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Abstract: Background: Non-celiac wheat sensitivity (NCWS) is a poorly understood gluten-related
disorder (GRD) and its prominent symptoms can be ameliorated by gluten avoidance. This study
aimed to determine the effectiveness of a probiotic mixture in hydrolyzing gliadin peptides (toxic
components of gluten) and suppressing gliadin-induced inflammatory responses in Caco-2 cells.
Methods: Wheat dough was fermented with a probiotic mix for 0, 2, 4, and 6 h. The effect of the
probiotic mix on gliadin degradation was monitored by SDS-PAGE. The expression levels of IL-6,
IL-17A, INF-γ, IL-10, and TGF-β were evaluated using ELISA and qRT-PCR methods. Results:
According to our findings, fermenting wheat dough with a mix of B. longum, L. acidophilus, and
L. plantarum for 6 h was effective in gliadin degradation. This process also reduced levels of IL-6
(p = 0.004), IL-17A (p = 0.004), and IFN-γ (p = 0.01) mRNA, as well as decreased IL-6 (p = 0.006) and
IFN-γ (p = 0.0009) protein secretion. 4 h fermentation led to a significant decrease in IL-17A (p = 0.001)
and IFN-γ (p = 0.003) mRNA, as well as reduced levels of IL-6 (p = 0.002) and IFN-γ (p < 0.0001)
protein secretion. This process was also observed to increase the expression levels of IL-10 (p < 0.0001)
and TGF-β (p < 0.0001) mRNA. Conclusions: 4 h fermentation of wheat flour with the proposed
probiotic mix might be a good strategy to develop an affordable gluten-free wheat dough for NCWS
and probably other GRD patients.

Keywords: gliadin; non-celiac wheat sensitivity; probiotics; Caco-2 cells

1. Introduction

Gluten-related disorders (GRDs), an “umbrella” definition encompassing several dis-
eases, including non-celiac wheat sensitivity (NCWS), are becoming increasingly frequent.
Gluten is a protein present in wheat, barley, rye, and occasionally in other grains, that is
responsible for the elasticity and pliability of dough, making it an essential ingredient in
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various baked goods, such as bread, pasta, and pastries. Consumption of this protein by
GRD patients can lead to pathological conditions and should thus be avoided by them [1].
Contributory factors to the growing prevalence of GRDs [2] are agricultural mechanization
and the excessive reliance on industrial pesticides, which have stimulated the development
of novel varieties of wheat, characterized by a higher content of toxic peptides of gluten.
Furthermore, the current state of bread and bakery production methods has resulted in
a reduction in fermentation time for dough and the use of chemical agents or baker’s yeast.
This, in turn, has been observed to result in a significant rise in the [amount of] gluten
present in the end products, consequently exacerbating the clinical state of GRD patients [2].
Therefore, there has been a notable increase in the demand for gluten-free bakery products,
particularly among groups who suffer from this kind of disorders [3–7].

NCWS, also commonly referred to as non-celiac gluten sensitivity (NCGS), gluten
hypersensitivity, or wheat intolerance syndrome, is a poorly understood GRD that has a
self-reported prevalence in the general population ranging from 0.6% to 13% [3–7]. NCWS
appears to be triggered by activation of the innate and/or adaptive immune responses and
its main pathological characteristic might be an alteration in intestinal permeability [8–12].
Currently, NCWS diagnosis entails ruling out other GRDs, such as celiac disease (CD) and
IgE-mediated wheat allergy, as well as organic diseases in subjects on a gluten-containing
diet. This involves observing symptom improvement after gluten elimination followed
by relapse during a double-blind placebo-controlled gluten/wheat challenge [5,13–17].
Unfortunately, unlike CD, histology on duodenal biopsy specimens does not help in NCWS
diagnosis. There are a few reports regarding the histopathology of NCWS, but a maintained
villous architecture, a preserved villus/crypt ratio, a normal or mildly increased level of
intraepithelial lymphocytes, and an increased number of eosinophils and mast cells in the
duodenal mucosa are among the histopathological findings reported to date [6,8,18–26].
NCWS presents with an extensive range of symptoms, both intestinal and extraintestinal.
These vary from IBS- and dyspepsia-like symptoms to neuropsychiatric ones, anemia, and
other disorders that impact multiple organ systems [11,27–31].

Adherence to a gluten-free diet (GFD) can significantly alleviate or eliminate the
prominent symptoms experienced by individuals with NCWS, although some individuals
may require additional dietary interventions, such as a low FODMAP diet [32–39]. Whereas
gluten has been considered as the main culprit for symptom onset in GRD patients, other
components of wheat, such as amylase trypsin inhibitors (ATIs), wheat germ agglutinins
(WGAs), and fermentable oligo-, di-, monosaccharides, and polyols (FODMAPs), are also
reported to contribute to the development of NCWS [5,31–33].

However, a GFD, similar to most other elimination diets, can be accompanied by
potential nutritional deficiencies due to the elimination of important food sources, such
as wheat, and needs to be supervised by a qualified health care provider [40]. Moreover,
the unavailability of gluten-free foods, their high cost, and problems with eating out or
travelling are known as burdens faced by subjects on a GFD and reduce diet adherence [41].

Therefore, food-processing researchers are looking to develop and market high-quality
gluten-free products with an affordable price [42]. One proposal is a return to sourdough
fermentation, an ancient bread-making technique using lactic acid bacteria (LAB) and
natural yeast populations to transform cereal flour into end products, which are tastier
and easier to digest [34]. Various studies have confirmed its positive effects on immune
response and NCWS symptoms [43].

According to previous findings, there are probiotic strains that have the ability to de-
grade immunodominant gliadin peptides and can potentially reduce their toxicity [44–46].
Bifidobacteria and lactobacilli are two widely used probiotics with gluten protein hydrolyzing
capability [47]. Use of these probiotic strains during fermentation might be beneficial in
producing a less immunogenic wheat flour and reintroducing one of the most important
components of the Mediterranean diet to NCWS patients’ nutrition regimen. The Caco-2
enterocyte cell line is considered to be a validated in vitro model to evaluate the cytotoxic
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effect of gliadin-derived peptides. It has been extensively utilized in previous GRD-related
studies to help determine the pathogenesis of these diseases [48–50].

The current study therefore aimed to investigate the enzymatic hydrolysis activity of
Bifidobacterium Longum, Lactobacillus acidophilus, and Lactiplantibacillus plantarum on gliadin
peptides of wheat flour and their potential effect on gliadin-related inflammatory responses
in the Caco-2 cell line.

2. Materials and Methods

Investigations were carried out at the Research Institute for Gastroenterology and
Liver Diseases (RIGLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran. Data
validation was carried out at the Department of Health Promotion Sciences, Maternal and
Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo,
Palermo, Italy.

2.1. Probiotic Preparations

All three lyophilized probiotics, including Bifidobacterium longum (ATCC 15708),
Lactobacillus acidophilus (ATCC 4356) and Lactiplantibacillus plantarum (ATCC 8014), were
purchased from Takgene Group Company (Tehran, Iran) and used for dough fermentation.
The bacteria were cultured in an MRS (De Man, Rogosa and Sharpe) medium supplemented
with 0.05% (v/v) L-cysteine at 37 ◦C for 24–48 h in anaerobic conditions. The strains were
kept at −80 ◦C in MRS broth plus L-cysteine and 50% glycerol.

2.2. Sourdough Fermentation

The wheat grain (Mehregan cultivar) with a gluten content of 27.3% was provided
by the Agricultural Research, Education, and Extension Organization (AREEO), Karaj,
Iran. For the preparation of the sourdough, 80 g of wheat flour was mixed with 190 mL
of tap water to obtain 270 g of sourdough. The resulting dough was then divided into
two 135 g pieces. The first one was mixed with a combination of the three bacteria, at a
cell concentration of ca. 108 CFU per g of dough. The second was used without probiotics
as a negative control. Both dough pieces were incubated at 37 ◦C during stirring at
200 rpm. The capacity of B. longum, L. plantarum, and L. acidophilus to hydrolyze gluten was
evaluated at 0, 2, 4, and 6 h of incubation.

2.3. Gliadin Extract

For gliadin extraction, approximatley 10 g of each dough sample was incubated with
50 mM Tris-HCl buffer (pH = 8.8) for 60 min at 4 ◦C followed by vortexing and centrifuging
at 20,000× g for 20 min. After removing the supernatant that contained albumin and
globulin, the pellet was extracted twice with Tris-HCl buffer (pH = 8.8), and the supernatant
was discarded. The pellet was then mixed with 40 mL of 70% v/v ethanol at 25 ◦C for 2 h.
The supernatant containing gliadin was stored at −80 ◦C. The concentration of the extracted
gliadin was determined using a bicinchoninic acid (BCA) protein assay kit (DNAbiotech,
Tehran, Iran).

2.4. SDS-PAGE Electrophoresis of Gliadins

Gliadin degradation after 0, 2, 4, and 6 h of incubation with a mix of B. longum,
L. acidophilous, and L. plantarum was assessed by sodium dodecyl-sulfate polyacrylamide
gel electrophoresis (SDS-PAGE). A mini SDS-PAGE (Bio-Rad Laboratories GmbH, Munich,
Germany) was used, separation was performed using the classical Laemmli method [51],
and the bands were stained with Coomassie Blue.

2.5. In Vitro Digestion of Gliadins

A pepsin/trypsin (PT) digest of extracted gliadins (to mimic normal intestinal degrada-
tion) was prepared to be exposed to the human colon carcinoma Caco-2 cell line, as follows:
120 mg of extracted gliadin was dissolved in 20 mL of sodium acetate buffer (50 mM, pH
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4). The sample was incubated at 37 ◦C, with agitation for 2 h after the addition of pepsin
(3200 U/mg, P-6887, Sigma-Aldrich, St. Louis, MO, USA) to the mixture. After incubation,
142 mg of sodium phosphate was added, and the pH was brought to 7.0 using a 1 M NaOH
solution. The mixture was treated with trypsin (2500 U/mg, T-7418, Sigma-Aldrich, St.
Louis, MO, USA) and incubated at 37 ◦C with agitation for another 2 h. The obtained
solution was heated at a temperature greater than 95 ◦C for 10 min to stop the enzymatic
reaction. Finally, the digested solution was lyophilized and stored at −20 ◦C.

2.6. Cell Culture Conditions

Caco-2 cells were grown in minimum essential medium (MEM, Gibco Invitrogen,
Paisley, UK) supplemented with 10% fetal bovine serum (FBS, Gibco Invitrogen), 1%
non-essential amino acids (NEAA, Gibco Invitrogen), 0.1% penicillin-streptomycin (Gibco
Invitrogen), sodium bicarbonate (Gibco Invitrogen), and sodium pyruvate (Sigma-Aldrich,
Seelze, Germany). Cells were maintained at 37 ◦C in 5% CO2 and the culture medium was
changed every 3 days until confluency reached 80%.

Untreated Caco-2 cells were used as negative controls to assess the base levels of
cytokines secretion. LPS-treated Caco-2 cells were used as positive control to assess the
levels of cytokines secretion under inflammatory conditions.

2.7. Evaluating B. longum, L. acidophilous, and L. plantarum Effects on the Inflammatory Effects of
Gliadin Peptides in Intestinal Epithelial (Caco-2) Cells

24 h after seeding, cells were incubated with 1 mg/mL of PT-digest of gliadins
(extracted from 0, 2, 4, and 6 h probiotic fermented and unfermented doughs) [52],
1 µg/mL of LPS (Lipopolysaccharides, as a pro-inflammatory response triggering con-
trol) [53], and B. longum, L. acidophilous, and L. plantarum (alone in a mix) (Multiplicity of
Infection (MOI) = 100), and the incubation was continued for 24 h. Following incuba-
tion, cells and supernatants were collected and analyzed for the production of pro- and
anti-inflammatory cytokines.

2.8. Sandwich Enzyme-Linked Immunosorbent Assay (ELISA)

To evaluate IL-6 and INF-γ production as proinflammatory cytokines, the supernatant
was obtained, and protein concentrations were determined using the enzyme-linked im-
munosorbent assay (ELISA) technique (Karmania Pars Gene, Rafsanjan, Iran) according to
the manufacturer’s instructions. Triplicate results were read at 450 nm by an ELISA reader
(TECAN, Salzburg, Austria).

2.9. RNA Extraction and Quantitative Real-Time PCR (qRT-PCR)

A YTA Total RNA Purification mini kit for the Blood/Cultured Cell/Tissue kit (Yekta
Tajhiz Azma, Tehran, Iran) was used to extract the total RNA from Caco-2 cells. The
NanoDrop-1000 spectrophotometer (Nano Drop Technologies, Wilmington, DE, USA) was
used to measure the concentration and purity of the extracted RNA. Reverse transcription
was performed using the 2 step 2X qRT-PCR Premix (Taq) kit (BioFact™, Daejeon, Republic
of Korea), and to investigate the expression levels of IL-6, INF-γ, IL-17, IL-10, and TGF-β
as pro- and anti-inflammatory cytokines, a SYBR Green-based quantitative real-time PCR
assay was performed using the Rotor-Gene Q MDx. Gene Runner software version 6.0 was
used to design the primer sequences and their specificity was checked by NCBI Primer-
BLAST and performing PCR experiments followed by 1.5% agarose gel electrophoresis.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the reference house-
keeping gene and relative quantitation (RQ) for each gene expression calculated by the
2−∆∆Ct method.

2.10. Statistical Analysis

Data were analyzed using Prism 6.04 for Windows software (GraphPad, La Jolla, CA,
USA). Data were expressed as mean ± standard deviation (SD), and one-way ANOVA



Nutrients 2023, 15, 2769 5 of 14

were used to evaluate differences in means between groups. p values below 0.05 were
deemed statistically significant.

2.11. Ethical Approval

This article does not contain any studies with human or animal subjects and was approved
by the ethics committee of the Research Institute for Gastroenterology and Liver Diseases Shahid
Beheshti University of Medical Sciences, Tehran, Iran (IR.SBMU.RIGLD.REC.1397.010).

3. Results
3.1. Gliadin Hydrolysis by Selected Probiotics

According to the SDS-PAGE profiles of the gliadin polypeptides, a 6 h fermentation of
dough with a mix of B. longum, L. acidophilous, and L. plantarum showed the highest gliadin
hydrolysis capacity (Figure 1).
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Figure 1. SDS-PAGE. Degradation of gliadin by a mix of B. longum, L. acidophilous, and L. plantarum
after 0, 6, 4, and 2 h of incubation.

3.2. IL-6 and INF-γ Protein Expression

Compared to the untreated Caco-2 cells (negative controls), the Caco-2 cells that
were treated for 24 h with LPS (positive controls) and non-fermented-dough-extracted
PT-gliadin exhibited significantly higher levels of IL-6 (p < 0.0001 in both cases) and IFN-γ
(p = 0.003 and 0.002, respectively). No significant difference in the secretion of the two pro-
inflammatory cytokines was observed between LPS and non-fermented dough-extracted
PT-gliadin treated Caco-2 cells, as well as between untreated Caco-2 cells and those treated
with B. longum, L. acidophilus, and L. plantarum, alone or in a mix (p > 0.05) (Figure 2).
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Figure 2. (A) IL-6 and (B) IFN-γ levels in the culture medium of Caco-2 cells after 24 h of treatment.
Results are expressed in pg/mL as the mean ± SD. Control: Untreated Caco-2 cells. LPS-treated
Caco-2 cells were used as positive control. **: p ≤ 0.01.

Exposure of Caco-2 cells to 2, 4, and 6 h fermented wheat dough with a mix of
B. longum, L. acidophilous, and L. plantarum resulted in lower levels of IL-6 (p = 0.02, 0.002,
and 0.006, respectively) and IFN-γ (p = 0.0005, <0.0001, and 0.0009, respectively) compared
to ones from non-fermented dough-extracted PT-gliadin-triggered Caco-2 cells (which were
used as positive controls). The reduction in IL-6 was also observed after 0 h of fermentation
(p = 0.01) (Figure 3).
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3.3. IL-6, IL-17A, IFN-γ, IL-10, and TGF-β mRNA Expression

To assess the probiotic effects on pro- and anti-inflammatory responses we studied
IL-6, IL-17A, IFN-γ, IL-10. and TGF-β gene expression. Treatment of Caco-2 cells with
LPS (positive control) and non-fermented dough-extracted PT-gliadin for 24 h resulted
in a higher mRNA expression of IL-6 (p < 0.0001 and p = 0.001, respectively), IL-17A
(p < 0.0001 and p = 0.0009, respectively), and IFN-γ (p = 0.0003 and p = 0.04, respectively)
compared to the untreated cells (negative control). Caco-2 cell treatment with B. longum,
L. acidophilous, and L. plantarum alone and in a mix increased IL-10 (p > 0.05, 0.0002, 0.001,
and <0.0001, respectively) and TGF-β (p = 0.0005 for L. plantarum, p < 0.0001 for the others)
mRNA expressions in comparison to the untreated cells (Figure 4). There was no significant
difference between the probiotic-treated and untreated groups in terms of pro-inflammatory
cytokine (IL-6, IL-17A, and IFN-γ) expression (p > 0.05). Finally, no difference was proved
between LPS and non-fermented dough-extracted PT-gliadin treated Caco-2 cells both in
terms of pro- and anti-inflammatory mRNA cytokines expression.
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and IFN-γ (p = 0.003), increased IL-10 (p < 0.0001) and TGF-β (p < 0.0001), and reduced (not 

Figure 4. The expression of IL-6 (A), IL-17A (B), IFN-γ (C), IL-10 (D) and TGF-β (E) genes in treated
Caco-2 cells was measured by qRT-PCR and compared to the untreated and LPS treated Caco-2 cells.
Results are expressed as the mean ± SD. Control: Untreated Caco-2 cells. LPS-treated Caco-2 cells
were used as positive control. *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001.

As shown in Figure 5, fermenting the dough with a mix of B. longum, L. acidophilous,
and L. plantarum for 6 h significantly reduced IL-6 (p = 0.004), IL-17A (p = 0.004), and
IFN-γ (p = 0.01) mRNA expressions in comparison with non-fermented dough-extracted
PT-gliadin-incubated Caco-2 cells. IL-10 and TGF-β levels were slightly higher following
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6 h of fermentation with the probiotic mix; however, the changes were not statistically
significant (p > 0.05).
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after 24 h of exposure to non-fermented or 0, 2, 4, and 6 h fermented dough. Results are expressed
as the mean ± SD. Non-fermented-dough-extracted PT-gliadin-triggered Caco-2 cells were used as
positive controls. *: p ≤ 0.05, **: p ≤ 0.01, ****: p ≤ 0.0001.

A 4 h fermentation with these probiotics considerably decreased IL-17A (p = 0.001)
and IFN-γ (p = 0.003), increased IL-10 (p < 0.0001) and TGF-β (p < 0.0001), and reduced
(not statistically significant) IL-6 (p > 0.05) mRNA levels compared to the non-fermented
dough-extracted PT-gliadin-incubated Caco-2 cells.

Finally, 2 h of fermentation with probiotics was also effective in reducing IL-6 (p = 0.02),
IL-17A (p = 0.001), and IFN-γ (p = 0.004) gene expression, but its effect on IL-10 and TGF-β
mRNA levels was not statistically significant (p > 0.05) compared to the non-fermented
dough-extracted PT-gliadin-incubated Caco-2 cells.

Compared to non-fermented dough-extracted PT-gliadin-incubated Caco-2 cells, a 0-h
fermentation with these probiotics only reduced IL-17A mRNA expression (p = 0.01).

4. Discussion

Sourdough fermentation is a traditional process for bread leavening that may markedly
reduce wheat allergens and break down gluten, but it does not eliminate gluten proteins
completely [43,54]. Therefore, researchers are trying to find novel biotechnological strate-
gies based on using probiotics to make almost totally gluten-free products more accessi-
ble [55]. Probiotics have been shown to be an excellent source of endopeptidases, which
can reduce gluten content in wheat foods and seem to be the strongest candidates for
improving the quality of gluten-free foods [42]. In this regard, it has been reported that
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“ancient” wheats, which partially differ in composition from “modern” wheat species, seem
to be better tolerated (lower rate of symptom onset, better palatability, and lower cost than
gluten-free products) by a subset of NCWS patients [56,57]. As Bifidobacteria and Lactobacilli
strains are known to be the most common probiotics used in foods and supplements, we
evaluated the effect of a probiotic mix containing B. longum, L. acidophilous, and L. plantarum
on degrading gliadin peptides of wheat flour dough and reducing their inflammatory ef-
fects in a Caco-2 cell line. Similar to previous in vitro studies, we observed the inflammatory
effect of peptic–tryptic digested gliadin peptides (extracted from non-fermented dough)
on the Caco-2 intestinal cells [58,59]. Our results also showed the capacity of B. longum,
L. acidophilous, and L. plantarum to reduce pro-inflammatory and increase anti-inflammatory
cytokine expression by these cells. Álvarez-Mercado et al., in a recent study, observed
how B. longum subsp. Infantis reduced the secretion of pro-inflammatory cytokines by
Caco-2 cells [59]. Another study, conducted by Zhao et al., reported that B. longum subsp.
longum K5 produced a decrease in the levels of pro-inflammatory cytokines and inflamma-
tory mediators in RAW 264.7 and Caco-2 cells stimulated with LPS [60]. The inflammatory
regulation role of L. acidophilus has also been observed in human intestinal epithelial
cells [61] and human MKN45 cells [62]. An attenuating effect of L. plantarum MYL26 on
inflammation in Caco-2 cells was also reported by Chiu et al. [63].

Scricciolo et al. [64], in a recent randomized, double-blind, placebo-controlled mono-
centric study, did not observe any effectiveness of using a proline-specific endopeptidase
(P1016) to improve NCWS patients’ symptoms following gluten reintroduction. On the con-
trary, in a study conducted by Ido et al. [65], an enzyme mix sourced from microorganisms
and papaya was found to effectively reduce symptoms in NCWS patients undergoing a
gluten challenge. In detail, the authors used a mixture of peptidase, semi alkaline protease,
deuterolysin, and cysteine protease derived from Aspergillus oryzae, Aspergillus melleus,
Penicillium citrinum, and Carica papaya L., respectively. A group of thirty patients diagnosed
with NCWS were randomly assigned to a two-week single-blind challenge with gluten
plus either the enzyme mix or placebo. The patients then underwent a crossover phase
after a GFD wash-out period. The authors observed a significant difference in the overall
symptom score between post-washout and post-gluten challenge stages for the enzyme
mixture and placebo groups (p < 0.05). However, there were no noticeable differences in
serum levels of IL-8, TNF-α, or RANTES after the consumption of gluten, gluten with the
enzyme mix, or gluten with a placebo [65].

In our study, we demonstrated the desirable effects of probiotics for producing easily
available gluten-free wheat flour. The fermentation of wheat dough using a mix of B. longum,
L. acidophilus, and L. plantarum for 6 h was found to be effective in gliadin degradation and
decreased IL-6, IL-17A, and IFN-γ mRNA levels, as well as IL-6 and IFN-γ protein secretion.
However, a 4 h fermentation with this mix might be the optimal protocol for making gluten-
free wheat flour dough suitable for patients with GRD. This is due to the strong ability of
the 4 h fermentation to decrease pro-inflammatory cytokine mRNA expression (IL-17A
and IFN-γ) or protein secretion (IL-6 and IFN-γ), and at the same time, increase anti-
inflammatory cytokine mRNA levels (IL-10 and TGF-β). These results agree with those of
previous studies reporting protective effects of certain probiotic strains against some gliadin-
mediated inflammatory responses. In a previous study, Enterococcus mundtii QAUSD01
and Wickerhamomyces anomalus QAUWA03 were reported to be able to degrade gliadin
in various wheat varieties [66]. Probiotic VSL#3 (Ferring Pharamaceuticals, Milan, Italy),
containing Streptococcus thermophilus, L. plantarum, L. acidophilus, L. casei, L. delbrueckii spp.
bulgaricus, B. breve, B. longum, and B. infantis, has also been reported to decrease the toxicity
of wheat flour following a 24 h fermentation [67]. In addition, Leszczyn’ska et al. reported
that a 24 h fermentation of wheat flour with L. plantarum, L. brevis, L. sanfranciscencis, and
bakery yeasts (Saccharomyces cerevisiae) lowered the allergenicity of wheat flour [68].

The optimal therapeutic approach for patients with NCWS remains a topic of ongoing
debate among researchers [28–31]. This debate is attributable to the lack of a univocal
understanding of the etiopathogenesis of NCWS. Research groups hold conflicting views,
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often citing gluten, WGAs, ATIs, or FODMAPs as the sole cause behind clinical mani-
festations in NCWS patients [26,29–31,69]. On the basis of the current understanding of
this GRD, NCWS should be viewed as a complex entity, with several subtypes of patients.
Multiple studies have shown that some individuals with NCWS experience symptom
improvement or remission by adhering to a GFD, and their symptoms worsen during
double-blind placebo-controlled (DBPC) challenges with gluten [14,29,70–72]. Contrary
to this, some studies suggest that simply reintroducing gluten is not enough to re-trigger
symptoms. Instead, it is believed that other components present in wheat could also play a
role [30,31,69]. To date, no study has defined whether there is a tolerability threshold for
these components of wheat. Moreover, the limited availability of comprehensive long-term
research studies does not permit any definite conclusions as to whether NCWS is a persis-
tent condition. Consequently, it remains uncertain if patients can regain wheat tolerance
after years of avoiding the triggering stimuli.

Our study allowed us to identify a mix of probiotics easily available on the market,
which, by digesting gliadin peptides in a relatively short time (4 h), are able to reduce
the inflammatory and increase the anti-inflammatory response in an in vitro model with
Caco-2 cells. Its most promising use could be as a starter to ferment the dough of wheat,
creating a tolerable, palatable, easily accessible, and low-cost product, which could be
potentially tolerated by a subgroup of NCWS subjects, as well as other GRD patients and
at the same time prevent the onset of nutritional deficiencies.

The primary limitation of our study is its exclusive reliance on in vitro data. The
potential tolerance of wheat dough fermented using our probiotic mix needs to be verified
in appropriately designed in vivo studies. Another limitation is that we assessed the
effectiveness of the probiotic mix solely on the Mehregan cultivar of wheat. As a result, we
cannot rule out potential variations in the efficacy of the mix when applied to other types of
wheat, with different percentages of gliadin peptides and compositions. To address these
limitations, we have initiated plans for a multicenter study. This new study aims to test
the effectiveness of the probiotic mixture in gliadin degradation and tolerance in NCWS
patients using wheat dough obtained from various Italian and Iranian cultivars, including
both modern and ancient varieties, and through both in vitro and in vivo assessments.

5. Conclusions

Adhering to a GFD can be extremely challenging, particularly due to the limited
availability of gluten-free food options. Therefore, finding a probiotic mixture that can
help make gluten-free wheat flour available in a short time could represent a significant
advancement towards enhancing the quality of life for the countless individuals worldwide
grappling with gluten-related disorders. According to our findings, a 4 h fermentation of
wheat flour with a probiotic mixture containing B. longum, L. acidophilus, and L. plantarum
(ca. 108 CFU per g of dough) might be a good strategy for developing an affordable gluten-
free wheat dough, which can be used to prepare different food items for these patients.
However, our understanding of the exact molecular mechanisms underlying the action of
these probiotics is currently limited and requires further investigation.
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