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Abstract: Layered TiS2 intercalated with linear alkylamines has recently attracted significant interest
as a model compound for flexible n-type thermoelectric applications, showing remarkably high power
factors at room temperature. The thermal and, particularly, environmental stability of such materials
is, however, a still an open challenge. In this paper, we show that amine-intercalated TiS2 prepared
by a simple mechanochemical process is prone to chemical decomposition through sulfur exsolution,
and that the presence of molecular oxygen is likely to mediate the decomposition reaction. Through
computational analysis of the possible reaction pathways, we propose that Ti-N adducts are formed
as a consequence of amine groups substituting for S vacancies on the internal surfaces of the S-Ti-S
layers. These findings provide insights for possible future applications of similar hybrid compounds
as devices operating in ambient conditions, and suggest isolating them from atmospheric oxygen.

Keywords: chalcogenides; thermoelectrics; X-ray diffraction; Raman; intercalation

1. Introduction

Thermoelectric (TE) materials are attracting increasing attention in the materials
research community as they allow for the direct conversion of waste heat into electricity,
thereby improving the overall efficiency of power generation [1–4]. Typically, thermoelectric
devices have been so far based on inorganic compounds, but also hybrid (organic-inorganic)
TE materials have recently attracted the attention of many, in both the academic and
industrial fields [5–9]. Indeed, considering the exponential increase in energy consumption,
the possibility to recover electrical energy directly from lower-temperature waste heat using
hybrid materials may represent a crucial advantage over inorganic ones [10]. Moreover,
TE devices fed by the heat produced during metabolic processes are considered today a
promising energy source for wearable electronics [1], such as fitness trackers, smartwatches,
and medical sensors. This latter class of devices requires the simultaneous fulfilment of
(at least) two conditions: a good TE efficiency and a suitable fitting to the human body (as
films, patches, or clothes), as allowed by flexible TE materials. In this line, we foresee that
hybrid TE materials, combining the good electrical transport properties of semiconducting
transition metal dichalcogenides (TMDC) with the typically low thermal conductivity of
organic compounds, might be considered promising candidates, particularly if the solution
is processable and cast as thin films [3,11].

Our interest in TE applications of TMDC focuses on those species that crystallize in
layered structures. In these cases, the basic stoichiometry is MX2, where M is a transition
metal, and X is a chalcogen: S, Se, or Te. These materials consist of tightly and covalently
bonded X-M-X stacks or sheets running normal to one crystal axis (usually taken as the
c-direction); at variance, the stacking sequence and geometry are stabilized by weak(er) van
der Waals (vdW) interactions between the highly polarizable X atoms of adjacent layers. For
what it matters here, one of the most interesting properties of TMDC is their ability to act as
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host lattices and, consequently, to interact with a wide variety of guest atoms or molecules
to give rise to the formation of intercalation compounds [12–14]. Different synthetic
methods for the preparation of such hybrids exist (liquid permeation, exfoliation, etc.),
which have been beautifully reviewed by Guo et al. and Jung et al. [15,16]. Among layered
TMDC, titanium disulfide (TiS2, the archetype of 2D transition metal dichalcogenides) is
a promising candidate for n-type thermoelectrics owing to some remarkable properties:
it is chemically stable, mechanically manageable [17], and environmentally benign and
contains earth-abundant elements (Ti and S).

Intercalation compounds of TMDC, where neutral organic molecules (NOM) are
inserted in a regular or less ordered fashion, have been the subject of numerous stud-
ies [13,18–20]. However, many relevant aspects, such as stoichiometry, chemical stability,
thermal inertness, polymorphic occurrence, or the nature of MX2-NOM bonding, are still
not completely clarified.

In this paper, we report the synthesis and both the physicochemical and the structural
characterization of TMDC–alkylamine intercalation compounds obtained by a simple and
reproducible, green and solventless mechanical grinding process, which fulfills the atom
economy protocol [14,21].

Based on the experimental evidence of elemental sulfur formation from the TiS2–
hexylamine hybrid upon aging in environmental conditions (an obvious drawback for
ambient use and exposure of this material), we present an ab initio DFT study and evaluate
the formation enthalpy of the several species that could explain possible reaction paths
toward the (undesired) formation of the crystalline (orthorhombic) S8 species. In this way,
the most probable decomposition mechanism is pinpointed, paving the way for proper
countermeasures to be taken into account for practical applications.

2. Materials and Methods
2.1. Synthesis

TiS2 powder (99.8% metals basis, Alfa Aesar, Haverhill, MA, USA) and liquid n-
hexylamine (99%, Sigma-Aldrich, St. Louis, MO, USA, labeled as HA in the following),
combined in a 1:4 molar ratio, were mixed in an agate mortar and manually ground with
a pestle for 30 min (Figure 1). This synthesis was found to be highly reproducible. After
grinding, the volume of the powders expanded significantly, indicating that the intercala-
tion was effective, with an evident color change from black to shiny brown. The intercalated
hybrid is labeled as TiS2/HA below. The pertinent chemical reaction then reads:

TiS2(s) + x [n-C6H13NH2(l)]→ TiS2(C6H13NH2)x(s) with x ≈ 1 (1)
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Figure 1. Scheme of the intercalation process through mechanochemical synthesis.

This material was found to be unstable if exposed for a prolonged time to environmen-
tal conditions. Indeed, we noticed that after 12 months storage without specific precautions,
TiS2/HA had gone through macroscopic changes. For this reason, the effect of aging on
this sample was further investigated. Two batches of freshly prepared TiS2/HA were left
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for 1 week in different environments: one in air and the other in inert atmosphere (N2),
both in the dark and at room temperature.

2.2. Experimental Characterization

X-ray powder diffraction (XRPD) data were acquired in Bragg–Brentano geometry on
a Rigaku Miniflex 600 (Tokyo, Japan) or on a Bruker D8 Advance diffractometer (Billerica,
MA, USA), both working in vertical scan using Ni-filtered Cu Kα radiation. XRPD traces
were analyzed with Topas [22], for peak hunting whole pattern profile analyses, in the struc-
tureless (Le Bail) or Rietveld modes (see Supplementary Materials for the full description
of such analyses).

Thermogravimetric traces under nitrogen were acquired from room temperature
to 700 ◦C using a TA Q500 thermogravimetric analyzer (New Castle, DE, USA) with a
Pt sample holder. Micro-Raman spectra were recorded on a Horiba Raman Evolution
spectrometer employing a confocal microscope with 50× long working distance and a laser
with an excitation wavelength of 633 nm. Imaging by scanning electron microscopy (SEM)
was performed in secondary electron mode using FEI Versa 3D (Lincoln, NE, USA) using a
10 kV acceleration voltage.

2.3. Computational Methods

Periodic ab initio DFT + U calculations were carried out with the PWscf package in the
Quantum ESPRESSO 6.7 suite [23,24]. TiS2 hybrids were modeled starting from the P-3m1
trigonal parent structure, and enlarging the c lattice parameter to accommodate amines.
All structures were fully relaxed, and energies were calculated using a k-space sampling
over a dense 8 × 8 × 4 grid. The pseudopotentials and kinetic energy and density cut-offs
were taken from the standard solid-state pseudopotential efficiency library (SSSP) [25,26].
All calculations were performed using the generalized gradient approximation [27] and the
PBEsol exchange-correlation functional [28]. The value of Hubbard U parameter for the Ti
atom was set to 3 eV [29]. The van der Waals interlayer interactions were considered using
Grimme’s D2 dispersion correction [30,31].

3. Results and Discussion

The macroscopic evidence of materials swelling during synthesis clearly indicated that
hexylamine could be rapidly incorporated into TiS2 by a simple mechanochemical synthetic
method. This unsophisticated method was indeed quantitative and could be repeated
many times with the same outcome, providing robust information on its reproducibility.
The structural changes were easily followed by acquiring X-ray powder diffraction (XRPD)
data from the final product. In this sense, XRPD was first used in its qualitative (i.e., finger-
printing) mode, and when later used in a quantitative way, it allowed the determination
of the axial d-spacings of the intercalated materials and for assessing either the presence
of contaminant residues or the (unexpected) formation of elemental sulfur upon sample
degradation. Specifically, in the pristine TiS2 solid, where Ti4+ ions are sandwiched between
two sulfide layers, the 001 peak, corresponding to the stacking periodicity, falls near 15.7◦

(i.e., 5.69 Å). After 30 min grinding, when the macroscopic alterations exhibited by the
powders (liquid amine absorbed, volume increment, and color change) indicated that the
intercalation of hexylamine into TiS2 occurred, XRPD was used to monitor the changes in
the interlayer distance between adjacent S-Ti-S sheets. In the TiS2/HA species, the 001 peak
in the XRD pattern (the strongest one in the traces shown in Figure 2) shifted from 15.7◦

to 4.1◦. This implies an enormously increased (4×) separation between layers (21.6 Å)
compared with that found on the pristine TiS2 (5.69 Å), confirming HA intercalation.
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Figure 2. XRPD patterns of (a) pristine TiS2 and (b) TiS2/HA.

It is worth noting that the stacking sequence in polymorphs and polytypes of interca-
lated TiS2 can be different, and is normally addressed by the occurrence of superstructure
peaks, here not observed. However, since we detected peaks along only one reciprocal
space rod (00l), this technique may be fully blind to polymorphs occasionally sharing the
same d-spacing along c. Thus, we cannot exclude that the TiS2 layers in the intercalated
hybrids are slightly offset in the xy plane.

Considering the c-axis expansion (ca. 15.9 Å), we can safely conclude that HA was
embedded into the TiS2 lattice, forming a bilayer structure. Since the estimated length
of a single HA molecule, in its common all-trans conformation, H-bonded to S and van
der Waals radii-corrected, is ca. 11.5 Å, the limited increase of the c-axis value suggests
that the intercalated molecules possess a measurable inclination in the van der Waals
gap of TiS2, being 44◦ the estimated angle: sin−1(15.9/(2 × 11.5)) = 43.7◦ (Figure 3). Our
DFT computational analysis provided geometry optimization of the HA location and
orientation, eventually leading to an inclination of 40.0◦, in very good agreement with the
purely geometrical consideration set above. Density and geometrical considerations also
indicate that 100% filling of the interlayer separation requires a stoichiometric TiS2/HA
formulation (one amine per TiS2 unit formula), which, inter alia, would provide a cross-
section area of ca. 20.0 Å2, like that found in the orthorhombic all-trans polyethylene crystal
phase [32].
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Thermogravimetric studies (TGA) were performed to estimate the quantity of hexy-
lamine in the inorganic matrix, through calculation of the molar coverage fraction (as
mol/mol TiS2), defined as:

∆%org ×MM(TiS2)

MM(HA)×
(
100− ∆%org

) (2)

where ∆%org is the weight loss at 250 ◦C due to the organic moieties, and MM are the molar
masses.

The weight loss of pristine TiS2 was 3.36%, which was subtracted from ∆%org. To
obtain a reproducible result, the sample was prepared and subjected to TGA analysis
thrice. The average weight loss of the organic component was 43.06 ± 0.26%. Then, the
exact stoichiometry of the intercalated system sample was TiS2(HA)0.833, not far from the
TiS2(HA) formula used as a model for our DFT simulations (vide infra).

After 12 months of aging in the dark at environmental conditions, the XRPD pattern of
powders of TiS2/HA evidenced the limited stability of this intercalated material. Moreover,
the formation of new crystalline phases was clearly observed. Indeed, jointly with residual
TiS2/HA, elemental sulfur was formed in its low-temperature/low-pressure orthorhombic
polymorph (Fddd space group [33]). The complete Le Bail/single peak and Rietveld
refinement plot for such sample, which contains TiS2/HA, an unknown contaminant
and crystalline sulfur, is shown in Figure 4.
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Figure 4. XRD pattern of 12-month-aged TiS2/HA, showing the partial degradation of the intercalated
material with the formation of crystalline sulfur. Data modeling of the polyphasic TiS2/HA sample
was performed by a hybrid approach comprising Rietveld refinement of rhombic sulfur and 1D
structureless Le Bail refinement of the TiS2/HA species. Blue trace: observed data; red trace, simulated
pattern. Difference plot (in grey) and peak markers, for sulfur and 00l reflections belonging to the
TiS2/HA crystal phase (blue ticks), are drawn at the bottom. The three spurious peaks highlighted
by the blue vertical lines are attributed to different HA packing (or content) and/or to unknown
contaminants.

A puzzling and open question, however, remains: what is the fate of titanium atoms?
As anticipated, sulfur exsolution is accompanied by the formation of an unknown and
partially crystalline contaminant (see blue vertical lines in Figure 4). The few uninterpreted
diffraction peaks do not match any titania polymorph, nor could they be related to any other
reasonable reaction product, such as those presented in the computational study discussed
below, with the obvious substitution of NH3−n residues with CH3(CH2)5NH2−n ones
(n = 0, 1, 2). Additionally, the large incoherent scattering raising the overall background
level suggests that noncrystalline components are present (amorphous titania and its
congeners [34], to mention a few).

Further evidence of sulfur demixing is given by Raman spectroscopy. Figure 5 shows
the Raman spectra of three samples: pristine TiS2 and TiS2/HA (in the 200–500 cm−1 range)
and aged TiS2/HA (20–500 cm−1). As expected, the Raman spectrum of the as-prepared
TiS2/HA is very similar to that of pristine TiS2, while the aged TiS2/HA hybrid exhibits
many more signals due to sulfur exsolution.
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(a,b), the deconvolution of the Raman peaks with two components is shown.

The phonon modes at the Γ-point of the reciprocal space can be probed by Raman and
IR spectroscopies. The primitive cell of TiS2 consists of two chalcogen atoms and one metal
atom with trigonal prismatic coordination, with the optical normal modes of vibration A1g,
Eg (Raman active), A2u, and Eu (IR active). The experimental Raman spectrum was then
interpreted through simulation of the active modes (Table 1).

Table 1. Vibrational modes of TiS2 calculated by DFT + U simulations.

Mode Raman Shift (cm−1)

Eu 162.45
Eg 233.10
A1g 321.23
A2u 361.10

The calculated Raman shifts are in very good agreement with the experimental ones.
In particular, the Raman-active mode out of the plane (A1g) is measured at 326.9 cm−1 for
the pristine system, and 322.7 cm−1 for the intercalated one, confirming that the simulation
captures well the electronic structure of the layered compound.

A high-energy shoulder peak located at ~360 cm−1, labeled Sh in the literature, is
evident in the Raman spectra as an additional component (shown in Figure 6, TiS2 and
TiS2/HA). Although this peak position matches the calculated frequency of the A2u mode,
it cannot be ascribed to this vibrational mode, the symmetry of which (A2u) makes it only
IR active. The physical origin of this shoulder has been subject to several interpretations in
the literature, but no general consensus has been reached to date [35–37]. Significantly, the
presence of intercalated HA between the Ti-S layers does not affect the vibration modes in
the measured range (see Figure 6).
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Figure 6. Comparison between the Micro-Raman spectra of pristine TiS2 (black) and of the intercalated
TiS2/HA hybrid (blue).

An interesting aspect of the change brought about by the intercalation process is the
morphological evolution of the sample with time, evident at both the macroscopic and
the microscopic scales. As Figure 7 shows, pristine TiS2 is a fine and dry black powder,
while TiS2/HA is a brown sticky powder, probably because of residual (not intercalated)
hexylamine. Due to progressive material degradation, after 2 months, TiS2/HA turns
almost grey, and 1 year later, a yellow powder is found instead. The morphology of TiS2,
freshly prepared and aged (in air) TiS2/HA hybrids, was also investigated using SEM
imaging (Figure 8).
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Figure 8. SEM images of (a) pristine TiS2, (b) fresh TiS2/HA, and (c) aged TiS2/HA.

The SEM images of the intercalated compounds (both fresh and aged) show a substan-
tial modification of the TiS2 morphology. In pristine TiS2, the lamellar shape of the crystals
is evident, but it fully disappears in the freshly prepared TiS2/HA hybrid, demonstrating
that the mechanical treatment induces a severe morphological change, where a simple
topotactic HA insertion does not maintain crystal size and shapes, it being accompanied by
a complete lamellar disruption. Estimation of the average crystal domain lengths (along c)
from the peak broadening of XRPD data confirms that from micrometer-sized TiS2 crystals,
coherent domains of average size as low as 40 nm are formed in TiS2/HA. On the other



Materials 2022, 15, 8297 8 of 13

hand, there is no substantial microscopic modification upon aging, despite the occurrence
of sulfur exsolution (with coherent isotropic domains of about 50 nm) and partial sample
degradation. The hybrid structure, obtained by intercalation of the HA within the TiS2
lattice, remains stable even after partial sulfur elimination. The hypothesis is confirmed
by the XRPD pattern reported above in Figure 4, as the persistence of the 001 peak of the
intercalated compound is the dominating signal also upon material aging.

In order to pinpoint the driving force behind the decomposition of TiS2/HA, and a
possible mechanism for sulfur exsolution, we calculated the enthalpy variations of several
possible reactions (∆Hr, as E(products)—E(reactants)) with the DFT + U scheme described
above. As is standard practice in this kind of simulations, the difference in total energy of
products and reactants is taken as an approximation of the enthalpy of reaction.

Initially, different sulfur-deficient TiS2 superstructures were modeled. Three progres-
sively larger supercells were constructed, with a corresponding dilution of sulfur vacancies.
These ideal structures are synoptically depicted in Figure 9. As shown in Table 2, the
enthalpic cost for the formation of a sulfur vacancy decreases as the cell size increases, but
in all cases, the formation of such vacant sites is never energetically favored per se. Using a
simple linear extrapolation of the ∆Hr with 1/n plot (for the TinSm formulation), the energy
required to form an infinitely diluted (neutral) S-vacancy in TiS2 at the bulk limit can be
estimated to be ca. 2.2 eV.
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Table 2. Formation of sulfur defects in TiS2 at different concentrations (down to 0.03 at%). Extrapola-
tion to an infinitely diluted vacant site leads to 2.2 eV, which is the energy required to eliminate one
single (neutral) S atom from bulk TiS2.

Reaction ∆Hr (eV)

Ti4S8 → Ti4S7 + S 3.14
Ti9S18 → Ti9S17 + S 2.71

Ti16S32 → Ti16S31 + S 2.43
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Once the stability of pristine TiS2 was quantitatively confirmed, to understand and
interpret the experimentally observed spontaneous intercalation of HA, we started con-
sidering two consecutive steps: (i) the formation of the TiS2/HA hybrid and (ii) sulfur
exsolution therefrom.

To reduce computational costs, we investigated the intercalation, within TiS2, of
simple amine molecules (using ammonia and methylamine instead of HA) (Table 3) with
an idealized coverage of one nitrogen atom per four titanium ions (see Figure 10). Our
calculations were then based on 2 × 2 TiS2 supercells with a single-side N-substitution.
The intercalation reaction was mediated by moisture as amines or ammonia were used as
aqueous solutions.

Table 3. Reaction energy of TiS2 intercalation compounds with either aqueous ammonia or aqueous
methylamine.

Reaction ∆Hr (eV)

Ti4S8 + NH4
+ + OH− → Ti4S8NH3 + H2O −2.93

Ti4S8 + CH3NH3
+ + OH− → Ti4S8CH3NH2 + H2O −1.75
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of around 2.25 Å.

That the intercalation reaction, observed experimentally for hexylamine, is energeti-
cally favored is here confirmed by the simulated reaction energies, which are negative for
both ammonia and methylamine cases. Once these adducts are formed, one sulfur atom is
lost and nitrogen from the amine replaces it, with the formation of a Ti-N interaction. The
fact that the NH3 molecule interacts favorably with Ti, replacing S in its position, suggests
that the Ti-N bond formation may drive S exsolution. For this reason, a few different
possible reactions were tested, all involving the formation of defective TiS2 slabs where
amine groups carrying one to three H atoms actively interact with open Ti sites in close
proximity to a sulfur vacancy. Some of these complexes are shown in the case of ammonia
(Figure 11), where the S atom is replaced by N. A similar situation is obtained in the case of
methylamine.

The last row in Table 4 indicates that the substitution of S by N is probably mediated
by the action of molecular oxygen. In other words, the intercalated TiS2/amine compounds
seem to undergo sulfide oxidation to elemental sulfur, accompanied by a structural change
in which Ti-N bonds are formed. In particular, the imido Ti4S7NH structure, where N is
bound to three Ti sites, appears to be the most stable. Such µ3-NH coordination geometry on
three Ti ions should not surprise, as it was found in a number of polynuclear organometallic
complexes and, more paradigmatically, also in the highly symmetric [Ti(NH)(Cp*)]4 cubane
(Cp* = tetramethyltrimethylsilylcyclopentadiene) [38].



Materials 2022, 15, 8297 10 of 13Materials 2022, 15, x FOR PEER REVIEW 10 of 14 
 

 

  
Ti4S7NH3 Ti4S7NH2 

 
Ti4S7NH 

Figure 11. Top view of the nitrogen-containing Ti-S slabs formed by the loss of S atoms, substituted 

by ammonia molecules. In the last panel, all H atoms are eclipsed by N atoms, as N-H bonds lie 

perpendicular to the plane of drawing. 

The last row in Table 4 indicates that the substitution of S by N is probably mediated 

by the action of molecular oxygen. In other words, the intercalated TiS2/amine compounds 

seem to undergo sulfide oxidation to elemental sulfur, accompanied by a structural 

change in which Ti-N bonds are formed. In particular, the imido Ti4S7NH structure, where 

N is bound to three Ti sites, appears to be the most stable. Such μ3-NH coordination ge-

ometry on three Ti ions should not surprise, as it was found in a number of polynuclear 

organometallic complexes and, more paradigmatically, also in the highly symmetric 

[Ti(NH)(Cp*)]4 cubane (Cp* = tetramethyltrimethylsilylcyclopentadiene) [38]. 

Table 4. Reaction energy of the formation of Ti-N bonds arising from the exsolution of S and its 

substitution with the (deprotonated) ammonia molecules. 

Reaction ΔHr (eV) 

Ti4S8NH3 → Ti4S7NH3 + S 1.51 

Ti4S8NH3 → Ti4S7NH2 + S + ½  H2 1.47 

Ti4S8NH3 → Ti4S7NH + S + H2 1.76 

Ti4S8NH3 + ½  O2 → Ti4S7NH + S + H2O −0.83 

However, it should be noted that all four reactions reported in Table 4 are in principle 

consistent with the available experimental evidence (exsolution of crystalline sulfur). The 

impossibility of verifying experimentally which is the true path to sulfur elimination 

(which likely occurs very locally without the formation of a clearly distinguishable crys-

talline phase) makes uncertain the nature, stoichiometry, and structure of the newly 

formed Ti/S/N product. 

In order to quantitatively assess the effective charge transfer between N and Ti, the 

electron densities (in the form of Bader charges [39,40]) of pristine TiS2 and different Ti-N 

complex supercells were compared (Table 5). By comparing bound structures with vary-

ing amounts of H atoms, it is seen that the Ti-N charge transfer is more and more effective 

as the amine group loses hydrogen atoms and forms stronger bonds with titanium: the Ti 

electron density decreases and the N/H electron density increases. 

Figure 11. Top view of the nitrogen-containing Ti-S slabs formed by the loss of S atoms, substituted
by ammonia molecules. In the last panel, all H atoms are eclipsed by N atoms, as N-H bonds lie
perpendicular to the plane of drawing.

Table 4. Reaction energy of the formation of Ti-N bonds arising from the exsolution of S and its
substitution with the (deprotonated) ammonia molecules.

Reaction ∆Hr (eV)

Ti4S8NH3 → Ti4S7NH3 + S 1.51
Ti4S8NH3 → Ti4S7NH2 + S + 1/2 H2 1.47

Ti4S8NH3 → Ti4S7NH + S + H2 1.76
Ti4S8NH3 + 1/2 O2 → Ti4S7NH + S + H2O −0.83

However, it should be noted that all four reactions reported in Table 4 are in principle
consistent with the available experimental evidence (exsolution of crystalline sulfur). The
impossibility of verifying experimentally which is the true path to sulfur elimination (which
likely occurs very locally without the formation of a clearly distinguishable crystalline
phase) makes uncertain the nature, stoichiometry, and structure of the newly formed
Ti/S/N product.

In order to quantitatively assess the effective charge transfer between N and Ti, the
electron densities (in the form of Bader charges [39,40]) of pristine TiS2 and different Ti-N
complex supercells were compared (Table 5). By comparing bound structures with varying
amounts of H atoms, it is seen that the Ti-N charge transfer is more and more effective as
the amine group loses hydrogen atoms and forms stronger bonds with titanium: the Ti
electron density decreases and the N/H electron density increases.

To experimentally test the hypothesis that the structural change (and material de-
composition) of TiS2/HA was a consequence of exposure to molecular oxygen, a newly
prepared batch of TiS2/HA was kept under inert atmosphere, while another batch was kept
in air for comparison (both in the dark and at room temperature, for 1 week). Figure 12
compares the XRPD patterns of these two samples. The absence of crystalline sulfur in the
case of TiS2/HA kept in inert atmosphere is the experimental confirmation of the proposed
reaction pathway, where O2 actively participates in sulfur elimination.
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Table 5. Bader charges of TiS2 supercell and the Ti-N supercells formed via sulfur exsolution and
substitution with nitrogen. The number of electrons explicitly included in the calculation is indicated
for each element.

Ti4S8 Ti4S7NH3 Ti4S7NH2 Ti4S7NH

Ti (10) 10.23 10.2721 10.1974 10.1304
S (8) 6.89 6.9950 6.9530 6.9218
N (7) - 6.2964 6.3866 6.4353
H (1) - 0.5500 0.5760 0.5900

Total Ti/S 96.00 90.05 89.46 88.97
Total ammonia - 7.95 7.54 7.03

Total 96.00 98.00 97.00 96.00
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4. Conclusions

We report experimental evidence of limited stability in ambient conditions of hexyl-
amine-intercalated titanium disulfide, a material that has recently attracted interest for
prospected thermoelectric applications. X-ray powder diffraction and Raman spectroscopy
clearly show the formation of crystalline sulfur at the expense of the layered TiS2/hexylamine
compound. Different degradation mechanisms were tested by ab initio periodic DFT calcu-
lations on a TiS2/NH3 model system, suggesting that TiS2 reacts with molecular oxygen,
resulting in Ti-N adducts, where N resides in lieu of S vacancies, with the subsequent
formation of elemental sulfur and water. A comparison of the aging of TiS2/HA in the
presence or the absence of oxygen further corroborates the proposed mechanism, since
prolonged storage in inert atmosphere does not result in the degradation of the intercalated
material. Since our findings point to a limited stability in air of such hybrid systems,
appropriate actions taken to minimize exposure to oxygen in practical applications should
be devised for TMDC to be used in environmental conditions. While this appears to be a
severe limitation for their wide usage, similar issues have been recently solved for oxygen-
and moisture-labile hybrid materials (lead halide perovskites, above all [41]), which are
deposited within thin layers of nonpermeable, and optically transparent, plastic films.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma15238297/s1, Figure S1: Rietveld refinement of the pristine TiS2

https://www.mdpi.com/article/10.3390/ma15238297/s1
https://www.mdpi.com/article/10.3390/ma15238297/s1
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material; Figure S2: Structureless 1D Le Bail refinement of TiS2/HA hybrid with 00l peaks only;
Figure S3: Structureless 1D Le Bail refinement of TiS2/HA (N2).
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