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Abstract: Cystic Fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in the
CFTR gene, coding for the CFTR chloride channel. About 10% of the CFTR gene mutations are “stop”
mutations that generate a premature termination codon (PTC), thus synthesizing a truncated CFTR
protein. A way to bypass PTC relies on ribosome readthrough, which is the ribosome’s capacity
to skip a PTC, thus generating a full-length protein. “TRIDs” are molecules exerting ribosome
readthrough; for some, the mechanism of action is still under debate. We investigate a possible
mechanism of action (MOA) by which our recently synthesized TRIDs, namely NV848, NV914, and
NV930, could exert their readthrough activity by in silico analysis and in vitro studies. Our results
suggest a likely inhibition of FTSJ1, a tryptophan tRNA-specific 2′-O-methyltransferase.

Keywords: FTSJ1; methyltransferase; tRNA; readthrough; stop codon mutation; small molecules;
docking; molecular dynamics; MM-GBSA

1. Introduction

Protein synthesis is a crucial phase for any living organism; therefore, any phenomenon
affecting any of the steps involved in such a crucial process could cause severe disorders.
Protein synthesis goes on until the ribosome meets a stop codon (UGA, UAA, or UAG),
thus ending translation and releasing the synthesized polypeptide [1].

Recognition of the stop codon by the translation machinery is essential to terminating
translation at the right position and to synthesizing a protein of the correct size. When
UGA, UAA, and UAG codons appear earlier in the mRNA sequence, with respect to the
normal stop signal due to point mutations in the DNA sequence (nonsense mutations), they
are interpreted as a premature termination codon (PTC). Once the ribosome encounters
a PTC in its acceptor (A) site, translation will be terminated, thus producing a truncated
and nonfunctional polypeptide. Although translation termination must be a very efficient
process to ensure the correct protein size, under certain conditions or at a very low rate, a
near-cognate tRNA can be recruited to the A site of the ribosome when the latter reaches a
stop codon. This event is called stop codon readthrough. Several types of readthrough can
occur at stop codons, depending on the presence of regulatory elements or of readthrough-
promoting molecules. In the absence of any readthrough molecules, readthrough of any
natural stop codon or PTC can occur at a basal level (non-programmed translational
readthrough) [2]. The second type of readthrough is called programmed translational
readthrough. It targets specific mRNAs [3–5], and it is a proteome-expanding mechanism
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allowing the synthesis of specific protein isoforms. The third type of readthrough is
promoted by certain molecules, and it is termed induced stop codon readthrough.

The basal readthrough level varies from one stop codon to another, as shown in various
studies [6,7]. The identity of the stop codon influences this level, but other elements acting
in a “cis” or “trans” manner can also modulate the efficiency of PTC or natural stop codon
readthrough. Such elements can influence all three types of stop codon readthroughs. Cis
elements activating stop codon readthrough can be altered by the nucleotide context of the
stop codon. Some endogenous trans elements have been identified as proteins or RNAs
required either for the readthrough of specific stop codons or for the general readthrough
mechanism [2].

Unfortunately, nonsense mutations and PTC are the cause of about 11% of all genetic
disorders in humans, such as cystic fibrosis (CF), Duchenne muscular dystrophy (DMD),
spinal muscular atrophy, neurofibromatosis, retinitis pigmentosa, lysosomal storage disease,
ataxia telangiectasia (AT), Hurler’s syndrome (HS), Rett syndrome, Shwachman–Diamond
syndrome, Usher’s syndrome (USH), Hemophilia A and B, Tay–Sachs disease, and several
forms of cancer [8].

PTC suppression therapy could help the treatment of patients with nonsense-mediated
diseases. In vitro, ex vivo, and in vivo experiments and clinical trials have identified a
diverse structural set of nonsense suppressors as candidates for PTC suppression therapy,
including aminoglycosides, ataluren (PTC124), ataluren-like molecules, and others [9]. In
this context, our research group has more than ten years of experience in this research
field [10–13]. We have identified several compounds endowed with readthrough activ-
ity, and three 1,2,4-oxadiazole derivatives (NV848, NV914, and NV930) (Figure 1) are
undergoing in vivo studies [14,15].
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Even though other nonsense suppressors have been identified in the past years, the
elucidation of their molecular mechanism of action remains a crucial point to be addressed
with the aim of identifying more active compounds.

In a recent manuscript, in vitro kinetic assays on eukaryotic translation suggested
different mechanisms for different nonsense suppressors. Aminoglycosides via binding a
single tight site on the ribosome and ataluren-like compounds via weaker multisite bindings
induce a slower change in the protein synthesis apparatus that permits readthrough [16].

In another recent study, an extract of the mushroom Lepista inversa showed a high-
efficiency correction of UGA and UAA nonsense mutations [17]. One active constituent
of this extract is a 2,6-diamino purine (DAP), which has been shown to increase p53
levels in Calu-6 cancer cells. DAP interferes with the activity of a tRNA-specific 2′-O-
methyltransferase (FTSJ1) responsible for cytosine 34 modification in tRNA-Trp.

Starting from this recent experimental evidence on small molecules, in this manuscript,
we tried to elucidate if the molecular mechanism of actions of our readthrough compounds
NV848, NV914, and NV930 could be attributable to the inhibition of the tRNA-specific
2′-O-methyltransferase (FTSJ1). An investigation by combined computational approaches
followed by Luciferase assay evaluation in HeLa cells upon transfecting an FTSJ1 cDNA
harboring plasmid aided the purpose of this study. In addition, because our NV848, NV914,
and NV930 compounds have been shown to rescue both protein levels and functionality of
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the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) chloride channel [14],
mutated in CF, we also tested for CFTR protein cellular localization in IB3.1 cystic fibrosis
cells [18] upon FTSJ1 transfection.

2. Results and Discussion
2.1. Homology Modeling

Recent studies demonstrated that small molecules could interfere with proteins or
RNAs required either for the readthrough of specific stop codons or for the general
readthrough mechanism [2]. In this context, a small molecule such as 2,6-diamino purine
(DAP) showed to promote the readthrough of premature stop codons of the p53 transcript
by inhibiting a specific methyltransferase known as FTSJ1. In the attempt to elucidate
the mechanism of action of our readthrough compounds NV848, NV914, and NV930, we
performed a series of computational studies with increasing accuracy: blind docking (BD),
extra precision docking, and unbiased molecular dynamics (MD) followed by MM-GBSA
(molecular mechanics-generalized Born surface area) free energy calculation followed by
in vitro analysis. We began computational studies exploring the Protein DataBank (PDB) in
the search for the experimental structure of the methyltransferase object of this study. Two
structures were retrieved both related to the X-ray structures of the yeast tRNA methyl-
transferase (PDB ID: 6JP6 and 6JPL), the last one in complex with S-adenosyl methionine
(SAM). The human homolog protein FTSJ1 was modeled in the SWISS-MODEL workspace
(swissmodel.expasy.org/workspace) using the PDB ID: 6JP6 as a template. The structures
have been optimized by completing and refining the missing loops and residues and opti-
mizing amide groups of asparagine (Asn) and glutamine (Gln), and the imidazole ring in
histidine (His), and predicting protonation states of histidine, His, aspartic acid (Asp), and
glutamic acid (Glu) and tautomeric states of histidine.

2.2. Blind Docking and Semi-Flexible Docking Analysis

Blind docking analysis was performed using Achilles Blind docking server (https:
//bio-hpc.ucam.edu/achilles/entry) with the homology model of the human FTSJ1 pre-
viously obtained against DAP, NV848, NV914, NV930, PTC124, and SAM. The binding
position is located around Lys156, representing the active site as a proton acceptor, and
Gly53, Trp55, Asp75, Asp91, and Asp116 as residues that constitute the binding site. Blind
docking performs an exhaustive series of docking calculations across the whole protein
surface to find the spots with the best binding affinities. After the affinities are calculated,
the tool clusters the results according to the spatial overlapping of the resulting poses. For
each cluster, the pose with the best affinity is taken as the representation of this cluster.
Interestingly, the best pose calculated in terms of binding energy (kcal/mol) for each com-
pound falls in the binding site, as previously reported. In Figure 2, the best cluster poses of
DAP are reported as representative evidence of the blind docking procedure.

The blind docking analysis result was very useful in identifying the most probable
binding site, but in order to have more accuracy in terms of the pose orientation, the
extra precision semi-flexible docking was performed centering the docking box on the 3D
coordinates of SAM as reported in the complex PDB ID: 6JPL. In semi-flexible docking, the
ligands are free to change their conformational structure around the six rotational degrees
of freedom, while the target is considered static. As validation of the extra precision scoring
function, SAM was redocked, and the RMSD was calculated, showing a value <0.3 Å
(Figure 3).

Successively, DAP, NV848, NV914, NV930, and PTC124 were docked in the binding
pocket of FTSJ1 to define the most likely pose and the interactions with the target protein.
The docking calculation was performed in Glide extra precision mode to obtain the best
accuracy. For each compound, we stored up to 10 poses with the best docking score, and
after a visual inspection, the poses with the best scores were selected to perform molecular
dynamics simulations (Figure 4).

https://bio-hpc.ucam.edu/achilles/entry
https://bio-hpc.ucam.edu/achilles/entry
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2.3. Molecular Dynamics and Free Energy Analysis

The running of molecular dynamics simulations of target–ligand complexes over
time is considered the most accurate approach in computer-aided drug design. Here, an
unbiased molecular dynamics simulation was performed to investigate the conformational
stability and the time-dependent binding capability of DAP, as a known FTSJ1 inhibitor,
NV848, NV914, NV930, and PTC124 in the active site of FTSJ1, as potential inhibitors. More-
over, we performed MD simulations on the complex FTSJ1/SAM as a control. We explored
if the protein target undergoes conformational alterations interacting with the compounds.
Three replicas of 100 ns each of MD simulations were carried out starting from the docking
poses previously obtained: FTSJ1/DAP, FTSJ1/NV848, FTSJ1/NV848_pose2, FTSJ1/NV914,
FTSJ1/NV930, FTSJ1/NV930_pose2, and FTSJ1/PTC124. While three replicas of 100 ns
each of MD simulations were carried out for SAM starting from the co-crystallized pose,
each replica of 100 ns was performed by randomizing the initial velocities and seeding with
the aim of sampling the conformational space and obtain a total of 300 ns of simulation for
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each system. Various analyses, such as root-mean-square deviation (RMSD), root-mean-
square fluctuation (RMSF), and determination of the types of protein–ligand contacts, were
performed to obtain a more detailed analysis of the target–ligand complexes.

The RMSD has been selected as a criterion to evaluate the dynamic stability of ligand-
bound systems. All protein frames are first aligned on the reference frame backbone, and
then the RMSD is calculated based on the atom selection, in these cases on the Cα. For
these complexes, the RMSD values of the protein’s Cα atoms and ligand are reported in
Figure 6.
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As a reference system, we first performed the simulations of FTSJ1/SAM. This system
reached the equilibrium in the first steps of the simulations and fluctuated around the
average of 3 Å. Similar behavior is evidenced in all the complexes with DAP, NV848,
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NV914, NV930, and PTC124, where the average value of RMSD of the proteins Cα atoms
is comprised between 2.5 Å and 3.9 Å. Once defined that the simulations converged, it
would be useful to evaluate the ligand RMSD. The ligand RMSD indicates how stable the
ligand is with respect to the protein and its binding pocket. This plot evidence the RMSD
of a ligand when the protein–ligand complex is first aligned on the protein backbone of
the reference, and then the RMSD of the ligand-heavy atoms is measured. If the values
observed are significantly larger than the RMSD of the protein, then it is likely that the
ligand has diffused away from its initial binding site (Figure 7).
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Starting from the reference system FTSJ1/SAM, the native ligand maintains a stable
value of RMSD and confirms the reliability of the simulations. The same behavior is shown
by DAP. When the ligand RMSD is analyzed for NV848, it could be noted that a dual
behavior from the two different starting poses was obtained by the docking. In pose 1, just
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replica 2 maintains a stable RMSD value for the entire simulation, while in replica 1, the
ligand flies away from the binding pocket after about 83 ns of the simulation. In replica
3, this event is observed after 23 ns. On the opposite replicas 1 and 3 of NV848, pose 2
showed stable ligand RMSD values around 3 Å. In replica 2 of NV848 pose 2, there is a shift
around 44 ns of the simulation of the RMSD values, but in this case, the ligand remains
in the binding pocket, just fluctuating in a different orientation from the beginning. The
three replicas of NV914 showed a similar behavior of the ligand with stable RMSD values
with an average of 7–8 Å. The visual inspection of the three simulations shows that the
ligand is stable in the interactions with the pocket, and the RMSD fluctuations are ascribed
to the movements of the carboxyamideperfluoroaryl ring that points outside the pocket.
As previously defined, two poses were selected to perform the MD simulation of NV930.
The first pose in all three replicas flies out from the binding, as shown in Figure 7f. Only in
replica 1 the ligand maintains its position in the binding pocket for about 28 ns. The NV930
pose 2 is stable in replica 3. In replicas 1 and 2, even though the ligand steps away from the
starting pose, it remains permanently in the binding pocket establishing new interactions.
In the end, the three replicas of PTC124 showed stable RMSD values. Replicas 2 and 3 show
an average RMSD value of 2.2 Å.

The main chain average RMSF of the complexes has been calculated for the entire
100 ns of each replica to examine the structural flexibility effect of the compounds upon
the FTSJ1 binding pocket. The residue-wise fluctuation of the complexes was plotted and
presented in Figure 8. The plot has been coupled according to the different ligands bound
to compare the chain behavior due to different ligands. It is worth noting that the RMSF
values reported in the plot are the average of the three replicas. The analysis of the results
of the residues’ mobility was focused on the residues that constitute the binding site (Gly53,
Trp55, Asp75, Asp91, Asp116, and Lys156). The RMSF values of these residues are under
2 Å: Gly53 1.1 Å, Trp55 1.9 Å, Asp75 1.2 Å, Asp91 0.9 Å, and Lys156 1.0 Å. Just Asp116
showed an average RMSF value of 2.7 Å but slightly higher in the PTC124 and NV848
replicas. The outcome of this analysis revealed that the binding of these small molecules
did not influence in a concrete way the binding pocket.
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Estimation of protein interactions provides a measure of interaction power between
the ligands and the target protein. Protein interactions with the ligand can be monitored
throughout the simulations. In this section, the interactions of the ligands with the target
protein will be evaluated, starting from the poses selected with the docking analysis and
the interactions observed during the MD simulations. All the interactions observed in the
docking analysis and in the MD simulations are reported in Table 1. It is worth noting
that the interactions observed during the MD simulations are reported for each simulation.
Taking into consideration that NV848 and NV930 show a dynamic behavior that is not
stable, only the interactions observed in pose 2 are considered for the comparative analysis
with the docking interactions.

Table 1. Target–ligands interactions were observed in the docking analysis and in the MD simulations.
Cpd * is for compounds, Int. ** is for interactions, HB is for H-bonds, vdW is for van der Waals
interactions, Hphobic is for hydrophobic interactions, and WB is for water bridges.

Docking
MD

Replica 1 Replica 2 Replica 3

Cpd * Residue Int. ** Residue Int. ** Residue Int. ** Residue Int. **

DAP Trp55 Pi–pi Asp116 HB Asp116 HB Asp116 HB

Lys156 Pi–cation Trp55 HPhob Trp55 HPhob Trp55 HPhob

Asp116 vdW Asp47 HB Asp47 HB Asp47 HB

Asp47 vdW Leu48 HPhob Leu48 HPhob Leu48 HPhob

Gly53 HB Gly53 HB

Ser54 HB

NV848 Trp55 HB,
pi–cation Trp55 HB, HPhob Asp47 WB, HPhob Lys28 HB, ionic

Gly53 vdW Gly53 HB Leu48 HB, HPhob, and
Ionic Gly53 HB

Ser54 vdW Ser54 HB Gly53 HB Ser54 HB

Asp116 vdW Asp116 WB Ser54 HB, Hphobic Trp55 HB, Hphob

Cys115 WB, HB Asp116 HB, WB

Asp116 WB, HB Lys156 Hphob

NV914 Asp75 vdW Cys49 HB, Hphob Cys49 HB, Hphob Cys49 WB, HB

Asp116 vdW Leu76 HB, HPhob Leu76 HPhob Asp91 WB

Lys156 vdW Asp91 WB Ile92 HPhob, WB Ala118 HB, WB

Ala118 vdW, HB Ala118 HB, WB Ala118 HB, WB Asp120 HB, WB

Cys49 vdW

NV930 Asp75 vdW Leu48 HPhob Asp91 HB, Hphobic. WB Ile92 Hphobic, WB

Ala118 HB, vdW Cys49 HB, HPhob Ile92 WB Ala118 HB, Hphobic, and
WB

Lys156 vdW Val74 HPhob Tyr130 Hphobic Leu135 Hphobic

Asp116 vdW Asp75 WB Gln134 HB, WB Ala139

Cys49 vdW Ile92 HB, HPhob Leu135 Hphobic
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Table 1. Cont.

Docking
MD

Replica 1 Replica 2 Replica 3

Leu135 vdW Leu135 HPhob Tyr218 Hphobic, WB

Ile142 HPhob

PTC124 Ser25 HB, vdW Arg24 HB, WB Arg24 HB, WB Ser25 HB, WB

Arg24 Salt bridge Ser25 HB, WB Ser25 HB, WB Arg24 HB, WB

Lys28 Salt bridge Pro52 Hphobic Lys28 HB, WB, Ionic, and
Hphobic Lys28 HB, WB, and

Hphobic

Lys156 Pi-cation Trp55 Hphobic Trp55 Hphobic Trp55 Hphobic

Cys49 vdW Ala118 Hphobic Lys156 HB, Hphobic,
ionic, and WB Lys156 Hphobic, ionic,

and WB

Pro52 vdW Arg186 HB, ionic, and WB Arg186 HB, ionic, and WB

Gly53 vdW

Trp55 vdW

Arg186 Salt bridge

Moreover, in the comparative analysis, the residues involved in the interactions should
be stressed much more than the kind of interactions observed.

The known FTSJ1 inhibitor DAP interacts with Trp55 by a pi–pi interaction, with
Lys156 by a pi–cation interaction, and with Asp47 and Asp116 by vdW interactions in the
docking analysis. In the three replicas of the MD simulation, the interactions with Trp55,
Asp47, and Asp116 are conserved in terms of hydrophobic and H-bonds interactions. New
hydrophobic interaction with Leu48 is observed in all three replicas and H-bonds with
Gly53 and Ser54 in replicas 2 and 3.

NV848 shows the same interactions with Trp55 and Asp116, as observed with DAP in
the docking analysis. In addition, an H-bond with Trp55 and two vdW interactions with
Gly53 and Ser54 are registered. In the three simulations along the 100 ns, the interactions
Gly53, Ser54, and Asp116 are conserved with respect to the docking analysis in terms of H-
bonds and a water bridge with Asp116. Moreover, the interaction with Trp55 is conserved
in replicas 1 and 3, and in replica, there is the involvement of Lys156 in a hydrophobic
interaction with the ligand. Other interactions with Lys28, Asp47, Leu48, and Cys115 are
observed and reported along the time.

NV914 is the compound that shows a slight binding pattern with respect to docking
and MD replicas. Indeed, in the docking analysis, it interacts with Cys49, Asp75, Asp116,
Ala118, Leu135, and Lys156 just by vdW interactions and one H-bond with Ala118. In
the three replicas, it was already underlined that the ligand has RMSD values comprised
between 6–9 Å, and these values are reflected in different residues, which are involved
in the binding pattern of the compound. The interactions with Cys49 and Ala118 are
conserved, and new H-bonds, hydrophobic interactions, and water bridges are observed
with Leu76, Ile92, and Asp120.

NV930 established an H-bond with Ala118 and several vdW interactions with Cys49,
Gly53, Trp55, Asp75, Asp116, Ala118, Leu135, and Lys156 in the docking analysis. During
the MD simulations, the starting pose of NV930 shows higher RMSD values but retains
some interactions with previously observed residues of Cys49, Asp75, Ala118, and Leu135,
establishing new interactions of Ile92, Leu76, Ala138, Ala139, and Tyr218.

PTC124 shows a pi–cation stacking with Lys156, an H-bond with Arg24, three salt
bridges with Arg24, Lys28, and Arg186, and more vdW interactions with Ser25, Cys49,



Int. J. Mol. Sci. 2023, 24, 9609 11 of 19

Pro52, Gly53, and Trp55 in the docking analysis. The three replicas retain the major part of
the interactions retrieved in the docking analysis, above all in replica 2 and replica 3

To understand the biophysical basis of molecular recognition of the compounds object
of this study with FTSJ1, a molecular mechanics-generalized Born surface area (MM-GBSA)
approach was used. As a comparative analysis, we performed the binding free energy
analysis for all the replicas performed, including the SAM/FTSJ1 replicas. This analysis
provides as an outcome the ∆G values as the mean of the simulations snapshot considering
the contribution of the water as implicit. The conformational entropy change T∆S was
not calculated to reduce the computational time. The ∆G values of all the replicas are
reported in Figure 9 together with the mean ∆G values obtained from the three replicas.
The ∆G values of the complexes FTSJ1/SAM is reported as a reference of the energetic
scale of the binding. Indeed, a natural ligand has a higher binding energy compared with
small molecules and inhibitors. The binding energy analysis shows that DAP, PTC124,
and NV914 have comparable binding energy, slightly higher than NV848 and NV930.
Considering that DAP is a recognized inhibitor of FTSJ1, the docking outcomes, together
with the MD replicas and binding energies, suggest that the NV compounds and PTC124
could be potential inhibitors of this target protein.
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2.4. In Vitro Analysis

We had previously demonstrated the readthrough activity exerted by NV848, NV914,
and NV930 via a FLuc (Firefly luciferase) cell-based assay [14,19,20]. There have been
some speculations about the molecular mechanisms of readthrough induction upon TRIDs
(translational readthrough-inducing drugs), and one accredited hypothesis considers the
interaction between these molecules with the mRNA [8]. Following our in silico analyses,
we wanted to understand by in vitro tests if our NV848, NV914, and NV930 could induce
readthrough by FTSJ1 activity inhibition, as well as DAP and PTC124. To this aim, HeLa
cells were transiently co-transfected with a pFLuc190UGA plasmid [19,21] plus a plasmid
harboring the FTSJ1 cDNA (a kind gift from Dr. Lejeune) [17]. As control of the transfection,
HeLa cells were also transfected with the only pFLuc190UGA (Fluc Opal) plasmid or
alternatively with a pFLucWT vector.

Then, 24 h post-transfection, HeLa cells were transfected with only the pFLuc190UGA
plasmid, and the cells co-transfected with both the pFLuc190UGA plasmid and the FTSJ1
plasmid were treated with the three readthrough compounds NV848, NV914, or NV930
at 6 µM, 12 µM, or 24 µM, respectively. Twenty-four h later, cells were then assayed for
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luminescence. As reported in Figure 10, in pFLuc190UGA-transfected HeLa cells (Fluc
Opal only, black histograms) treated with either NV848, NV914, or NV930, there is an
increased level of luminescence, as expected, compared with the untreated cells (UNT). On
the contrary, HeLa cells co-transfect with both the pFLuc190UGA plasmid and the FTSJ1
plasmid (2 µg FTSJ1, dark blue histograms) shows reduced luminescence levels for all
the molecules and concentrations tested compared with the only pFLuc190UGA plasmid
transfection. This finding suggests a possible inhibitory role exerted by NV848, NV914, and
NV930 on FTSJ1, whose overexpression counteracts NV compounds’ readthrough activity.
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Figure 10. FLuc assay in HeLa cells, treated for 24 h with the indicated concentrations of NV
compounds, either alone (Fluc Opal only) or in combination with FTSJ1 plasmid (2 µg FTSJ1). Note
that the presence of FTSJ1 reduces luciferase activity. FLuc WT plasmid is used as a positive control.

We also ran a luciferase assay to test if PTC124 readthrough activity could be influenced
by the overexpression of FTSJ1. In line with the results of our new TRIDs, overexpression
of FTSJ1 decreases the readthrough exerted by PTC124 for all the concentrations tested
(Figure 11). Thus, this result strengthens our hypothesis whereby our NV848, NV914, and
NV930 molecules could likely exert stop codon readthrough by FTSJ1 inhibition.

It is important to stress the fact that our goal is to find new TRIDs capable of restoring
a full-length and functional CFTR protein. Thus, in order to ascertain if NV848, NV914,
and NV930 could exert readthrough on CFTR mRNA by inhibiting FTSJ1 activity, IB3.1
cells were used as a cystic fibrosis cell model [18]. IB3.1 cells are characterized by a UGA
premature termination codon instead of a UGG tryptophan codon at aminoacidic position
1282 of the CFTR protein sequence, which thus results in a truncated CFTR protein (W1282X
mutation). In addition, IB3.1 cells also harbor an F508del mutation, which can result in the
residual presence of CFTR at both mRNA and protein levels [11,22,23].

Because we had previously demonstrated NV848, NV914, and NV930’s readthrough
activity on a rat cell line upon transfection of a vector harboring the CFTR cDNA with
the W1282X mutation [14], we wanted to investigate if the same molecules could have the
same readthrough effect on a human cell line of cystic fibrosis, through the inhibition of
FTSJ1 activity.
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Figure 11. FLuc assay in HeLa cells, treated for 24 h with the indicated concentrations of PTC124,
either alone (Fluc Opal only) or in combination with FTSJ1 plasmid (2 µg FTSJ1). Note that the
presence of FTSJ1 reduces luciferase activity. FLuc WT plasmid is used as a positive control.

To this aim, IB3.1 cells were plated onto glass coverslips and assayed by immunoflu-
orescence after 24 h treatment with one of the above NV compounds at 12 µM, a concen-
tration we had previously demonstrated to exert ribosome readthrough for CFTR [14]. As
positive controls of readthrough induction, either G418 (300 µg/mL) or PTC124 (12 µM)
were used [19,22]. As reported in Figure 12a, there is a visible rescue of the fluorescence
relative to CFTR protein expression in IB3.1 cells treated with either NV848, NV914, or
NV930, compared with the untreated cells (UNT). In addition, the fluorescence intensities
in NV848-, NV914-, and NV930-treated cells (quantification in Figure 13a) outnumber
the fluorescence intensities in G418- and PTC124-treated cells (fluorescence images in
Figure 12b and quantification in Figure 13a), suggesting a higher readthrough induction
exerted by NV compounds.
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Figure 12. Immunofluorescence on IB3.1 cells, treated for 24 h with the indicated TRIDs, either alone
(a,b) or in combination with FTSJ1 (c) (2 µg FTSJ1). FTSJ1 reduces the CFTR signal. Cell membrane
and Golgi apparatus are stained with Alexa-594. Scale bar is 10 µm.

Surprisingly however, upon FTSJ1 plasmid transfection (fluorescence images in
Figure 12c and quantification in Figure 13b), CFTR fluorescence intensities decrease in
all NV848-, NV914-, and NV930-treated cells (fluorescence images in Figure 12c and
quantification in Figure 13c) compared with IB3.1 cells treated only with NV molecules
in the absence of FTSJ1 expression (fluorescence images in Figure 12a and quantification
in Figure 13c).

Altogether, our results suggest that NV molecules could specifically exert readthrough
on UGA PTCs by inhibiting FTSJ1 methyltransferase activity. In fact, upon increased FTSJ1
expression, NV compounds’ readthrough activity decreases.



Int. J. Mol. Sci. 2023, 24, 9609 15 of 19

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 12. Immunofluorescence on IB3.1 cells, treated for 24 h with the indicated TRIDs, either alone 
(a,b) or in combination with FTSJ1 (c) (2 µg FTSJ1). FTSJ1 reduces the CFTR signal. Cell membrane 
and Golgi apparatus are stained with Alexa-594. Scale bar is 10 µm. 

 
Figure 13. Quantification of immunofluorescence on IB3.1 cells in Figure 12. Graphs (a,c) display
CFTR fluorescence intensity, whereas graph in (b) displays FTSJ1 fluorescence intensity A.U.: arbi-
trary unit.

3. Materials and Methods
3.1. Homology Modeling and Protein Preparation

The putative tRNA (cytidine(32)/guanosine(34)-2′-O)-methyltransferase—UniProt
Q9UET6 (TRM7_HUMAN) Homo sapiens—was modeled in the SWISS-MODEL workspace
(swissmodel.expasy.org/workspace). The X-ray structure of yeast tRNA methyltransferase
complex of Trm7 and Trm734 essential for 2′-O-methylation at the first position of an-
ticodon in specific tRNAs (PDB ID:6JP6) was used as a template of the human tRNA
(cytidine(32)/guanosine(34)-2′-O)-methyltransferase FTSJ1 (50.0% sequence identity). This
one was the best available experimental structure at the time of the study. The model
obtained has a Qualitative Model Energy ANalysis (QMEAN) score of 0.75. The model
was refined using the protein preparation wizard tool of Maestro Suite Software [24]. This
tool allowed protein structure optimization, including missing loops, side chains, and
hydrogens, optimization of the protonation state in a pH range of 7.0 ± 2.0, and analysis of
atomic clashes. The protein was refined using restrained minimization with OPLS2005 as a
force field. This model was used for further blind docking analysis.

3.2. Blind Docking and Semi-Flexible Docking

Blind docking was performed to analyze and locate the most likely protein–ligand
interactions of DAP and NV compounds with the methyltransferase FTSJ1. In the blind
docking approach, docking is applied to various locations covering the whole protein
surface [25]. These blind docking simulations have been calculated with the help of
two different docking programs: Autodock Vina and Lead Finder [26,27]. Both these
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programs use force-field-based scoring functions, including specific intramolecular and
intermolecular values contributing to the overall potential, along with genetic algorithms
finding the global minima. The compounds were submitted to a semi-flexible docking
study using Glide v9.0 [28] in extra precision (XP) with the OPLS2005 force field. The grid
box was built considering SAM as the centroid of the grid. The study was performed using
no constraints. The van der Waals radii were set at 0.8, and the partial cutoff was 0.15 with
flexible ligand sampling. Bias sampling torsion penalization for amides with non-planar
conformation and Epik state penalties were added to the docking score.

3.3. Molecular Dynamics and MM-GBSA Calculations

Three MD simulation replicas of 100 ns each were carried out using a Desmond 6.5 [29]
using the OPLS4 force field for each complex FTSJ1/DAP, FTSJ1/SAM, and FTSJ1/NV848,
NV914, and NV930. The system setup and the simulation options are the same as reported
in previous manuscripts [30–33]. Initial velocities were determined with random seeds.
The MM-GBSA approach employs molecular mechanics, the generalized Born model, and
the solvent accessibility method to determine free energies from structural information
circumventing the computational complexity of free energy simulations wherein the net free
energy is treated as a sum of a comprehensive set of individual energy components, each
with a physical [34]. We applied this method to the snapshots extracted from the 100 ns
production MD trajectories. Protein–ligand binding free energy using MM-GBSA was
calculated as the difference between the energy of the bound complex and the energy of the
unbound protein and ligand. In this work, MM-GBSA calculations were also achieved in
Prime software [35]. The entropy term—T∆S—was not calculated to reduce computational
time. The VSGB solvation model was chosen with the minimized sampling method.

3.4. Cell Culture and NVs Resuspension

HeLa and IB3.1 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM)
(Corning, Corning, NY, USA) supplemented with 10% Fetal Bovine Serum (FBS) (Corning)
at 37 ◦C with 5%CO2. No antibiotics were used. Lyophilized NV848, NV914, and NV930
were weighed and resuspended in 100% Dimethyl Sulfoxide (DMSO) (Merck, Rahway, NJ,
USA) solution to reach a stock solution of 100 µM. Then, an initial concentration of 1 µM
for each NV was prepared by diluting the stock solution in Dulbecco’s Phosphate Buffered
Saline 1X (DPBS 1X) (Corning). The diluted solutions were then used to treat cells.

3.5. Luminescence Assay

A total of 2.5 × 105 HeLa cells were plated onto each well of the 6 MW plate the day
before transfection. A total of 1 µg of pFLuc190UGA plasmid [19,21] was transfected alone
or co-transfected with 2 µg of FTSJ1 plasmid [17] by using Lipofectamine 2000 reagent
(Invitrogen, Waltham, MA, USA), according to the provider’s instructions. A total of 1 µg
of pFLuc-WT plasmid was transfected alone as a positive control. Twenty-four hours
after transfection or co-transfection, HeLa cells were left untreated or treated for 24 h with
6 µm, 12 µm, or 24 µm for each NV. The next day, after two washes in DPBS 1X, cells were
incubated for 5 min with 400 µL/well of the detection mix-Steady-Glo luciferase reagent
(Promega, Madison, WI, USA). A total of 200 µL of cell suspension was then plated in
duplicate onto a 96-well plate. Luciferase activity was then acquired with a luminometer.

3.6. Immunofluorescence Microscopy

A total of 105 IB3.1 cells were seeded onto glass coverslips in a 12 MW plate the day
before transfection. Next, 2 µg of FTSJ1 plasmid was transfected by using Lipofectamine
2000 reagent (Invitrogen), according to the provider’s instructions. Twenty-four hours
after transfection, IB3.1 cells were treated (or left untreated) for 24 h with 12 µm for each
NV. G418 (300 µg/mL) or PTC 124 (12 µM) were used as positive controls of readthrough
induction [22]. The day after treatment, cells were briefly washed in DPBS 1X and then
fixed with 4% Paraformaldehyde (PFA) (Thermo Scientific, Waltham, MA, USA) at room
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temperature for 15 min. After a wash in DPBS 1X, cells were incubated for 15 min in a
solution of Glycin 1 mM (Merck), and then cell membrane and Golgi were stained by
using the wheat agglutinin germ (WGA) conjugated with Alexa 594 (Life Technologies,
1:1000, Carlsbad, CA, USA) for 10 min. Cells were then permeabilized with 0.1% Triton
X-100 (Merck) for 10 min, washed in DPBS 1X, and blocked with 5% FBS solution for 1 h
at room temperature. Cells were incubated with a mouse monoclonal antibody (ab570
1:400) overnight at 4 ◦C followed by a goat-polyclonal to mouse antibody Alexa-Fluor-
488 (Abcam,1:500, Cambridge, UK) for 1 h at room temperature to detect CFTR protein.
Cells were incubated with a rabbit polyclonal antibody (Cusabio, 1:100, Houston, TX,
USA) overnight at 4 ◦C followed by a goat-polyclonal to rabbit antibody Alexa-Fluor-647
(Invitrogen, 1:1000) to detect FTSJ1. Nuclei were counterstained by using a solution of
4′,6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) plus Antifade (Thermo Scientific).
Cells were observed under a Zeiss Axioskop microscope (Oberkochen, Baden-Württemberg,
Germany) equipped for fluorescence.

3.7. Image Analysis of Immunofluorescence Images

Images were opened by using Fiji software [36], then the channels corresponding to
CFTR or FTSJ1 were background subtracted, saved, and single ROIs (Region Of Interest) of
the entire cells were manually drawn on the CFTR channel. Mean gray values were used to
report fluorescence intensities for every single cell analyzed.

4. Conclusions

In this work, we faced the hypothesis of a new putative target for our in-house TRIDs,
NV848, NV914, and NV930. We performed a virtual and in vitro study of the interaction
between NV molecules and FTSJ1 to test a possible inhibition of this tryptophan tRNA-
specific 2′-O-methyltransferase as a potential readthrough MOA. The study has been
performed by comparison with DAP and SAM as positive controls for the virtual inhibition
study and PTC124 and G418 as positive controls for the readthrough activity.

Despite the readthrough activity demonstrated by all three NV molecules, we can
suggest that NV914 might exert readthrough by directly inhibiting the activity of FTSJ1,
whereas NV930 could slightly inhibit and NV848 could lower FTSJ1 activity. This can
be easily retrieved by looking at the luciferase assay as well as at the immunofluores-
cence analysis, where NV914 exerts less readthrough in the presence of the overexpressed
FTSJ1 compared with both NV848 and NV930. In addition, our results on IB3.1 cells rein-
force what has been recently reported [37] concerning patient-derived intestinal organoids
(PDIOs) harboring a W1282X mutation that displayed increased swelling activity following
DAP treatment.

In conclusion, we demonstrate that FTSJ1 inhibition is a plausible readthrough MOA
for NV914 and NV930, as well as for DAP, while, concerning NV848, we must say that,
although a certain inhibition effect is observable, this target could be one of the possible,
but not the only one way of readthrough action. For instance, as demonstrated for other
PTC124 derivatives by our group in the past [10,22], NV848 readthrough activity could be
the result of the interaction of this molecule with the PTC in the mRNA sequence, which,
thus, would favor either the insertion of a near cognate amino acid or the skipping of the
nonsense mutation by the ribosome without the addition of any amino acid [8]. Other
possibilities could be the suppression of the NMD pathway as well as the interaction
with the translation release factors [8]. However, more experiments are needed to exactly
unravel the precise mechanism(s) of action not only for NV848 but also for all our new
TRIDs in general.
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