taking into account how
long the tracker can successfully follow the target independently
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than the length of the video sequence [171]. Based on the prob-
ability density function over the sequence lengths in the dataset
(computed by kernel density estimate), two length boundaries, ti
and tf , are found such that the integral of the pdf within this
range equals to 0.5. Since the tracker is reset in case of failure,
the tracking sequence is split in fragments (based on the frames
where a failure has been detected). Fragments with a length below
the video length N and not terminating in a failure are discarded.
The remaining fragments are padded with zeros to have length N .
The fragments are then per-frame averaged and the per-sequence
average in the range [ti, tf ] yields to the EAO.

Despite both OTB and VOT benchmarks provide attribute-
based analysis (i.e. illumination changes, occlusions, etc.), only
very few DRL-based papers present this analysis (namely [119,
114, 129, 130, 142]). For this reason, attribute-based comparison
of the trackers cannot be done.

6.2 Visual Object Tracking: Supervised approach

The goal in this chapter is to demonstrate that iterative approaches
to refine the bounding box have several drawbacks that can be
overcome by allowing multiple non-conflicting refinements to the
bounding box at each iteration. Therefore, we run two kinds of ex-
periments: one to show the usefulness of our proposed approach,
the other to compare our tracking strategy to state-of-the-art ap-
proaches on publicly available benchmarks. All experiments were
conducted on a machine equipped with: 32 GB RAM, GPU RTX
2070 8GB RAM. Our prototype has been implemented in Python
by using Tensorflow and runs at 5 fps on the GPU.

99



6.2.1 Single vs. Multiple Transformation Groups

We performed experiments by keeping the tracking strategy fixed
and by varying the output layer of the deep model (single vs multi-
ple transformation groups). As training of the model is important,
we also test our approach by varying the model. To this purpose,
we used the pre-trained parameters of the ADNet model [78], mod-
ified the last layer and compared single vs. multiple transforma-
tion groups. Finally, we tested how different training strategies of
our model can affect the results. Experiments have been run on
the OTB 100 benchmark [77].

All results are reported in Figure 6.1. Configurations with
"NOT" directly use the initial parameters of VGG-M for the layers
(conv1–4), while the fully connected layers (fc5–fc9) are initialized
by random noises. Configurations with “ADNet” load the ADNet
parameters.

For the above configurations, no offline training is performed
and only online learning at test time is done.

Configurations with "MT" use multiple bounding box refine-
ments, in contrast to "ST" where a single transformation is ap-
plied at each iteration. Finally, "MD" indicates that multi-domain
learning is adopted to pre-train the model (offline learning), "SD"
indicates a more classical training procedure where all videos are
used to train all model layers.

As shown in Figure 6.1, models adopting the multiple bounding
box refinements achieve higher performance than the correspond-
ing ones with single refinements. However, the training strat-
egy largely affects the performance of the method. Offline multi-
domain learning allows achieving higher results. The method that
yields to the highest performance uses ADNet parameters and the
proposed refinement approach. We note that in terms of preci-
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sion and success, we achieve higher results than the one published
in [78] (0.88 and 0.646, respectively) the results with single refine-
ments are almost identical, meaning that different implementation
choices in the online tracking strategy may have little impact on
performance.

Our offline-trained model differs from the ADNet especially
because ADNet uses a reinforcement learning approach after the
supervised training of the model.

6.2.2 Comparison on OTB and VOT

Table 6.1 shows the results achieved by our tracker in terms of
Precision (P), Success (AUC), and frame rate (FPS). All experi-
ments were run by using the Got10K-toolkit [180]. Compared to
approaches using iterative bounding box refinements (in column
Iter), such as TSAS [112] and ADNet, our model (Ours_MT_MD)
achieves better/comparable results. Our ADNet-based tracker
(ADNet_MT) achieves better/comparable results than those in [78,
181, 79], which also use iterative refinements.

Figure 6.2 shows some samples from three videos belonging to
OTB. In the images at the first row, both our method and ADNet
are unable to adapt to the actual target shape. This is because
rescaling of height and width is done jointly and not separately.
However, our method (red bounding-boxes) seems to center bet-
ter the target. In the second row, both ADNet and our method
are sensitive to large and abrupt camera motion. In the third
row, where the target is among several instances of the same class
(several players), ADNet drifts while our tracker is able to follow
the target.
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Figure 6.1: Success and Precision plots on OTB-100 (One-Pass Evaluation
(OPE)). Overlap threshold and location error threshold indicate the thresh-
old values used to compute the ROC curves. For the precision plot, the scores
in the legend indicate the mean precisions when the location error threshold
is 20 pixels. For the success plot, the scores indicate the area under curve
(AUC).
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Table 6.1: Comparison on OTB-100. Iter indicates approaches using iterative
refinements. P(20px) indicates the mean precisions when the location error
threshold is 20 pixels. AUC of IoU

Algorithm P(20px) AUC of IoU FPS Iter

Retina-MAML [182] 0.926 0.712 40
VITAL [5] 0.918 0.682 2

SiamRPN++ [183] 0.915 0.696 35
ECO [184] 0.910 0.691 8
MDNet [57] 0.909 0.678 1
RDNet [79] 0.903 0.673 4 x

ADNet_MT (ours) 0.895 0.660 5 x
Hier. T. [181] 0.894 0.651 23 x
IADNET [114] 0.894 0.651 3 x

ADNet [78] 0.88 0.646 2 x
ATOM [8] 0.879 0.667 30

Ours_MT_MD 0.879 0.626 5 x
TSAS [112] 0.861 0.651 20 x
ACT [83] 0.855 0.622 30

TD3T [185] 0.821 0.616 23
A3CTD [186] 0.717 0.535 50
GOTURN [70] 0.565 0.425 125
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Figure 6.2: The figure shows some qualitative results of our tracker (red
bounding-boxes) vs. ADNet (green bounding-boxes). Ground-truth is shown
in blue.

We also compare our tracker on VOT2016 [187], VOT2018 [188],
and VOT2019 [189] by adopting Expected Average Overlap (EAO),
Accuracy, and Robustness as metrics, and by using the official
VOT toolkit. Unfortunately, ADNet was trained on VOT data,
and we could not test our modified ADNet model on this bench-
marks. Results are reported in Tables 6.2–6.4, respectively.
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Table 6.2: Comparison on VOT-2016.

Algorithm EAO Accuracy Robustness

D3S [190] 0.493 0.66 0.131
UpdateNet [191] 0.481 0.61 0.21

SiamRPN++ [183] 0.464 0.64 0.20
DiMP-50 [192] 0.440 0.597 0.153

SPM [193] 0.434 0.62 0.21
ATOM [8] 0.43 0.61 0.18
ECO [184] 0.374 0.54 0.72

OUR MODEL 0.372 0.557 0.53
RDNet [79] 0.364 0.54 0.72
CCOT [194] 0.331 0.54 0.238

Table 6.3: Comparison on VOT-2018.

Algorithm EAO Accuracy Robustness

D3S [190] 0.489 0.64 0.15
Ocean-off [195] 0.467 0.598 0.169

Retina-MAML [182] 0.452 0.604 0.159
DiMP-50 [192] 0.440 0.597 0.153

SiamRPN++ [183] 0.414 0.600 0.234
ATOM [8] 0.401 0.590 0.204

UPDT [196] 0.378 0.536 0.184
OUR MODEL 0.372 0.56 0.44

DRT [197] 0.356 0.519 0.201

Table 6.4: Comparison on VOT-2019.

Algorithm EAO Accuracy Robustness

Retina-MAML [182] 0.313 0.57 0.366
ATOM [8] 0.292 0.603 0.411

SiamRPN++ [183] 0.292 0.58 0.446
SiamMask [198] 0.287 0.594 0.461
OUR MODEL 0.232 0.513 0.72

105



Among all the approaches using iterative bounding box refine-
ments, only RDNet reports results on VOT2016. As shown in
Table 6.2, our method shows improvements over RDNet in all the
three metrics.

Overall, the comparison among algorithms adopting iterative
bounding box refinements confirms that dealing with conflicting
transformations and allowing multiple refinements at each iter-
ation helps improve the tracking results. We also note that the
performance of some algorithms such as SiamRPN++, ATOM has
decreased from VOT-2016 to VOT-2018. For instance, accuracy
of SiamRPN++ is 0.64 and 0.59 on VOT-2016 and VOT-2018,
respectively. As for ATOM, accuracy is 0.61 and 0.6 on VOT-
2016 and VOT-2018, respectively. The accuracy of the proposed
algorithm is 0.557 and 0, 56 on VOT-2016 and VOT-2018, respec-
tively. Therefore, despite accuracy slightly decreased also for our
method, these results suggest that our method improves in terms
of stability.

6.2.3 Discussion

The method focused on tracking strategies where the target bound-
ing box is refined iteratively by applying a sequence of transfor-
mations. We proposed a novel formulation such that, given an
image patch based on the currently estimated target bounding
box, the model returns a set of N probability distributions over
bounding box transformations. The method can apply multiple
non-conflicting refinements at each iteration without introducing
ambiguity during learning, i.e., without giving priority to some
transformations over the others.

Experimental results show that the proposed iterative multi-
refinement approach is superior to the single-refinement one, in-
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dependently on the model/training strategies adopted. Overall,
the proposed approach is competitive with respect to other state-
of-the-art approaches that iteratively refine the target bounding
box.

6.3 Visual Object Tracking: Reinforcement learn-
ing approach

We compare DRL-based visual-tracking methods by considering
their reported results on publicly available dataset regarding single-
object tracking.

In table 6.5, we group the papers based on the categorization
in Fig. 4.2 and, for each method, we report the adopted DRL-
methods (DQL, D-PG, AC), the adopted training dataset, and
the achieved results on public benchmarks.
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6.3.1 Comparing DRL-based Tracking Approaches

Table 6.5 summarizes the results of the selected papers on the
OTB and VOT benchmarks. It also reports the frame rate of the
algorithms and the specification of the used GPU.

Whenever the paper indicated that the experiments were run
on OTB-2015, we assumed the authors used OTB-100. Where
the use of VOT 2017 was reported, we have indicated VOT-18
since the two datasets are the same as reported on the challenge
website.

Papers not included in this table, such as [113, 84, 124, 126, 128,
125, 127, 204], are not comparable because experiments are run on
different dataset or in simulation. Whenever results of variants of
the algorithm are reported, we consider the best achieved results
unless the modification led to high differences in the scores. For
the OTB dataset, we only include papers reporting both the AUC
and precision P values (hence, we excluded [21, 140, 144]). The
table does not report VOT-15 where only 3 of the papers have
reported results: DP-Siam [132], HP [129], and EAST [140] whose
EAO scores are 0.39, 0.242 and 0.34 respectively.

The method DRLT [123] is not included in the table because
the training procedure largely differ from that of the other meth-
ods. DRLT has been trained/tested on 30 videos from the OTB-
100 in cross-validation. Values of AUC, precision and fps are
0.543, 0.635 and 270 respectively. TS-Dist [141] is not included
because DRL is only used to find the student architecture but not
to transfer knowledge.

In the experiments on the OTB benchmark, the work TD3T [120]
reports that the threshold for the success of the tracker is 0.5 but
the OTB evaluation protocol requires that the AO is reported.

We first compare DRL-based trackers independently on the
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pursued goal. Then we compare methods within the same cate-
gory. By examining the table, especially the more complete results
reported on the OTB-100, the best accuracy values are achieved
by MT-Exp [143] and DP-Siam [132]. However, on the VOT-18
dataset, DP-Siam achieves much higher EAO than the MT-Exp
method [143], which might indicate a lower number of tracking
failures. Overall DP-Siam seems to offer a good trade-off between
accuracy and tracking speed. MT-Exp [143] reports very good
results on OTB but does not specify the achieved frame rate.
Looking at the results, there is no clear advantage in preferring a
deep model over another. DP-Siam [132] adopts a Siamese net-
work as base tracker and is not adapted at test time. On the
contrary, MT-Exp [143] uses a CNN whose inputs are computed
by re-training a set of CFs at test time. Both the methods take
advantage of DQL algorithms [20], as well as RDNet [111] that
achieves the highest results on the OTB-50 at the cost of a lower
frame rate. Good results are achieved on the OTB-50/100 by D-
PG and AC methods, namely ADNet [78] and DRL-IS [133], both
on-line adapted.

Among the DRL-based approaches aiming at predicting the
target bounding box, the most performant method on the OTB-
13 is TSAS [112], on OTB-50 is the Hierarchical Tracker [115],
and on OTB-100 are RDNET [111] and DP-Siam [132]. On the
VOT benchmarks, results are so sparse that we feel cannot draw
conclusions.

The best performing method among those dealing with the
tracking strategy, on OTB-100, is HP-BACF [130], which learns
the tracking hyper-parameters and adopt also CFs. On the VOT
benchmark, the best results are achieved by DC [135].

As for the methods dealing with the target appearance selec-
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tion/updating, the best results on OTB-100 are achieved by MT-
Exp [143].

If we compare the results across categories, methods dealing
with the target appearance seem to perform better, and are com-
petitive or superior to those dealing with the target bounding box
prediction. On the OTB benchmark, methods dealing with the
tracking strategy are the one achieving the worst results. How-
ever, this is not confirmed by the results achieved on the VOT
benchmark.

6.3.2 Comparison to the State-of-the-Art

Finally, we also compare to Deep tracking and CF-based methods.
We have included in the table the widely known MDNet [57] as
baseline and very recent works end-to-end trainable or adopting
discriminative correlation filters (CF), adversarial learning and
meta-learning. First, we stress that the comparison is included
for completeness but is in general unfair. Indeed, in DRL the
reward function is correlated to the tracking results thanks to a
measure of the tracking accuracy, but exact actions are in general
not provided during the training stage. In deep tracking, the
network is trained with full knowledge of what is the right results
that the network has to provide.

As the table shows, on OTB-100 the majority of DRL-based
trackers performs worst than MDNet. However, this is true also
for several recent baseline methods using SL. The method achiev-
ing the highest tracking results is a CF-based, namely GFS-DCF [203].
The best DRL-based trackers MT-Exp [143] and DP-Siam [132]
achieve slightly inferior results with respect to GFS-DCF but com-
parable to VITAL [56]. As we will discuss later, MT-Exp [143]
however takes advantage of a form of supervised pre-training.
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Comparing the DRL-methods dealing with the bounding box
prediction with the corresponding baseline methods on the OTB-
100, there are DRL-methods [111, 132, 122] that are competitive
with Deep trackers.

It is interesting to note that all actor-critic based trackers,
which have a high complexity considering that they train two
networks, and the policy gradient based approaches achieve re-
sults that are below that of most of the DT baseline methods in
the table, with the exception of DRL-IS [133] which seems to be
slower.
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6.3.3 Limitations of DRL-based tracking

Table 6.6 summarizes the main characteristics of the analyzed
DRL-based tracking approaches. The column DRL reports the
type of DRL algorithm used to train the network, namely DQL,
D-PG and AC. The column Decisions describes the kind of actions
that the agent has to take while the column D/C stands for Dis-
crete or Continuous-values actions. AH stands for Action History
and highlights the models taking in input the sequence of past
actions selected by the agent. RNN indicates the adoption of re-
current neural network (such as LSTM) while Siam indicates that
the model is taking advantage of a Siamese network. The column
SL refers to Supervised Learning. In this case, we highlight the
fact that the policy has been pre-trained in a supervised way with
a set of actions derived from the ground-truth. The column OU
highlights the works in which the model is updated at test time
(based on the target detection collected during tracking, hence by
a form of semi-supervised learning). CF stands for Correlation
Filter and refers to the fact that CFs are employed for tracking
purposes. Works employing CF are online updated. Finally, the
column Reward describes the adopted reward function.

Learning a policy with a large state space is challenging. Most
of the approaches have highlighted slow convergence and/or sta-
bility issues. Such problems have in general been addressed by
introducing supervised pre-training strategies, data augmentation
techniques, ad-hoc design of the reward function, or increased
size of the training data, which in other words means providing
more annotations to train the models. In the following, we try
to analyze the above mentioned issues and techniques, and the
characteristics of the approaches that we believe are more critical.
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State space

All models take in input images or heatmaps. The number of
inputs can vary depending on the adopted architecture. Images
are generally resized to adapt to the input size of the adopted
(generally pre-trained) convolutional network.

Implementation details about cropping and padding are often
missing. In some cases, before cropping the image, the bounding
box is rescaled such that the resulting image has twice the size of
the target. This is generally done to include contextual informa-
tion. It is unclear if padding is done to preserve the target aspect
ratio especially when the latter differs from the aspect ratio of
the image in input to the network. Rescaling the target bounding
box poses also issues when dealing with objects of large size with
respect to the size of the frame (as often happens in ILSRC-VID).

When a two-branches network is used (such as a Siamese net-
work), two images are provided in input: a template of the target
and a search area. It seems that in general the target template is
the image cropped with the latest target bounding box. This helps
to address the problem of varying target appearance. Nonethe-
less, it may favor the drifting problem since the agent decisions are
taken based on uncertain target templates. On the other hand,
using the cropped image from the first frame is challenging consid-
ering that the target orientation and pose can change over time.
To account for these issues, re-detection or validation procedure
are included in the model. In actor-critic models, such proce-
dures are implemented by using the critic to score candidate target
bounding boxes (as in [119, 120]).

Despite the search area is in general enlarged to facilitate the
target detection, it remains unclear how agents learn to deal with
occlusions. In this sense, the approach in [123], which processes
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the whole frame, may have more chance to reacquire the target
when the occlusion ends. The method in [111] is interesting in
that it takes in input a search area and a cropped target image.
The latter is not a template from previous frame. Instead, search
area and target images are obtained from the same frame. The
goal is that of modifying the bounding box used to crop the target
image by also considering the contextual information in the search
area image.

Considering that the tracker may need some target appear-
ance information, and has to know where to search the target
and which is the current state, we find interesting that a three-
branches network receiving such inputs to train the policy has not
been proposed yet.

Methods selecting CFs [142, 143] use two different approaches.
[143] evaluates a heatmap at time and can maintain an unlimited
number of CFs. The agent decides if the heatmap is reliable or no.
On the contrary, [142] takes in input a set of heatmaps of fixed
size. This limits the number of CFs to be used to perform tracking
but allow the agent to take a decision by jointly considering all
available heatmaps.

Action Space and History

As shown in table 6.6, most of the approaches adopt discrete ac-
tions (between 4 and roughly 11). This choice limits the complex-
ity of the model, which is already difficult to train due to the large
state space. Works focusing on continuous actions to modify the
target bounding box have adopted models trained by DDPG [99]
(as in [119, 122]) or its variant TD3 (in [120]). Hence such models
train a deterministic policy. Works such as [124, 123] use instead
the REINFORCE algorithm [97] while [121, 125] adopt A3C [92].
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The only method using DQL [20] is [132] where the network is
used to also predict the tracking hyper-parameters. An elegant
approach is the one proposed in [129] where a probability distri-
bution over the action is trained by NAF [96].

As pointed out in [84], when discrete actions are used to mod-
ify iteratively the target bounding box, the agent can be trapped
in a local optimum and it starts to select sequentially actions that
cancel each other (such as move up and down). The problem can
be addressed by perturbing the state after an action selection cy-
cle is detected. The problem of getting stuck in a local optimum
can be more common than it seems, and this may justify the im-
plementation choice of considering more than an initial bounding
box/candidate in works such as [111, 132, 112, 133, 145]. In con-
trast to such approaches, methods in [84, 140, 137, 21, 78, 114,
116, 124, 138, 122] prefer to provide in input to the network the
history of the selected actions. This important implementation
choice has the effect of stabilizing the learning procedure limiting
the problem of entering in an action selection cycle. A possible
research direction might be the design of discrete actions that do
not cancel each other. This would limit the cycling issue but not
certainly solve it.

We have noticed that methods that do not provide in input the
action history, tend to provide in input the past target locations
(as in [144]) or to include in the model a recurrent neural network
(as in [113, 115, 123, 121, 125, 126]). This may suggest that, to
correctly learn what decision to take, the agent may benefit from
knowing also what attempts it has already done in the past. It is
possible to speculate that also knowing the progresses associated
with the past attempts may help the agent to select optimal new
actions. However, at test time the reward is unavailable and more
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investigations to provide such kind of feedback to the agents are
suggested. While the above argument is easy to understand when
the agent decides how to modify iteratively the bounding box, it
becomes cumbersome to understand what form should have the
action history in works where the agent deals with a selection
problem (such as selecting the appearance model to use) or any
other decision that changes the tracker state (as the choice to
update or no the appearance model).

It is worth noting that all methods using a discrete set of ac-
tions to modify the target bounding box limit the shifts/scaling to
a number of pixels computed in proportion to the bounding box
size. Hence, the accuracy reachable by these methods is implicitly
bounded. The only exception is the BBCorrection algorithm [84]
where the box is moved of one pixel along the vertical/horizontal
directions and hence accuracy can be reached at a pixel-level at
the cost of an increased number of iterations. Since the number
of iterations is generally bounded, this accuracy may not be eas-
ily reached especially for objects moving fast. Under this point
of view, continuous actions should be preferable but, as already
said, models to estimate continuous actions are more difficult to
train.

Design of the Reward Function

Often, agents are rewarded with the same metric used to assess
the tracking performance, namely by IoU of the tracking results
and the ground-truth. In works such as [129, 143], where track-
ing hyper-parameters and model appearance selection are to be
decided, the annotated bounding boxes are only indirectly linked
with the action meaning.

The last column in Table 6.6 refers to the reward function
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adopted by each paper. The reward is a function f(·) of the IoU
of the currently estimated bounding box and the ground-truth. In
its most general form, the function is defined as follows:

f(st, at, gt) =

{
α, if IoU(st, gt) > τ

−α, else
(6.1)

where τ is a threshold (often in the range 0.65 - 0.9) and α is a
constant value, often 1. In some works, such as [84, 119, 140,
132, 133], the ∆IoU is used, meaning that the agent is rewarded
based on the improvement of the bounding box with respect to
that at the previous step (this is indeed used in papers where
the bounding box is iteratively estimated). In general, the use of
IoU versus ∆IoU should depend on the value function that has
to be learned. If a V-function is learned, then we are interested
in rewarding the agent based on the final state (and hence IoU
should be used). If instead a Q-function is learned, then the agent
should be rewarded for taking action a while in state s and hence
the agent should be positively rewarded if the new state is more
convenient than the former one (and hence ∆IoU should be used).
IoU is a good measure to compare the extent of the bounding
box. For the coordinates of the center of the bounding box, or
more generally, the coordinates of the points defining the target
or the camera parameters required to locate the target, a better
measure could be based on the Euclidean distance. This is done
in [111, 125]. Absolute difference D is used in [123]. In [139, 138],
a function of the improvement of the tracking score is used, while
in [124], since the agent has to take decisions about the visibility
of the target, the reward depends on the visibility of the target
derived from the ground-truth information.

Overall, the reward is in general assuming a value in a discrete
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set. However, the use of continuous value reward has been investi-
gated in [121, 129, 113, 114, 125, 137, 142, 123, 120, 126, 115, 135,
145, 112]. The main limitation of functions like that in Eq. 6.1
is that there is no difference in the reward of actions yielding to
high IoU. In other words, the agent has settled for bounding box
whose IoU with the ground-truth is higher than the threshold τ
even if it could get more accurate ones. A continuous value reward
could address this issue. However, especially at the beginning of
the training, the agent has to be strongly penalized for selecting
not promising actions. A reward function similar to that in [142]
and that can be easily adapted to use ∆IoU may suffice:

f(st, at, gt) =

{
IoU(st, gt) + α, if IoU(st, gt) > τ

−α, else
.

In theory, it might be possible to adopt a behavior shaping
strategy [87] in which, while the agent learns to take more and
more convenient actions, the reward function changes and the
agent attempts to solve problems of increasing difficulty. However,
in [205], the use of behavioral shaping for tabular Q-functions is
discouraged due to the risk of getting the agent trapped in a local
optimum from which it cannot escape by varying the reward func-
tion. Certainly, this is another issue that should be investigated
in DRL.

The approaches considered in this paper define the reward func-
tions by using ground-truth information. There might be other
correlated information to be used to define the reward function
in methods where actions represent changes to the target bound-
ing box. High-level annotations, such as verbal descriptions of
the target [206], or IRL might be exploited to define new reward
functions; ideally, it might be possible to learn off-line and inde-
pendently a function that estimates the IoU in a supervised way

120



to be used within the DRL framework. All these strategies are
worthy future research directions.

Pre-training of the Policy

There are a number of works [112, 113, 21, 143, 129, 78, 114, 124,
119, 120, 122] that overcome convergence issues in DRL by adopt-
ing a supervised pre-training of the network, namely by providing
the agent with the actions derived from the ground-truth.

In some works [137, 139, 144, 135, 138, 133], despite a su-
pervised pre-training is not directly employed, still the model
takes advantage of trackers trained in a supervised way. In other
cases [119, 120, 122], an expert is used to guide the learning pro-
cess and, even if indirectly or only in a limited way, supervision
over the actions to take is essentially provided. Somewhat differ-
ent is the case of [121] where imitation learning is implemented
and an external pre-trained tracker is used such that the RL agent
learns to perform better than the expert (which may also fail).

In practice, most of the above approaches complain that con-
vergence is difficult to reach without supervised learning. We ac-
tually suspect that the problem is mainly ascribable to the policy
network parameter initialization. To understand this problem, we
focus on DQL approaches whilst the problem arises also in the
other DRL frameworks. In DQL [20], the state is given in input
to the Q-network. During learning, it is generally adopted an ϵ-
greedy policy, namely with a probability ϵ the action is chosen
uniformly at random, otherwise the action is the one providing
the highest Q-value. In practice, in the latter case, the agent
trusts in its former experience. At the beginning of the training
procedure however, no experience has been accumulated and the
training may proceed in a direction that does not bring to the
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optimal solution since some non optimal action-state pairs would
seem preferable than others due to the random initialization of
the policy. Even if ϵ is initially set to 1 and annealed over time,
this may not be enough to cancel the initial bias of the policy
network. This problem has also been pointed out in [205] for tab-
ular Q-learning where it is suggested to initialize the Q-function
uniformly to a value that is higher than the Q-value achieved if
the reward would be constant whatever the action selected by the
agent is. Such kind of initialization guarantees that the policy
is not initially biased towards some subset of action-state pairs.
At the best of our knowledge, this initialization issue has been
overlooked in DRL-based visual tracking approaches. It is so far
unclear what is the effect of initializing a policy network to a con-
stant value considering that such functions are highly non linear,
and we believe this is another research directions to investigate in
the future.

We also point out that an interesting initialization of the Q-
network has been discussed in [21] where a form of heuristically
guided Q-learning is adopted. In particular, the Q-network is pre-
trained in a supervised way considering not only the reward for
the optimal action derived by the ground-truth, but also assum-
ing that, starting from the next state, the agent will only select
optimal actions. In other words, they define a target policy that,
differently than the original DQL approach in [20], is truly opti-
mal (compare with the original definition of Q-function in Eq. 4.3).
Such important implementation detail helps the network to esti-
mate Q-values in the expected range and presumably accelerate
the learning.
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Training strategy

Most of the approaches, especially those adopting DQL, employ a
memory buffer to store the agent’s past experience. The memory
buffer size in experience replay needs to be carefully tuned. With
a small memory buffer, there is a high risk of over-fitting on recent
data. With a large replay buffer it is less likely to sample corre-
lated elements; on the other hand, a large buffer can slow training
and can have a negative impact on the learning process [207]. Un-
fortunately, we have not found in the ablation study of the ana-
lyzed papers details about the effect of varying the memory buffer
size. It is even unclear if such buffer is actually really needed.
As detailed in Sec. 6.3.3, without a proper initialization of the
network, the memory buffer would not contain useful information
but mostly biased samples which may hinder the learning process.

A problem in RL is that of obtaining batches of uncorrelated
samples. In our understanding, this problem has been always
approached by sampling mini-batches from the memory buffer.
However, as pointed out in [119], imbalanced batches can hurt
the learning process. In [119], annotations are used to provide
more guidance during the learning process. We believe that other
solutions are possible. For instance, as done in classification, the
learning might improve by sampling mini-batches where the num-
ber of samples with positive and negative rewards is balanced.
Boosting strategies may also be devised to push the agent towards
the most difficult states. Such idea is similar to the Prioritized
Experience replay [208] where samples from the experience replay
buffer are drawn based on the TD error.
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Tracker Initialization and Updating

In most of the analyzed approaches, part of the network (we refer
to it as observation network) is devoted to extract appearance
features of the target, while another part is used to implement
the policy. It is common practice in online adapted deep tracking
to fine-tune the last layers of the observation network to adapt
to the target by using bounding boxes from the first frame. One
of such approaches is MDNet [57], updates at test time are also
required when using CFs.

As shown in Table 6.6, most of the approaches do not require
any updating at test time or particular initialization a part for the
bounding box in the first frame. The methods taking advantage
of some form of updating at test time are [143, 130, 115, 142] to
retrain the CFs, and [84, 111, 119, 78, 114, 80, 122, 120, 112, 138]
to retrain part of the network/policy.

We highlight here an interesting feature of the latter meth-
ods. While [111, 84, 133] perform the policy updating and/or
fine-tuning on the first frame by using the same DRL algorithm
used at training time, the methods in [119, 78, 122, 114, 120]
claim to use a supervised learning strategy to update the policy
network. For these methods, it becomes unclear the true con-
tribution of DRL to the learning of the policy parameters. As
for the method in [112], no details about the way the network is
fine-tuned on the first frame are available.

Which DRL algorithm to choose?

In recent years, the evolution of DRL algorithms has been very
fast, especially for policy gradient algorithms. Most of the DRL-
based tracking algorithms are based on DQL, and only [111] com-
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pares DRL approaches (Dueling DQN [209] vs DQN [20]), but
no comparison among DQL, AC and D-PG has been presented
yet. In other benchmarks, such as the Atari games, different DRL
approaches have been compared and new algorithms proposed.
For instance, in [210] it has been shown that the integration of
Double DQL [94], Dueling DQN [209], N-Step learning [87], Pri-
oritized Experience Replay [211], Distributional RL [212], Noisy
Network [213] yields to an improved algorithm named Rainbow.
The Rainbow algorithm outperforms the other DQL algorithms
also in terms of required training time. The adoption of Rainbow
in visual tracking is an interesting topic of future investigations.

On the other hand, it has been shown that Q-learning meth-
ods implement policy gradient updates in entropy-regularized RL,
which makes thinner the differences between DQL and D-PG
methods [214]. In [215, 216], it is reported that AC has certain
convergence properties compared to QL but it suffers from a high
variance of the policy estimators. However, AC approaches are
prone to instability, due to the interaction between actor and critic
during learning [217] such that regularization terms are required.

As for the use of DRL algorithms in visual tracking, whenever
drifting occurs, re-detection or validation procedures need to be
devised. In this sense, actor-critic models are preferable. Indeed,
the critic is used to guide the training process but, during track-
ing, it can also be used to validate the agent’s decisions. Often,
when the action-value estimated by the critic is below a thresh-
old or negative, a re-detection procedure where multiple target
candidates are scored by the critic is used (as in [119, 120]).

In conclusion, under a theoretical point of view, AC methods
might be preferable. However, as shown in Table 6.5, regardless
of the actions/goals of the tracking algorithm (reported in the
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column Decisions of Table 6.6), the best performing DRL-based
tracking algorithms are MT-Exp [143] end DP-Siam [132], both
based on DQL. We note that Hierarchical Tracker [115] and DRL-
IS [133], based on D-PG and AC respectively, achieve results com-
parable to the state-of-the-art, but the differences in results may
be due more to implementation details than to the adopted DRL
algorithms. Overall, despite the progress in the field, more vali-
dation and studies are required to define the best DRL-algorithm
to use for visual tracking and, currently, there is not a winning
approach.

6.4 Accelerating learning of deep models

In this section, we present results of the validation of our method.
We first present the selected neural architectures used to assess
our method. We also provide details about how to apply our
method to improve the training efficiency of these architectures.
Then, we detail the datasets selected to perform the experiments
and the hyper-parameters adopted on each dataset.

The results of our experiments are reported in Tables 6.7 and 6.8.
In each table, "Network" indicates the neural architecture; "Dataset"
specifies the dataset used for training and testing the model; "SGD",
"Freezing" and "Dropping" indicate the strategy used to train
the network. In particular, SGD is the baseline method, namely
the model is trained in a standard way without attempting any
training efficiency. Freezing represents our implementation of the
method in [154] where, however, layers to freeze are selected in the
same way as we do in our method. In this case, weights of selected
layers are excluded from the training (frozen) but the layers are
not physically removed from the trained model. The column Drop-
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ping reports results of our layer dropping method. The columns
indicated with "T" report the duration of the training and refers
to the time in minutes required to complete the expected num-
ber of training epochs, including the warm up epochs. Columns
"A" report the test accuracy values, measuring the percentage of
correct predictions made by the model on the test set. Finally,
columns "∆T" report the percentage of time saved by applying
a training efficiency strategy (Freezing or Dropping) with respect
to the baseline (SGD). In particular, we compute this metric as:

∆T =
TSGD − T

TSGD
· 100. (6.2)

All experiments have been carried on a machine equipped with:
GPU RTX 3090 24GB, RAM 96 GB, processor Intel(R) Xeon(R)
CPU E5-2403 1.80GHz. In our implementation, feature maps pro-
duced by the dropped layers are stored on disk directly as PyTorch
tensor using the “Pickle" Python package [218], that implements
binary protocols for serializing and de-serializing a Python object.
We experimentally noted that using Pickle is faster than writing
and reading files on disk with the Numpy package [219] and Py-
Torch [220].

6.4.1 Neural Architectures

This method focused on improving training efficiency of CNNs.
To assess our method we considered two neural network architec-
tures widely adopted in the computer vision field. VGG (Visual
Geometry Group) is a convolutional neural network introduced
in [157]. The VGG architecture is characterized by its depth and
the use of small convolutional filters. It consists of a sequence
of convolutional layers, followed by a sequence of fully-connected
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layers. There are several configurations of the VGG architecture.
The smaller version is the VGG-11 with only 11 layers. The VGG-
16 has 16 layers and the VGG-19 has 19 layers. As the number
of layers in VGG increases, so do the training time and memory
requirements.

From the experiments carried out with VGG, we found out that
the order of the curves representing the layer scores P ′l across the
epochs depends on the inclusion in the model of the batch nor-
malization layer. In fact, as it can be seen in Fig. 5.2, we note
that the scores order of the layers of VGG+BN is inverse respect
to the scores order of the VGG without BN. This is because batch
normalization speeds up learning in neural networks by normaliz-
ing the inputs to each layer, which reduces the internal covariate
shift. This makes the optimization more stable and allows the
network to learn more quickly and with higher accuracy. Hence,
based on our experiments, to use our technique with a VGG it is
recommended to include the batch normalization layer (one after
each convolutional layer).

ResNet (Residual Network) is a convolutional neural network
introduced in [158]. ResNet is characterized by the use of residual
blocks, which help to alleviate the vanishing gradient problem
and allow for the creation of much deeper neural networks. The
original ResNet architecture has several configurations, including
ResNet-18, a relatively small version of the ResNet architecture
with only 18 layers. ResNet-50, ResNet-101, and ResNet-152 are
much deeper versions of the ResNet architecture with 50, 101, and
152 layers, respectively.

We point out that in the case of ResNet, we have to save not
only the features maps but also the output of the skip connections
to maintain the original behaviour as shown in Fig. 5.3.
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Table 6.7: Fast Training of VGG architectures. SGD refers to the standard
training strategy of the entire model. Freezing refers to excluding the param-
eters of some layers from the training without removing the layers from the
model. Dropping is our method where layers are deleted from the trained
model. T is the training time in minutes. A is the test accuracy value. ∆T
is the percentage of reduced training time with respect to the time of SGD.

SGD Freezing Dropping (Ours)

Network Dataset T (min) A (%) T (min) A (%) ∆T (%) T (min) A (%) ∆T (%)

VGG-11 MNIST 20.83 98.64 19.58 98.25 6.00 8.74 98.25 58.04
VGG-11 CIFAR-10 23.83 92.02 23.54 91.72 1.21 8.21 91.73 65.54
VGG-11 Imagenette 61.01 75.33 59.33 74.08 2.75 18.32 74.08 69.97
VGG-16 MNIST 22.54 98.85 21.45 98.26 4,24 9.01 98.26 60.03
VGG-16 CIFAR-10 26.54 93.12 24.94 92.84 6.03 9.56 92.86 63.98
VGG-16 Imagenette 74.73 78.76 71.21 77.83 4.71 25.23 77.83 66.24
VGG-19 MNIST 23.02 98.52 22.68 96.14 1.48 9.45 96.22 58.95
VGG-19 CIFAR-10 27.02 93.10 25.78 91.71 4.59 11.53 91.74 57.33
VGG-19 Imagenette 110.35 80.32 105.34 78.13 4.54 37.76 78.16 65.78

Table 6.8: Fast Training of ResNet architectures. SGD refers to the standard
training strategy of the entire model. Freezing refers to excluding the param-
eters of some layers from the training without removing the layers from the
model. Dropping is our method where layers are deleted from the trained
model. T is the training time in minutes. A is the test accuracy value. ∆T
is the percentage of reduced training time with respect to the time of SGD.

SGD Freezing Dropping (Ours)

Network Dataset T (min) A (%) T (min) A (%) ∆T (%) T (min) A (%) ∆T (%)

ResNet-18 MNIST 23.67 98.2 23.10 97.80 2.41 8.64 97.78 63.50
ResNet-18 CIFAR-10 27.67 92.25 25.97 91.82 6.14 11.90 91.82 56.99
ResNet-18 Imagenette 253.07 80.12 242.32 79.07 4.25 83.78 79.12 66.89
ResNet-50 MNIST 35.43 98.75 35.02 96.85 1.16 11.23 96.85 68.30
ResNet-50 CIFAR-10 38.43 94.40 35.40 92.05 7.88 13.05 92.04 66.04
ResNet-50 Imagenette 336.00 82.78 315.34 80.34 6.15 86.28 80.34 74.32
ResNet-101 MNIST 53.12 97.81 51.64 95.45 2.79 18.56 95.51 65.06
ResNet-101 CIFAR-10 56.12 93.98 52.03 91.26 7.29 19.53 91.28 65.20
ResNet-101 Imagenette 402.34 82.23 380.23 80.76 5.29 120.44 80.75 70.06
ResNet-152 MNIST 70.76 97.43 65.30 95.12 7.72 23.34 95.11 67.01
ResNet-152 CIFAR-10 74.76 93.45 68.93 91.03 7.80 25.75 91.14 65.56
ResNet-152 Imagenette 540.76 82.65 504.72 79.45 6.66 180.34 79.48 66.65
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6.4.2 Dataset and Hyper-parameters

To evaluate our algorithm we use three popular classification datasets:
MNIST [221], CIFAR-10 [222], and Imagenette [223].

The MNIST dataset contains 60,000 gray scale images, with
50,000 for training and 10,000 for test. It includes 10 classes, and
each class is represented by 6,000 images.

The CIFAR-10 dataset contains 60,000 color images, with 50,000
for training and 10,000 for test. Overall, there are 10 classes, and,
for each class, 6,000 images.

Imagenette [223] includes a subset of 10 classes from the larger
Imagenet [224]. The classes are tench, English springer, cassette
player, chain saw, church, French horn, garbage truck, gas pump,
golf ball, parachute. Overall, the adopted dataset includes about
1,000 color images per class with a resolution of 160 x 160 pixels.
The images are obtained from the ones in the original Imagenet
dataset by performing a resizing that preserves the original aspect
ratio.

We opted to use MNIST and CIFAR-10 datasets to ensure the
comparability of our work with [154]. In addition, we included the
more complex Imagenette dataset to evaluate the performance of
our work on a more challenging dataset.

In all our experiments, we use a batch size of 256 samples.
We set the learning rates to values generally used in literature,
while the number of epochs and warm up are selected empiri-
cally. On the MNIST and CIFAR-10 datasets, the total number
of epochs (including the model warm-up) is set to 60. On the
MNIST dataset, the learning rate is fixed to 0.001. The warm-up
epochs are 5. On the CIFAR-10 dataset, the learning rate is fixed
to 0.1 and scaled x10 after 20 epochs. The warm-up epochs are
10. Finally, on the Imagenette, the number of epochs is set to
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150 and the learning rate is fixed to 0.01 and scaled x10 after 50
epochs. The warm-up epochs are 25.

6.4.3 Results and Comparison

Table 6.7 reports the results obtained by applying our method to
models of various depth (11, 16, and 19) in the family of VGG
architectures. All models include batch-normalization. First we
note that, across the models and datasets, the impact on accuracy
values of freezing or dropping layers to increase training efficiency
is negligible. The differences in the accuracy values vary, for both
techniques, in the range 0.26 (for VGG-16 trained on CIFAR-10)
and 2.38 (for VGG-19 trained on MNIST). These differences in-
crease slightly with network depth and are generally higher for
the Imagenette dataset. However, these small decreases in accu-
racy values come with a reduction in training time. As shown
in the table, for VGG models, while the training time reduction
with the freezing layer technique varies in the range 0.40% (for
VGG-16 on the MNIST dataset) and 6.03% (for VGG-16 on the
CIFAR-10 dataset), with our layer dropping technique the train-
ing time reduction varies in the range of 58.04% (for VGG-11 on
the MNIST dataset) and 69.97% (for VGG-11 on the Imagenette
dataset). While on average these percentages are 3.52% for the
freezing layer method, they are 62.87% with our technique.

These results are not limited to VGG architectures. Indeed,
Table 6.8 reports similar achievements for ResNet architectures
of various depth (18, 50, 101, and 152). In particular, analyzing
the results in a similar way to what was done for the VGG archi-
tectures, the differences in the accuracy values vary, for the layer
freezing and dropping techniques, in the range 0.4% (for ResNet-
18 on the MNIST dataset) and 3.2% (for ResNet-152 on the Im-
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Table 6.9: FLOPs reduction across architectures. SGD refers to the standard
training strategy of the entire model. Dropping is our method where layers
are deleted from the trained model. FLOPs are measured during the forward
propagation. ∆FLOPs is the percentage of reduced FLOPs with respect to
SGD.

SGD Dropping (Ours)

Network FLOPs FLOPs ∆FLOPs (%)

VGG-11 31,203.60 25,847.02 17.17
VGG-16 50,311.19 33,049.44 34.31
VGG-19 66,000.00 44,079.31 33.21
ResNet-18 1,987.80 640.53 67.78
ResNet-50 4,704.59 2,193.45 53.38
ResNet-101 9,262.2 1,667.27 82.00
ResNet-152 13,823.39 2,247.46 83.74

agenette dataset). For both techniques, the impact on accuracy
values generally increases with network depth. In terms of training
time reduction, with the layer freezing technique, the percentages
vary in the range 1.16% (for ResNet-50 on the MNIST dataset)
and 7.8% (for Resnet-152 on the CIFAR-10 dataset). Our ap-
proach achieves training time reduction percentages in the range
56.99% (for ResNet-18 on the CIFAR-10 dataset) and 74.32%
(for ResNet-50 on the Imagenette dataset). While, on average,
layer freezing accounts for a 5.46% of training time reduction,
our method results in average training time reduction of approxi-
mately 66.30%.

Overall, the training time for the VGG and ResNet architec-
tures is more than halved with our technique despite the loss in
accuracy values being comparable to that obtained by freezing the
layers.
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6.4.4 Training Time and Parameter Reduction

The results discussed in Sec. 6.4 refer to the impact of our tech-
nique on model accuracy and the training time reduction achieved
on our machine. To further analyze and explain the performance
of our technique, this section refers to the effect it has on the num-
ber of parameters and operations performed during forward prop-
agation at training time. Indeed, our technique not only reduces
the number of weights for which it is necessary to estimate partial
derivatives during gradient back-propagation, but also affects the
number of operations performed during forward propagation.

A potential bottleneck in our method is the feature map saving
to disk whenever layer dropping occurs. In some networks, the
size of the features maps produced by a layer may be greater than
the size of the input images; thus, reading and writing feature
maps with large dimensions can cause a slowdown of the training.
However, we have observed empirically that layers dropping never
takes place layer by layer but generally several subsequent layers
are dropped together. Figure 6.3 shows (on the left) the test
accuracy values of ResNet-18 (top row) and VGG-16 (bottom row)
on the MNIST dataset over the epochs for SGD, the layer freezing
method and our technique. As already discussed, our technique
and the freezing layers one have a limited impact on the final
model accuracy. On the right, the figure shows the training time
per epoch of each technique. In particular, the time spent by
our method refers to: the time to store feature maps on the disk
whenever layer dropping arises, and the time to train the model.
As shown in the plot, the time to store feature maps on the drive is
concentrated only in few epochs since, as already said, our method
does not constantly drop layers. The time to store the maps to
disk depends on their size and, thus, is higher for the VGG model.
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The time to train the model includes, for all methods, the time
for computing the gradients, updating the layer weights, loading
the training data and performing forward propagation. The plot
shows how, in our technique, this time decreases over time and
becomes much lower than that of the other methods.

To further investigate this result, we discuss the FLOPs (float-
ing point operations per second) of our method versus the baseline
method (SGD) and the layer freezing technique we are compar-
ing. More specifically, we measured the MMAC (Mega Multiply-
Accumulate), a FLOPs metric that counts the number of matrix
multiplications and accumulations (MACs) a neural network per-
forms in one second. The metric is expressed in millions (mega)
of operations and is useful for evaluating the computational com-
plexity of a neural network and comparing the performance of
different architectures. Fig. 6.4 shows, on the left, the number of
parameters per each epoch for the ResNet-101 (top) and VGG-16
(bottom). Red curves represent the number of model parameters
when using the baseline and the layer freezing techniques; Green
curves are the number of parameters when using our method.
Since our method compresses the model at training time, there
is a strong reduction in the number of parameters corresponding
to the epochs when layer dropping arises. This reduction of pa-
rameters is correlated with the MMAC reduction during forward
propagation, shown in the plots on the right. While the MMAC is
constant for the baseline and the layer freezing techniques, in our
method it keeps decreasing due to the shrinkage in the number of
parameters.

Table 6.9 reports the FLOPS required for the forward propa-
gation during training by using SGD versus our approach (Drop-
ping). The FLOPs refers to various deep learning models, includ-
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ing VGG-11, VGG-16, VGG-19, ResNet-18, ResNet-50, ResNet-
101, and ResNet-152. The second column shows the FLOPs re-
quired when training the entire model, the third column shows
the FLOPs required when using our approach. The final column
∆FLOPs shows the percentage difference between the FLOPs of
the two approaches.

Overall, the table suggests that the Dropping approach is more
efficient than the baseline method. The percentage difference be-
tween the two approaches ranges from 17.17% (for VGG-11) to
83.74% (for ResNet-152), indicating that Dropping can signifi-
cantly reduce the computational burden of training deep neural
networks, especially for very deep models like ResNet-101 and
ResNet-152. The table also shows that the reduction of the FLOPs
increase with the depth of the model. Moreover, has also indicated
by the magnitude of the FLOPs, the VGG family performs more
operations than the ResNet due to the presence of dense layers
applied to feature maps of greater size.
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Figure 6.3: The plots on the left show the test accuracy values of a ResNet-
18 (top) and VGG-16 (bottom) trained on the MNIST dataset with different
strategies: SGD (red curves), layer freezing (blue curves), and layer dropping
(green curves). The experiments were repeated 10 times with different start-
ing weights and data randomization. Freezing and dropping layers achieve
nearly equivalent test accuracy values for both the architectures. The val-
ues are slightly lower than those achieved when training the entire model.
On the right, the plots show training time per epoch for the same models
and dataset. The red and blue curves represent the training time for the
SGD and layer freezing strategies respectively. The green curves refer to our
layer dropping approach. Starred curves show the time required to store the
feature maps to disk, while the other curves show the training time which
decreases over the epochs due to the lower cost of forward propagation in our
method. Note that Intermediate feature maps in VGG-16 have greater size
than in ResNet and the time to store the maps to disk is higher. However,
this operation is not frequent and its cost is amortized over time.
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Figure 6.4: On the left, the plot shows the number of network parameters
in each epoch for the ResNet-101 (top) and VGG-16 (bottom). When train-
ing the entire model or using the layer freezing technique (red curves), the
number of parameters remains constant. With the proposed method (green
curves), the model shrinks over the epochs and there is a reduction in the
number of parameters each time a sequence of layers is dropped. This pa-
rameter reduction is correlated with the MMac reduction, shown in the plots
on the right for both the models. By reducing the network parameters, the
number of operations during forward propagation is decreased.
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Chapter 7

Conclusions and Future Work

This chapter provides a summary of the primary contributions
made by this thesis, along with potential directions for future
research.

7.1 Contributions to Visual Tracking

Visual tracking is a crucial technique used in many vision-based
applications, which aims to accurately and efficiently track tar-
gets within videos. However, this task is often complicated by
various challenges, such as occlusion and scale variation. This
thesis addresses these challenges by carrying out a study on deep
reinforcement learning algorithms applied to tracking and present-
ing a new visual tracking algorithm that significantly improves the
performance of iterative tracking methods.

• This thesis proposes a novel tracking framework based on it-
erative multi-refinements to address the issues present in the
traditional method of selecting the bounding box refinement
during target tracking. In particular, it introduces the con-
cept of conflicting refinements and train our model to handle
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them. It formulates the problem in such a way that multi-
ple non-conflicting transformations can be applied simulta-
neously, leading to faster tracking with the ability to handle
a higher number of composite transformations. It eliminates
ambiguity during the training procedure by avoiding giving
priority to some refinements over others. Experimental re-
sults show that the proposed iterative multi-refinement ap-
proach is superior to the single-refinement one, independently
of the model/training strategies adopted. Overall, the pro-
posed approach is competitive with respect to other state-of-
the- art approaches that iteratively refine the target bounding
box.

• This thesis presents the current state-of-the-art in DRL-based
visual tracking and a possible ways to model visual tracking
within the RL framework has been presented. In this thesis
we categorize DRL-based tracking approaches based on the
main pursued goal: estimating the target bounding box, the
tracking strategy, the search area where to locate the target.
Finally, a third group includes methods aiming at modeling
the target appearance selection/update process. This the-
sis further categorizes DRL-based tracking approaches based
on the adopted DRL framework, that is DQL, D-PG and
AC. DRL has been applied to the tracking problem in differ-
ent ways demonstrating its versatility. The state is generally
represented by an image cropped around the last predicted
target location. The definition of the actions largely changes
depending on the application. When DRL is used to deter-
mine the target bounding box through discrete actions, ac-
tions represent shifts or scaling factors to adjust the bound-
ing box in a vertical/horizontal direction. At each frame, the
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policy is interrogated several times until a terminal action is
selected. In this case, the next frame is processed. Continu-
ous actions are used to regress the bounding box parameters,
and the policy is interrogated once per frame. Analysis of
the state-of-the-art shows that most of the DRL-based ap-
proaches achieves tracking results on the OTB benchmark
that are below the MD-Net performance. Performance of
some approaches are below the state-of-the-art, but still some
few methods are competitive. Overall, the application of
DRL to visual tracking seems promising because it allows
the system generating samples based on the interaction of
the agent with the environment and, hence, it provides a
mechanism for generating diverse and informative samples
during training. However, there are still issues to study and
solve. For example, the problems of initializing the policy in
an effective way, of designing a reward function and a proper
set of actions are still open. Furthermore, while continuous
actions might be the appropriate choice in visual tracking,
still there is a lack of training strategies that can enable the
learning of proper policies.

7.2 Contributions to Fast Learning of CNNs

Although connected to the fine-tuning of visual tracking models,
the contributions on fast learning can be generalized to other con-
texts where network acceleration and fine-tuning are required. We
have proposed a method to improve the training efficiency of con-
volutional networks by gradually compressing the model through
dropping of convolutional layers during the training phase. While
most of the state-of-the-art methods focus only on reducing time
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and operations during back propagation, we have noticed that
forward propagation contributes significantly to the overall com-
putational cost of the training procedure.

We have empirically found that in the ResNet and VGG archi-
tectures, the layers closest to the input learn faster than those close
to the output. Therefore, the proposed method uses a gradient-
based score to identify the layers to be dropped. Dropping arises
from the first layer of the network to the last. In contrast to
previous work, which freeze layer parameters to speed up model
training, our approach is to remove layers from the network only
during training. To this end, our method splits the network into
a “tail", consisting of the dropped layers, and a “head", consisting
of the layers yet to be trained. The tail is used to prepare the
data to feed the head. The head is a smaller version of the model
that trains over time.

The method has been validated on three popular datasets to
train models of various depth in the VGG and ResNet families.
Our experiments show that, on average, our method achieves a
time reduction of 62.87% on VGG architectures, and of 66.30%
on ResNet models. Thus, by reducing the time of forward prop-
agation during training, the overall training time is more than
halved with a limited impact on the model accuracy that, in
our experiments, never exceeds the 3.2% for very deep network
(ResNet-152).

A potential limitation of our method is that it requires a warm-
up training to initialize the network weights. This is often done in
fast training algorithms and network compression to avoid prun-
ing important weights. In these works, as in ours, the number of
warm-up epochs is found empirically. However, in our method, it
might be equivalently possible to define a threshold on the layer
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score to start dropping layers when their weights no longer change
much. Since our method significantly reduces the training time,
it might also be possible to use a hybrid strategy that alternates
among training the whole model and the head model. This strat-
egy can help refine the first dropped layers’ weights at the cost of
increasing the overall training time.

Theoretically, the method can also be used on dense layers.
However, in our experiments, we have observed that the layer
scores of dense layers do not always have increasing values. Thus,
there is a risk of dropping a dense layer whose weights can still
improve.

7.3 Future Work

Visual tracking is a highly complex and challenging problem, and
many state-of-the-art visual trackers can be severely impacted by
numerous factors. The state-of-the-art DL-based visual track-
ers have been categorized into a comprehensive taxonomy based
on network architecture, network exploitation, training, network
objective, network output, the exploitation of correlation filter
advantages, aerial-view tracking, long-term tracking, and online
tracking. These methods aim to address the main problems and
proposed solutions of DL-based trackers.

Despite recent advances, small target tracking remains an area
that requires further research and development to improve the
accuracy and robustness of visual tracking systems. Although
most visual trackers are intended for general object tracking, small
target tracking has not received sufficient attention, despite its
prevalence in various applications. Accurately tracking a target
in the video captured by a drone-mounted camera, for instance,
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requires advanced small target tracking capabilities that are often
lacking in current visual trackers.

Furthermore, it is worth noting that most visual tracking bench-
mark datasets and evaluation metrics have been investigated, and
the various state-of-the-art trackers have been compared on seven
visual tracking datasets. Continued research and innovation in
small target tracking capabilities are crucial to enable better per-
formance in various real-world applications, such as drone surveil-
lance, autonomous vehicles, and robotics. Improved accuracy and
robustness of visual tracking systems can be achieved by integrat-
ing advanced DL-based trackers and developing novel evaluation
metrics that are tailored to specific applications.

Data-driven visual tracking algorithms rely heavily on models
trained on vast amounts of labeled data. However, manual label-
ing of the target in each video frame using a bounding box is an
expensive and time-consuming process.

The abundance of unlabeled data available on the internet
presents a significant opportunity to improve the performance of
visual trackers. Exploring ways to leverage this unlabelled data,
such as unsupervised and self-supervised learning techniques, can
potentially enhance the accuracy and robustness of visual tracking
systems without incurring the high cost of manual labeling.

Therefore, developing innovative approaches to effectively use
unlabeled data in training data-driven visual tracking algorithms
could significantly reduce the reliance on expensive labeled data
and accelerate the development of more accurate and efficient vi-
sual trackers. This would have a profound impact on various real-
world applications, including surveillance, autonomous vehicles,
and robotics.

Long-term visual tracking is a critical area of research in com-
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puter vision. Unlike short-term tracking, long-term visual track-
ing aims to track the target for extended periods, requiring the
visual tracker to understand the target’s semantic properties be-
yond its initial appearance in the video. Incorporating the target’s
semantic information into visual tracking algorithms can improve
their accuracy and robustness.

As many modern visual tracking algorithms fall into the "track-
ing by detection" category, the boundary between object tracking
and object detection is becoming less explicit. Thus, integrating
the target’s semantic information in visual tracking algorithms
could bridge this gap and enhance the system’s ability to track
targets over extended periods.

Overall, addressing the challenges associated with long-term
visual tracking will require the development of novel techniques
for integrating semantic information and improving the robustness
of visual tracking algorithms. These advancements will play a
critical role in enabling better performance and wider applicability
of visual tracking in various real-world applications.

To advance both fields of object tracking and object detection,
it is essential to identify their similarities and differences and ef-
fectively combine them into real-world applications. Currently,
most state-of-the-art visual trackers rely on deep neural networks,
which are the primary tool used by researchers in the field of AI.
However, these networks are good at memorizing information but
lack the ability to reason and draw inferences.

For instance, if a person being tracked suddenly gets into a car
and drives away, the target becomes invisible, and visual track-
ers find it challenging to infer that the person is now in the car.
Humans can quickly reason that the target has moved to the car,
but most visual trackers fail to track the target in such scenarios.
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Therefore, improving the reasoning abilities of AI systems is
crucial to enhancing the performance of visual trackers. Novel
techniques such as integrating explicit reasoning mechanisms can
bridge the gap between memorization and reasoning and improve
the ability of visual trackers to track targets effectively in complex
real-world scenarios.

Continued research and innovation in AI and visual tracking
will play a critical role in enabling the development of more robust
and accurate visual tracking systems. These systems will have a
broader applicability in various real-world applications, including
surveillance, autonomous vehicles, and robotics.

In future work, it will be interesting to investigate the extent
to which the approach can be applied to other more complex ar-
chitectures such as multi-branch models like Siamese networks or
models designed for time-series processing, such as those that in-
clude recurrent memory cells (Recurrent Neural Network - RNN).
For instance, in multi-branch networks, one should check whether
learning proceeds similarly along each of the branches. Also, it
would be useful to study whether similar techniques can be ap-
plied to visual transformers.
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