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Abstract
In this paper convergence theorems for sequences of scalar, vec-

tor and multivalued Pettis integrable functions on a topological
measure space are proved for varying measures vaguely convergent.
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1 Introduction

Conditions for the convergence of sequences of measures (my), and of their
integrals ([ fndmy,), in a measurable space ) are of interest in many areas
of pure and applied mathematics such as statistics, transportation problems,
interactive partial systems, neural networks and signal processing (see, for
instance, [1-3, 9-12, 17]). In particular, for the image reconstruction, which
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2 Convergence for varying measures ...

is a branch of signal theory, in the last years, interval-valued functions have
been considered since the process of discretization of an image is affected by
quantization errors ([19]) and its numerical approximation can be interpreted
as a suitable sequence of interval-valued functions (see for instance [22, 28]).

Obviously, suitable convergence notions are needed for the varying mea-

sures, see for example [15, 16, 18, 21, 23, 24, 30] and the references therein. In a
previous paper [13] we have examined the problem when the varying measures
converge setwisely in an arbitrary measurable space. This type of convergence
is a powerful tool since it permits to obtain strong results, for example the
Vitali-Hahn-Saks Theorem or a Dominated Convergence Theorem [18].
But sometime in the applications it is difficult, at least technically, to prove
that the sequence (my,(A)), converges to m(A) for every measurable set A,
unless e.g. the sequence (my,), is decreasing or increasing. So other types of
convergence are studied, based on the structure of the topological space (2,
such as the vague and the weak convergence which are, in general, weaker than
the setwise. These convergences are useful, for example, from the point of view
of applications on non-interactive particle systems (see [9, 23]).

In the present paper we continue the research started in [13] and we provide
sufficient conditions in order to obtain Vitali’s type convergence results for a
sequence of (multi)functions (f,,), integrable with respect to a sequence (my,),,
of measures when (m,,), converges vaguely or weakly to a finite measure m.
The known results, in literature, as far as we know, require that the topological
space {2, endowed with the Borel o-algebra is a metric space ([15, 16]), or a
locally compact space which is also: separable and metric ( [18]), metrizable
([20]) or Hausdorff second countable ([30]). An interesting comparison among
all these results is given in [23].

In the present paper, following the ideas of Bogachev ([4]), we assume
that  is only an arbitrary locally compact Hausdorff space. The paper is
organized as follows: in Section 2 the topological structure of the space ) is
introduced together with the convergence types considered and some of their
properties. In Section 3 the scalar case is studied; the main result of this section
is Theorem 3.4, where we obtain the convergence of the integrals ( f frdmp)n
over arbitrary Borel sets under suitable conditions. In Section 4 Theorem 3.4 is
applied in order to obtain analogous results for the multivalued case, obtaining
as a corollary also the vector case. In both cases the Pettis integrability of
the integrands is considered. Finally, adding a condition as in [13, Theorem
3.2] we obtain a convergence result for (multi)functions in Proposition 4.4 on
measurable spaces.

2 Topological case, preliminaries

Let Q be a locally compact Hausdorff space and let B be its Borel o-algebra.
The symbol F(€2) indicates the class of all B-measurable functions f : Q —
R. We denote by C(Q2), Cp(£2), C.(2) and Cy(2) respectively the family of
all continuous functions, and the subfamilies of all continuous functions that



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 BTEX template

Convergence for varying measures ... 3

vanish at infinity, have compact support, are bounded.
Throughout, we will use Urysohn’s Lemma in the form ([29, Lemma 2.12]):

e If K is compact and U D K is open in a locally compact €2, then there exists
f:Q—[0.1], f € Cu(), such that xx < f < yu.

All the measures we will consider on (£, B) are finite and by M (Q2) we denote
the family of finite nonnegative measures. As usual a measure m € M(Q) is
Radon if it is inner regular in the sense of approximation by compact sets.

We recall the following definitions of convergence for measures.

Definition 2.1 Let m and my be in M(2). We say that

2.1.a) (mn)n converges vaguely to m (myn — m) ([18, Section 2.3]) if
/ gdmy, — / gdm, for every g € Cp(Q).
Q Q
2.1.b) (mn)n converges weakly to m (myn —» m) ([18, Section 2.1]) if

/ gdmn, — / gdm, for every g € Cp(Q).
Q Q

2.1.¢c) (mn)n converges setwisely to m (mn ~ m) if limy, mp(A) = m(A) for every
A € B ([18, Section 2.1], [16, Definition 2.3]) or, equivalently ([23]), if

/ gdmn, — / gdm, for every bounded g € F(Q).
Q Q

2.1.d) (mn)n is uniformly absolutely continuous with respect to m if for each € > 0
there exists > 0 such that

(FEe€eB and m(E)<d) = supmn(FE) <e. (1)

We would like to note that the condition m, < m, for every n € N, implies that
(mn)n is uniformly absolutely continuous with respect to m.

Remark 2.2 As observed in [18] the setwise convergence is stronger than the vague
and the weak convergence. For the converse implications we know, by [21, Lemma
4.1 (ii)], that if (mn)n is a sequence in M(Q) with my < m, where m € M(Q)
and (mn)n converges vaguely to m, then (mn)n converges setwisely to m. If m
is R-valued this is not true in general, see for example [18, page 143]. The weak
convergence is stronger than the vague convergence; as an example we can consider
mnp := dn (the Dirac measure at the point x = n) and m := 0. The sequence (mn)n
converges vaguely to m, but since m,(R) =1 4 0 = m(R) the convergence cannot
be weak.

Moreover we note that if (mn)n converges weakly to m, then my () — m(Q) (it is
enough to take g =1 in the definition).

We have
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4 Convergence for varying measures ...

Proposition 2.3 Let mn, n € N, and m be in M(Q), with m Radon. If (mn)n is
uniformly absolutely continuous with respect to m and (mn)n is vaguely convergent
to m, then (my)n is weakly convergent to m.

Proof We fix £ > 0 and let f € Cp(2). We set ¢ := max{1,supq |f(w)|}, let § €]0, ]
be taken in such a way that if E is a Borel set with m(E) < §, then

max{/ |f] dm, supmn(E)} <e.
E n

Let K be a compact set such that m(K°) < §. Then by Urysohn’s Lemma let
h : Q — [0,1] be a continuous function with compact support such that h(w) = 1
for w € K. Let g := f - h. Then g € Cy(R2). We have for sufficiently large n € N,
depending on the vaguely convergence,

’/fdm—/fdmn‘

Q Q

< [V =glam+ [ 1f = glmu+| [ gam= [ gdm,|
Q Q Q Q

:/ |f\~|1fh|dm+/ |f|~\17h\dmn+‘/gdmf/gdmn‘
Ke Ke Q Q

<e(c+2).
(]

For other relations among weak or vague convergence and setwise conver-
gence see [21, Lemma 4.1]. Moreover

Proposition 2.4 Let mn, n € N, and m be in M(Q2) with m Radon. If mn < m,
for every n € N, and (mn)n is vaguely convergent to m, then for every f € Ll(m)

and A€ B
lim/ fdmn:/ fdm. (2)
nJA A

In particular (mp)n converges to m setwisely.

Proof Let f € L*(m) be fixed. Given & > 0 there exists g € C¢(€2) such that

€
[0 = glamn < [ 17~ glam < &, Q)
Q Q
Moreover, since (mp)n is vaguely convergent to m, let N(¢/3) be such that
‘/gdm—/gdmn‘<E (4)
Q Q 3

for n > N. Therefore by (3) and (4) for n > N we obtain

oo
S/QIf—g\der/Q\f—gldanr‘/Qgdm—/dimn

Now if A € B, also fxa € L*(m) and (2) follows. In particular ms, = m. O

<e.
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Convergence for varying measures ... 5

Results of the previous type are contained for example in [18, Proposition
2.3] for the setwise convergence when the measures m,, are equibounded by
a measure v for non negative f € L'(v) or in [18, Proposition 2.4] under the
additional hypothesis of separability of {2 for non negative and lower semicon-
tinuous functions f.

We now introduce the following definition

Definition 2.5 Let (myn)n be a sequence in M (). We say that:

2.5.a) A sequence (fn)n C F(2) has uniformly absolutely continuous (mn)-integrals
on 2, if for every € > 0 there exists § > 0 such that for every n € N

(Ae B and mn(A) <0) = /|fn|dmn<54 (5)
A

Analogously a function f € F(Q2) has uniformly absolutely continuous (my )-integrals
on §2 if previous condition (5) holds for f, := f for every n € N.

2.5.b) A sequence (fn)n C F(Q) is uniformly (mn)-integrable on 2 if

lim sup/ | fn]dmn = 0. (6)
[fnl>a

a—+00 n

Remark 2.6 As we observed in [13, Proposition 2.6] if (mn)n is a bounded sequence
of measures and (fn)n C F, then, (fn)n is uniformly (mp)-integrable on (2 if and
only if it has uniformly absolutely continuous (my )-integrals and

sup/ | frn]dmn < 400. (7)
n (9]

3 The scalar case

Proposition 3.1 Let (mn)n be a sequence in M(Q) which is uniformly absolutely
continuous with respect to a Radon measure m € M(§) and vaguely convergent to m.
Let f € C(Q) be a function which has uniformly absolutely continuous (mny)-integrals
on §2. Then,

sup/ |fldmn < +00. (8)
n JQ

Proof Let € > 0 be fixed and let o = o(e) be that of the uniform absolutely continu-
ous (mp)-integrability of f as in formula (5) (with fn = f for each n € N). Moreover
let 6 = (o) > 0 be that of the uniform absolute continuity of (m#)n with respect to
m, as in formula (1).

Since m is Radon, there is a compact set K such that m(Q\ K) < §. By Urysohn’s
Lemma there exists a continuous function h : Q — [0, 1] with compact support such
that h(w) =1 for w € K. Let g := |f|- h. Then g € Cy(£2). Hence

/Ifldmné/ \fldmn+/ |f|dmns/gdmn+s.
Q K Q\K Q
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6 Convergence for varying measures ...

Since (mn)n converges vaguely to m, then

/gdmn—>/gdm<+oo.
Q Q

Hence
SHP/ | f]dmn < sup/ gdmy < 4o0.
n JK n JQ
O

Proposition 3.2 Let (mn)n be a sequence in M(Q) which is uniformly absolutely
continuous with respect to a Radon measure m € M(Q) and vaguely convergent to
m. Moreover let f € C(2) be a function which has uniformly absolutely continuous
(mun)-integrals on £2. Then f € L'(m) and

liTan/Qfdmn = /Qfdm. 9)

Proof By Proposition 3.1 sup,, [, |fldmn < +00. We denote by (gi); an increasing
sequence of functions in C(€2) such that 0 < g 1 |f], m a.e.

By Proposition 2.3 (mn)n is also weakly convergent to m. Now fix k € N. Let Ny (k, 1)
be such that if n > Ny

/ grdm —1< / g dmp,. (10)
Q Q
By Proposition 3.1 we infer
/ grdm —1 < / grdmy < sup/ |fldmn < co. (11)
Q Q n JQ
So, by the Monotone Convergence Theorem applied to the sequence (gg)x we obtain

fe LY(m).
We are showing now that (9) holds. We fix o > 0. Since f € L!(m) there exists a
positive dg such that for every A € B with m(A) < dg then

/A [fldm < o. (12)

Moreover let e(o) > 0 be that of the uniform absolutely continuous (my)-integrability
of fin £2 (with fn = f for each n € N) and ¢ = §(¢) €]0, min{e, dg}[ be that of the
absolute continuity of (mn)n with respect to m.

So, if m(A) < 6 then sup,, mn(A) < € and

sup/ |fldmn < o. (13)
n JA

By Urysohn’s Lemma one can find a compact set K with m(K¢) < § and a
function h : Q — [0,1] in C¢(2) and equal to 1 on K. So g := f - h € Cc().
Since the sequence (mp)n is vaguely convergent to m, there is N2(o) > Nj such that

for n > No
’/ gdmnf gdm
an

for n > Ng7 we have

<o (14)

Then by (13), (14

e 1o
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Convergence for varying measures ... 7
'/(f—g)dmn + / gdmn—/ gdm‘+ ’/(g—f)dm’ <
Q Q Q Q
f(A = h)dmn| + /gdmnf/gdm‘Jr f(lfh)dm‘g
Q Q Q Q
/ |f|dmn+a+/ | f| dm < 30
Ke Ke
and the thesis follows. O
Now our aim is to obtain a limit result
lim/ fndmy, :/ fdm, for everyA € B. (15)
noJA A

For the scalar case, using a Portmanteau’s characterization of the vague con-
vergence in metric spaces (see for example [20]), sufficient conditions when
A =, are given

- in locally compact second countable and Hausdorff spaces, ([30, Theorems
3.3 and 3.5]), by Serfozo, for the vague and weak convergence respec-
tively, when the sequence (f,), converges continuously to f. Under a
domination condition in the first result while, in the second, the uniform
(my, )-integrability of the sequence (fy),, with f, > 0 for every n € N, is
required;

- in locally compact separable metric spaces ([18]) by Hernandez-Lerma and
Lasserre, obtaining a Fatou result and asking for the convergence of the
sequence of measures an inequality of the lim inf of the m,, on each Borelian
set;

- in metric spaces ([15, 16]), where the authors obtained a dominated con-
vergence result for sequences of equicontinuous functions (f,), satisfying
the uniform (my,)-integrability.

In Theorem 3.4, taking into account Remarks 2.2 and 2.6, we extend [30,
Theorem 3.5], obtaining a sufficient condition when the convergence is vague,
the functions f, are real valued and using the uniformly absolutely contin-
uous (my,)-integrability of the sequence (f,)n. Later, in Section 4, we will
also extend it to the vector and multivalued cases making use of the Pettis
integrability.

We assume only that € is a locally compact Hausdorff space and then, in
our setting, () is a Tychonoff space, i.e. a completely regular Hausdorff space
([14, Theorem 3.3.1]). So we are able to use the following Portmanteau’s
characterization of the vague convergence for positive measures given in [4].
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8 Convergence for varying measures ...

Theorem 3.3 ([4, Corollary 8.1.8 and Remark 8.1.11]) Let Q be an arbitrary com-
pletely regular space and let m and mqn, n € N, be measures in M(Q) with m Radon
and assume that limp, mn (Q) = m(Q). Then the following are equivalent:

3.8.1) (mn)n is vaguely convergent to m;

3.3.ii) for any closed set F' C §2, limsup,, mn(F') < m(F).
So we have

Theorem 3.4 Let m and mn, n € N, be measures in M(Q), with m Radon. Let
Iy fn € F(Q2). Suppose that

(3.4.1) fn(t) = f(t), m-a.e.;
(8.4.1) feC(Q);
(8.4.iit) (fn)n and f have uniformly absolutely continuous (mn)-integrals on §2;

(3.4.10) (mn)n is vaguely convergent to m and uniformly absolutely continuous with
respect to m.

Then f € L'(m) and

lim/ fndmy = / fdm  for every A € B. (16)
nJA A

Proof By Proposition 3.2 the function f € Ll(m). We proceed by steps.

Step 1 We prove (16) for A = Q.

Fix € > 0 and let 6 := min {§,6(§), 6 (
continuity of [ |f|dm , and by (3.4.iii) 4
respect to (mn)n

By the hypothesis (3.4.iv) let 0 < §p < d be such that

(FeB and m(E)<dy) = supmp(E) < 0. (17)

|

)} > 0 where 67(5) is that of the absolute
&) is that of (5) for both (fn)n and f with

—~ )

By the Egoroff’s Theorem, we can find a compact set K such that f,, — f uniformly
on K and m(K°) < dp.

We observe that by condition 3.4.iv) and by Proposition 2.3 (mn )n weakly converges
to m and then limy, myn (Q2) = m(Q). So by Theorem 3.3, let Ny € N be such that

mp(K) <m(K)+1, (18)

for every n > Ng. Moreover, since the convergence is uniform on K, let Ny > Ng € N
be such that

e
[fn(t) = )] < 6K +1) (19)

for every t € K and n > Ni. Then, for all n > Ny,

[ 1= i < % (20)
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Convergence for varying measures ... 9

Therefore by (18) and (19) we obtain, for every for n > Ny,

/K‘fn*f|dmn§m'mn(l()<% (21)

Since m(K°) < &g by (17) it follows that my, (K€) < § for every n € N. Moreover, by
hypothesis 3.4.iii) and by the choice of §, we have that

wa { [ Aflam, [ Apalamn, [ iflamn b < 22

By Urysohn’s Lemma let h : Q@ — [0,1] be a continuous function with compact
support equal to 1 on K. Then g := f - h € Cc(Q2) and by (22) we have

€
max {/ |f — gldmnp, / |f —g|dm} < 5 (23)
KC KC
Moreover, since (mn)n is vaguely convergent to m, let n > Na > Nj be such that
€
’/gdm—/gdmn’<7. (24)
Q Q 6

Therefore by (21)—(24) for n > N2 we obtain

/Q fdm — /Q frdimn /Q (fn = F)dmn
[ = pydm

<

[
o [ Apalamcs [ stamt | [ am = [ gam,

/sz fam = Qfdmn
E

<t [ Ar-glam+ [ \f—g\dmw‘/gdm—/gdmn
2 Jke Ke Q Q
so (16) follows for A = Q.

IN

IA

N (25)

<
2

<e

Step 2 Now we are proving that (16) is valid for an arbitrary compact set K.
Let once again, £ > 0 be fixed. By (3.4.iii) and (3.4.iv) there exist d1,d2 > 0 such
that:
j1) if mn(F) < 02, then / | fn]| dmn < € for every n € N;
j2) if m(E) < 41, then mn(E) < d2 for every n € N;
j3) if m(E) < 41, then / [fldm < e.
E
Let now U D K be an open set such that m(U \ K) < d1. Then let g : 2 — [0,1] be
continuous and such that ¢ = 1 on K and zero on U°.

Observe that the sequence (fng)n and the function fg satisfy all the hypotheses of
Theorem 3.4 so, for the Step 1, we have

lim/ fngdmnzlim/ fngdmn:/fgdm:/ fgdm.
n Ju noJo Q U

Then, by the previous inequalities and for n sufficiently large, we have

‘/Kfndmnf/dem‘ :‘/Kfngdmn*/ngdm+(/chngdmnf/chgdm)+



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 BTEX template

10 Convergence for varying measures ...

([ sogdma— [ gaim)
| gugdm = [ gadm +'/chngdmn—/chgdm’
= /angdmn—/ﬂfgdm +'/U\Kfngdmn—/U\ngdm‘

< /fngdmn—/ fgdm +/ |fn|dmn+/ |fldm < 3e.
Q Q U\K U\K

Step 8 Let now B a Borelian set and let € > 0, d1,d2 > 0 as in Step 2. Let Cq be a
compact set with C; C B such that m(B \ C1) < d1. So

om o

g' fndmn—/ fdm’+/ |fn\dmn—|—/ | f| dm.
e c B\Ci B\C,

So the assertion follows from ji) — j3) and the compact case in Step 2 and this ends
the proof.

IN

S‘ fndmn—/ fdm‘—l—
Cl Cl

+

O

Corollary 8.5 Let m and mp, n € N, be measures in M(Q2), with m Radon. If (mn)n
is vaguely convergent to m and uniformly absolutely continuous with respect to m,
then (mn)n converges setwisely to m.

Proof 1t is a consequence of Theorem 3.4 if we assume fn = f = 1 for every n € N.
O

Remark 3.6

3.6.a) We observe that under the hypotheses of Theorem 3.4, if f € C(Q2), then also
f* are in C(Q) and fif(t) — fT(t) m-a.e. as n — oo. In fact

|1l = 11| < [0 = 1]

2fn = futIfal = FHIf1=2f7

2fn = Il = fn = [fI=F=2f".
Moreover also (fif), and f¥ satisfy condition 3.4.iii) since

fu <|fnl and T <),
Therefore in the hypotheses of Theorem 3.4 we get also

lim fﬁfdmn = / fj[dm7 for every A € B.
A A

n

3.6.b) Theorem 3.4 is still valid if we replace condition 3.4.1) with
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3.4.7’) fn converges in m-measure to f.

In fact, by 3.4.1), there exists a subsequence of (fn, ), which converges m-a.e. to f.
Then Theorem 3.4 is true for such subsequence. So this implies that the result of
this theorem, equality (16), is still valid for the initial sequence (with convergence
in m-measure) because if, absurdly, a subsequence existed in which it is not valid,
there would be a contradiction.

A simple consequence of the Theorem 3.4 is the following

Theorem 3.7 Let m and mn, n € N, be measures in M(2), with m Radon. Let
Iy fn € F(Q). Suppose that

(3.7.4) fn(t) — f(t), m-a.e.;
(3.7.43) f € Cp(Q);
(3.7.4%) (fn)n has uniformly absolutely continuous (mpy)-integrals on £2;

(3.7.4v) (Mmn)n is vaguely convergent to m and uniformly absolutely continuous with
respect to m.

Then
lim/ fndmp, :/ fdm, for every A € B.
nJA A

Proof The assertion follows from Theorem 3.4 since f has uniformly absolutely
continuous (my)-integrals, in fact it is enough to take the pair (g,d(¢/M)) where

M > supeq [f(#)]- O

4 The multivalued and the vector cases

4.1 The multivalued case

Let X be a Banach space with dual X* and let Bx~ be the unit ball of X*.
The symbol cwk(X) denotes the family of all weakly compact and convex sub-
sets of X. For every C' € cwk(X) the support function of C is denoted by
s(+,C) and defined on X* by s(z*,C) = sup{{z*,z): x € C}. Recall that X
is said to be weakly compact generated (briefly WCG) if it possesses a weakly
compact subset K whose linear span is dense in X.

Amap T : Q — cwk(X) is called a multifunction. A space Y C X m-
determines a multifunction T if s(z*,T) = 0 m a.e. for every z* € Y+, where
the exceptional sets depend on z*.

A multifunction T is said to be

® scalarly measurable if t — s(a*,T'(t)) is measurable, for every a* € X*;

® scalarly m-integrable if t — s(x*,T'(¢)) is m-integrable, for every z* € X*,
where m € M(Q);

® scalarly continuous if for every z* € X*, t — s(x*,T'(t)) is continuous.
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A multifunction T' : Q — cwk(X) is said to be Pettis integrable in cwk(X)
with respect to a measure m (or shortly Pettis m-integrable) if T' is scalarly
m-integrable and for every measurable set A, there exists Mp(A4) € cwk(X)
such that

sz, Mr(A)) = / s(z*,T) dm for all z* € X™.
A

We set / I'dm := Mrp(A).

A
For the properties of Pettis m-integrability in the multivalued case we refer
to [5-8, 26, 27], while for the vector case we refer to [25]. If T is single-valued
we obtain the classical definition of Pettis integral for vector function.

Given a sequence of multifunctions we introduce now some definitions of
uniformly absolutely continuous scalar integrability using Definition 2.5.

Definition 4.1 For every n € N, let my be a measure in M(2) and let I'y, : 2 —
cwk(X) be a multifunction which is scalarly mp-integrable. We say that the sequence
(T'n)n has uniformly absolutely continuous scalar (my)-integrals on (2 if for every
€ > 0 there exists § > 0 such that, for every n € N and A € B, it is

mp(4) <6 = sup{/ [s(z™, Tp)|dmn: || 2* ||< 1} <e. (26)
A

Analogously a multifunction T' has wuniformly absolutely continuous scalar (my)-
integrals on 2 if previous condition (26) holds for I'y, := T’ for every n € N. Moreover
we say that ' has uniformly absolutely continuous scalar m-integrals on {2 if, in for-
mula (26), it is I'y, := " and my = m for every n € N. In this case we have, for every
A€ B,

m(A) <§ = sup{/A|s(m*,F)|dm: | 2* [I< 1} <e. (27)

Theorem 4.2 Let I, Ty, n € N, be scalarly measurable multifunctions. Moreover let
m, mp, n € N, be measures in M(Q) and let m be Radon. Suppose that

(4.2.7) (Tn)n and T have uniformly absolutely continuous scalar (mnp)-integrals on
2;
(4.2.37)) s(z*,Tp) — s(z*,T) m-a.e. for each z* € X*;
(4.2.533) T is scalar continuous;

(4.2.3v) (mn)n is vaguely convergent to m and uniformly absolutely continuous with
respect to m;

(4.2.v) each multifunction T'y, is Pettis my-integrable.

Then the multifunction T' is Pettis m-integrable in cwk(X) and

liTans(m*,/AFn dmn) :s(af",/AI‘clm)7 (28)

for every x* € X* and for every A € B.
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Proof Let * € X™ be fixed. Then the sequence of functions (s(x*,l"n))n and the
function s(z*,T') defined on 2 satisfy the assumptions of Theorem 3.4. So, for each
AeB

lim/ s(x™,Tn) dmp :/ s(z*,T) dm. (29)
nJa A

In order to prove that I' is Pettis m-integrable, following [26, Theorem 2.5], it is
enough to show that the sublinear operator Tt : X* — Ll(m), defined as Tr(z*) =
s(z*,T) is weakly compact (step Cy) and that I' is determined by a WCG space
Y C X (step D).

Cw) First of all we prove that the operator TT is bounded. By (4.2.jjj) T is scalar m-
integrable. Therefore I is Dunford-integrable in cw*k(X™*"), where X™** is endowed
with the w*-topology, and for every A € B let M (A) € cw*k(X**) be such that

s(z*, MP (4)) = /As(x*,r)dm < +o0, (30)

for every z* € X*. So s(z*, M (-)) is a scalar measure and

/\ ¥, T)|dm < 2 sup
AeB

Hence, the set U Mp (A) C X™* is bounded, by the Banach— Steinhaus Theorem,
AeB

/ s(z*,I‘)dm' < +o0.

and
sup /| 2, T)|dm < 2sup( ||z ||: z € U MP(A) } < 4.
llzl<1 AEB
Since the set {s(z*,T) :|| #* ||< 1} is bounded in L*(m), the operator Tt is bounded.

In order to obtain the weak compactness of the operator 11 it is enough to prove
that I' has absolutely continuous scalar m-integrals on 2. Let z* € Bx- be fixed.
Now fix € > 0 and let o(¢) > 0 satisfy (4.2.j). Moreover let §(c) > 0 verify (4.2.jv).
Let E € B be such that m(E) < ¢ and set

t=—{teE:s"T(t) >0} E- ={teE:s*I(t) <0}
By (29) let now Nz= € N be an integer such that for every n > Ny«

‘/ x de‘
E+

So, for every n > Ng=,

/ |s(z*, 1) |dm :/ s(z*,T)dm + ’/ s(m*,F)dml

E E+ -

/ s(z*, Tp)dmp | + ’/ s(z*,Tn)dmn| + ¢
B+ -

Since, by (4.2.jv), it is in particular my(E) < o for every n > Ngz«, we get

a: ,Tn)dmn

L€
:

<

/ 152", D) |dm < / (2", T |dimn + & < 2
E E

so I' has uniformly absolutely continuous scalar m-integral on (2.
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14 Convergence for varying measures ...

D) We have to show the existence of a WCG subspace of X which determines I".
Since I'y, is Pettis my-integrable, for every n € N, let Y, C X be a WCG space
generated by a set Wy, € cwk(Bx~) which mp-determines I'y,, by [26, Theorem 2.5].
We may suppose, withous loss of generality that each W, is absolutely convex, by
Krein-Smulian’s Theorem. Let Y be the WCG space generated by W := > 27 "W,
We want to prove that I' is m-determined by Y.

If y* € Y, then y* € Y, for each n, hence s(y*,T') = 0 mpy-a.e. Applying (29)
with A=QF := {t:s(y*,T(t)) >0} (A=Q :={t:s@y*,I'(t) < 0}) we get

/ s(y*,T)dm = lim s(y*,T'n) dmy = 0.
Q* noJo+t

Therefore s(y*,I'(t)) = 0 m-a.e. on the set Q. Thus, Y m-determines the multi-
function I' and the Pettis m-integrability of I" follows. Moreover (28) follows from
(29).

O

As an immediate consequence of the previous theorem we have a result for
the vector case:

Corollary 4.3 Let g,gn : 2 — X, n € N, be scalarly measurable functions. Moreover
let m, mn, n € N, be measures in M() and let m be Radon. Suppose that

(4.3.3) (gn)n and g have scalarly uniformly absolutely continuous (ms, )-integrals on
12

(4.8.37)) gn — g scalarly m-a.e. where the null set depends on z* € X™;
(4.3.733) g is scalar continuous;

(4.3.3v) (mn)n is vaguely convergent to m and uniformly absolutely continuous with
respect to m;

(4.3.v) each gy is Pettis my,-integrable.

Then g is Pettis m-integrable in X and

lim 2™ (/ gndmn> =z* (/ gdm) R
n A A

for every z* € X* and A € B.

We conclude with the following result that holds in a general measure space
without any topology on the space €.

Proposition 4.4 Let Q2 be a measurable space on a o-algebra A and letT', Ty, n € N,
be scalarly measurable multifunctions. Moreover let m, my, n € N, be measures in
M(Q). Suppose that

(4-4.5) (Tn)n have scalarly uniformly absolutely continuous (mp)-integrals on §2;
(4-4.57) T is scalarly m-integrable;
(4-4.377) (mn)n is uniformly absolutely continuous with respect to m;

(4-4.5v) each multifunction T is Pettis mp-integrable.
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(4.4.v) for every A € A and for every z* € X* it is
lim/ s(x™,Tn) dmp :/ s(z*,T) dm.
nJa A

Then the multifunction T' is Pettis m-integrable.

Proof The weak compactness of the sublinear operator 71 : X* — Ll(m), defined
as Tr(z") = s(z™,T') can be proved as Theorem 4.2, taking into account hypotheses
(4.4.j), (4.4.jjj) and (4.4.v).
Moreover, the proof that I' is determined by a WCG space Y C X follows as in
Theorem 4.2, taking into account hypotheses (4.4.j), (4.4.jjj), (4.4.jv) and (4.4.v).
Therefore I' is Pettis m-integrable.

O

At this point it is worth to observe that a similar result has been proved
in [13, Theorem 3.2] under the hypothesis of the setwise convergence of the
measures. Here instead of the setwise convergence we assume the uniform
absolute continuity of (my,), with respect to m.

For the vector case, as before, we have:

Corollary 4.5 Let Q be a measurable space on a o-algebra A and let g, gn : 2 — X,
n € N, be scalarly measurable functions. Moreover let m, myn, n € N, be measures
in M(). Suppose that

59) (am . ) . . ] :
(4.5.3) (gn)n have scalarly uniformly absolutely continuous (mn )-integrals on (2
(4.5.77) g is scalar m-integrable;

.5.99) (mn)n is uniformly absolutely continuous with respect to m;
(4.5.53] y y p ;
(4.5.5v) each function g, is Pettis mn-integrable;
(4.5.v) for every A € A and for every z* € X™ it is

lim/ x*gndmn:/x*gdm.
nJa A

Then the function g is Pettis m-integrable.

5 Conclusion

Some limit theorems for the sequences ( [ fn dmn)n are presented for vector
and multivalued Pettis integrable functions when the sequence (m,,), vaguely
converges to a measure m. The results are obtained thanks to a limit result
obtained for the scalar case (Theorem 3.4).
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