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Introduction

The work [45] of R. Stanley, in which he proves the upper bound conjecture for the
spheres, is the starting point of a new trend which combines Commutative Algebra
and Combinatorics. This area of research has obtained a huge interest during the
years and has become gradually fashionable. Today the most known references are
[3], [15], [22], [27], [43] and [46].
Since 1990s the study of the ideals of t-minors of an m× n matrix of indeterminates
has become a central topic in Combinatorial Commutative Algebra. The determi-
nantal ideals are studied in [10], [11] and [12], the ideals of adjacent 2-minors in
[21], [29] and [35] as well as the ideals generated by an arbitrary set of 2-minors of
a 2× n matrix in [26]. This work is devoted to the study of some binomial ideals
arising from 2-minors, which are the polyomino ideals. The class of polyomino ideals
or, more in general, of the inner 2-minors ideals of collections of cells generalizes the
class of the ideals generated by 2-minors of m× n matrices of indeterminates.
Polyominoes are plane figures, made up of squares of the same size joined edge by
edge. They appeared for the first time in recreational mathematics and combina-
torics and they are studied especially in tiling problems of the plane. Even though
some problems like the enumeration of pentominoes have their origins in antiquity,
polyominoes were formally defined by Golomb first in 1953 and later, in 1996, in his
monograph [18]. The study of polyominoes reveals many connections to different
subjects. For instance, there seems to be a nice relation between polyominoes and
Dyck words and Motzkin words [13] as well as with statistical physics: polyomi-
noes and their higher-dimensional analogues appear as models of branched poly-
mers and of percolation clusters [49].
In [37] A.A. Qureshi connects polyominoes or more in general collections of cells
to Commutative Algebra. She defines a binomial ideal attached to a collection P
of cells, as the ideal generated by all inner 2-minors of P in the ring SP , that is the
polynomial ring over a field K in the variables xv, where v is a vertex of a cell of P .
Such an ideal is denoted by IP and the quotient ring K[P ] = SP/IP is called coordi-
nate ring of P . The study of the main algebraic properties of K[P ], depending on the
shape of P , provides an exciting line of research.
Recently, the literature on this topic has significantly expanded and contains plenty
of interesting and exciting challenges. One of the most fascinating topic in this
context is the study of the primality of IP . To shorten the notation, we say that a
polyomino is prime if its associated polyomino ideal is prime. In [24] and in [39]
it is proved that simple polyominoes, which are roughly speaking the polyominoes
without holes, are prime. Therefore the study is applied to multiply connected poly-
ominoes, which are polyominoes with one or more holes. In [28] and [41], the au-
thors prove that the polyominoes obtained by removing a convex polyomino from
a rectangle in N2 are prime, using two different demonstrative techniques. In [31]
the authors introduce a very useful tool to provide a characterization of prime poly-
ominoes. They define a particular sequence of inner intervals of P , called a zig-zag
walk, and they prove that if IP is prime then P does not contain zig-zag walks. Us-
ing a computational method, they show that for polyominoes consisting of at most
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fourteen cells the non-existence of zig-zag walks in P is a sufficient condition in or-
der to IP is prime. Therefore, they conjecture that non-existence of zig-zag walks
in a polyomino characterizes its primality. Not only the primality of IP is still an
open problem but also the radicality of IP . In fact the study of the Gröbner basis
of IP is quite elaborated in general and, in particular, to prove that the initial ideal
of IP is squarefree for a suitable monomial order is very difficult for all polyomi-
noes. In [25] the authors prove that for a simple polyomino the polyomino ideal
has a squarefree Gröbner basis with respect to any monomial order, so the initial
ideal is always squarefree. In [32] the authors give some conditions so that the set
of generators of IP forms a reduced Gröbner basis with respect to some suitable de-
gree reverse lexicographic monomial orders and they prove that in these cases the
polyomino is prime. Using this method, they prove the primality of two classes of
thin polyominoes, which are polyominoes not containing the square tetromino. The
experience seems to show that every polyomino ideal admits squarefree initial ideal
with respect to suitable monomial orders and hence it is radical. Also the Cohen-
Macaulay property and the normality of K[P ] are still completely unknown, except
for some classes of polyominoes, like simple polyominoes ([24], [25] and [39]), rect-
angle minus a convex polyomino ([28]) and grid polyominoes ([32]). There is no
known example of a non-simple polyomino P whose K[P ] is not Cohen-Macaulay
or not normal, as well as for the radicality of IP .
A particular attention is devoted recently to the study of the Hilbert-Poincaré series
and the Castelnuovo-Mumford regularity of K[P ] in terms of the rook polynomial
of P and, in particular, to the Gorenstein property. By using different approaches, in
[37] Qureshi gives a characterization of the Gorenstein stack polyominoes and, later,
in [1] the author classifies all Gorenstein convex polyominoes. In [17] the authors
give a new combinatorial interpretation of the regularity of the coordinate ring at-
tached to an L-convex polyomino, as the rook number of P , that is the maximum
number of rooks which can be arranged in P in non-attacking positions. In [40] the
Hilbert-Poincaré series of simple thin polyominoes is studied relating them to the
rook polynomial of P . More precisely, it is showed that if P is a simple thin poly-
omino then the h-polynomial h(t) of K[P ] is the rook polynomial rP (t) = ∑n

i=0 riti

of P , whose coefficient ri represents the number of distinct possibilities of arrang-
ing i rooks on cells of P in non attacking positions (with the convention r0 = 1).
Gorenstein simple thin polyominoes are also characterized using the S-property and
finally it is conjectured that a polyomino is thin if and only if h(t) = rP (t). In [30] it
is also discussed this conjecture for a certain class of polyominoes. In a recent paper
[38] the authors introduce a particular equivalence relation on the rook complex of
a simple polyomino and they conjecture that the number of equivalence classes of i
non-attacking rooks arrangements is exactly the i-th coefficient of the h-polynomial
in the reduced Hilbert-Poincaré series. Moreover they prove it for the class of paral-
lelogram polyominoes and by a computational method also for all simple polyomi-
noes with rank at most eleven.

Starting from this background, we investigate the main algebraic properties of
the coordinate ring associated to new classes of collections of cells. Motivated by the
results already mentioned about the primality, we start our research defining a new
family of non-simple polyominoes, called closed paths, and studying the primality
of their polyomino ideal. Inspired by the conjecture that states that the polyomino
ideal is prime if and only if the polyomino contains no zig-zag walks, we classify
all closed paths having no zig-zag walks introducing the L-configurations and the
ladders of at least three steps. In Sub-Section 2.2.1 we define an L-configuration,
that consists of a path of five cells A1, . . . , A5 such that the two blocks A1, A2, A3 and
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A3, A4, A5 go in orthogonal directions, and we prove that if a closed path has an L-
configuration, then it does not contain zig-zag walks. Besides that, we define a more
elaborated structure of cells in a polyomino, called a ladder (see Definition 2.2.10),
and we show that having a ladder of at least three steps is a sufficient condition for
a closed path to have no zig-zag walks. In Sub-Section 2.2.2 we give a toric repre-
sentation of a closed path with an L-configuration or a ladder of at least three steps,
using an appropriate argument inspired by a strategy provided by Shikama in [41].
Finally, in Sub-Section 2.2.3 we show that having an L-configuration or a ladder of
at least three steps is a necessary and sufficient condition in order to have no zig-
zag walks for a closed path, providing a complete characterization of the structure
of closed paths containing no zig-zag walks. This result gives an important geo-
metric condition, which allows to characterize the primality of the polyomino ideal
attached to a closed path by the non-existence of zig-zag walks. Hence the class of
closed answers positively to the conjecture mentioned before.
The L-configuration and the ladder as well as the technique used to deal the primal-
ity of closed paths suggest some classes of prime polyominoes, presented in Section
3.1, which can be viewed as generalizations of closed paths. In particular we give
some sufficient conditions for the primality of these non-simple polyominoes but to
find out the necessary ones, and so proving the conjecture of [31] for such classes,
seems to be a non-easy task, that we leave as an open question. Motivated by the
wish to examine in deep the primality of the polyomino ideal by zig-zag walks, we
introduce the class of weakly closed path polyominoes. While reading Section 3.3, we
invite the reader to pay attention to the difference between closed path and weakly
closed path because they seem to be very similar but actually they are deeply differ-
ent. One of the crucial point in the study of the primality of a closed path is that, if
we remove certain cells from the L-configuration or a ladder in a closed path, then
we obtain a simple polyomino (see Proposition 2.2.5, Theorems 2.2.15 and 2.2.18).
Unfortunately this fact does not hold in general for a weakly closed path, because
we could get a simple collection of cells with two connected components by remov-
ing cells from the polyomino. Therefore the study of the primality of a weakly closed
path requires to examine firstly the primality of simple and weakly connected col-
lections of cells (see Section 3.2). In particular we show that the binomial ideal asso-
ciated to a simple and weakly connected collection of cells coincides with the toric
ideal of the edge ring of a weakly chordal bipartite graph, generalizing [39, Theorem
3.10]. As an application of this result and following the strategy used to characterize
the primality of closed paths, in Section 3.3 we give a characterization of the primal-
ity of the polyomino ideal of a weakly closed path.
Inspired by two well known theorems of Sturmfels ([46]) and of Hochster ([3]),
which state that a toric ring whose defining ideal admits a squarefree initial ideal
is a normal Cohen-Macaulay domain, we start to study the Gröbner basis of poly-
omino ideals. Firstly, in Section 4.1 we give several results that provide necessary
and sufficient conditions in order to the S-polynomial of two generators of a poly-
omino ideal reduces to zero with respect to a lexicographic order induced by any
total order on the set of the variables. Later in Section 4.2 we deal the Gröbner basis
for polyomino ideals attached to closed paths. In particular we define four specific
sub-polyominoes of a closed path, which are the W-pentominoes, the LD-horizontal
and vertical skew tetrominoes and hexominoes and the RW-heptominoes. For each
case in which one of the previous configurations is not in the closed path, we provide
a set of suitable vertices (see Algorithm 4.2.7 for the general case) which allow us to
define some nice monomial orders in order to prove that the set of the generators of
the polyomino ideal of a closed path forms the reduced Gröbner basis with respect
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to these monomial orders. As a consequence we get the radicality of the associated
polyomino ideal and, moreover, that the coordinate ring of a closed path having no
zig-zag walks is a normal Cohen-Macaulay domain. Finally, stimulated by the fact
that the polyomino ideal of a simple polyomino has a squarefree universal Gröb-
ner basis (see [25]), we show that the smallest closed path with respect to the set
inclusion provides a significant example of a non-simple polyomino which does not
admit squarefree universal Gröbner basis.
Among the Cohen-Macaulay rings, it is interesting to determine the ones that are
Gorenstein. The nice result of Stanley [44, Theorem 4.4] suggests to study the
Hilbert-Poincaré series to investigate the Gorenstein property for Cohen-Macaulay
domains. Motivated also by the well known results on the rook polynomial of a sim-
ple thin polyomino, we study the Hilbert-Poincaré series of some non-simple poly-
ominoes and we interpret the h-polynomial of K[P ], where P is a prime closed path,
like the rook polynomial of P . In Section 5.1 we introduce a particular polyomino
L and we define the class of (L, C)-polyominoes, where C is a generic polyomino.
Firstly we provide some results on the primality of some sub-polyominoes of an
(L, C)-polyomino and, in particular, on the isomorphism of the polyomino ring of an
(L, C)-polyomino modulo a certain colon ideal and the tensor product of K-algebras
between the coordinate ring of a suitable sub-polyomino of the (L, C)-polyomino
and a suitable polynomial ring. Thanks to these results we give an explicit formula
for the Hilbert-Poincaré series of the coordinate rings of a prime (L, C)-polyomino,
depending on the Hilbert-Poincaré series of some polyominoes obtained by elimi-
nating specific cells from the (L, C)-polyomino. Moreover, when C is a simple poly-
omino, we improve this formula and we compute also the Krull dimension. In Sec-
tion 5.2 we assume that P is a closed path polyomino and we deal the case in which
P has no L-configuration but it contains a ladder of at least three steps. Here we ex-
amine several cases depending on the shape of the ladder and we need to describe
also the initial ideals of some sub-polyominoes of P with respect to some monomial
orders, in order to obtain the formulas of the Hilbert-Poincaré series of the coordi-
nate rings of such polyominoes in terms of suitable sub-polyominoes. The case in
which P has an L-configuration is a particular case of (L, C)-polyomino, where C
is a path, so we fulfil the class of closed paths without zig-zag walks for what con-
cerns the study of the Hilbert-Poincaré series. In Section 5.3 we prove that if P is a
closed path without zig-zag walks then the h-polynomial of K[P ] is the rook poly-
nomial of P , obtaining as a consequence the regularity and the Krull dimension of
K[P ]. Finally we characterize all Gorenstein prime closed paths, proving that K[P ]
is Gorenstein if and only if P consists of maximal blocks of length three.
All the examples which inspired the results described in this dissertation have been
obtained using the Algebra Software Macaulay2. Motived by the will to make sev-
eral examples for our researches, we implement a package for the Algebra Software
Macaulay2, called PolyominoIdeals ([5]). The aim of this package is to provide some
tools to help mathematicians in the study of the polyomino ideals. Encoding a fixed
collection of cells by a list of lists containing the diagonal corners of each cell, the
package provides three functions and some related options. Among them, the func-
tion polyoIdeal allows to define the inner 2-minor ideal of P . For this function,
we also give three options. The option RingChoice allows one to choose between
two rings having two different monomial orders: one is the lexicographic order in-
duced by the natural partial order on the set V(P) of the vertices of P ; the other
one, based on a function called polyoMatrix which gives the matrix attached to P ,
is the monomial order < given in [34] for the weakly chordal bipartite graphs. This
one can be induced in a convex polyomino as shown in [37], so one can deduce that
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for a convex polyomino P the generators of the ideal IP form the reduced Gröbner
basis with respect to <. The latter can be useful to compute the quadratic squarefree
initial ideal of a convex polyomino with respect to < and later the related simpli-
cial complex, for example. For the other two options, the first one is Field which
allows to change the base field K in the base polynomial ring of IP , and the second
is TermOder, which allows to replace the lexicographic order with other term orders
when RingChoice is defined in the first way as described above. Finally we have
the function polyoToric, which allows to generate the toric ideal defined in [31] and
which can be useful to study the primality of the polyomino ideal.

This thesis is organized as follows. Chapter 1 is devoted to introduce some well
known algebraic notations and concepts in Commutative Algebra.

In Chapter 2 we define collections of cells and we give some basic combinatorial
definitions and properties. We define the ideal IP of the inner 2-minors of P , where
P is a collection of cells, and the coordinate ring K[P ] of P . In the second part, we
introduce the class of closed paths and we study the primality of their polyomino
ideal.

In Chapter 3 we present firstly some classes of prime polyominoes viewed as
generalizations of closed paths, whose primality can be provided using some tech-
niques similar to those applied in Chapter 2. Later, we focus on the primality of
simple and weakly connected collections of cells and finally we give a characteriza-
tion of the primality of the polyomino ideal of the weakly closed paths.

Chapter 4 is devoted to study the Gröbner basis of polyomino ideals, in partic-
ular we give some monomial orders in order to the reduced Gröbner basis of the
polyomino ideal of a closed path with respect to these monomial orders is the set of
the generators of the ideal.

In Chapter 5 we study the Hilbert-Poincaré series of some non-simple polyomi-
noes and we prove especially that the h-polynomial of the coordinate ring of a closed
path without zig-zag walks is the rook polynomial of P . Finally a characterization
of Gorenstein prime closed paths is given in terms of the length of the blocks of the
polyomino.

In Chapter 6 we describe the functions which we implemented in the package
PolyominoIdeals for Macaulay2. In Section 6.1 we explain the use of the three func-
tions polyoIdeals, polyoMatrix and polyoToric, and the related options Field,
TermOrder and RingChoice. The whole code is provided in Section 6.2. Every con-
tribution to improve it is very welcome.

We conclude the dissertation giving some hints for future possible researches on
this topic.
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Chapter 1

Basics on Commutative Algebra

In this chapter we recall some basic notions of Commutative Algebra and some
useful results that will be useful along the dissertation. Two nice books to approach
and to examine in deep some of these topics are [2] and [3].

Let us start providing for the sake of the reader the elementary definitions of
primality and radicality of an ideal, which will be investigated for some classes of
ideals in this work. We assume that R is a unitary commutative ring throughout
this chapter, unless specified otherwise.

Definition. Let I be a proper ideal of R. We say that I is prime if for all x, y ∈ R such
that xy ∈ I it follows that x ∈ I or y ∈ I.
The ideal

√
I := {x ∈ R : xn ∈ I, for some n ∈ N} is called the radical of I.

Moreover, I is said to be radical if I =
√

I.

In the next sections we discuss briefly the Krull dimension of Noetherian commuta-
tive rings, the Castelnuovo-Mumford regularity of a graded finitely generated mod-
ule and the Hilbert-Poincaré series of a graded K-algebra. Later we present Cohen-
Macaulay and Gorenstein properties for unitary commutative rings and we provide
some basics on Gröbner bases of an ideal in a polynomial ring. Finally, we conclude
the chapter giving a brief review on normal domains and toric ideals with some
related well known results.

1.1 Krull dimension, Castelnuovo-Mumford regularity and
Hilbert series

At the beginning of the twentieth century Emmy Noether introduced the condition
of ascending chains for ideals of R, which is equivalent to state that every ideal of
R is finitely generated. Today such rings are known as Noetherian ring. It is known
by Hilbert’s basis Theorem that every polynomial ring over a Noetherian ring in a
finite number of indeterminates is Noetherian.
In the theory of Noetherian commutative rings one of the most important notions
is the Krull dimension which measures the longest possible chain of prime ideals in
the ring. We start providing the definition of height and dimension of a prime ideal.

Definition 1.1.1. An ascending chain of prime ideals is a family {pj}j∈J of prime
ideals, where J is a countable set and pj ⊂ pj+1 for j ∈ J.

Definition 1.1.2. Let C : p0 ⊂ p1 ⊂ · · · ⊂ pn be a finite ascending chain of prime
ideals of R. The integer n is called length of C.
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Definition 1.1.3. Let p be a prime ideal. We call height of p the supremum of the
lengths of the ascending chains of prime ideals contained in p. We denote it by
ht(p).

Example 1.1.4. In K[X1, . . . , Xn] the prime ideal (X1, . . . , Xn) has height equal to
n, in fact a chain of prime ideals of maximum length is given by (0) ⊂ (X1) ⊂
(X1, X2) · · · ⊂ (X1, . . . , Xn−1) ⊂ (X1, . . . , Xn).

Denote by Spec(R) the set of all prime ideals of R.

Definition 1.1.5. The Krull dimension of R, denoted by dim(R), is defined as

sup{ht(p) : p ∈ Spec R}.

Example 1.1.6. The Krull dimension of K[X1, . . . , Xn] is n, since (0) ⊂ (X1) ⊂
(X1, X2) · · · ⊂ (X1, . . . , Xn−1) ⊂ (X1, . . . , Xn) is one of the longest chains of prime
ideals.

More in general, the Krull dimension of an R-module M is defined as the max-
imal length of the chains of prime ideals p such that Mp is non null, that is
dim(R/Ann(M)). We recall that a ring is said to be local if there exists a unique
maximal ideal.

Proposition 1.1.7. Let (R,m) be a local ring, where m is the maximal ideal of R. Then
dim R = ht(m).

Definition 1.1.8. Let I be an ideal of R. We define the height of I as

min{ht(p) : p ∈ Spec R, I ⊆ p}.

We denote it by ht(I).

Example 1.1.9. Let p be a prime ideal of R and consider the local ring Rp whose
maximal ideal is

pRp :=
{

x
y

: x ∈ p, y /∈ p

}
In a certain sense the ideals in Rp are given by just the ideals in R contained in p.
Hence from the known bijection between the prime ideals of R and of the ring of
fractions, we have that

dim Rp = ht(pRp) = ht(p).

We state a famous theorem concerning the height of an ideal in a Noetherian ring.

Theorem 1.1.10. Let R be a Noetherian ring and I be an ideal of R. The height of I is finite.
In addition, if R is also local then R has a finite Krull dimension.

Now, we recall briefly some results on the Krull dimension of polynomial rings.

Theorem 1.1.11. Let R be a Noetherian ring. Then

dim R[X] = dim R + 1.

Corollary 1.1.12. The following hold:

1. if R is a Noetherian ring, then dim R[X1, . . . , Xn] = dim R + n;

2. if K is a field, then dim K[X1, . . . , Xn] = n.
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Example 1.1.13. The Krull dimensions of the rings R[X], R[X, Y] and Z[X, Y] are
respectively 1, 2 and 3.

Let S = K[X1, . . . , Xn]. We recall that S = ⊕i∈ZSi is a graded K-algebra, setting Sj
as the K-vector space spanned by all monomials of degree j, S0 = K and Sj = (0)
for all j < 0. The K-vector spaces Si are called homogeneous components of S and the
elements in Si are defined as homogeneous elements of degree i.
A complex F over S is a sequence of S-modules and homomorphisms of S-modules
as

F : · · · → Fj+1
dj+1−−→ Fj

dj−→ Fj−1 → · · · → F0 → · · ·

such that di−1di = 0 for all i ∈ Z. The i-th homology of F is defined by
Hi(F) = ker(di)/ Im(di+1), for all i ∈ Z. We say that F is exact if Hi(F) = 0
for all i ∈ Z.

Let M be a graded finitely generated S-module. A graded free resolution of M is a
complex of finitely generated graded free S-modules as

F(M) : · · · → Fj+1
dj+1−−→ Fj

dj−→ Fj−1 → · · · → F0
d0−→ M→ 0

such that Hi(F) = 0 for all i 6= 0, M ∼= F0/ Im(d1) and di is an homogeneous map of
degree 0. Recall that in general such a resolution is not unique.
The length of F(M) is defined by sup{i|Fi 6= 0}. We say that F(M) is finite if its
length is finite, otherwise it is infinite. We say that F(M) is minimal if di+1(Fi+1) ⊆
(x1, . . . , xn)Fi for all i ≥ 0.
It is well known from the famous Hilbert’s Syzygy Theorem that a minimal graded
free resolution of a graded finitely generated S-module is finite and its length is at
most n. Moreover, it is proved that a minimal graded free resolution of a graded
finitely generated S-module M always exists and it is unique up to isomorphisms.
In such a case we can write F(M) as

0→
⊕
j∈Z

S(−j)βt,j dt−→ · · · →
⊕
j∈Z

S(−j)βi,j
di−→ · · · →

⊕
j∈Z

S(−j)β1,j
d1−→
⊕
j∈Z

S(−j)β0,j
d0−→ M→ 0

The numbers βi,j are called the graded Betti numbers of M. Moreover, the i-th Betti
number βi(M) is defined by ∑j∈Z βi,j, which is the rank of Fi.
Let M be a graded finitely generated S-module. The projective dimension of M is
pd(M) = max{i : βi(M) 6= 0}, which is the length of the minimal graded free
resolution of M.
The Castelnuovo-Mumford regularity (or simply regularity) of M is

max{j : βi,i+j 6= 0 f or some i}

and it is denoted by reg(M).
The graded Betti numbers of M can be displayed in a table called Betti diagram. Table
1.1 is that one provided in several computer programs, in particular in Macaulay2.

Example 1.1.14. Let S = K[x1, x2, x3, x4] and I be the ideal generated by f1 =
x1x3 − x2

2, f2 = x2
3 − x1x2 and f3 = x2

4. Using Macaulay2, we find the minimal
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β0 β1 β2 . . .
0 β0,0 β1,1 β2,2 . . .
1 β0,1 β1,2 β2,3 . . .
2 β0,2 β1,3 β2,4 . . .
3 β0,3 β1,4 β2,5 . . .
...

...
...

...
. . .

TABLE 1.1

free resolution of S/I

0→ S

 −x2
4

−x2
2+x1 x3

x1 x2−x2
3


−−−−−−−−→ S3

 x2
2−x1 x3 −x2

4 0
−x1 x2+x2

3 0 −x2
4

0 x1 x2−x2
3 x2

2−x1 x3


−−−−−−−−−−−−−−−−−−−→ S3 ( x1 x2−x2

3 x2
2−x1 x3 x2

4 )−−−−−−−−−−−−−−→ S→ S/I → 0

and the Betti diagram

total: 1 3 3 1
0 : 1 . . .
1 : . 3 . .
2 : . . 3 .
3 : . . . 1

We conclude this section recalling some notions on the Hilbert-Poincaré series of a
graded K-algebra R/I.
Let R be a standard graded ring and I be an homogeneous ideal of R. Then R/I
has a natural structure of graded K-algebra as

⊕
k∈N(R/I)k. The numerical function

HR/I : N→N with HR/I(k) = dimK(R/I)k is called the Hilbert function of R/I.
The formal series

HPR/I(t) = ∑
k∈N

HR/I(k)tk

is called the Hilbert-Poincaré series of R/I.
It is known by Hilbert-Serre theorem that there exists a polynomial h(t) ∈ Z[t] with
h(1) 6= 0 such that

HPR/I(t) =
h(t)

(1− t)d

where d is the Krull dimension of R/I. Such an expression of HPR/I is known as
the reduced Hilbert-Poincaré series of R/I and the polynomial h(t) is called the h-
polynomial of R/I. For instance, if S = K[x1, . . . , xn] then HPS(t) = 1

(1−t)n . Using
Macaulay2 we find that the Hilbert-Poincaré series of S/I in the Example 1.1.14 is
given by

1 + 3 t + 3 t2 + t3

1− t
.

Proposition 1.1.15. [48, Chapter 5] Let R be a graded K-algebra and I be a graded ideal of
R. Let q be an homogeneous element of R of degree m and let

0 −→ R/(I : q) −→ R/I −→ R/(I, q) −→ 0
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be a short exact sequence. Then HPR/I(t) = HPR/(I,q)(t) + tmHPR/(I:q)(t).

Proposition 1.1.16. Let A and B be standard graded K-algebras over a field K. Then
HPA⊗K B(t) = HPA(t) ·HPB(t).

We conclude mentioning [48, Proposition 3.1.33], which will be useful in several
results of Chapter 5 of this work.

Proposition 1.1.17. If X is a set of indeterminates, X1, X2 ⊂ X form a partition of X into
disjoint non-empty subsets and I is an ideal of K[X], K a field, such that each generator
of I belongs to K[Xj] for j ∈ {1, 2}, then K[X]/I ∼= K[X1]/I1 ⊗K K[X2]/I2, where Ij =
I ∩ K[Xj] for j ∈ {1, 2}.

1.2 Cohen-Macaulay rings, injective dimension and Goren-
stein rings

We introduce the concept of regular sequence and later the class of Cohen-Macaulay
rings. Keep in mind that R is a unitary commutative ring.

Definition 1.2.1. A sequence x1, . . . , xn of elements of R is said to be regular in R if it
satisfies the following conditions:

1. (x1, . . . , xn) 6= R;

2. x1 is not a zero-divisor in R;

3. xi is not a zero-divisor in R/(x1, . . . , xi−1) for all i = 1, . . . , n, where xi is the
image of xi in the canonical surjective morphism in R/(x1, . . . , xi−1).

Example 1.2.2. In K[X1, . . . , Xn] the sequence X1, . . . , Xn is regular.

Definition 1.2.3. We define the depth of an ideal I of R by

sup{n ∈N : (x1, . . . , xn) is a regular sequence in I}.

We denote it by depth(I).

Definition 1.2.4. We define the homological codimension of R by

sup{n ∈N : (x1, . . . , xn) is a regular sequence in R}.

We denote it by codh(R).

If (R, m) is a local ring, then depth(m) is the maximum length of a regular sequence
in R and codh(R) = depth(m). In general depth(m) 6 ht(m), so codh(R) 6 dim(R).

Definition 1.2.5. Let R be a local ring. If codh(R) = dim(R) then we say that R is a
Cohen-Macaulay ring.

Definition 1.2.6. Let R be a ring. We say that R is Cohen-Macaulay if Rm is a local
Cohen-Macaulay ring for all maximal ideals m of R.

Example 1.2.7. The polynomial ring K[X1, . . . , , Xn] or the ring K[[X1, . . . , Xn]] of the
formal power series, with K a field, are examples of Cohen-Macaulay rings.

In general, it holds that dim(R/I) + ht(I) ≤ dim(R) for all ideals I of R.
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Proposition 1.2.8. Let R be a Cohen-Macaulay ring. Then dim(R/I) + ht(I) = dim(R)
for all ideals I of R.

Now we introduce the notion of injective dimension for R-modules and later the
class of Gorenstein rings.

Definition 1.2.9. An R-module J is called injective if for every R-homomorphism
g : N −→ J and any injective R-homomorphism f : N −→ M there exists an R-
homomorphism h : M −→ J such that h ◦ f = g.

N M

J

f

g
h

Definition 1.2.10. Let M be an R-module. An injective resolution of M is an exact
complex as

I : 0→ M→ I0 → I1 → I2 → . . .

where Ij is an injective R-module, for all j ≥ 0.

It is known that every R-module can be embedded in an injective R-module, so as a
consequence every R-module has an injective resolution.
The injective dimension of an R-module M, denoted injdim(M), is the smallest integer
n, if there exists, such that there is an injective resolution of M as

I : 0→ M→ I0 → I1 → · · · → · · · → In → 0

If such an integer does not exist, we say that the injective dimension of M is infinite.

Proposition 1.2.11. Let (R,m) be a Noetherian local ring and M be an R-module with
finite injective dimension. Then injdim(M) = depth(R).

We are ready to give the definition of Gorenstein rings.

Definition 1.2.12. A Noetherian local ring R is said to be Gorenstein if the injective
dimension of R as a R-module is finite.

Definition 1.2.13. A Noetherian ring R is called Gorenstein if Rm is Gorenstein for all
maximal ideals m of R.

It is known that every Gorenstein ring is Cohen-Macaulay.

For the graded K-algebras we can characterize the Gorenstein property and the reg-
ularity using the invariants which appear in the related reduced Hilbert-Poincaré
series. For a reference see [44].

Theorem 1.2.14. Let R = K[x1, . . . , xn] be a standard graded polynomial ring and I be a
homogeneous ideal of R such that R/I is a Cohen-Macaulay domain. Consider the reduced
Hilbert series of R/I, that is

HPR/I(t) =
∑s

i=0 hiti

(1− t)dim(R/I)
.

Then the following hold:

1. reg(R/I) = s;

2. R/I is Gorenstein if and only if hi = hs−i, for all i ∈ [s] = {1, . . . , s}.



1.3. Gröbner basis 13

1.3 Gröbner basis

Let S = K[x1, . . . , xn] and Mon(S) be the set of monomials of S. If a = (a1, . . . , an) ∈
Nn then we set xa = xa1

1 . . . xan
n . We recall that a monomial order on S is a total order

≤ on Mon(S) such that:

1. 1 ≤ u for all u ∈ Mon(S);

2. if u < v and w ∈ Mon(S), then uw < vw.

Example 1.3.1. Let xa, xb ∈ Mon(S). We provide the following well-known exam-
ples of monomial orders on S induced by x1 > · · · > xn.

1. Pure lexicographic order <lex: xa <lex xb, if the left-most non-zero component of
a− b is negative.

2. (Graded) Lexicographic order <grlex: xa <grlex xb, if either ∑n
i=1 ai < ∑n

i=1 bi or if
∑n

i=1 ai = ∑n
i=1 bi and the left-most non-zero component of a− b is negative.

3. (Graded) Reverse lexicographic order <grevlex: xa <grevlex xb, if either ∑n
i=1 ai <

∑n
i=1 bi or if ∑n

i=1 ai = ∑n
i=1 bi and the right-most non-zero component of a− b

is positive.

Let < be a monomial order on S and f be a non-null polynomial in S. Then f can be
written as f = ∑a∈Nn αaxa, where only a finite number of αa ∈ K is non-null. We call
support of f the finite set supp( f ) = {xa : αa 6= 0}; moreover, supp( f ) = ∅ if and
only if f = 0. We denote by in<( f ) the largest monomial in supp( f ) with respect to
<, and call it the initial monomial of f . The coefficient β of in<( f ) in f is called the
leading coefficient of f with respect to <, and β in<( f ) is called the leading term of f .
Let I be a non-zero ideal of S. The initial ideal of I is the monomial ideal in<(I)
generated by in<( f ) for all f ∈ I with f 6= 0. In the case that I = (0), we assume
trivially in<(I) = (0).

Remark 1.3.2. In general if I = (g1, . . . , gm) then it is not true that in<(I) =
(in<(g1), . . . , in<(gm)). In fact, consider the ideal I in S[x1, x2, x3] generated by
f = x1x3− x2

2 and g = x1x2x3− x2x2
3. With respect to the reverse lexicographic order,

denoted for simplicity by <, we have in<( f ) = x2
2 and in<(g) = x1x2x3. Moreover

observe that h = (−x1x3) f + (−x2)g = x2
2x2

3 − x2
1x2

3, so in<(h) = x2
1x2

3 ∈ in<(I) but
in<(h) /∈ (x2

2, x1x2x3).
Anyway, in<(I) is generated by a finite numbers of initial monomials, since it is a
monomial ideal (see [16, Corollary 1.10])

Definition 1.3.3. Let I be an ideal in S and let < be a monomial order on S. We say
that elements g1, . . . , gm ∈ I form a Gröbner basis of I with respect to the monomial
order < if in<(I) = (in<(g1), . . . , in<(gm)).

Note that a Gröbner basis of I always exists because in<(I) a is finitely generated
ideal. Moreover, it is not unique because if {g1, . . . , gm} is a Gröbner basis of I with
respect to < then {g1, . . . , gm, g1 + gm} is also.

Theorem 1.3.4. Let I be an ideal in S and let < be a monomial order on S. Suppose
that g1, . . . , gm ∈ I form a Gröbner basis of I with respect to a monomial order <. Then
g1, . . . , gm form a system of generators of I.
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Theorem 1.3.5. Let f , g1, . . . , gm ∈ S where gi is a non-zero polynomial in S for all i ∈ [m].
Given a monomial order <, there exist q1, . . . , qm, r ∈ S such that

f = q1g1 + · · ·+ fmgm + r

and the following conditions are satisfied:

1. If r 6= 0 and if u ∈ supp(r), then none of the initial monomials in<(g1), . . . , in<(gm)
divides u;

2. in<(qigi) ≤ in<( f ) for all i ∈ [m].

The expression f = q1g1 + · · ·+ qmgm + r satisfying the two conditions mentioned
in Theorem 1.3.5 is called a standard expression of f , and r is called a remainder of f
with respect to g1, . . . , gm. In such a case, we say that f reduces to r with respect to
g1, . . . , gm.
Observe that f may have different standard expressions with respect to g1, . . . , gm.
Consider S = K[x1, x2, x3], let f = x2

1x2 − x3
3, g = x1 − x3 , h = x2 and < be the

graded reverse-lexicographic order. Then f = (x1x2 + x2x3)g + (x2
3)h− x3

3 and f =
0g + (x2

1)h− x3
3 are two different standard expressions of f .

Proposition 1.3.6 (Buchberger’s criterion). Let I be an ideal in S and let < be a monomial
order on S. Suppose that g1, . . . , gm ∈ I form a Gröbner basis of I with respect to the
monomial order <. Then each polynomial f ∈ S has a unique remainder with respect to
g1, . . . , gm. As a consequence, a polynomial f belongs to I if and only if f reduces to 0 with
respect to g1, . . . , gm.

Buchberger’s criterion is one of the most important tool in Gröbner basis theory. It
allows to check whether a generating set of an ideal is a Gröbner basis. To explain
this criterion we need to introduce the so-called S-polynomials.
Let < be a monomial order on S. Consider f and g two polynomials in S. The
S-polynomial of f and g with respect to < is defined by

S( f , g) =
lcm(in<( f ), in<(g))

β in<( f )
f − lcm(in<( f ), in<(g))

γ in<(g)
g

where β and γ are respectively the leading coefficients of f and g.

Theorem 1.3.7. Let I = (g1, . . . , gm) be a non-null ideal in S and let < be a monomial
order on S. The following conditions are equivalent:

1. g1, . . . , gm is a Gröbner basis of I with respect to <;

2. S(gi, gj) reduces to 0 with respect to g1, . . . , gm, for all i < j.

Proposition 1.3.8. Let < be a monomial order on S and let f , g ∈ S such that in<( f ) and
in<(g) are relatively prime, that is gcd(in<( f ), in<(g)) = 1. Then S( f , g) reduces to 0
with respect to f , g.

The Buchberger’s criterion allows to build a Gröbner basis of an ideal I starting from
any system of generators. In fact, you have to follow the following steps of the so-
called Buchberger’s algorithm. Let I be an ideal of S and G be any system of generators
of I.

1. Step 1: For each pair (gi, gj) of distinct generators in G we compute the S-
polynomial and a remainder of it, called ri,j.
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2. Step 2: If all S-polynomials reduce to 0, then the algorithm ends and G is a
Gröbner basis of I, otherwise we add one of the non-zero remainders rij to our
system of generators, setting G = G ∪ {rij}, and we go back to Step 1.

This algorithm ends obviously after a finite number of steps, since every strictly
ascending sequence of ideals is finite. Indeed, when we add a non-zero remainder
of an S-polynomial to G, the monomial ideal (in<(g) : g ∈ G) becomes strictly larger,
but the ascending chain defined by these monomial ideals is finite.

Definition 1.3.9. Let I be an ideal in S and let < be a monomial order on S. Suppose
that G = {g1, . . . , gm} is a Gröbner basis of I with respect to the monomial order <.
We say that G is reduced if:

1. the leading coefficient of gi is 1, for all i ∈ [m];

2. no monomials in supp(gj) is divisible by in<(gi), for all i 6= j.

Theorem 1.3.10. Each ideal I ⊂ S has a unique reduced Gröbner basis.

Proposition 1.3.11. Let I be a non-zero ideal of S and < be a monomial order on S.

1. The set of monomials not in in<(I) forms a K-basis of S/I.

2. If I is a graded ideal, then dimK Ij = dimK(in< I)j, for all j. As a consequence, S/I
and S/ in<(I) have the same Hilbert function and hence dim S/I = dim S/ in<(I).

Example 1.3.12. In S = K[x1, x2, x3] consider the ideal I generated by g1 = x1x2− x3
and g2 = x1x3 − x2. Let < be the graded reverse lexicographic order on S. Then
in<(g1) = x1x2 and in<(g2) = x1x3. We compute the reduce Gröbner basis of I with
respect to <.

1. First of all, we compute the S-polynomial of g1 and g1:

S(g1, g2) =
x1x2x3

x1x2
(x1x2 − x3)−

x1x2x3

x1x3
(x1x3 − x2) = x2

2 − x2
3.

Observe that x2
2 − x2

3 does not reduce to 0 modulo {g1, g2}, so we set g3 =
x2

2 − x2
3 and we add it to the set of generators of I.

2. We need now the S-polynomials of g1, g3 and g2, g3.

S(g1, g3) = −x1x2
3 + x2x3 = −x3g1

S(g2, g3) = −x1x3
3 + x3

2 = −x2
3g2 − x2g3

Since S(g1, g3) and S(g2, g3) reduce to 0 with respect to {g1, g2, g3}, then {g1, g2, g3}
is a Gröbner basis of I with respect to <. Observe that it is also reduced.

1.4 Normal domains, semigroup rings and toric ideals

We start this section introducing the notion of integral closure of R and consequently
the class of normal domains.
An R-algebra B is a ring B with a fixed ring homomorphism φ : R −→ B. In fact, in
B we can define an R-module structure with the operation defined by the multipli-
cation of φ(a) and b in B, for all a ∈ R and b ∈ B. A particular case is when R ⊆ B
or, in other words, when B is an extension ring of R.
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Definition 1.4.1. Let B be an extension of R and let y ∈ B. We say that y is integral
over R if there exists a monic polynomial with coefficients in R

f (x) = xn + an−1xn−1 + · · ·+ a1x + a0

such that f (y) = 0.

The set of elements of B that are integral over R is called the integral closure of R in B
and it is denoted by RB.

Definition 1.4.2. We say that B is integral over R if B = RB.

Definition 1.4.3. We say that R is integrally closed in B if R = RB.

Definition 1.4.4. Let R be a domain and Q(R) be its field of fractions. We say that R
is a normal domain if R is integrally closed in Q(R).

It can be proved that if R is a unique factorization domain (UFD) and Q(R) is its field
of fractions, then the integral elements of Q(R) over R are precisely the elements of
R, that is any UFD is a normal domain.

Example 1.4.5. Z and Z[X1, . . . , Xn] are UFDs, so they are examples of normal do-
mains.

Following [3] we provide now the definition of an affine semigroup and of a toric
ideal of a semigroup ring with some interesting well known results.
Let {h1, . . . , hq} be a subset of Zn and H be the sub-monoid of the additive group
Zn generated by h1, . . . , hq, so

H = {a1h1 + · · ·+ aqhq : ai ∈N, ∀i ∈ [q]}.

H is called the affine semigroup generated by {h1, . . . , hq}.
Let H ⊂ Zn be an affine semigroup generated by {h1, . . . , hq} and
K[x1, x−1

1 , . . . , xn, x−1
n ] be the Laurent polynomial ring. We denote by K[H] the subring

of the Laurent polynomial ring generated over K by the monomials xhi , for i ∈ [q].
Observe that xa ∈ K[H] if and only if a ∈ H. The K-algebra K[H] is called the semi-
group ring ofH. For instance ifH = N(1, 2) + N(2, 1), then K[H] = K[x1x2

2, x2
1x2].

Let R = K[t1, . . . , tq] be the polynomial ring in the indeterminates t1, . . . , tq and de-
fine the surjective K-algebra homomorphism φ : R→ K[H] by φ(ti) = xhi , for i ∈ [q].
Its kernel PH, called the toric ideal of H, is a graded ideal of R and it is also prime
since K[H] ∼= R/PH and K[H] is a domain.

Definition 1.4.6. We recall that a binomial f in S is given by the difference of two
distinct monomials in S. An ideal I ⊂ S is said to be a binomial ideal if it is generated
by binomials.

Let π : Nq → H be the homomorphism of semigroups defined by π(u) = ∑
q
i=1 uihi

where u = (u1, . . . , uq) ∈Nq. Observe easily that φ(tu) = xπ(u) for tu ∈ R.

Proposition 1.4.7. Let H be an affine semigroup generated by h1, . . . , hp and PH be its
toric ideal. Then the set of binomials

{tu − tv : u, v ∈Nq, π(u) = π(v)}

generates PH as a K-vector space. In particular, PH is a binomial ideal.
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We give some interesting results about the reduced Gröbner basis of binomial ideals.

Proposition 1.4.8. Let I be a binomial ideal of S and < be a monomial order on S. Then the
reduced Gröbner basis of I with respect to < consists of binomials.

Theorem 1.4.9. Let I be a binomial ideal of S. The following are equivalent:

1. I is a toric ideal of some semigroup ring;

2. I is a prime ideal.

Definition 1.4.10. A binomial tu − tv ∈ PH is called primitive if there is no other
binomial tr − ts ∈ PH such that tr divides tu and ts divides tv.

Proposition 1.4.11. Let I be a prime binomial ideal of S and < be a monomial order on S.
Then the reduced Gröbner basis of I with respect to < consists of primitive binomials.

Now, we define the normal affine semigroup and we state the nice relation with
normal rings established by Hochster.

Definition 1.4.12. An affine semigroup H ⊂ Zq is said to be normal if mg ∈ H, for
some g ∈ Zq and m > 0, then g ∈ H.

Theorem 1.4.13. Let H be an affine semigroup and K[H] be its semigroup ring. The fol-
lowing are equivalent:

1. H is a normal semigroup;

2. K[H] is a normal ring.

Theorem 1.4.14. [3, Theorem 6.3.5] LetH be a normal semigroup. Then its semigroup ring
K[H] is Cohen-Macaulay.

Theorem 1.4.15. [46] Let H be an affine semigroup and < be a monomial order on R such
that in<(PH) is a squarefree monomial ideal. Then K[H] is a normal ring.

It follows that if H is an affine semigroup and there exists a monomial order <
on R such that in<(PH) is a squarefree monomial ideal, then K[H] is a normal
Cohen-Macaulay ring.

We conclude this section recalling some basics on the toric ideals attached to edge
rings. First of all we recall some useful notions of graph theory.
A graph G is an ordered pair of finite sets as (V, E) such that E is a subset of the set
of unordered pairs of V. V is called the set of vertices of G and E is the set of edges of
G. A graph not containing any loop, which is an unordered pair as {v, v}, is said to
be simple. A walk of length t in G is a sequence of edges of G, as

Γ = {{vi1 , vi2}, {vi2 , vi3}, . . . , {vit−2 , vit−1}, {vit−1 , vit}}.

If vi1 = vit , then the walk Γ is called a closed walk. A path is a walk with all its vertices
distinct. We say that G is connected if for every pair of vertices there exists a path
connecting them.
Let G be a connected and simple finite graph with vertices x1, . . . , xn and E(G) =
{t1, . . . , td}. Let R = K[x1, . . . , xn] and S = K[t1, . . . , td] be the polynomial rings over
a field K associated to V(G) and E(G). The edge ring K[G] of G is the K-subalgebra
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K[{xixj : {i, j} ∈ E(G)}] of S. Define the following surjective K-algebra homomor-
phism

ψ : S −→ K[G]

ψ(tk) = xixj where tk = {i, j} ∈ E(G)

The kernel of ψ is the toric ideal of K[G] and it is denoted by IG.
Consider a closed walk as Γ =

{
th1 , th2 , . . . , th2q

}
where thz ∈ E(G) for all z ∈ [2q].

Hence we set

fΓ =
q

∏
k=1

ti2k−1 −
q

∏
k=1

ti2k

which belongs to IG.

Theorem 1.4.16. Let G be a graph. The toric ideal IG is generated by fΓ, where Γ is an even
closed walk of G.

Example 1.4.17. Consider the graph G1 in Figure 1.1 (A). The edge ring of G1 is
K[x1x2, x2x3, x2x4, x2x5, x5x4]. The toric ideal of G1 is the null ideal, since there does
not exist any even closed walk in G1.

(A) G1 (B) G2

FIGURE 1.1

On the other hand, consider now the graph G2 displayed in Figure 1.1 (B). The
edge ring of G2 is K[x1x2, x2x3, x3x4, x4x1, x2x4]. The unique even closed walk is
Γ = (t1, t2, t3, t4), so the toric ideal of G2 is the ideal in K[t1, t2, t3, t4, t5] generated
by t1t3 − t2t4.

A cycle of length t is a closed walk of the form

C = {{vi1 , vi2}, {vi2 , vi3}, . . . , {vit−2 , vit−1}, {vit−1 , vit}},

with vik 6= vil for all 1 ≤ k < l ≤ t− 1. A chord of a cycle C is an edge of the form
e = {vik , vil}, where 1 ≤ k < l ≤ t− 1, with e /∈ E(C). A minimal cycle is a cycle
with no chord. A graph is called weakly chordal if every cycle of length greater than 4
has a chord.
We conclude providing the following result which will be useful in Sub-section 3.2.

Theorem 1.4.18 ([34], [36]). Let G be a bipartite graph. If G is weakly chordal then the
associated toric ideal IG is minimally generated by quadratic binomials attached to the cycles
of G of length 4.
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Chapter 2

Binomial ideals of collections of
cells and their primality

In [37] Ayesha Asloob Qureshi establishes a connection between collections of cells
and Commutative Algebra, attaching to a collection of cells P the ideal generated
by all inner 2-minors of P . In this chapter we define the ideals generated by inner
2-minors associated to a collection of cells in Z2 and we study their primality.
Firstly, in the section 2.1 we introduce some basics on collections of cells and poly-
ominoes and later we define the K-algebras associated to them following [37]. In
section 2.2 we introduce a new kind of non-simple polyominoes, called closed paths,
and we discuss their primality. More precisely, we characterize the primality of the
polyomino ideal of a closed path by the non-existence of zig-zag walks of P .

2.1 Collections of cells, polyominoes and inner minors

In this section we introduce collections of cells and polyominoes to which binomial
ideals will be attached. For this purpose we need to introduce some concepts and
notations.
Consider the natural partial order on R2: given (i, j), (k, l) ∈ R2, we say (i, j) ≤ (k, l)
if i ≤ k and j ≤ l. Let a = (i, j), b = (k, l) ∈ Z2. The set [a, b] = {(r, s) ∈ Z2 :
i ≤ r ≤ k, j ≤ s ≤ l} is called an interval of Z2. We define the closure of [a, b]
the set [a, b] = {x ∈ R2 : a ≤ x ≤ b}. If i < k and j < l, we say that [a, b]
is a proper interval. The elements a, b are called the diagonal corners and c = (i, l),
d = (k, j) the anti-diagonal corners of [a, b]. If j = l (or i = k) we say that a and b are in
horizontal (or vertical) position. An elementary interval of the form C = [a, a + (1, 1)]
is a cell with lower left corner a. The elements a, a + (0, 1), a + (1, 0) and a + (1, 1) are
called the vertices or corners of C and the sets {a, a + (1, 0)}, {a + (1, 0), a + (1, 1)},
{a + (0, 1), a + (1, 1)} and {a, a + (0, 1)} are called the edges of C. We denote the set
of the vertices and the edges of C respectively by V(C) and E(C).
Let C and D be two distinct cells of Z2. A walk from C to D is a sequence C : C =
C1, . . . , Cm = D of cells of Z2 such that Ci ∩ Ci+1 is an edge of Ci and Ci+1 for i =
1, . . . , m− 1. If in addition Ci 6= Cj for all i 6= j, then C is called a path from C to D. If
C1 : A1, . . . , Am and C2 : B1, . . . , Bn are two walks such that Am = B1, then the union
of C1 and C2 is defined by the walk A1, . . . , Am−1, Am, B2, . . . , Bn and it is denoted by
C1 ∪ C2.

Remark 2.1.1. In general, a walk C : C = C1, . . . , Cm = D from C to D contains a path
between C and D, that is there exist a path F from C to D such that every cell of F is
a cell of C. It can be proved by induction on the number m of cells of C. If m = 2, then
C : C = C1, C2 = D is obviously a path. Let m > 2 and suppose that any walk from
C to D consisting of k cells, with k < m, contains a path between these cells. Suppose
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that not all the cells of C are distinct, so there exist i, j ∈ {1, . . . , m} such that Ci = Cj,
with j > i. Consider the sequence C ′ : C = C1, . . . , Ci−1, Cj, . . . , Cm = D, consisting
of all the cells in C except Ci, Ci+1, . . . , Cj−1. C ′ is a walk from C to D having less
than m cells, so applying the inductive hypothesis on C ′ we have a path from C to D
contained in C ′, that is contained also in C.

Let P be a non-empty collection of cells in Z2. We denote the set of the vertices of
P by V(P) = ⋃

C∈P V(C) and the set of the edges of P by E(P) = ⋃
C∈P E(C). Let

C and D be two cells of P . We say that C and D are connected if there exists a walk
C : C = C1, . . . , Cm = D such that Ci ∈ P for all i = 1, . . . , m. We denote by (ai, bi)
the lower left corner of Ci for all i = 1, . . . , m and we observe that a walk can change
direction in one of the following ways:

1. North, if (ai+1 − ai, bi+1 − bi) = (0, 1) for some i = 1, . . . , m− 1;

2. South, if (ai+1 − ai, bi+1 − bi) = (0,−1) for some i = 1, . . . , m− 1;

3. East, if (ai+1 − ai, bi+1 − bi) = (1, 0) for some i = 1, . . . , m− 1;

4. West, if (ai+1 − ai, bi+1 − bi) = (−1, 0) for some i = 1, . . . , m− 1.

Let P be a non-empty, finite collection of cells in Z2. We say that P is a polyomino
if any two cells of P are connected. For instance, see Figure 2.1 (A). We say that P
is weakly connected if for any two cells C and D in P there exists a sequence of cells
C : C = C1, . . . , Cm = D of P such that V(Ci) ∩V(Ci+1) 6= ∅ for all i = 1, . . . , m− 1.
Let P ′ be a subset of cells of P . P ′ is called a connected component of P if P ′ is a
polyomino and it is maximal with respect to the set inclusion, that is if A ∈ P \ P ′
then P ′ ∪ {A} is not a polyomino. For instance, see Figure 2.1 (B).

(A) (B)

FIGURE 2.1: A polyomino and a weakly connected collection of cells.

We say that P is simple if for any two cells C and D of Z2, not in P , there exists a
path C : C = C1, . . . , Cm = D such that Ci /∈ P for all i = 1, . . . , m. For example, the
polyomino and the weakly connected collection of cells in Figure 2.1 are not simple.
A finite collection of cells H not in P is a hole of P if any two cells F and G of H are
connected by a path F : F = F1, . . . , Ft = G such that Fj ∈ H for all j = 1, . . . , t and
H is maximal with respect to set inclusion. Observe that each hole of a collection
P of cells is a simple polyomino and P is simple if and only if it has not any hole.
Moreover, it is easy to see that a non-simple polyomino has a finite number of holes.
We say that a cell E of Z2 is external to P if it satisfies one of the two following
conditions: E /∈ P ∪H1 ∪ · · · ∪ Hn if P is a non-simple polyomino and H1, . . . ,Hn
are the holes of P , or E /∈ P if P is a simple polyomino. The set of the cells of Z2

external to P is called the exterior of P . If U is the exterior of P , then we observe
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that any two cells of U are connected in U . We say that an edge of a cell of P is a
border edge if it is not an edge of any other cell of P . A horizontal border edge of P is
defined to be a horizontal edge interval of P consisting of border edges of cells of
P . Similarly we define the vertical border edge of P . The union of the closures of the
border edges of P is called perimeter of P .
Let A and B be two cells of Z2 and let a = (i, j) and b = (k, l) be the lower left corners
of A and B, with a ≤ b. The cell interval, denoted by [A, B], is the set of the cells of
Z2 with lower left corner (r, s) such that i 6 r 6 k and j 6 s 6 l. If (i, j) and (k, l)
are in horizontal position, we say that the cells A and B are in horizontal position.
Similarly, we define two cells in vertical position. Let A and B be two cells of P in
vertical or horizontal position. The cell interval [A, B] is called a block of P of length
n if any cell C of [A, B] belongs to P and |[A, B]| = n. The cells A and B are called
extremal cells of [A, B]. The block [A, B] is maximal if there does not exist any block
[A′, B′] of P such that [A, B] ⊂ [A′, B′]. Moreover if A and B are in vertical (resp.
horizontal) position, then [A, B] is also called a maximal vertical (resp. horizontal) block
of P . An interval [a, b] with a = (i, j), b = (k, j) and i < k is called a horizontal edge
interval of P if the sets {(`, j), (`+ 1, j)} are edges of cells of P for all ` = i, . . . , k− 1.
In addition, if {(i − 1, j), (i, j)} and {(k, j), (k + 1, j)} do not belong to E(P), then
[a, b] is called a maximal horizontal edge interval of P . We define similarly a vertical
edge interval and a maximal vertical edge interval. Observe that a lattice interval of
Z2 identifies a cell interval of Z2 and vice versa, so if I is an interval of Z2 we denote
by P(I) the cell interval associated to I. A proper interval [a, b] is called an inner
interval of P if all cells of [a, b] belong to P .
A polyomino P is thin if it does not contain the square tetromino in Figure 2.2 (A).
For instance in Figure 2.2 (B), you can see a thin polyomino. A polyomino P is called
row (resp. column) convex if for any two cells A and B of P in horizontal position
(resp. vertical position) then cell interval [A, B] is contained in P . If P is row and
column convex, then P is called a convex polyomino (see Figure 2.2 (C)). A convex
polyomino P is said to be L-convex if any two cells of P can be connected by a path
having at most a change of direction.

(A) (B) (C)

FIGURE 2.2

Let P be a non-empty finite collection of cells in Z2. We always assume that the
smallest interval of Z2 containing V(P) is [(1, 1), (m, n)]. Let K be a field and SP =
K[xv | v ∈ V(P)]. Consider a proper interval [a, b] of Z2, with a,b diagonal corners
and c,d anti-diagonal ones. We attach the binomial xaxb − xcxd to [a, b] and if [a, b] is
an inner interval then the binomial xaxb − xcxd is called an inner 2-minor of P . We
denote by IP ⊂ SP the ideal in SP generated by all the inner 2-minors of P . We set
also K[P ] = SP/IP , that is the coordinate ring of P . If P is a polyomino, the ideal
IP is called the polyomino ideal of P .
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Example 2.1.2. Consider the polyomino P in Figure 2.3.

FIGURE 2.3: A polyomino P .

Let K be a field. The polyomino ring SP attached to P is given by

K[x11, x21, x31, x41, x12, x22, x32, x42, x13, x23, x33, x43, x14, x24, x34, x44]

and the polyomino ideal IP of P is generated by the following twenty binomials:

x34x13 − x33x14, x32x21 − x31x22, x42x11 − x41x12, x24x12 − x22x14,
x44x32 − x42x34, x24x13 − x23x14, x44x33 − x43x34, x32x11 − x31x12,
x44x23 − x43x24, x22x11 − x21x12, x42x31 − x41x32, x23x11 − x21x13,
x43x31 − x41x33, x44x13 − x43x14, x34x23 − x33x24, x42x21 − x41x22,
x23x12 − x22x13, x24x11 − x21x14, x44x31 − x41x34, x43x32 − x42x33.

Just as an example, note that the binomial x11x33 − x13x31 is not a generator of IP
since [(1, 1), (3, 3)] is not an inner interval of P .

2.2 On the primality of closed path polyominoes

One of the most exciting challenges is to characterize the primality of IP depending
upon the shape of P . Although the question seems very simple, it is very diffi-
cult to give a complete characterization of prime polyomino ideals. The primality
of simple polyominoes is proved in [24], showing that the class of simple polyomi-
noes coincides with that one of balanced polyominoes and using the primality of
the polyomino ideal of a balanced one (see [25]). Independently of this, the same
result is shown in [39], by identifying the coordinate ring of a simple polyomino
with the edge ring of a bipartite and weakly chordal graph. Nowadays, the study
of the primality is applied to multiply connected polyominoes, which are polyomi-
noes with one or more holes. In [28] and [41], the authors discuss a family of prime
polyominoes, obtained by removing a convex polyomino from a rectangle, which
generalizes the class of "rectangle minus rectangle", introduced in [42]. In [32] the
primality of polyomino ideals is studied using the Gröbner basis and the lattice ide-
als. In [31] the authors study the primality of grid polyominoes and, in particular,
they introduce a particular sequence of inner intervals of P , called a zig-zag walk,
and they prove that P does not contain zig-zag walks if IP is prime. It seems that
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the non-existence of zig-zag walks in a polyomino could characterize its primality
[Conjecture 4.6, [31]].

Definition 2.2.1. A zig-zag walk of P is a sequence W : I1, . . . , I` of distinct inner
intervals of P where, for all i = 1, . . . , `, the interval Ii has either diagonal corners
vi, zi and anti-diagonal corners ui, vi+1 or anti-diagonal corners vi, zi and diagonal
corners ui, vi+1, such that:

1. I1 ∩ I` = {v1 = v`+1} and Ii ∩ Ii+1 = {vi+1}, for all i = 1, . . . , `− 1;

2. vi and vi+1 are on the same edge interval of P , for all i = 1, . . . , `;

3. for all i, j ∈ {1, . . . , `} with i 6= j, there exists no inner interval J of P such that
zi, zj belong to J.

FIGURE 2.4: An example of a zig-zag walk of P .

Inspired by the conjecture that characterizes the primality of a polyomino ideal by
non-existence of zig-zag walks, we introduce a new class of non-simple polyomi-
noes, called closed paths, and we characterize the primality of their associated ideal
by zig-zag walks in [4].

2.2.1 Closed path polyominoes and zig-zag walks

Let us start with the definition of closed path polyomino and with some important
geometric results about these kind of non-simple polyominoes.

Definition 2.2.2. A polyomino P is called a closed path if it is a sequence of cells
A1, . . . , An, An+1, n > 5, such that:

1. A1 = An+1;

2. Ai ∩ Ai+1 is a common edge, for all i = 1, . . . , n;

3. Ai 6= Aj, for all i 6= j and i, j ∈ {1, . . . , n};

4. For all i ∈ {1, . . . , n} and for all j /∈ {i− 2, i− 1, i, i + 1, i + 2} then Ai ∩ Aj = ∅,
where A−1 = An−1, A0 = An, An+1 = A1 and An+2 = A2.

Intuitively, a closed path is a path in which the two ends meet and the cells have a
common edge only with the previous and next ones. Roughly speaking, it is similar
to a pearl necklace on a table. The assumption n > 5 is not restrictive, in fact it is
known that all polyominoes with less than 6 cells are simple polyominoes (see for
instance [18]), so they are well known for what concerns the primality of IP and
other properties of such an ideal.
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FIGURE 2.5: A closed path.

Remark 2.2.3. Let P be a closed path and A1, A2, . . . , An, An+1 = A1 the sequence of
cells of P having the properties in Definition 2.2.2. Let i ∈ {1, . . . , n} and consider
the cells Ai−1, Ai, Ai+1. Up to reflections or rotations we have only one of the two
arrangements described in Figure 2.6 (A) and (B).

(A) (B)

FIGURE 2.6

1. Referring to Figure 2.6(A), without loss of generality, we can suppose that
i = 1, so i + 1 = 2 and i − 1 = n, otherwise it suffices to rename the indices.
We prove that C, D, E, F do not belong to P . Suppose that E belongs to
P . Since E ∩ A1 6= ∅, from condition (4) of Definition 2.2.2 we have that
E = A3 or E = An−1, which contradicts (2) of Definition 2.2.2, because
E ∩ A2 and E ∩ An are not edges. So E does not belong to P . The same
holds for the cells C and F by similar arguments. Moreover, from condition
(4) of Definition 2.2.2 it follows that D is not in P . By similar arguments it
is possible to show that the cells C and D as in Figure 2.6(B) do not belong to P .

2. Observe that for every cell H not belonging to P and for every cell A belonging
to P and not placed as the cell Ai in Figure 2.6 (A) there exists a path of cells
H = H1, . . . , Hm not belonging to P such that Hm ∩ A is an edge of Hm and
A. In fact it is possible to consider a walk C1 : H = F1, . . . , Fr = G of cells
not in P linking H to a cell G not in P and having an edge in common with
a cell Ak of P . We may assume that k = 1, otherwise it suffices to rename the
indices. If A = A1, then C1 is a walk of cells not in P such that Fr ∩ A is an
edge of Fr and A, and by Remark 2.1.1 we obtain a desired path. If A 6= A1,
then we can consider another walk C2 : G = G1, . . . , Gt such that Gj /∈ P for
all j = 1, . . . , t and Gt ∩ A is an edge of Gt and A, obtained travelling along
the perimeter of P with the condition (2) of the Definition 2.2.2 and using the
point (1) of this Remark. Considering the walk C1 ∪ C2, we have a desired path
by Remark 2.1.1.

Lemma 2.2.4. Let P be a closed path. Then P contains a block of length at least 3.
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Proof. We suppose that P does not contain any block of length n > 3. We fix a cell
A of P with lower left corner a. After a shift of coordinates, we may assume that
a = (1, 1). Since P is a closed path, there exists a cell A2, which has an edge in
common with A. We may assume that the lower left corner of A2 is a2 = (2, 1). P
is a closed path, then there exists a cell B2, different from A, such that A2 ∩ B2 is an
edge of A2 and B2. If the lower left corner of B2 is (3, 1), then {A, A2, B2} is a block
of length three, a contradiction. We may assume that the lower left corner of B2 is
b2 = (2, 2). Continuing these arguments, we find a sequence of cells of P , namely
A, A2, B2, . . . , Am, Bm, . . . , where the lower left corners of Am and Bm are respectively
am = (m, m− 1) and bm = (m, m), for all m > 2. Since P is a closed path, there exists
m ∈N \ {0, 1} such that Am = A or Bm = A, that is am = (1, 1) or bm = (1, 1). It is a
contradiction because am > (1, 1) and bm > (1, 1), for all m > 2.

According to [24], we recall that a rectilinear polygon is a polygon whose edges meet
orthogonally and it is called simple if there does not exist any self-intersection. In par-
ticular if C is a rectilinear polygon, then the area bounded by C is called the interior
of C.

Proposition 2.2.5. Let P : A1, . . . , An, An+1 be a closed path. Then the following hold:

1. P is a non-simple polyomino.

2. P has a unique hole.

3. Let P ′ be the polyomino consisting of all the cells of P except Ai, Ai+1, . . . , Ai+r for
some i ∈ {1, . . . , n} and 1 ≤ r < n − 1, where all indices are reduced modulo n.
Then P ′ is a simple polyomino.

Proof. 1) Firstly we show that there exist two cells not belonging to P and a simple
rectilinear polygon C, consisting of the union of the closures of certain border edges
of P , such that the two cells are both neither in the interior of C nor in the exterior
of C. Consider a change of direction of P consisting of the cells R, S and T and we
do opportune rotations of P in order to have {R, S, T} as in Figure 2.7 (A). We set
S = A1 and, walking clockwise along the path, we label the cells of P increasingly
from A1 to An. It is not restrictive to assume R = An and T = A2. Observe that
a such labelling induces a natural orientation along the perimeter of P . Let C be
the union of the closures of the border edges of P having the following property:
if r is a border edge of a cell Ai then r ∈ C if it has the cell Ai on its right with
respect to the fixed orientation on the perimeter of P . We prove that C is a simple

(A) (B) The arrows indicate the
clockwise orientation of C.

FIGURE 2.7
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rectilinear polygon. Observe that C is the union of orthogonal line segments by
construction, so if C is a polygon then it is also rectilinear. We show firstly that C is
a polygon. We denote by r1 the border edge of A1 having a vertex in common with
A2. Let r1, r2, . . . be the sequence of the closures of the border edges belonging to
C, obtained following the clockwise orientation of the perimeter of P starting from
r1. For all i ∈ {2, . . . , n − 1} considering three consecutive cells Ai−1, Ai and Ai+1
of P , the possible arrangements of rj and rj+1 are displayed in Figure 2.8, up to
just rotations. Then it is easy to see that rj ∩ rj+1 is exactly a common endpoint of
the two segments rj and rj+1 for all j. Moreover, since An and A1 have an edge in
common, there exists m ∈ N such that rm is the border edge of A1 where rm ∩ r1 is
the upper left corner of A1, so rm ∩ r1 is a common endpoint of rm and r1. Therefore,

(A) (B) (C)

FIGURE 2.8

C is a rectilinear polygon. We prove that C is simple. First of all, we recall that the
clockwise orientation along P induces an analogous orientation along the polygon
C. By contradiction we suppose that C is not simple, so there exists a self-intersection.
Considering the orientation of C, we can distinguish exactly three cases up to just
rotations, described in Figure 2.9, where the lines a, b and c belong to C. In the first
case in Figure 2.9 (A) we obtain that the common edge of Ai and Ai+1 belongs to C,
but this is a contradiction since C contains only border edges. The same contradiction
rises in the second and third case, considering respectively the common edge of Ai+1
and Aj as in Figure 2.9 (B), and the common edge of Ai and Aj as in Figure 2.9
(C). Therefore C is a simple rectilinear polygon; for instance, see Figure 2.7 (B). In

(A) (B) (C)

FIGURE 2.9

general it is easy to see geometrically that, walking clockwise along the perimeter
of a rectilinear simple polygon, the interior of the polygon is on the right of the
perimeter. Hence the cells of P are all situated in the interior of C. By Lemma 2.2.4
we can consider a part of P arranged as in Figure 2.10 (A), up to just rotations. By
Remark 2.2.3 (1) we have that C and D do not belong to P . We prove that C and D
are neither both internal or both external to the polygon bounded by C. We denote
by rC and rD the edges respectively of C and D that are border edges of Ai. We
observe that either rC ∈ C or rD ∈ C. We may assume that rC ∈ C, so rC belongs to
an edge of C, whose orientation goes from South to North, with reference to Figure
2.10 (B). In such a case C is external to the polygon bounded by C. We prove that
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D is in the interior of C. Suppose by contradiction that D is external to the polygon
bounded by C, so D is on the left of C with respect to its orientation. In such a case,
the only possibility is that Ai is on the right of C with respect the orientation of C
and rD ∈ C. Therefore rD belongs to another edge of C, whose orientation goes from
North to South. Let A be the cell at North of Ai. The situation described above is
summarized in Figure 2.10 (B). Walking along the edge of C containing rC we have

(A) (B)

FIGURE 2.10

that A = Ai+1. Walking along the edge of C containing rD we have that A = Ai−1.
Then we have Ai+1 = Ai−1, that is a contradiction with (3) of Definition 2.2.2. By
similar arguments, if we assume that rD ∈ C then C and D are respectively internal
and external to C. We assume without loss of generality that C is internal to C and D
is external to C.
Suppose that P is a simple polyomino. Then there exists a path F : F1, F2, . . . , Ft,
which connects C and D, and Fk does not belong to P for all k ∈ {1, . . . , t}. Since C
is internal to C and D is external to C, there exist k ∈ {1, . . . , t− 1} and a border edge
r of a cell F of P such that E(Fk) ∩ E(Fk+1) = {r}. We observe that F, Fk and Fk+1 are
three cells of Z2 such that they have the edge r in common and Fk 6= Fk+1 because
Fk,Fk+1 belong to F . Then either F = Fk or F = Fk+1. But it is a contradiction because
F ∈ P and F /∈ P at the same time. Therefore P is a non-simple polyomino.
2) Suppose that P has more than one hole. In particular we can assume that P has
two holesH1 andH2. Then there exist three cells B1, C1, D1 of Z2 such that B1 ∈ H1,
C1 ∈ H2 and D1 is in the exterior of P . In particular there does not exist any path of
cells not belonging to P and linking B1 to C1, B1 to D1 and C1 to D1. By Lemma 2.2.4
we can consider a part of P arranged as in Figure 2.6(B). Considering the cells B1
and Ai, we have by Remark 2.2.3 (2) that there exists a path C1 : B1, . . . , Bm of cells
not in P such that Bm ∩ Ai is an edge of Bm and Ai. The same holds for C1, Ai and
D1, Ai, hence there exist two paths C2 : C1, . . . , Cn and C3 : D1, . . . , Dr of cells not in P
such that Cn ∩ Ai is an edge of Cn and Ai and Dr ∩ Ai is an edge of Dr and Ai. For the
shape of this configuration then, among those paths, there are two, for instance C1
and C2, having C or D as the last cells. Let Crev

2 be the path obtained by C2 inverting
the order of the cells, that is Crev

2 : C′1, . . . , C′n where C′i = Cn−i+1 for all i = 1, . . . , n.
So, by Remark 2.1.1 we have that C1 ∪ Crev

2 contains a path of cells not belonging to
P linking B1 to C1, that is a contradiction.
3) Assume that r = 1 and suppose that Ai, Ai+1 are arranged as in Figure 2.6(A). We
can suppose that E belongs to the hole of P and D is in the exterior of P . Let H1, H2
be two cells not belonging to P ′. Suppose that H1 belongs to the hole of P and H2
is exterior to P , then there exist two paths C1, C2 of cells not belonging to P (so, not
belonging to P ′) linking H1 to E and D to H2 respectively. We set C ′ : E, Ai, Ai+1, D.
Therefore, by Remark 2.1.1 we have that C1 ∪ C ′ ∪ C2 contains a path of cells not
belonging toP ′ linking H1 to H2. We obtain easily the same conclusion if both H1, H2
belong to the hole, or both H1, H2 are in the exterior of P and if one between H1 or
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H2 is the cell Ai or Ai+1. By similar arguments we obtain the same conclusion in case
Ai, Ai+1 are arranged as in Figure 2.6(B). So if r = 1 then P ′ is a simple polyomino.
The case r > 1 can be proved by similar arguments.

Definition 2.2.6. Let P be a polyomino. A path of five cells A1, A2, A3, A4, A5 of P
is called an L-configuration if the two sequences A1, A2, A3 and A3, A4, A5 go in two
orthogonal directions.

FIGURE 2.11: A closed path with an L-configuration.

Proposition 2.2.7. Let P be a closed path. If P has at least an L-configuration, then P
contains no zig-zag walks.

Proof. We suppose that P contains a zig-zag walk W : I1, . . . , I`. Let
A1, A2, A3, A4, A5 be an L-configuration. We denote by a, b the diagonal corners
of A3 and by c, d the anti-diagonal ones. We may suppose that A2 ∩ A3 = {a, d}
and A3 ∩ A4 = {d, b}, since similar arguments can be used in the other cases.
Since Ii ∩ Ii+1 6= ∅ for all i ∈ {1, . . . , ` − 1}, there exists r ∈ {1, . . . , `} such that
A1, A2 ∈ P(Ir) and A4, A5 ∈ P(Is), where s = r + 1 or s = r − 1, with I0 = I` and
I`+1 = I1. We may suppose that s = r + 1 (see Figure 2.12). We prove that vr+1 = d.

FIGURE 2.12

If vr+1 6= d, then {vr+1, d} ⊆ Ir ∩ Ir+1, that is a contradiction. Since vr+1 = d and
P(Ir) ⊇ {A2}, the anti-diagonal corner zr of Ir is equal to the vertex a of A3. Let F
be the cell of P such that P(Ir+1) = [A4, F]. Then [zr, zr+1] = V([A3, F]). V([A3, F])
is an inner interval of P such that zr, zr+1 belong to it. This is a contradiction.

Remark 2.2.8. Notice that it is possible to build closed paths, which contain no L-
configurations and no zig-zag walks; see Figure 2.13.

Remark 2.2.9. If P is a closed path and B1,B2 are two maximal horizontal (or
vertical) blocks of P , then |V(B1) ∩ V(B2)| = 2 or V(B1) ∩ V(B2) = ∅. If
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FIGURE 2.13: A closed path without any L-configuration.

V(B1) ∩V(B2) = {a, b} then it is an edge belonging to E(B1) ∩ E(B2). Observe also
that P is a union of blocks, not necessarily maximal, with the properties described
above.

Definition 2.2.10. LetP be a polyomino. LetB = {Bi}i=1,...,n be a set of maximal hor-
izontal (or vertical) blocks with length at least two, with V(Bi) ∩V(Bi+1) = {ai, bi},
ai 6= bi for all i = 1, . . . , n− 1. We say that B is a ladder of n steps if [ai, bi] is not on the
same edge interval of [ai+1, bi+1] for all i = 1, . . . , n− 2.

FIGURE 2.14: A closed path with a ladder of 4 steps.

Proposition 2.2.11. Let P be a closed path. If P has a ladder of at least three steps, then P
contains no zig-zag walks.

Proof. Let B = {Bi}i=1,...,n be a ladder of n steps. We may assume that n = 3;
for n > 3 the arguments are similar. We can suppose B1,B2,B3 are in horizontal
position and the ladder is going up, otherwise we can reduce to this case by re-
flections or rotations (see Figure 2.15). Let a, b, c, d be the vertices of P such that

FIGURE 2.15

V(B1) ∩ V(B2) = {a, b} and V(B2) ∩ V(B3) = {c, d}. We assume that P contains
a zig-zag walk W : I1, . . . , I`. We suppose that there exists i ∈ {1, . . . , `} such that
P(Ii) ⊆ B1, P(Ii+1) ⊆ B2 and P(Ii+2) ⊆ B3. One of the following cases can occur:
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1. Ii ∩ Ii+1 = {a} and Ii+1 ∩ Ii+2 = {c};

2. Ii ∩ Ii+1 = {a} and Ii+1 ∩ Ii+2 = {d};

3. Ii ∩ Ii+1 = {b} and Ii+1 ∩ Ii+2 = {c};

4. Ii ∩ Ii+1 = {b} and Ii+1 ∩ Ii+2 = {d}.

If the first one occurs, then a, c should be on the same edge interval, a contradiction.
The arguments are similar in the other cases.
Let A1 and A2 be the cells, belonging respectively to B1 and B2, which have the edge
{a, b} in common. Now we suppose that there exists j ∈ {1, . . . , `} such that P(Ij)
contains A1 and A2, that is Ij = V([A1, A2]). Then there exists r ∈ {1, . . . , `} such
that P(Ir) contains at least a cell in B2 ∪B3, where r = j− 1 or r = j + 1, with I0 = I`
and I`+1 = I1. We may suppose that r = j + 1. If B2 contains at least three cells
then there does not exist any interval I ⊆ V(B2) ∪V(B3) such that Ij ∩ I is a vertex.
In particular |Ij ∩ Ij+1| 6= 1, that is a contradiction. If B2 contains two cells then the
only possibility to have |Ij ∩ Ij+1| = 1 is vj+1 = c. Moreover, in such a case, vj is the
lower left corner of A1; so vj and vj+1 do not belong to the same edge interval, that is
a contradiction to the definition of a zig-zag walk. If there exists j ∈ {1, . . . , `} such
that P(Ij) contains the cells B2 of B2 and B3 of B3, that have in common the edge
{c, d}, similar arguments lead to a contradiction.

Remark 2.2.12. We note it is possible to build closed paths, which contain no ladders
of n ≥ 2 steps and no zig-zag walks; see Figure 2.16.

FIGURE 2.16: A closed path without any ladder.

2.2.2 Toric representations of the polyomino ideals of closed paths having
an L-configuration or a ladder of at least three steps

Before giving the opportune toric representations of closed paths with an L-
configuration or a ladder of at least three steps, we recall some notations and defini-
tions contained in [41]. Moreover, we provide a more general version of [41, Lemma
2.2], which is very useful for our purpose. A binomial f = f+ − f− in a binomial
ideal J ⊂ SP is called redundant if it can be expressed as a linear combination of bi-
nomials in J of lower degree. A binomial is called irredundant if it is not redundant.
Moreover, we denote by V+

f the set of the vertices v, such that xv appears in f+, and
by V−f the set of the vertices v, such that xv appears in f−.

Lemma 2.2.13. Let P be a polyomino and φ : SP → T a ring homomorphism with T an
integral domain. Let J = ker φ and f = f+ − f− be a binomial in J with deg f ≥ 3.
Suppose that:

• IP ⊆ J;

• φ(xr) 6= 0 for all r ∈ V(P).
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If there exist three vertices p, q ∈ V+
f and r ∈ V−f such that p, q are diagonal (respectively

anti-diagonal) corners of an inner interval and r is one of the anti-diagonal (respectively
diagonal) corners of the inner interval, then f is redundant in J.

Proof. Let I be the inner interval of P , such that p,q are the diagonal vertices and r is
an anti-diagonal one. We denote by s the other corner of I. We set f I = xpxq − xrxs

and f J = xs
f+

xpxq
− f−

xr
. We have:

f = f+ − f− =
(

xpxq − xrxs

) f+

xpxq
+ xr

(
xs

f+

xpxq
− f−

xr

)
= f I

f+

xpxq
+ xr f J .

Since IP ⊆ J, it follows that f I ∈ J. Since f , f I ∈ J, we have xr f J ∈ J. Moreover
φ(xr) 6= 0 and T is a domain, so f J ∈ J. We observe that deg f I and deg f J are strictly
less than deg f , so we have the desired conclusion.

Observe that the same claim of the previous result holds also if p, q ∈ V−f and
r ∈ V+

f , by the same argument.

Let P be a closed path with an L-configuration, consisting of the sequence of
cells A1, A2, A3, A4, A5. We denote by a, b the diagonal corners of A3 and by c, d the
anti-diagonal ones. We may suppose that A2 ∩ A3 = {b, d} and A3 ∩ A4 = {c, b},
otherwise we can consider opportune reflections or rotations in order to have such
an L-configuration. We also set A3 = A (see Figure 2.17).

A1A2A3 = A

A4

A5

a

bc

d

FIGURE 2.17

Let {Vi}i∈I be the sets of the maximal vertical edge intervals of P and {Hj}j∈J be
the set of the maximal horizontal edge intervals of P . Let {vi}i∈I and {hj}j∈J be the
set of the variables associated respectively to {Vi}i∈I and {Hj}j∈J . Let w be another
variable different from vi and hj, i ∈ I and j ∈ J. We define the following map:

α : V(P) −→ K[{vi, hj, w} : i ∈ I, j ∈ J]

r 7−→ vihjwk

with r ∈ Vi ∩ Hj, k = 0 if r /∈ V(A), and k = 1, if r ∈ V(A).
The toric ring, denoted by TP , is K[α(v) : v ∈ V(P)]. We denote by SP the polyno-
mial ring K[xr : r ∈ V(P)] and we consider the following surjective ring homomor-
phism

φ : SP −→ TP
φ(xr) = α(r)
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The toric ideal JP is the kernel of φ.

Proposition 2.2.14. Let P be a closed path with an L-configuration. Then IP ⊆ JP .

Proof. Let f be a binomial that is a generator of IP . Then there exists an inner interval
[p, q] of P , such that f = xpxq− xrxs, where r, s are the anti-diagonal corners of [p, q].
We prove that f ∈ JP . Since [p, q] is an inner interval, the vertices p, r and q, s are
respectively on the same maximal vertical edge intervals and, similarly, the vertices
p, s and q, r are respectively on the same maximal horizontal edge intervals. If
[p, q] ∩ A = ∅, then it is clear that f ∈ JP . If [p, q] = A, then p, q are the diagonal
corners of A and r, s are the anti-diagonal ones, so f ∈ JP . If [p, q] ∩ A 6= ∅ and
[p, q] 6= A, then a corner of [p, q] belongs to A and another one is not in A. We may
assume that p ∈ A, in particular that p = a. Then q /∈ V(A), otherwise [p, q] = A.
Since r and s are the anti-diagonal corners of [p, q], then r = c and s /∈ A. It follows
that f ∈ JP . Similar arguments hold in the other cases.

By Proposition 2.2.14 and the definition of φ : SP → TP , we can use Lemma 2.2.13
in the next Theorem, considering J = JP .

Theorem 2.2.15. Let P be a closed path with an L-configuration. Then IP = JP .

Proof. By Proposition 2.2.14 we have IP ⊆ JP . We prove that JP ⊆ IP , showing the
following two facts:

1. every binomial of degree two in JP belongs to IP ;

2. every irredundant binomial in JP is of degree two.

We prove (1). Let f = xpxq − xrxs be a binomial in JP . Without loss of generality
we can assume that p, q are the diagonal corners of the interval [p, q]. We denote
by vp, hp and vq, hq the variables associated to the maximal horizontal and verti-
cal edge intervals, which contain respectively p and q. Consider that φ(xpxq) =

wkvphpvqhq = φ(xrxs) with k ∈ {0, 1, 2}. The only possibility is that r, s are the anti-
diagonal corners of [p, q] and that [p, r], [p, s], [s, q] and [r, q] are edge intervals of P .
By contradiction, we assume that [p, q] is not an inner interval of P , in particular
there exists a set of cells of [p, q] that do not belong to P . Since [p, r], [p, s], [s, q]
and [r, q] are edge intervals in P , then [p, q] contains the hole H of P . In this case,
the only possible arrangement of the cells of P consists in having at least one of the
corners p, q, r and s in A. We may assume that p ∈ A. Then w divides φ(xp)φ(xq)
and so w divides φ(xr) or φ(xs). From w|φ(xr) (resp. w|φ(xs)) it follows that r ∈ A
(resp. s ∈ A). Since H ⊆ [p, q], we have either r or s does not belong to A, so it is a
contradiction. Hence [p, q] is an inner interval of P .
We prove (2). We suppose that there exists a binomial f in JP with deg f ≥ 3,
such that f is irredundant. We suppose that every variable of f is in {xa : a ∈
V(P)\V(A)}. We denote by P ′ the simple polyomino obtained by removing the
cells having vertices in common with A. We define the map φ′ as the restriction of φ
on K[xa : a ∈ V(P)\V(A)] and we denote by JP ′ the kernel of φ′. By Theorem 2.2 in
[39], we have that JP ′ = IP ′ , where IP ′ is the polyomino ideal associated to P ′. We
observe that f is a binomial in JP ′ . Since JP ′ ⊂ JP and f is irredundant in JP , then f
is irredundant in JP ′ . Then f is irredundant in IP ′ , that is a contradiction. It follows
that there exists at least one variable in f , that corresponds to a vertex of A. We re-
call that f = f+ − f− ∈ JP , so φ( f+) = φ( f−). We may suppose that there exists
v1 ∈ A, such that xv1 divides f+, that is v1 ∈ V+

f . Then w divides φ( f+) = φ( f−),
so there exists v′1 ∈ A, such that xv′1

divides f−, that is v′1 ∈ V−f . If v1 = v′1, then



2.2. On the primality of closed path polyominoes 33

f = xv1( f̃+ − f̃−), where f̃+ − f̃− ∈ JP and deg( f̃+ − f̃−) < deg f , a contradiction.
Then v1 6= v′1. Let Vv1 and Hv1 be the maximal vertical and horizontal edge intervals
ofP , which contain v1. Then vv1 divides φ( f+) = φ( f−), so there exists v′2 ∈ Vv1 such
that xv′2

divides f−. Moreover hv1 divides φ( f+) = φ( f−), so there exists v′3 ∈ Hv1

such that xv′3
divides f−. Let Vv′1

and Hv′1
be the maximal vertical and horizontal

edge intervals of P , which contain v′1. Then vv′1
divides φ( f−) = φ( f+), so there

exists v2 ∈ Vv′1
such that xv2 divides f+. Moreover hv′1

divides φ( f−) = φ( f+), so
there exists v3 ∈ Hv′1

such that xv3 divides f+. The following cases could occur:

(I) v1 and v′1 are on the same vertical edge interval of P . For the structure of P ,

A
v1

v′1
v′3

FIGURE 2.18

either v3 or v′3 is a vertex which identifies an inner interval of P along with v1
and v′1 (see Figure 2.18). From Lemma 2.2.13 a contradiction follows.

(II) v1 and v′1 are on the same horizontal interval of P . For the structure of P ,

A
v1 v′1

v2

FIGURE 2.19

either v2 or v′2 is a vertex which identifies an inner interval of P along with v1
and v′1 (see Figure 2.19). As before, by Lemma 2.2.13, we have a contradiction.

(III) v1 and v′1 are the diagonal corners of A. We may suppose that v1 = a and
v′1 = b. We prove that v′3 cannot be an anti-diagonal corner of A. If v′3 is an
anti-diagonal corner of A, then v′3 = d. For the structure of P , either v2 or v′2
is a vertex which identifies an inner interval of P respectively with v1 or v′3.
If [v1, v2] is an inner interval, then we have a contradiction, applying Lemma
2.2.13 to v1, v′3, v2. If the interval with anti-diagonal corners v′2, v′1 is an inner
interval, then we have a contradiction, by Lemma 2.2.13 applied to v′2, v′3, v1.
By similar arguments, v3, v2 and v′2 cannot be anti-diagonal vertices of A.
For the structure of P , either v3 or v′3 is a vertex which identifies an inner
interval of P respectively with v1 or v′1. We assume that [v1, v3] is an inner
interval of P . We denote by g, h the anti-diagonal corners of [v1, v3]. For the
structure of P , either v2 or v′2 is such that the interval identified by g, v2 or
v′1, v′2 is inner to P . We assume that [g, v2] is an inner interval of P (see Figure
2.20).
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v1

v3g

h

v2

A

v′1

FIGURE 2.20

Then:

f = f+ − f− =
f+

xv1 xv3

(xv1 xv3 − xgxh) +
f+

xv1 xv3

xgxh − f−.

Since [v1, v3] is an inner interval of P , then xv1 xv3 − xgxh ∈ IP ⊆ JP . We set

f̃ = f+
xv1 xv3

xgxh − f−, f1 = f+
xv1 xv3

xgxh and f2 = f−, so f̃ = f1 − f2. We observe

that f̃ ∈ JP , xv2 xg divides f1 and xv′1
divides f2. Since v2, g ∈ V+

f̃
and v′1 ∈ V−

f̃
,

from Lemma 2.2.13 it follows that f̃ is redundant in JP . Then f in redundant
in JP , that is a contradiction. By similar arguments we can have the same
conclusion in the other cases.

(IV) v1 and v′1 are anti-diagonal corners of A. By arguments as in the previous case,
we deduce that this one is not possible.

Then f is a redundant binomial in JP . In conclusion we have JP ⊆ IP , hence JP =
IP .

Corollary 2.2.16. Let P be a closed path with an L-configuration. Then IP is prime.

Let B = {Bi}i=1,...,m be a maximal ladder of m steps, m > 2. After some conve-
nient reflections or rotations of P , we can suppose that B1, . . . ,Bm are in horizontal
position and the ladder is going down. We suppose that the block Bm−1 is made up
of n cells, which we denote A1, . . . , An from left to right. We also denote by ai the
lower left corner of Ai, for all i = 1, . . . , n. Let A be the cell of Bm, having an edge
in common with An. We denote by a, b the diagonal corners of A and by d the other
anti-diagonal corner (see Figure 2.21).

FIGURE 2.21

We also set LB = {a1, . . . , an, d, a, b}. As before, we denote by {Vi}i∈I the set of
the maximal edge intervals of P and by {Hj}j∈J the set of the maximal horizontal
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edge intervals of P . Let {vi}i∈I and {hj}j∈J be the sets of the variables associated
respectively to {Vi}i∈I and {Hj}j∈J . LetH be the hole ofP and w be another variable.
We define the following map:

α : V(P) −→ K[{vi, hj, w} : i ∈ I, j ∈ J]

r 7−→ vihjwk

with Vi ∩ Hj = {r} and where k = 0, if r /∈ LB , and k = 1, if r ∈ LB .
We denote by TP the toric ring K[α(v) : v ∈ V(P)] and by JP the kernel of the
following surjective ring homomorphism:

φ : SP −→ TP
φ(xr) = α(r)

Proposition 2.2.17. LetP be a closed path with a ladder of m steps (m > 2). Then IP ⊆ JP .

Proof. Let f be a binomial that is a generator of IP . Then there exists an inner interval
[p, q] of P , such that f = xpxq− xrxs, where r, s are the anti-diagonal corners of [p, q].
If [p, q] ∩ LB = ∅, then f ∈ JP . We suppose that [p, q] ∩ LB 6= ∅. If p, q ∈ LB , then
[p, q] = A, so f ∈ JP . If p ∈ LB and q /∈ LB , we have that either r or s belongs to
LB for the structure of P , so f ∈ JP . The case p /∈ LB and q ∈ LB is not possible by
construction. Then the desired conclusion follows.

By Proposition 2.2.17 and the definition of φ : SP → TP , we can use Lemma 2.2.13
in the next theorem, considering J = JP .

Theorem 2.2.18. Let P be a closed path with a ladder of m steps (m > 2). Then IP = JP .

Proof. Let B = {Bi}i=1,...,m be a maximal ladder of m steps, m > 2, where B1, . . . ,Bm
are in horizontal position and the ladder is going down. By Proposition 2.2.17, we
have IP ⊆ JP . Similar arguments as in (1) of Theorem 2.2.15 allow us to prove that
every binomial of degree two in JP belongs to IP . We prove that every irredundant
binomial in JP is of degree two. We suppose that there exists a binomial f in JP with
deg f ≥ 3, such that f is irredundant. We prove that in f there are not any variables
associated to the vertices of LB . We suppose that there exists v1 ∈ LB , such that
xv1 divides f+, that is v1 ∈ V+

f . As in the proof of Theorem 2.2.15, we can find a
vertex v′1 ∈ LB ∩ V−f , two vertices v′2, v′3 ∈ V−f which are respectively on the same
maximal vertical and horizontal edge intervals of P containing v1, and two vertices
v2, v3 ∈ V+

f which are respectively on the same vertical and horizontal edge intervals
of P containing v′1. The following cases could occur:

(I) v1 and v′1 are on the same vertical edge interval of P . For the structure of P
either v3 or v′3 is a vertex which identifies an inner interval of P along with v1
and v′1 (see Figure 2.22). Lemma 2.2.13 leads to a contradiction.

(II) v1 and v′1 are on the same horizontal edge interval of P . If {v1, v′1} = {a, d}
or {v1, v′1} = {an, b} or {v1, v′1} ⊆ {a1, . . . , an−1} with n > 2, then either v2 or
v′2 is a vertex which identifies an inner interval along with v1 and v′1. By using
Lemma 2.2.13, we have a contradiction. We suppose that v1 ∈ {a1, . . . , an−1}
and v′1 ∈ {an, b} or vice versa. We may assume that v′1 = b, because similar
arguments hold when v′1 = an. If v2 /∈ LB , then we have a contradiction, using
Lemma 2.2.13 to the vertices v1, v′1 and v2. Let v2 be in LB ; in particular the
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B1
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FIGURE 2.22

only possibility is v2 = d. Let hv2 be the variable associated with the horizontal
interval of v2. Then hv2 divides φ( f+) = φ( f−), so we have two possibilities.
The first one is v2 ∈ V−f , so f = xv2( f̃+ − f̃−), that is f is not irredundant.
Alternatively, there exists ṽ ∈ V−f such that ṽ is in the same horizontal edge
interval of v2; in particular f is not irredundant by Lemma 2.2.13 applied to
the vertices v′1, v2, ṽ. In both cases we have a contradiction.

(III) v1 and v′1 are not on the same horizontal or vertical edge intervals of P . If they
are diagonal or anti-diagonal vertices of A, then we have a contradiction, by
similar arguments as in the last case (III) of Theorem 2.2.15. We suppose that
v1 ∈ {a1, . . . , an−1} and v′1 ∈ {a, d} (or vice versa). We may assume that v′1 = d,
because similar arguments holds when v′1 = a. The vertex v2 does not belong
to LB , otherwise we have a contradiction as in the previous case, so [v1, v2] is
an inner interval of P . We denote by g, h the anti-diagonal vertices of [v1, v2].
We observe that v3 /∈ LB , otherwise we have a contradiction using the usual
considerations to vertices v2, v3, v′1. Then h, v3 identify an inner interval of P ,
with v′1 as diagonal corner (see Figure 2.23 ).

B1

Bm−2
Bm−1

Bm

Av1

v′1

v2g

v3

h

FIGURE 2.23

Then:

f = f+ − f− =
f+

xv1 xv2

(xv1 xv2 − xgxh) +
f+

xv1 xv2

xgxh − f−.

Since [v1, v2] is an inner interval of P , then xv1 xv2 − xgxh ∈ IP ⊆ JP . We set

f̃ = f+
xv1 xv2

xgxh − f−, f1 = f+
xv1 xv2

xgxh and f2 = f−, so f̃ = f1 − f2. We observe

that f̃ ∈ JP , xv3 xh divides f1 and xv′1
divides f2. Since v3, h ∈ V+

f̃
and v′1 ∈ V−

f̃
,

by Lemma 2.2.13, we have that f̃ is redundant in JP . Then f is redundant in
JP , that is a contradiction.
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Summarizing, in f there are not any variables associated to any vertices of LB . We
denote by bi the upper right corner of the cell Ai, for all i = 1, . . . , n. We prove that
in f there is no variable associated to a vertex in {b2, . . . , bn}. We suppose that there
exists i ∈ {2, . . . , n} such that xbi divides f+. Let Vbi be the maximal vertical edge
interval of P such that bi ∈ Vbi . Since bi ∈ V+

f , there exists a vertex v ∈ Vbi\{bi}, such
that xv divides f−. For the structure of P , the vertex v belongs to LB and v ∈ V−f ,
that is a contradiction. Now we set F = LB ∪ {b2, . . . , bn}. In conclusion, in f there
are only variables xv, such that v ∈ V(P)\F . We denote by P ′ the simple polyomino
consisting of the cells of P that do not have a vertex in LB , and by IP ′ the polyomino
ideal associated to P ′. By Theorem 2.2 in [39], we have that JP ′ = IP ′ . Moreover f is
a binomial in JP ′ . Since JP ′ ⊂ JP and f is irredundant in JP , then f is irredundant in
JP ′ . It follows that f is irredundant in IP ′ , that is a contradiction. In conclusion we
have JP ⊆ IP .

Corollary 2.2.19. Let P be a closed path with a ladder of m steps (m > 2). Then IP is
prime.

2.2.3 Characterization of prime closed paths by zig-zag walks

Let P be a polyomino. In [31] the authors have shown that if IP is prime then P
contains no zig-zag walks and they have conjectured that it is a sufficient condition
for the primality of IP . We recall that the rank of P , denoted by rank(P), is the
number of the cells of P . Using a computational method, they have shown that the
conjecture is verified for rank(P) ≤ 14. Here we prove that the conjecture is true for
the class of closed paths.

Proposition 2.2.20. Let P be a closed path and suppose that P has no zig-zag walks. Then
P has an L-configuration or a ladder of at least three steps.

Proof. The structure of P assures that there exists at least a sequence of distinct inner
intervals I1, . . . , I` such that |Ii ∩ Ii+1| = 1 for all i = 1, . . . , `− 1 and |I` ∩ I1| = 1.
Let I1 ∩ I` = {v1 = v`+1} and Ii ∩ Ii+1 = {vi+1} with i ∈ {1, . . . , `− 1}. Suppose
that v` and v1 are not in the same edge interval. After appropriate reflections or
rotations, we can suppose that I` is a horizontal interval having v` and v1 as diagonal
corners. Let B be the maximal horizontal block of P containing P(I`). We examine
all possible different cases.

• B contains at least three cells. We can suppose that P has no L-configurations,
otherwise we have finished. Then a part of the polyomino has the shape of
Figure 2.24(A), where v` ∈ {a, b} and v1 ∈ {c, d}. So we have a ladder of at
least three steps.

• B = P(I`) and it contains exactly two cells. Then we are in the case of Fig-
ure 2.24(B), where v` = a and v1 = b. We have again a ladder of at least three
steps.

• B = P(I`) is a cell. Under the assumption that P has no L-configurations, we
are in the case of Figure 2.24(C). In particular P has a ladder of at least three
steps.

It remains to consider the case in which I` is a cell and B contains two cells. We
prove that also in this case we obtain that P contains an L-configuration or a ladder
of at least three steps. After an appropriate reflection, we can reduce to the case in
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(A) (B) (C)

FIGURE 2.24

Figure 2.25(A). Observe that if there is a cell in the direction West with respect to
the cell A (that is the first cell of I`−1), or in the direction North with respect to the
cell D (that is the first cell of I1), then P has a ladder of at least three steps. So we
can suppose that P has an adjacent cell to A in direction South and an adjacent cell
to D in direction East. In such a case we can define another sequence of intervals
I′1, . . . , I′`−1, with I′`−1 = I`−1 ∪ B, I′1 = I1 ∪ C and I′i = Ii for i ∈ {2, . . . , ` − 2}; in
particular we denote I′1 ∩ I′`−1 = {v′1 = v′`} and I′i ∩ I′i+1 = {v′i+1} for i ∈ {1, . . . , `−
2}. So, we are in the situation of Figure 2.25(B). Now suppose that v′1 and v′2 are
not in the same edge interval. It is not difficult to see that in this case we are again
in the situation of Figure 2.24(A). So we can assume that v′1 and v′2 are in the same
edge interval. The same conclusion can be obtained for the vertices v′2 and v′3 and

(A) (B)

FIGURE 2.25

so on. Therefore we can reduce the proof to the case that in the initial sequence of
intervals I1, . . . , I` the vertices vi and vi+1 belong to the same edge interval for every
i ∈ {1, . . . , `}. Since P has no zig-zag walks, there exist zi and zj vertices of an inner
interval J of P , such that vi and zi are the diagonal or anti-diagonal corners of Ii, and
vj and zj are the diagonal or anti-diagonal corners of Ij. Because of the structure of
P the only possibilities are j = i + 1 or j = i− 1. We can assume that j = i + 1 and
vi+i is a diagonal corner of Ii+1, so vi is an anti-diagonal corner of Ii. Let Bi,Bi+1
be the maximal blocks of P containing P(Ii) and P(Ii+1) respectively. Observe that
Bi and Bi+1 are not both in horizontal or vertical position, since J is an interval of
P , that is a closed path. So we can assume that Bi is in vertical position and Bi+1 is
in horizontal position. Observe that each block has at least three cells; in particular
we refer to Figure 2.26 for the arrangement of this situation, observing that some
appropriate cells with dashed lines must belong to the polyomino. In particular
Bi ∪ Bi+1 contains an L-configuration.
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FIGURE 2.26

By Proposition 2.2.7, Proposition 2.2.11 and Proposition 2.2.20 we deduce that hav-
ing an L-configuration or a ladder of at least three steps is a necessary and sufficient
condition in order to have no zig-zag walks for a closed path. Now we are ready to
state and to prove the following result of this work.

Theorem 2.2.21. Let P be a closed path. IP is prime if and only if P contains no zig-zag
walks.

Proof. The necessary condition is shown in [31, Corollary 3.6]. The sufficient one
follows from the Proposition 2.2.20, Corollary 2.2.16 and Corollary 2.2.19.
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Chapter 3

Generalizations of closed paths,
simple and weakly connected
collections of cells and their
primality

Actually the arguments in the proofs of the results explained so far can provide also
the primality for a larger class of polyominoes. In this chapter we introduce three
new classes of non-simple polyominoes, which can be viewed as generalizations of
closed paths and we study their primality. Moreover, we discuss also the primality
of simple and weakly collections of cells and, as an application, we characterize all
prime weakly-closed paths, a new kind of non-simple polyominoes. Closed paths
and weakly ones are the only known polyominoes so far for which [31, Conjecture
4.6] is proved. The results contained in this chapter are included in the papers [4]
and [8].

3.1 Primality of some classes of polyominoes joined by paths

In this section we define the P(S , C)-polyominoes and the L-rectangles or the
ladder-rectangles linked to a simple polyomino by two paths. Let us start intro-
ducing some useful definitions and notions.
We call a L-triomino any polyomino consisting of three cells not aligned; for instance
see Figure 3.1 (A). Referring to the figure, we call hooking vertices the vertices a and
b. Moreover we call hooking edges with respect to a (resp. b) the couple of edges of A
(resp. B) that intersect at a (resp. at b).
A polyomino C is called an open path if it is a sequence of two or more cells A1, . . . , An
such that:

1. Ai ∩ Ai+1 is a common edge, for all i = 1, . . . , n− 1;

2. Ai 6= Aj, for all i 6= j and i, j ∈ {1, . . . , n};

3. If n > 2, then V(Ai) ∩ V(Aj) = ∅ for all i ∈ {1, . . . , n − 2} and for all j /∈
{i, i + 1, i + 2}.

For instance see Figure 3.1. The edges of A1 (resp. An), which do not belong to E(A2)
(resp. E(An−1)), are called free edges.

Definition 3.1.1. Let S be a simple polyomino, C : A1, . . . , An be an open path and
T1 and T2 be two L-triominoes. Moreover we denote by a1, b1 the hooking vertices
of T1 and by a2, b2 the hooking vertices of T2. We denote by P(S , C) a polyomino
satisfying the following conditions:
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(A) (B)

FIGURE 3.1

1. P(S , C) = S ∪ C ∪ T1 ∪ T2.

2. V(S) ∩V(C) = ∅ and V(T1) ∩V(T2) = ∅.

3. E(S)∩ E(T1) = {V1}where V1 is a hooking edge with respect to a1 and E(S)∩
E(T2) = {V2} where V2 is a hooking edge with respect to a2.

4. E(C) ∩ E(T1) = {W1} where W1 ∈ E(A1) and it is is a hooking edge with
respect to b1, and E(C) ∩ E(T2) = {W2} where W2 ∈ E(An) and it is a hooking
edge with respect to b2.

5. |V(C) ∩V(T1)| = |V(S) ∩V(T1)| = |V(S) ∩V(T2)| = |V(C) ∩V(T2)| = 2.

FIGURE 3.2: An example of P(S , C).

Remark 3.1.2. According to Proposition 2.2.5, it is easy to prove that a polyomino
P(S , C), where S is a simple polyomino and C is an open path, is a non-simple
polyomino and has only one hole. Moreover the polyomino consisting of all the
cells of P(S , C), except two or more adjacent cells of C, is a simple polyomino.

Theorem 3.1.3. Let P = P(S , C) be a polyomino with S a simple polyomino and C an
open path. Suppose that C contains an L-configuration or a ladder of at least three steps.
Then IP is a prime ideal.

Proof. If C contains an L-configuration then by defining the toric ideal as in subsec-
tion 2.2.2 we obtain the claim following the same steps as in Proposition 2.2.14 and
Theorem 2.2.15, since the structure of P allows it. If C contains a ladder of at least
three steps the proof is similar, considering the toric ideal in Proposition 2.2.17 and
Theorem 2.2.18.

Remark 3.1.4. Observe that if C contains an L-configuration or a ladder of at least
three steps then P(S , C) has no zig-zag walks. The converse is not true (see Figure
3.3), so it is an open question to ask what are the conditions allowing P(S , C) to
have no zig-zag walks. In particular, we ask if the conjecture in [31] is true also for
polyominoes like P(S , C).
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FIGURE 3.3

In [41] the author studied the polyomino ideal attached to a polyomino obtained by
removing a convex polyomino from its ambient rectangle R. Our idea is to build a
non-simple polyomino adding two open paths and a simple polyomino to a rectan-
gleR.

Definition 3.1.5. Let R be a rectangle polyomino, associated to the interval
[(1, 1), (m, n)], where m ≥ 4 and n ≥ 2. Let S be a simple polyomino, P1 : C1, . . . , Ct
and P2 : F1, . . . , Fp be two open paths. A rectangle linked to a simple polyomino by
two paths, denoted by P(R,P1, S,P2), is a polyomino satisfying the following con-
ditions, after opportune reflections or rotations:

1. P(R,P1, S,P2) = R∪P1 ∪ S ∪ P2.

2. V(S) ∩V(R) = ∅ and V(P1) ∩V(P2) = ∅.

3. The lower left corner of C1 is (1, n) and V(P1) ∩V(R) = {(1, n), (2, n)}.

4. E(Ct) ∩ E(S) = {W}, where W is a free edge of Ct, and |V(P1) ∩V(S)| = 2.

5. E(F1) ∩ E(S) = {Z}, where Z is a free edge of F1, and |V(P2) ∩V(S)| = 2.

6. E(Fp) ∩ E(R) = {V}, where V is a free edge of Fp, and |V(P2) ∩V(R)| = 2.

Remark 3.1.6. On account of Proposition 2.2.5, a rectangle linked to a simple poly-
omino by two paths is not a simple polyomino and it has a unique hole. Let us
denote by PR the collection of cells ofR, whose lower left corners are (1, k) or (2, k)
for all k = 1, . . . , n − 1, and by Pw

1 the sequence of the first w cells of P1 for some
w ∈ {1, . . . , t}. Then the polyomino consisting of all the cells of P except the cells of
PR ∪ Pw

1 is a simple polyomino.

Definition 3.1.7. Let R, S , P1 and P2 be as in the previous definition. A polyomino
P = P(R,P1, S,P2) is called an L-rectangle linked to a simple polyomino by two paths,
if

1. it satisfies all conditions in Definition 3.1.5;

2. the lower left corner of C2 is (1, n + 1);

3. let V be the free edge of Fp such that E(R) ∩ E(P2) = {V}. Then V ∈{
{(k, n), (k + 1, n)} : k = 3 . . . , m − 1

}
∪
{
{(m, l), (m, l + 1)} : l = 1 . . . , n −

1
}
∪
{
{(h, 1), (h + 1, 1)} : h = 3 . . . , m− 1

}
.
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Let V1 and V2 be the maximal vertical edge intervals of P , which contain respectively
the vertices (1, n) and (2, n). Denote by EV1,V2 the shortest maximal vertical edge
interval between V1 and V2. Moreover, for all k ∈ {1, . . . , n} let Hk be the maximal
horizontal edge interval containing (1, k), Fk the shortest one between Hk and Hk+1
for each k ∈ {1, . . . , n− 1}. We call P good if the following cells belong to P :

• all cells having an edge in EV1,V2 and lying between V1 and V2;

• all cells having an edge in Fk and lying between Hk and Hk+1, for all k ∈
{1, . . . , n− 1}.

FIGURE 3.4: L-rectangles linked to a simple polyomino by two paths.

Referring to Figure 3.5, (A) and (B) are L-rectangles linked to a simple polyomino by
two paths but not good, (C) is a good one, just as polyominoes in Figure 3.4 are.

FIGURE 3.5

Proposition 3.1.8. Let P = P(R,P1, S,P2) be a good L-rectangle linked to a simple
polyomino by two paths. Then IP is prime.

Proof. We denote by e the vertex (2, n). We define the toric ideal JP as done for closed
paths with an L-configuration, where V(A) is replaced by Ae = {v ∈ V(R) : v ≤ e}.
By similar arguments as in Proposition 2.2.14 and Theorem 2.2.15, we have IP = JP ,
because of the good structure of P .

Definition 3.1.9. A polyomino P(R,P1, S,P2) is called a ladder-rectangle linked to a
simple polyomino by two paths, if

1. it satisfies all conditions in Definition 3.1.5;

2. P1 contains two maximal horizontal blocks [C1, Cs] and [Cs+1, Cq], where 2 ≤
s < s + 1 < q ≤ t, and the lower left corner of Cs+1 is the upper left one of Cs;
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3. the free edge V of Fp such that E(R)∩ E(P2) = {V} satisfies V ∈
{
{(k, n), (k+

1, n)} : k = 3, . . . , m− 1
}

.

FIGURE 3.6: A ladder-rectangle linked to a simple polyomino by two
paths.

Proposition 3.1.10. Let P = P(R,P1, S,P2) be a ladder-rectangle linked to a simple
polyomino by two paths. Then IP is prime.

Proof. We denote by e the vertex (2, n) and by ai the lower left corner of the cell Ci of
P1, for all i ∈ {1, . . . , s}. We define the toric ideal JP as done for closed paths with
a ladder having at least three steps, where Le = {v ∈ V(R) : v ≤ e} ∪ {a2, . . . , as}.
By similar arguments as in Proposition 2.2.17 and Theorem 2.2.18 we deduce that
IP = JP .

Remark 3.1.11. We observe that for the class of polyominoes P(R,P1, S,P2) the
following:

1. P(R,P1, S,P2) is a good L-rectangle linked to a simple polyomino by two
paths,

2. P(R,P1, S,P2) is a ladder-rectangle linked to a simple polyomino by two
paths,

are sufficient conditions in order that it does not contain zig-zag walks. Necessary
conditions to have no zig-zag walks and a positive answer to the conjecture in [31]
for polyominoes like P(R,P1, S,P2) are open questions.

3.2 Primality of simple and weakly connected collections of
cells

In this section we study the primality of weakly connected collections of cells and
of a new class of non-simple polyominoes, called weakly closed paths ([8]). Firstly we
define a bipartite graph G(P) attached to a weakly connected and simple collection
P of cells of Z2 and we show that the ideal of the inner 2-minors of P coincides with
the toric ideal attached to the edge ring of G(P). This result generalizes Theorem
3.10 of [39]. Finally we conjecture that absence of zig-zag walks in a weakly
connected collection of cells characterizes its primality and, as an application, we
characterize the primality of weakly closed paths.
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Let P be a weakly connected collection of cells of Z2. Let {Vi}i∈I be the sets
of the maximal vertical edge intervals of P and {Hj}j∈J be the set of the maxi-
mal horizontal edge intervals of P . Let {vi}i∈I and {hj}j∈J be two sets of vari-
ables associated respectively to {Vi}i∈I and {Hj}j∈J . We associate to P a bipar-
tite graph G(P), whose vertex set is V(G(P)) = {vi}i∈I t {hj}j∈J and edge set is
E(G(P)) =

{
{vi, hj}|Vi ∩ Hj ∈ V(P)

}
. For instance, Figure 3.7 illustrates a collec-

tion of cells P on the left and its associated bipartite graph G(P) on the right.

FIGURE 3.7

In the bipartite graph G(P) a cycle CG(P) of length 2r is a subset
{vi1 , hj1 , . . . , vir−1 , hjr−1 , vir , hjr} of distinct vertices of V(G(P)) such that {vik , hjk}
and {hjk , vik+1} belong to E(G(P)) for all k = 1, . . . , r, where ir+1 = i1. Since
{vik , hjk} ∈ E(G(P)), Vik ∩ Hjk is a vertex of P for all k = 1, . . . , r; similarly, since
{hjk , vik+1} ∈ E(G(P)), Vik+1 ∩ Hjk is a vertex of P for all k = 1, . . . , r, where ir+1 = i1.
We can associate to each cycle CG(P) in G(P) the following binomial:

fCG(P) = xVi1∩Hj1
. . . xVir∩Hjr

− xVi2∩Hj1
. . . xVi1∩Hjr

Following [25], we recall the definition of a cycle in P . A cycle CP in P is a sequence
a1, . . . , am of vertices of P such that:

1. a1 = am;

2. ai 6= aj for all i 6= j with i, j ∈ {1, . . . , m− 1};

3. [ai, ai+1] is a horizontal or vertical edge interval of P for all i = 1, . . . , m− 1;

4. for all i = 1, . . . , m, if [ai, ai+1] is a horizontal edge interval of P , then [ai+1, ai+2]
is a vertical edge interval of P and vice versa, with am+1 = a2.

The vertices a1 . . . , am−1 of P are called vertices of CP and we set V(CP ) =
{a1, . . . , am−1}. It follows from the definition of a cycle that m is odd, so we can
consider the following binomial

fCP =
(m−1)/2

∏
k=1

xa2k−1 −
(m−1)/2

∏
k=1

xa2k

and we can attach to each cycle CP in P the binomial fCP . Moreover, a cycle in P is
called primitive if each maximal edge interval of P contains at most two vertices of
CP .

Remark 3.2.1. Arguing as in Section 1 of [39], a cycle CG(P) =
{vi1 , hj1 , vi2 , hj2 . . . , vir−1 , hjr−1 , vir , hjr} of the bipartite graph G(P) associated to
P defines a primitive cycle CP : Vi1 ∩ Hj1 , Vi2 ∩ Hj1 , Vi2 ∩ Hj2 , . . . , Vir ∩ Hjr , Vi1 ∩
Hjr , Vi1 ∩ Hj1 in P and vice versa. Moreover, we have also fCG(P) = fCP .
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Recall that a graph is called weakly chordal if every cycle of length greater than 4 has
a chord. According to [39], if CP : a1, . . . , am is a cycle in P then CP has a self-crossing
if there exist two indices i, j ∈ {1, . . . , m− 1} such that:

1. ai, ai+1 ∈ Vk and aj, aj+1 ∈ Hl for some k ∈ I and l ∈ J;

2. ai, ai+1, aj, aj+1 are all distinct;

3. Vk ∩ Hl 6= ∅.

In such a case, as in Section 2 of [39], if CP is a primitive cycle in P having a
self-crossing, then CG(P) has a chord.

Moreover in [39] the authors show that the polyomino ideal attached to a simple
polyomino is the toric ideal of the edge ring of the weakly chordal graph G(P).
Now, we give a generalization of these results, which will be useful and crucial later.

Proposition 3.2.2. Let P be a weakly connected and simple collection of cells. Then G(P)
is weakly chordal.

Proof. We may assume that P has two connected components, denoted by P1 and
P2. The arguments are similar if P has more than two connected components. Let
V(P1) ∩V(P2) = {ṽ}. Let CG(P) = {vi1 , hj1 , . . . , vir , hjr} be a cycle of G(P) of length
2r with r ≥ 3. By Remark 3.2.1 we obtain that CG(P) defines a primitive cycle in P

CP : Vi1 ∩ Hj1 , Vi2 ∩ Hj1 , Vi2 ∩ Hj2 , . . . , Vir ∩ Hjr , Vi1 ∩ Hjr , Vi1 ∩ Hj1

We set a1 = Vi1 ∩ Hj1 , a2 = Vi2 ∩ Hj1 , . . . , a2r−1 = Vir ∩ Hjr , a2r = Vi1 ∩ Hjr , a2r+1 =
Vi1 ∩ Hj1 . We distinguish two different cases. Firstly, we suppose that all vertices
of CP are either in V(P1) or V(P2). We may assume that ak ∈ V(P1) for all k =
1, . . . , 2r. We prove that CG(P) has a chord. Observe that P1 is a simple polyomino,
otherwise P is not a simple collection of cells. Consider the bipartite graph G(P1)
attached to P1. By Lemma 2.1 in [39] it follows that G(P1) is weakly chordal, hence
the cycle CG(P) has a chord.
In the second case, we suppose that there exist two distinct vertices different from
ṽ, one belonging to V(P1) and the other to V(P2). We prove that CP has a self-
crossing. We denote by Vṽ and Hṽ respectively the vertical and horizontal maximal
edge intervals of P , such that Vṽ ∩ Hṽ = {ṽ}. It is not restrictive to assume that a1 ∈
V(P1)\{ṽ}. Let i be the smallest integer such that ai ∈ V(P1) and ai+1 ∈ V(P2). We
can assume that [ai, ai+1] is a horizontal interval of P , so [ai, ai+1] is contained in Hṽ
and it is obvious that ṽ ∈ [ai, ai+1]. We note that a2r+1 = a1 ∈ V(P1)\{ṽ}. Then there
exists p ∈ {i + 2, . . . , 2r} such that ṽ ∈ [ap, ap+1], with ap, ap+1 /∈ {ṽ}. Moreover,
we note that from the primitivity of CP it follows immediately that [ap, ap+1] ⊆ Vṽ.
Hence we obtain that there exist two distinct indices i, p ∈ {1, . . . , 2r} such that:

1. ai, ai+1 ∈ Hṽ and ap, ap+1 ∈ Vṽ;

2. ai, ai+1, ap, ap+1 are all distinct because they are the vertices of a primitive cycle
in P ;

3. Vṽ ∩ Hṽ 6= ∅ because obviously Vṽ ∩ Hṽ = {ṽ}.

In conclusion, CP has a self-crossing and as a consequence CG(P) has a chord.
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We define the following map:

α : V(P) −→ K[{vi, hj} : i ∈ I, j ∈ J]

r 7−→ vihj

with r ∈ Vi ∩ Hj. The toric ring K[α(v) : v ∈ V(P)] can be viewed as the edge ring of
G(P) and it is denoted by K[G(P)]. Let S be the polynomial ring K[xr : r ∈ V(P)]
and let us consider the following surjective ring homomorphism:

φ : S −→ K[G(P)]
φ(xr) = α(r)

The toric ideal JP is the kernel of φ. It is known from Theorem 1.4.18 that if the bi-
partite graph G(P) is weakly chordal then the associated toric ideal JP is minimally
generated by quadratic binomials attached to the cycles of G(P) of length 4.

Theorem 3.2.3. Let P be a weakly connected and simple collection of cells. Then IP = JP .

Proof. Assume that P consists of the connected components P1, . . . ,Pm, with m ≥ 1.
We prove firstly that IP ⊆ JP . Let f be a generator of IP , so there exists an inner
interval [a, b] of P , such that f = xaxb− xcxd, where c, d are the anti-diagonal corners
of [a, b]. It is clear that φ(xaxb) = α(a)α(b) = α(c)α(d) = φ(xcxd), so f ∈ JP .
Therefore IP ⊆ JP . We prove that JP ⊆ IP . By Proposition 3.2.2 the bipartite graph
G(P) attached to P is weakly chordal, so JP is generated minimally by quadratic
binomials attached to cycles of G(P) of length 4. Let f be a generator of JP . Then
there exists a cycle of G(P) of length 4, CG(P) : vi1 , hj1 , vi2 , hj2 , such that f = fCG(P) .
By Remark 3.2.1 CG(P) defines the following primitive cycle in P :

CP : Vi1 ∩ Hj1 , Vi2 ∩ Hj1 , Vi2 ∩ Hj2 , Vi1 ∩ Hj2 , Vi1 ∩ Hj1 .

We set a1 = Vi1 ∩ Hj1 , a2 = Vi2 ∩ Hj1 , a3 = Vi2 ∩ Hj2 , a4 = Vi1 ∩ Hj2 and we have
f = fCG(P) = fCP . Since P is a simple collection of cells and f = fCP , there exists
j ∈ {1, . . . , m} such that ai ∈ V(Pj) for all i = 1, 2, 3, 4. Consider the map φ′ as
the restriction of φ to K[xa : a ∈ V(Pj)] and we denote by JPj the kernel of φ′.
By Theorem 2.2 in [39] it follows that JPj = IPj , where IPj is the polyomino ideal
associated to Pj. Hence we have f ∈ JPj = IPj ⊆ IP . Therefore JP ⊆ IP .

Remark 3.2.4. We observe that there exist weakly connected and non-simple collec-
tions of cells that are not prime. The collection of cells in Figure 3.8 (A) is non-simple
and weakly connected with four connected components but it is not prime. Its non-
primality follows by [37, case (2) of Theorem 3.2, Corollary 3.6]. Conversely, in Fig-
ure 3.8 (B) there is a weakly connected and non-simple collection of cells which is
prime. For the proof of its primality we refer to Remark 3.3.6.

In according to previous arguments it is natural to generalize the conjecture given in
[31] for weakly connected collections of cells.

Conjecture 3.2.5. Let P be a weakly connected collection of cells. The following are equiv-
alent:

1. IP is prime;

2. P has no zig-zag walks.
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(A) (B)

FIGURE 3.8

3.3 An application on the characterization of prime weakly
closed paths

Here, we introduce a new class of polyominoes, which we call weakly closed path
polyominoes. As an application of Theorem 3.2.3 and by using similar techniques
of Section 2.2, we characterize all weakly closed paths having no zig-zag walks and
their primality.

Definition 3.3.1. A finite non-empty collection of cells P is called a weakly closed path
if it is a path of n cells A1, . . . , An−1, An = A0 with n > 6 such that:

1. |V(A0) ∩V(A1)| = 1;

2. V(A2) ∩V(A0) = V(An−1) ∩V(A1) = ∅;

3. V(Ai) ∩V(Aj) = ∅ for all i ∈ {1, . . . , n} and for all j /∈ {i− 2, i− 1, i, i + 1, i +
2}, where the indices are reduced modulo n.

We call the unique vertex vH in V(A0) ∩V(A1) a hooking corner. Note that a weakly
closed path is a non-simple polyomino having a unique hole. In Figure 3.9 there are
some examples of weakly closed paths.
The difference between a closed path and a weakly closed path is subtle but quite
deep. In fact in a closed path it is possible to order the cells in such a way that ev-
ery cell has an edge in common with its consecutive cell. In a weakly closed path
the same holds, with the exception of exactly two consecutive cells that have just
a vertex in common. These polyominoes, as well as the closed paths, are particu-
lar thin polyominoes, which are polyominoes not containing the square tetromino.
Moreover, observe that not all weakly closed paths can be obtained by removing a
suitable cell from a closed path polyomino. In fact, let P be the weakly closed path
in Figure 3.9 (C) and A and B be respectively the cells not in P having the hooking
vertex respectively as lower right corner and upper left one. Then neither P ∪ {A}
nor P ∪ {B} is a closed path polyomino.

(A) (B) (C)

FIGURE 3.9: Examples of weakly closed path polyominoes.
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Let P be a polyomino. A weak L-configuration is a finite collection of cells of P such
that:

1. it consists of a maximal horizontal (resp. vertical) block [A, B] of length two, a
vertical (resp. horizontal) block [D, F] of length at least two and a cell C of P ,
not belonging to [A, B] t [D, F];

2. V(C) ∩V([A, B]) = {a1} and V([D, F]) ∩V([A, B]) = {a2, b2}, where a2 6= b2;

3. [a2, b2] is on the same maximal horizontal (resp. vertical) edge interval of P
containing a1 (see Figure 3.10).

FIGURE 3.10: A Weak L-configuration and a polyomino containing a
weak L-configuration

A finite collection of cells of P , made up of a maximal horizontal (resp. vertical)
block [A, B] of P of length at least two and two distinct cells C and D of P , not
belonging to [A, B], with V(C) ∩V([A, B]) = {a1} and V(D) ∩V([A, B]) = {a2, b2}
where a2 6= b2, is called a weak ladder if [a2, b2] is not on the same maximal horizontal
(resp. vertical) edge interval of P containing a1 (see Figure 3.11).

FIGURE 3.11: A Weak ladder and a polyomino containing a weak
ladder

As introduced in Section 2.2, we say that a path of five cells C1, C2, C3, C4, C5 of P is
an L-configuration if the two sequences C1, C2, C3 and C3, C4, C5 go in two orthogonal
directions. A set B = {Bi}i=1,...,n of maximal horizontal (or vertical) blocks of length
at least two, with V(Bi) ∩ V(Bi+1) = {ai, bi} and ai 6= bi for all i = 1, . . . , n− 1, is
called a ladder of n steps if [ai, bi] is not on the same edge interval of [ai+1, bi+1] for
all i = 1, . . . , n− 2. For instance, in Figure 3.12 we represent a polyomino with an
L-configuration on the left and a polyomino having a ladder of three steps on the
right.

Proposition 3.3.2. Let P be a weakly closed path. If one of the following conditions holds:
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FIGURE 3.12: An example of L-configuration and horizontal ladder
of three steps.

1. P has a weak L-configuration,

2. P has a weak ladder,

3. P has an L-configuration,

4. P has a ladder of at least three steps,

then P does not contain zig-zag walks.

Proof. (1) Suppose that P has a weak L-configuration. Assume that the weak L-
configuration is as in the picture on the left in Figure 3.10, otherwise we apply suit-
able reflections or rotations in order to have it in such a position. Suppose that
there exists a sequence W : I1, . . . , I` of distinct inner intervals of P , where for all
i = 1, . . . , ` the interval Ii has diagonal corners vi, zi and anti-diagonal corners ui,
vi+1, such that I1 ∩ I` = {v1 = v`+1} and Ii ∩ Ii+1 = {vi+1}, for all i = 1, . . . , `− 1.
We may assume that vi and vi+1 are on the same edge interval ofP for all i = 1, . . . , `,
otherwise we have finished. Observe that there exists i ∈ {1, . . . , `} such that C ∈ Ii
and Ii ∩ Ir = {a1} where r = i − 1 or r = i + 1. In such a case it is not restrictive
to assume 1 < i < ` − 1 and r = i + 1. It follows from the shape of the weak L-
configuration that Ii+1 ∩ Ii+2 = {a2} and zi+1 is the lower right corner of A. The
corner zi+2 of Ii+2 belongs to V([D, F]) and is on the vertical edge interval of P con-
taining b2, so [B, F] is an inner interval such that zi+1, zi+2 ∈ V([B, F]). Therefore P
cannot contain zig-zag walks.
(2) Suppose that P has a weak ladder. Assume that there exists a sequence
W : I1, . . . , I` of distinct inner intervals of P such that Ii ∩ Ii+1 = {vi+1} for all
i = 1, . . . , ` − 1 and I1 ∩ I` = {v1 = v`+1}. Then there exists i ∈ {1, . . . , n} such
that C ∈ Ii and Ii ∩ Ir = {a1} where r = i − 1 or r = i + 1. It is not restrictive to
assume 1 < i < `− 1 and r = i + 1. For the shape of the weak ladder we have either
Ii+1 ∩ Ii+2 = {a2} or Ii+1 ∩ Ii+2 = {b2}. Then vi+1 and vi+2 are not on the same edge
interval of P , so P cannot contain zig-zag walks.
(3) If P has an L-configuration, then we have the desired conclusion by arguing as
done in (1).
(4) If P has a ladder of at least three steps, then the claim follows similarly as done
in (2).

Theorem 3.3.3. Let P be a weakly closed path. The following conditions are equivalent:

1. P has an L-configuration or a ladder of at least three steps or a weak L-configuration
or a weak ladder;

2. P does not contain zig-zag walks.
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Proof. The sufficient condition follows immediately from Proposition 3.3.2. We
prove the necessary one arguing by contradiction. Suppose that P has no L-
configuration, no ladder of at least three steps, no weak L-configuration and no weak
ladder and we show how it is possible to find a zig-zag walk in P . We may assume
that vH is respectively the lower right corner of A0 and the upper left corner of A1.
Let B1 be the maximal horizontal or vertical block of P containing A1. We may as-
sume that B1 is in horizontal position, because similar arguments hold in the other
case. We set I1 = V(B1) and v1 = vH and z1 as anti-diagonal corners. Let Am be
the cell of P such that [A1, Am] = B1 for some m ∈ {2, . . . , n}. For the cell Am+1 the
following cases are possible:

1. Am+1 is at East of Am. It is a contradiction to the maximality of B1;

2. Am+1 is at South of Am. Then {A0} ∪ B1 ∪ {Am+1} is a weak ladder, so it is a
contradiction;

3. Am+1 is at West of Am. Then Am+1 = Am−1, so it is a contradiction to Definition
3.3.1.

Necessarily Am+1 is at North of Am. Now we consider the cell Am+2, and we examine
its positions with respect to Am+1:

1. Am+2 is at West of Am+1. It is a contradiction to (3) of Definition 3.3.1;

2. Am+2 is at North of Am+1. Then {A0} ∪ B1 ∪ [Am+1, Am+2] is a weak L-
configuration if |B1| = 2 or B1 ∪ [Am+1, Am+2] contains an L-configuration if
|B1| > 2, so we have a contradiction in both cases;

3. Am+2 is at South of Am+1. Then Am+2 = Am, so it is a contradiction.

Necessarily Am+2 is at East of Am+1. We observe that the cell Am+3 can be at North
or at East of Am+2. If Am+3 is at North of Am+2, then by previous arguments Am+4
is also at North of Am+3, so we denote by B2 the maximal vertical block containing
{Am+2, Am+3, Am+4} and V(B1) ∩ V(B2) = {p1}; in such a case we set I2 = V(B2)
having v2 = p1 and z2 as diagonal corners. If Am+3 is at East of Am+2, then Am+4
is also at East of Am+3, so we denote by B2 the maximal horizontal block containing
{Am+2, Am+3, Am+4} and V(B1) ∩V(B2) = {a1, b1}, with a1 < b1; in such a case we
set I2 = V(B2 \ {Am+1}) having v2 = b1 and z2 as diagonal corners. In both cases
|B2| ≥ 3. Let B be the maximal block containing An and let Ap be the other extremal
cell of B for some p ≤ n− 1. If B is in vertical position, then Ap−1 is at East of Ap
and Ap−2 is at North of Ap−1 by similar arguments. Similarly, if B is in horizontal
position, then Ap−1 is at South of Ap and Ap−2 is at West of Ap−1. Moreover it is easy
to see that Ap−2 is a cell of a maximal block of P of length at least three, denoted by
B f .
Now, starting from B2, we define inductively a sequence of maximal blocks of P
and, as a consequence, a sequence of inner intervals of P . Let Bk be a maximal block
ofP of length at least three. We may assume that Bk is in horizontal position and that
there exist Aik and Aik+1 with ik < ik+1 such that Bk = [Aik , Aik+1], otherwise we can
apply appropriate reflections or rotations. For convenience we set j = ik + 1. In order
to define Bi+1, we distinguish two cases, which depend on the position of Aik−1 with
respect to Aik . Assume that Aik−1 is at North of Aik and observe that Aik−2 is nec-
essarily at West of Aik−1, otherwise {Aik−2, Aik−1} ∪ Bk contains an L-configuration
or Definition 3.3.1 is contradicted. Consider the cell Aj+1, so Aj+1 is at North of Aj.
In fact, if Aj+1 is at South of Aj, then either {Aik−2, Aik−1} ∪ Bk ∪ {Aj+1, Aj+2} is a
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ladder of three steps or Bk ∪ {Aj+1, Aj+2} contains an L-configuration or Definition
3.3.1 is contradicted. By similar arguments we deduce that Aj+2 is at East of Aj+1.
Now we can define the maximal block Bk+1, depending on the position of Aj+3.

• If Aj+3 is at East of Aj+2, then we denote by Bk+1 the maximal horizontal block
of P containing {Aj+1, Aj+2, Aj+3}. In such a case |V(Bk) ∩ V(Bk+1)| = 2
and we set V(Bk) ∩ V(Bk+1) = {ak, bk} with ak < bk. Hence we put Ik+1 =
V(Bk+1 \ {Aj+1}) and vk+1 = bk, zk+1 as diagonal corners (see Figure 3.13 (A)).

• If Aj+3 is at North of Aj+2, then Aj+4 is at North of Aj+3, otherwise we have
a contradiction, since Bk ∪ {Aj+1, Aj+2} ∪ {Aj+3, Aj+4} would be a ladder of
three steps. So we denote by Bk+1 the maximal vertical block of P containing
{Aj+2, Aj+3, Aj+4}. In such a case |V(Bk) ∩ V(Bk+1)| = 1 and we set V(Bk) ∩
V(Bk+1) = {pk}. Hence we put Ik+1 = V(Bk+1) having vk+1 = pk, zk+1 as
diagonal corners (see Figure 3.13 (B)).

(A) (B)

FIGURE 3.13

Assume that Aik−1 is at South of Aik . By similar arguments, we can define the maxi-
mal block Bk+1 and the inner interval Ik+1, which has vk+1 and zk+1 as anti-diagonal
corners, as done in the previous case (see Figure 3.14). Observe that there exists a

(A) (B)

FIGURE 3.14

configuration in which Bk is in horizontal position and Bk+1 is in vertical position,
otherwise we have a contradiction to (1) of Definition 3.3.1. Starting from k = 2
and using the procedure described before, we define the sequence of maximal block
B2,B3, . . . and, since P is a weakly closed path, in particular a path from A1 to Ap−2,
then there exists s ∈N such that Bs = B f . We set Bs+1 = B and we observe that the
only possible arrangements of the blocks Bs,Bs+1 and B1 are displayed in Figure 3.15
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and 3.16. In particular, in the configurations of Figure 3.15 we put Is+1 = V(Bs+1)
having vs+1 = ps, zs+1 as diagonal corners, and in the configurations of Figure 3.16
we put Is+1 = V(Bs+1 \ {Ap}) having vs+1 = bs, zs+1 as diagonal corners.

FIGURE 3.15

FIGURE 3.16

Hence there exists a sequence of maximal blocks B1, . . . ,Bs,Bs+1 of P with V(B1) ∩
V(Bs+1) = {vH} and a sequence I1, I2, . . . , Is, Is+1 of inner intervals of P with Ik ⊆
V(Bk) for all k = 1, . . . , s + 1, having the properties described before. We prove that
W : I1, . . . , Is, Is+1 is a zig-zag walk of P .

1. It is clear by the previous construction that Is+1 ∩ I1 = {vH} and Ik ∩ Ik+1 =
{vk+1} for all k = 1, . . . , s.

2. Let k ∈ {1, . . . , s}. Firstly suppose that k ∈ {2, 3, . . . , s − 1}. Consider the
blocks Bk−1, Bk and Bk+1. We may assume that Bk−1 is in horizontal position
and that there exist Aik and Aik+1 with ik < ik+1 such that Bk−1 = [Aik , Aik+1 ]
and Aik−1 is at North of Aik , otherwise we can do opportune reflections or
rotations. Assume that Bk is in horizontal position. By the construction of Bk
and Bk+1, we have the situation described in Figure 3.17 (A), where the dashed
lines indicate the block Bk+1 depending on its position. Therefore it follows
that vk and vk+1 are on the same edge interval of P . The same holds if Bk is in
vertical position, in particular see Figure 3.17 (B). If k = 1 or k = s, then we can
consider the blocks Bs, Bs+1 and B1, so with reference to the Figures 3.15 and
3.16 the desired claim follows.
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(A) (B)

FIGURE 3.17

3. Let k, j ∈ {1, . . . , s + 1} with k < j. If k = 1 and j = s + 1 we have the
situation in Figure 3.15 or 3.16, so the interval having z1 and zs+1 as corners is
not an inner interval of P . If j = k + 1, then we consider the blocks Bk and
Bk+1. We may assume that Bk is in horizontal position and that there exist Aik

and Aik+1 with ik < ik+1 such that Bk = [Aik , Aik+1] and Aik−1 is at South of
Aik , otherwise we can do appropriate reflections or rotations. Bk+1 is either
in horizontal or vertical position. With reference to Figure 3.18, in both cases
the interval having zk and zk+1 as corners is not an inner interval of P . If
j 6= k + 1, k− 1, then the desired conclusion follows.

FIGURE 3.18

ThereforeW : I1, . . . , Is is a zig-zag walk in P .

We introduce the following notation, which will be useful to prove more easily
the next Proposition.

Definition 3.3.4. LetP be a non-simple polyomino with a unique holeH. Let {Vi}i∈I
be the set of the maximal edge intervals of P and {Hj}j∈J be the set of the maximal
horizontal edge intervals of P . Let {vi}i∈I and {hj}j∈J be the set of the variables
associated respectively to {Vi}i∈I and {Hj}j∈J . Let H be the hole of P and w be
another variable. Let I be a subset of V(P) and we define the following map:

α : V(P) −→ K[{vi, hj, w} : i ∈ I, j ∈ J]

a 7−→ vihjwk

where a ∈ Vi ∩ Hj, k = 0 if a /∈ I , and k = 1 if a ∈ I . The toric ring, denoted by TP ,
is K[α(v) : v ∈ V(P)]. We consider the following surjective ring homomorphism
φ : S −→ TP defined by φ(xa) = α(a) and the kernel of φ is the toric ideal denoted
by JP .
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Proposition 3.3.5. Let P be a weakly closed path. If one of the following conditions holds:

1. P has an L-configuration,

2. P has a weak L-configuration,

3. P has a ladder of at least three steps,

4. P has a weak ladder,

then IP is prime.

Proof. (1) Suppose that P has an L-configuration {C1, C2, C3, C4, C5} and we can con-
sider suitable reflections or rotations of P in order to have the L-configuration in the
position of Figure 3.19. For convenience set C3 = A. In order to have the desired

FIGURE 3.19

claim, it is sufficient to prove that IP = JP , where JP is the toric ideal defined in
Definition 3.3.4 with I = V(A). Observe that it follows easily by arguing as done in
Theorem 2.2.15 and by applying Theorem 3.2.3.
(2) Let L = {C} ∪ [A, B] ∪ [D, F] be a weak L-configuration of P . We consider op-
portune reflections or rotations of P in order to have L as in the picture on the left
in Figure 3.10. By similar arguments as in case (1), we conclude that IP = JP , where
JP is the toric ideal defined in Definition 3.3.4 with I = V(B).
(3) Suppose that P has a ladder of at least three steps and let B = {Bi}i=1,...,m be
a maximal ladder of m steps, with m > 2. We can consider suitable reflections or
rotations of P in order to have the ladder as in Figure 3.20. We may assume that the
block Bm−1 consists of n cells which we denote by B1, . . . , Bn from left to right. Let bi
be the lower left corner of Bi for all i = 1, . . . , n and let B be the cell of Bm, having an
edge in common with Bn. We denote by a, b the diagonal corners of B and by d the
other anti-diagonal corner. We want to show that IP = JP , where JP is the toric ideal
defined in 3.3.4 with I = {b1, . . . , bn, b, a, d}. We observe that it follows by arguing
as done in Theorem 2.2.18 and by using Theorem 3.2.3.
(4) Suppose that P has a weak ladder. Let L = {C, D} ∪ [A, B] be the weak ladder
of P , that we can assume being as in Figure 3.11. We may assume that the block
[A, B] is made up of n cells, with n ≥ 2, which we denote by C1, . . . , Cn from left
to right. Firstly, we assume that the block containing C is in vertical position. We
denote by lC and lC1 respectively the lower left corner of C and C1 (see Figure 3.21
(A)). By similar arguments as in case (1), we conclude that IP = JP , where JP is the
toric ideal defined at the beginning of this section with I = {vH, lC, lC1}. Now, we
assume that the block containing C is in horizontal position. We denote by rC the
upper right corner of C and by rCi the upper right corner of Ci for all i = 1, . . . , n.
The conclusion IP = JP , where JP is the toric ideal defined in Definition 3.3.4 with
I = {vH, rC, rC1 , . . . , rCn}, follows as in the proof of case (3) (see Figure 3.21 (B)).
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FIGURE 3.20

(A) (B)

FIGURE 3.21

Remark 3.3.6. We observe that the weakly connected and non-simple collection of
cells P in Figure 3.8 (B) is prime in fact by similar arguments as in case (1) of Propo-
sition 3.3.5 it follows that IP = JP where JP is the toric ideal defined in Definition
3.3.4 with I = V(A).

Theorem 3.3.7. Let P be a weakly closed path. IP is prime if and only if P does not contain
zig-zag walks.

Proof. The necessary condition is proved in [31, Corollary 3.6]. The sufficient one
follows from Theorem 3.3.3 and from Proposition 3.3.5.
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Chapter 4

Gröbner bases and
Cohen-Macaulay property of
polyomino ideals

A classical result in Commutative Algebra states that if I is a graded ideal of
K[x1, . . . , xn] such that in<(I) is squarefree for some monomial order <, then I is a
radical ideal. The radicality for polyomino ideals is still open because it seems very
difficult to study the Gröbner basis for this kind of binomial ideals. More in general,
an unresolved and very interesting question is if there always exists a monomial
order < for which the set of generators of the polyomino ideal forms the reduced
Gröbner basis with respect to <.
In this chapter we study the Gröbner bases of polyomino ideals and we give a posi-
tive answer to the previous question for the class of closed path polyominoes. As a
consequence we get that the coordinate ring of a closed path without zig-zag walks
is a normal Cohen-Macaulay domain. Moreover, the closed paths having zig-zag
walks provide an interesting class of non-prime but radical polyominoes.
All the results in this chapter are contained in [7].

4.1 Some conditions for the reduced Gröbner basis of poly-
omino ideal

In this section we provide some conditions on opportune monomial orders in order
to the set of the inner 2-minors of a polyomino ideal forms the reduced Gröbner
basis. First of all, we recall some known results which are useful along the section.

In [37] Qureshi defines two monomial orders and she gives a necessary and sufficient
condition in order to reach the previous desired aim. Define a total order on the
variables attached to V(P) as follows: xa > xb with a = (i, j) and b = (k, l), if i > k,
or i = k and j > l. Let <1

lex be the lexicographical order induced by this order of
the variables. Similarly, we denote by <2

lex the lexicographical order induced by the
total order of the variables defined as follows: xa > xb with a = (i, j) and b = (k, l),
if i < k, or i = k and j > l.

Theorem 4.1.1. [37, Theorem 4.1] Let P be a collection of cells. Then the set of inner 2-
minors of P forms the reduced Gröbner basis with respect to <1

lex if and only if for any two
inner intervals [a, b] and [b, c] of P , either [e, c] or [d, c] is an inner interval of P , where d
and e are the anti-diagonal corners of [a, b] (see Figure 4.1).
Moreover, the set of inner 2-minors of P forms the reduced Gröbner basis with respect to <2

lex
if and only if for any two inner intervals [b, a] and [d, c] of P with anti-diagonal corners e, f
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and f , g as shown in Figure 4.1, either b, g or e, c are anti-diagonal corners of an inner
interval of P .

FIGURE 4.1

Moreover, if P is a weakly connected and simple collection of cells, from Theorem
3.2.3, we know that IP is the toric ideal of an edge ring attached to a bipartite and
weakly chordal graph. In such a case, the set of generators of IP forms the reduced
Gröbner basis with respect to a suitable monomial order defined in [34]. For all
convex polyominoes we provided an algorithm developed in Macaulay2 to define
the associated polyomino ring with this specific monomial order.

Now, we can state the conditions given in [7]. Let P be a non-empty collection of
cells with V(P) = {a1, . . . , an}. We define a P-order to be a total order on the set
V(P). Observe that the monomial orderings defined in [32] and [37] are induced by
specific P-orders.
If <P is a P-order, we denote by <P

lex the lexicographic order induced by <P on
S = K[xv | v ∈ V(P)], that is the lexicographic order induced by the total order on
the variables defined in the following way: xai <P

lex xaj if and only if ai <P aj for
i, j ∈ {1, . . . , n}. If f ∈ S, we denote by in( f ) the leading term of f with respect to
<P

lex.
Let f , g ∈ IP , we denote by S( f , g) the S-polynomial of f , g with respect to <P

lex. Let
G be the set of all inner 2-minors of P (that is the set of generators of IP ). We want
to study some conditions on <P in order to S( f , g) reduces to 0 modulo G.
First of all observe that if [a, b] and [α, β] are two inner intervals and [a, b] ∩ [α, β]
does not contain any corner of [a, b] and [α, β], then gcd(in( fa,b), in( fα,β)) = 1 so
S( fa,b, fα,β) reduces to 0. So it suffices to study the remaining cases.
In the remainder of this section the inner intervals [a, b] and [α, β] have respectively
c, d and γ, δ as anti-diagonal corners, as in figure 4.2.

FIGURE 4.2

In the following lemmas we examine all possible cases in which |{a, b, c, d} ∩
{α, β, γ, δ}| is equal to 1 or 2.
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Lemma 4.1.2. Let P be a collection of cells and [a, b] and [α, β] be two inner intervals such
that |{a, b, c, d} ∩ {α, β, γ, δ}| = 2. Then S( fa,b, fα,β) reduces to 0 modulo G with respect
to <P

lex for any P-order.

Proof. We may assume that α = d and γ = b, because the other cases can be dis-
cussed similarly. If gcd(in( fa,b), in( fα,β)) = 1, then there is nothing to prove, so we
have to distinguish the following cases.
First case: in( fa,b) = xaxb and in( fα,β) = −xbxδ. In such a case S( fa,b, fα,β) =
−xδxdxc + xaxβxd = xd(xaxβ − xcxδ). Observe that fa,β ∈ IP . If in(S( fa,b, fα,β)) =
xaxβxd then in( fa,β) = xaxβ, so S( fa,b, fα,β) reduces to 0. If in(S( fa,b, fα,β)) = −xδxdxc
then in( fa,β) = −xcxδ, so S( fa,b, fα,β) reduces to 0 also in this case.
Second case: in( fa,b) = −xdxc and in( fα,β) = xβxd. In such a case S( fa,b, fα,β) =
−xβxaxb + xcxbxδ = −xb(xaxβ − xcxδ). As in the first case, if in(S( fa,b, fα,β)) =
−xβxaxb then in( fa,β) = xaxβ, so S( fa,b, fα,β) reduces to 0. If in(S( fa,b, fα,β)) =
+xcxbxδ then in( fa,β) = −xcxδ, so S( fa,b, fα,β) reduces to 0 also in this case.

Lemma 4.1.3. Let P be a collection of cells and [a, b] and [α, β] be two inner intervals
with β = b and γ ∈]c, b[ (see Figure 4.3(A)). Let h be the vertex such that [h, b] is the
inner interval having d, γ as anti-diagonal corner and r be the vertex such that [r, h] is the
interval having a, α as anti-diagonal corner. Let <P be a P-order on V(P) and suppose that
gcd(in( fa,b), in( fα,β)) 6= 1. Then S( fa,b, fα,β) reduces to 0 modulo G with respect to <P

lex if
and only if one of the following conditions occurs:

1. xaxγxδ <
P
lex xαxcxd and in addiction h, δ <P α or h, δ <P d;

2. xaxγxδ <P
lex xαxcxd, {r, h, a, α} is the set of vertices of an inner interval of P and in

addiction r, γ <P α or r, γ <P c;

3. xαxcxd <P
lex xaxγxδ and in addiction h, c <P a or h, c <P γ;

4. xαxcxd <P
lex xaxγxδ, {r, h, a, α} is the set of vertices of an inner interval of P and in

addiction r, d <P a or r, d <P δ.

The same characterization holds for S( fc,d, fγ,δ), S( fb,a, fb,α) and S( fd,c, fδ,γ) considering
all the rotations of the described configuration (see respectively Figure 4.3(B), Figure 4.3(C)
and Figure 4.3(D)).

(A) (B) (C) (D)

FIGURE 4.3

Proof. Observe that gcd(in( fa,b), in( fα,β)) 6= 1 if and only if in( fa,b) = xaxb and
in( fα,β) = xαxb. Since S( fa,b, fα,β) = −xαxcxd + xaxγxδ, we have two possibilities:
1) in(S( fa,b, fα,β)) = −xαxcxd, in particular xaxγxδ <P

lex xαxcxd. Observe that, since
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xcxd is not the leading term of fa,b, in such a case the only possibilities for the re-
duction of S( fa,b, fα,β) is through a first division by fα,d if in( fα,d) = xαxd or by frγ if
in( fr,γ) = −xαxc. The first case is possible if and only if (h, δ <P α) ∨ (h, δ <P d),
and in such case indeed, after a little computation, S( fa,b, fα,β) reduces by fα,d to
xδ(xaxγ − xcxh) = xδ faγ and this one reduces to 0. For this case we obtain the con-
dition (1) of this lemma. The second case is possible if and only if the condition (2)
is satisfied, that is if [r, h] is an inner interval of P and (r, γ <P α) ∨ (r, γ <P c). In
such a case in fact S( fa,b, fα,β) reduces through fr,γ to xγ(xaxδ − xrxd) = xγ faδ and
this one reduces to 0.
2) in(S( fa,b, fα,β)) = xaxγxδ, in particular xαxcxd <P

lex xaxγxδ. We can argue as in
the first part of this proof observing that, since xγxδ is not the leading term of fα,β,
in such a case the only possibilities for the reduction of S( fa,b, fα,β) is through fa,γ if
in( fa,γ) = xaxγ or by fr,d if in( fr,d) = −xaxδ. The first case is possible if and only if
(h, c <P a) ∨ (h, c <P γ) , that is the condition (3) holds, while the second is possible
if and only if [r, h] is an inner interval of P and (r, d <P a) ∨ (r, d <P δ), that is the
condition (4) is satisfied. In both cases S( fa,b, fα,β) reduces to 0.
The last statement of this lemma is verified since the only effects of the rotation of a
configuration are the different notations for the same intervals (for instance [a, b] be-
comes [c, d], [b, a] or [d, c]) or the change of the sign of the binomials in the generators
of IP .

The following four lemmas can be proved by the same arguments of Lemma 4.1.3,
so we omit their proofs.

Lemma 4.1.4. Let P be a collection of cells and [a, b] and [α, β] be two inner intervals
with γ = b and α ∈]d, b[ (see Figure 4.4(A)). Let h be the vertex such that [h, b] is the
inner interval having c, α as anti-diagonal corner and r be the vertex such that r, α are the
anti-diagonal corners of the interval [d, δ]. Let <P be a P-order on V(P) and suppose that
gcd(in( fa,b), in( fα,β)) 6= 1. Then S( fa,b, fα,β) reduces to 0 modulo G with respect to <P

lex if
and only if one of the following conditions occurs:

1. xaxαxβ <P
lex xδxcxd and in addiction h, β <P c or h, β <P δ;

2. xaxαxβ <P
lex xδxcxd, {d, δ, α, r} is the set of vertices of an inner interval of P and in

addiction r, α <P δ or r, α <P d;

3. xδxcxd <P
lex xaxαxβ and in addiction h, d <P a or h, d <P α;

4. xδxcxd <P
lex xaxαxβ, {d, δ, α, r} is the set of vertices of an inner interval of P and in

addiction r, c <P a or r, c <P β.

The same characterization holds for S( fc,d, fγ,δ), S( fb,a, fβ,α) and S( fd,c, fδ,γ) considering
all the rotations of the described configuration (see respectively Figure 4.4(B), Figure 4.4(C)
and Figure 4.4(D)).

Lemma 4.1.5. Let P be a collection of cells and [a, b] and [α, β] be two inner intervals
with α = c and b ∈]α, δ[ (see Figure 4.5(A)). Let h be the vertex such that h, δ are the
diagonal corners of the inner interval [b, β] and r be the vertex such that r, b are the anti-
diagonal corners of the interval [d, δ]. Let <P be a P-order on V(P) and suppose that
gcd(in( fa,b), in( fα,β)) 6= 1. Then S( fa,b, fα,β) reduces to 0 modulo G with respect to <P

lex if
and only if one of the following conditions occurs:

1. xdxδxγ <P
lex xβxaxb and in addiction h, δ <P b or h, δ <P β;
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(A) (B) (C) (D)

FIGURE 4.4

2. xdxδxγ <P
lex xβxaxb, {d, δ, b, r} is the set of vertices of an inner interval of P and in

addiction r, γ <P a or r, γ <P β;

3. xβxaxb <
P
lex xdxδxγ and in addiction h, a <P d or h, a <P γ;

4. xβxaxb <P
lex xdxδxγ, {d, δ, b, r} is the set of vertices of an inner interval of P and in

addiction r, b <P d or r, b <P δ.

The same characterization holds for S( fc,d, fγ,δ), S( fb,a, fβ,α) and S( fd,c, fδ,γ) considering
all the rotations of the described configuration (see respectively Figure 4.5(B), Figure 4.5(C)
and Figure 4.5(D)).

(A) (B) (C) (D)

FIGURE 4.5

Lemma 4.1.6. Let P be a collection of cells and [a, b] and [α, β] be two inner intervals with
γ = c and δ ∈]a, b[ (see Figure 4.6(A)). Let [h, r] be the inner interval having d, δ as anti-
diagonal corners. Let <P be a P-order on V(P) and suppose that gcd(in( fa,b), in( fα,β)) 6=
1. Then S( fa,b, fα,β) reduces to 0 modulo G with respect to <P

lex if and only if one of the
following conditions occurs:

1. xdxαxβ <P
lex xδxaxb and in addiction h, α <P a or h, α <P δ;

2. xdxαxβ <P
lex xδxaxb and in addiction r, β <P δ or r, β <P b;

3. xδxaxb <
P
lex xdxαxβ and in addiction r, a <P α or r, a <P d;

4. xδxaxb <
P
lex xdxαxβ and in addiction h, b <P d or h, b <P β.

The same characterization holds for S( fc,d, fγ,δ), S( fb,a, fβ,α) and S( fd,c, fδ,γ) considering
all the rotations of the described configuration (see respectively Figure 4.6(B), Figure 4.6(C)
and Figure 4.6(D)).
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(A) (B) (C) (D)

FIGURE 4.6

Lemma 4.1.7. Let P be a collection of cells and [a, b] and [α, β] be two inner intervals with
α = b and β /∈ [a, b] (see Figure 4.7(A)). Let h, r be the anti-diagonal corners, different to b,
respectively of the intervals [d, δ] and [c, γ]. Let <P be a P-order on V(P) and suppose that
gcd(in( fa,b), in( fα,β)) 6= 1. Then S( fa,b, fα,β) reduces to 0 modulo G with respect to <P

lex if
and only if one of the following conditions occurs:

1. xaxγxδ <P
lex xβxdxc, {d, δ, b, h} is the set of vertices of an inner interval of P and in

addiction h, γ <P β or h, γ <P d;

2. xaxγxδ <P
lex xβxdxc, {c, γ, b, r} is the set of vertices of an inner interval of P and in

addiction r, δ <P β or r, δ <P c;

3. xβxdxc <P
lex xaxγxδ, {c, γ, b, r} is the set of vertices of an inner interval of P and in

addiction r, d <P a) or r, d <P γ;

4. xβxdxc <P
lex xaxγxδ, {d, δ, b, h} is the set of vertices of an inner interval of P and in

addiction c, h <P a or c, h <P δ.

The same characterization holds for S( fc,d, fγ,δ), S( fb,a, fβ,α) and S( fd,c, fδ,γ) considering
all the rotations of the described configuration (see respectively Figure 4.7(B), Figure 4.7(C)
and Figure 4.7(D)).

(A) (B) (C) (D)

FIGURE 4.7

4.2 Gröbner basis and Cohen-Macaulay property of closed
path polyominoes

In this section we introduce some monomial orders for the class of closed path
polyominoes and we prove that the set of the generators of the polyomino ideal



4.2. Gröbner basis and Cohen-Macaulay property of closed path polyominoes 65

attached to a closed path forms the reduced Gröbner basis with respect to these
monomial orders. Hence IP is radical, for all closed path P (for a reference see [26,
Corollary 2.2]). Moreover, it is known that the polyomino ideal attached to a closed
path containing an L-configuration or a ladder of at least three steps, equivalently
having no zig-zag walks, is prime. As a consequence, we obtain that the coordinate
ring of a closed path having no zig-zag walks is a normal Cohen-Macaulay domain.

Let P be a polyomino. We examine four special configurations of cells of a poly-
omino, that permit us when P is a closed path to provide some particular subsets
Y ⊂ V(P) for which we can define the following P-order. In according to Qureshi
(see [37]) we recall that a <1 b if and only if, for a = (i, j) and b = (k, l), i < k, or
i = k and j < l.

Definition 4.2.1. Let Y ⊂ V(P). We define the P-order <Y in the following way:

a <Y b⇔


a /∈ Y and b ∈ Y
a, b /∈ Y and a <1 b
a, b ∈ Y and a <1 b

for a, b ∈ V(P).

We call an W-pentomino with middle cell A a collection of cells of P consisting of an
horizontal block B1 = [A1, B1] of rank two, a vertical block B2 = [A2, B2] of rank two
and a cell A not belonging to B1 ∪ B2, such that V(B1) ∩V(B2) = {w} and where w
is the lower right corner of A. Moreover, ifW is a W-pentomino with middle cell A,
we denote with xW the left upper corner of A, with yW the lower right corner of B1
and with zW the lower right corner of A2. See Figure 5.3.

(A) (B)

FIGURE 4.8: W-pentomino

We call an LD-horizontal (vertical) skew tetromino a collection of cells of P consisting
of two horizontal (vertical) blocks of rank two B1 = [A1, B1] and B2 = [A2, B2] such
that V(B1)∩V(A2) = {w1, w2} and w1, w2 are right and left upper (lower and upper
right) corners of B1. Moreover, if C is an LD-horizontal (vertical) skew tetromino, we
denote with xC , yC the left and right upper corners of A2 (the upper and lower left
corners of B1), and with aC , bC the left and right lower corners of B1 (the upper and
lower right corners of A2). See Figure 4.9.
We call an LD-horizontal (vertical) skew hexomino a collection of cells of P consisting
of two horizontal (vertical) blocks of rank three B1 = [A1, B1] and B2 = [A2, B2]
such that V(B1) ∩ V(A2) = {w1, w2} and w1, w2 are respectively the right and left
upper (lower and upper right) corners of B1. Moreover, if D is an LD-horizontal
(vertical) skew tetromino, we denote by xD, yD the left and right upper corners of A2
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(A) (B)

FIGURE 4.9: LD-horizontal skew tetromino (A) and LD-vertical skew
tetromino (B)

(the upper and lower left corners of B1), and by aD, bD the the left and right upper
corners of B1 (the upper and lower right corners of A2). See Figure 4.10.

(A) (B)

FIGURE 4.10: LD-horizontal skew hexomino (A) and LD-vertical
skew hexomino (B)

We call an RW-heptomino with middle cell A a collection of cells of P consisting of an
horizontal block B1 = [A1, B1] of rank three, a vertical block B2 = [A2, B2] of rank
three and a cell A not belonging to B1 ∪ B2, such that V(B1) ∩ V(B2) = {w} and
where w is the upper left corner of A. Moreover, if T is an RW-pentomino with
middle cell A, we denote by xT the right lower corner of A, with yT the left upper
corner of B2 and by zT the left upper corner of A1. See Figure 4.11.

(A) (B)

FIGURE 4.11: RW-heptomino

Theorem 4.2.2. Let P be a closed path polyomino not containing any W-pentomino. Let
R be the set of all LD-horizontal and vertical skew tetrominoes contained in P and let Y =



4.2. Gröbner basis and Cohen-Macaulay property of closed path polyominoes 67

⋃
C∈R{xC , yC}. Then G is the reduced Gröbner basis of IP with respect to the monomial

order <Y
lex.

Proof. Let f = xpxq − xrxs and g = xuxv − xwxz be the two binomials attached
respectively to the inner intervals [p, q] and [u, v] of P . We prove that S( f , g) re-
duces to 0 modulo G with respect to <Y

lex, examining all possible cases on {p, q, r, s}∩
{u, v, w, z}.
The case {p, q, r, s} ∩ {u, v, w, z} = ∅ is trivial. If |{p, q, r, s} ∩ {u, v, w, z}| = 2, then
the claim follows from Lemma 4.1.2. Assume that |{p, q, r, s} ∩ {u, v, w, z}| = 1 and
that [p, q] is not contained in [u, v] or vice versa. Suppose that q = v. For the struc-
ture of P we may assume that s ∈]z, v[ and w ∈]r, q[, so there exists k ∈ {1, . . . , n}
such that Ak = [p, q] ∩ [u, v]. Let Ak−1 be the cell of P[p,q] adjacent to Ak. If Ak−2 is
at North of Ak−1 then we have the conclusion from (1) of Lemma 4.1.3. If Ak−2 is
at West of Ak−1 then the claim follows either by being gcd(in( f ), in(g)) = 1 or by
applying (1) of Lemma 4.1.3 if gcd(in( f ), in(g)) 6= 1. The cases r = w, p = u and
s = z can be proved similarly to the previous ones. Suppose that q = w. We may
assume that u ∈]s, q[, because the arguments are similar when s ∈]u, w[. Let Ak be
the cell of P having r, u as anti-diagonal corners and we denote by Ak−1 and Ak+1
respectively the cells of P[p,q] and P[u,v] adjacent to Ak. If {Ak−2, Ak−1, Ak, Ak+1} is
an LD-vertical skew tetromino or {Ak−2, Ak−1, Ak, Ak+1, Ak+2} is an L-configuration
then gcd(in( f ), in(g)) = 1. If {Ak−1, Ak, Ak+1, Ak+2} is an LD-horizontal skew tetro-
mino, then gcd(in( f ), in(g)) = xw and applying (1) of Lemma 4.1.4 we have the
desired conclusion. Similar arguments hold in the cases s = u, v = r and z = p. Sup-
pose q = u and let Ak and Ak+2 be the cells of P having respectively q as upper right
and lower left corner. If {Ak−1, Ak, Ak+1, Ak+2} or {Ak, Ak+1, Ak+2, Ak+3} is an LD-
vertical skew tetromino, then gcd(in( f ), in(g)) = 1. If {Ak−1, Ak, Ak+1, Ak+2, Ak+3}
is an L-configuration, the claim follows either by gcd(in( f ), in(g)) = 1 or by apply-
ing Lemma 4.1.7 if gcd(in( f ), in(g)) 6= 1. If {Ak−1, Ak, Ak+1, Ak+2, Ak+3} is not an
L-configuration and does not contain an LD-vertical skew tetromino, then the only
two possibilities are that either {Ak−1, Ak, Ak+1, Ak+2} or {Ak, Ak+1, Ak+2, Ak+3} is
an LD-horizontal skew tetromino. In both cases gcd(in( f ), in(g)) = 1, in particular
in the first case the claim follows since P has not any W-pentomino, so Ak+3 is at
East of Ak+2. The other cases s = w, z = r or v = p can be proved by similar argu-
ments. Finally, it is easy to see that in such cases G is also the reduced Gröbner basis
of IP .

In Figure 4.12 (A) is shown an example of polyomino satisfying Theorem 4.2.2.

Remark 4.2.3. In [32] the authors introduced the class of thin polyominoes, that con-
sists of all polyominoes not containing the configuration whose shape is a square
made up of four cells. Such a class can be viewed as a generalization of closed paths.
We observe that the conclusion of the previous theorem does not hold in general
for thin polyominoes, using the same monomial order. In fact, we can consider the
thin polyomino in Figure 4.12(B) and it is not difficult to show that the S-polynomial
associated to the marked intervals does not reduce to 0.

Remark 4.2.4. By the same arguments, the statement of Theorem 4.2.2 holds also for
Y =

⋃
C∈R{aC , bC}.

Theorem 4.2.5. Let P be a closed path polyomino not containing any RW-heptomino.
Let R1 be the set of all LD-horizontal and vertical skew hexominoes contained in P and
let R2 be the set of all W-pentominoes contained in P . Let Y = (

⋃
D∈R1

{aD, bD}) ∪
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(A) (B)

FIGURE 4.12: The highlighted points belong to Y

(
⋃
W∈R2

{xW , yW}). Then G is the reduced Gröbner basis of IP with respect to the mono-
mial order <Y

lex.

Proof. Let f = xpxq − xrxs and g = xuxv − xwxz be the two binomials attached
respectively to the inner intervals [p, q] and [u, v] of P . We discuss the case
|{p, q, r, s} ∩ {u, v, w, z}| = 1, where [p, q] is not contained in [u, v] or vice versa.
The cases q = v, r = w, p = u and s = z, as well as q = w, s = u, v = r
and z = p, can be proved as in Theorem 4.2.2. Suppose q = u and let Ak and
Ak+2 be the cells of P having respectively q as upper right and lower left cor-
ner. If {Ak−1, Ak, Ak+1, Ak+2, Ak+3} is an L-configuration the claim follows either
if gcd(in( f ), in(g)) = 1 or by applying Lemma 4.1.7 if gcd(in( f ), in(g)) 6= 1. If
{Ak−2, Ak−1, Ak, Ak+1, Ak+2, Ak+3} or {Ak−1, Ak, Ak+1, Ak+2, Ak+3, Ak+4} is an LD-
horizontal or vertical skew hexomino, then gcd(in( f ), in(g)) = 1. Since there
does not exist any RW-heptomino, the last possibilities consist in being Ak−1, Ak,
Ak+1 or Ak+2 the middle cell of a W-pentomino. In all these cases we have the
desired conclusion either if gcd(in( f ), in(g)) = 1 or by applying Lemma 4.1.7 if
gcd(in( f ), in(g)) 6= 1. The cases s = w, z = r or v = p can be proved by similar
arguments.

Remark 4.2.6. With the same arguments, the statement of Theorem 4.2.5 holds also
considering Y = (

⋃
D∈R1

{aD, bD}) ∪ (
⋃
W∈R2

{xW , zW}).

Given a closed path polyomino P containing both W-pentominoes and RW-
heptominoes, our aim is to find a P-order <Y, for a suitable set Y ⊂ V(P), such that
G is the Gröbner basis of IP with respect to the monomial order <Y

lex. We are going to
define the set Y by combining the previous construction and the highlighted points
in Figures 5.3, 4.10, 4.11, and proceeding iteratively from the structure of the poly-
omino and the arrangement of the cells. In order to simplify notations and writings,
we summarize in the table in Figure 4.13 the arrangements with highlighted points
already introduced in the previous definitions that are useful to define the new set
Y. We build up the set Y using the algorithm explained below, for which it is also
important to consider the configurations described in Figure 4.14 and Figure 4.15.

Algorithm 4.2.7. Let P be a closed path polyomino, whose sequence of cells is
A1, A2, . . . , An, An+1 (with A1 = An+1) and containing both W-pentominoes and
RW-heptominoes. Let i, j ∈ {1, 2, . . . , n, n + 1} with i < j. We define Yi,j ⊂ V(P) be
the set provided by the algorithmic scheme described below:

1. Start with Yi,j = ∅.
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FIGURE 4.13

2. Define Q = {q ∈ {i, . . . , j} | Aq is the middle cell of a RW-heptomino}.

3. If Q 6= ∅ define q1 = minQ, otherwise define q1 = j.

4. FOR k ∈ {i, . . . , q1} DO:

(a) IF Ak is the middle cell of a W-pentomino THEN Yi,j = Yi,j ∪ {xW , zW}
with reference to II-A of Figure 4.13.

(b) IF Ak, Ak+1, . . . , Ak+6 is a sequence of cells of an LD-horizontal skew hex-
omino THEN Yi,j = Yi,j ∪ {aD, bD} with reference to III-A of Figure 4.13.

(c) IF Ak, Ak+1, . . . , Ak+6 is a sequence of cells of an LD-vertical skew hex-
omino THEN Yi,j = Yi,j ∪ {aD, bD} with reference to IV-A of Figure 4.13.

5. DefineR = {r ∈ {q1 + 1, . . . , j} | Ar is the middle cell of a W-pentomino}.

6. IfR 6= ∅ define r1 = minR, otherwise define r1 = j.

7. Define Q = q1 and R = r1.

8. Consider the RW-heptomino with middle cell AQ and let M = max{m ∈
{i, . . . , Q} | Am ∩Yi,j 6= ∅}.

9. FOR k ∈ {Q, . . . , R} DO:

(a) IF Ak is the middle cell of an RW-heptomino THEN

IF AM and AQ do not occur as in the configurations of Figure 4.14
THEN Yi,j = Yi,j ∪ {xT, yT} with reference to I-B of Figure 4.13

ELSE Yi,j = Yi,j ∪ {xT, zT} with reference to II-B of Figure 4.13.

(b) IF Ak, Ak+1, . . . , Ak+6 is a sequence of cells of an LD-horizontal skew hex-
omino THEN Yi,j = Yi,j ∪ {xD, yD} with reference to III-B of Figure 4.13.

(c) IF Ak, Ak+1, . . . , Ak+6 is a sequence of cells of an LD-vertical skew hex-
omino THEN Yi,j = Yi,j ∪ {xD, yD} with reference to IV-B of Figure 4.13.

(d) IF R = j THEN RETURN Yi,j.

10. Define Q = {q ∈ {r1 + 1, . . . , j} | Aq is the middle cell of a RW-heptomino}.
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FIGURE 4.14: Conflicting configurations with I-B

11. If Q 6= ∅ define q2 = minQ, otherwise define q2 = j.

12. Define R = r1 and Q = q2.

13. Consider the W-pentomino with middle cell AR and let M = max{m ∈
{i, . . . , R} | Am ∩Yi,j 6= ∅}.

14. FOR k ∈ {R, . . . , Q} DO:

(a) IF Ak is the middle cell of a W-pentomino THEN

IF AM and AQ do not occur as in the configurations of Figure 4.15
THEN Yi,j = Yi,j ∪ {xW , yW} with reference to I-A of Figure 4.13

ELSE Yi,j = Yi,j ∪ {xW , zW} with reference to II-A of Figure 4.13.

(b) IF Ak, Ak+1, . . . , Ak+6 is a sequence of cells of an LD-horizontal skew hex-
omino THEN Yi,j = Yi,j ∪ {aD, bD} with reference to III-A of Figure 4.13.

(c) IF Ak, Ak+1, . . . , Ak+6 is a sequence of cells of an LD-vertical skew hex-
omino THEN Yi,j = Yi,j ∪ {aD, bD} with reference to IV-A of Figure 4.13.

(d) IF Q = j THEN RETURN Yi,j.

15. ` = 2.

16. WHILE ` > 1 DO
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FIGURE 4.15: Conflicting configurations with I-A

(a) Define

R = {r ∈ {q` + 1, . . . , j} | Ar is the middle cell of a W-pentomino}

(b) IfR 6= ∅ define r` = minR, otherwise define r` = j.

(c) Define Q = q` and R = r`.

(d) M = max{m ∈ {i, . . . , Q} | Am ∩Yi,j 6= ∅}.
(e) Execute the instructions in (9).

(f) Define

Q = {q ∈ {r` + 1, . . . , j} | Aq is the middle cell of a RW-heptomino}

(g) If Q 6= ∅ define q`+1 = minQ, otherwise define q`+1 = j.

(h) Define R = r` and Q = q`+1.

(i) M = max{m ∈ {i, . . . , R} | Am ∩Yi,j 6= ∅}.
(j) Execute the instructions in in (14).

(k) ` = `+ 1.

17. END

Observe that, since r` < r`+1 and q` < q`+1 for all ` ∈N then there exists ` such that
r` = j or q` = j, so the procedure stops and the set Yi,j is returned.

Definition 4.2.8. Let P be a closed path polyomino containing both W-pentominoes
and RW-heptominoes. Consider a W-pentominoW of P and suppose thatW con-
tains the cells A1, A2, A3, A4 and A5, labelled bottom up as in Figure 4.16. We put
L = Y2,n+1. In Figure 4.17 we make in evidence, for instance, the points belonging to
L.
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FIGURE 4.16

FIGURE 4.17: The set Y2,n+1 consists of the highlighted points

Theorem 4.2.9. Let P be a closed path. Suppose that P contains a W-pentomino and an
RW-heptomino and let L be the set given in Definition 4.2.8. Then G is the reduced Gröbner
basis of IP with respect to <L

lex.

Proof. Let f and g be the two binomials attached respectively to the inner intervals
[p, q] and [u, v] of P . It suffices to show that S( f , g) reduces to 0 modulo G in every
case. Observe that the desired claim follows from Definitions 4.2.7 and 4.2.8, arguing
as in Theorem 4.2.5. In fact, we always have that either gcd(in( f ), in(g)) = 1 or, if
gcd(in( f ), in(g)) 6= 1, it is sufficient to apply the previous lemmas.

Theorem 4.2.10. Let P be a closed path polyomino having an L-configuration or a ladder
of at least three steps, or equivalently having no zig-zag walks. Then K[P ] is a normal
Cohen-Macaulay domain.

Proof. From Theorem 4.2.9 we obtain that there exists a monomial order ≺ such that
G is the Gröbner basis of IP with respect to ≺, in particular IP admits a squarefree
initial ideal with respect to some monomial order. Since P has an L-configuration
or a ladder of three steps, from Subsection 2.2.3 we have that IP is a toric ideal. By
Theorem 1.4.15 we obtain that K[P ] is normal and by Theorem 1.4.14 we obtain that
K[P ] is Cohen-Macaulay.
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Theorem 4.2.11. Let P be a closed path polyomino. Then IP is radical.

Proof. It follows from the fact that a graded ideal I is radical if in<(I) is squarefree
for some monomial order <.

Remark 4.2.12. In [25] the authors proved that if P is a balanced polyomino, equiv-
alently P is simple, then the universal Gröbner basis is squarefree. In general this
fact does not hold for a non-simple polyomino. Consider the closed path P in Figure
4.18. Let {V1, V2, V3, V4} and {H1, H2, H3, H4} be respectively the sets of the maximal

FIGURE 4.18

vertical and horizontal edge intervals of P such that r = (i, j) ∈ Vi ∩ Hj, and let
{v1, v2, v3, v4} and {h1, h2, h3, h4} be the associated sets of the variables. Let w be an-
other variable different from vi and hj. We recall from Theorem 2.2.15 that IP = JP ,
where JP is the kernel of φ, defined as

φ : K[xij : (i, j) ∈ V(P)] −→ K[{vi, hj, w} : i, j ∈ {1, 2, 3, 4}]
φ(xij) = vihjwk

where k = 0 if (i, j) /∈ A, and k = 1, if (i, j) ∈ A.
Consider the binomial f = x11x23x32x34x41 − x14x22x2

31x43 attached to the vertices in
red and yellow. Observe that f ∈ IP because φ(x11x23x32x34x41) = φ(x14x22x2

31x43).
We show that f is primitive, that is there does not exist any binomial g = g+ − g− in
IP with g 6= f such that g+|x11x23x32x34x41 and g−|x14x22x2

31x43. Suppose by contra-
diction that there exists such a binomial. Observe that 2 < deg(g) < 5, since f 6= g
and all binomials of degree two satisfying the primitive conditions are not inner 2-
minors. It is sufficient to prove that x11 (resp. x22) cannot divide g+ (resp. g−). If
that happens, then w divides φ(g+), which is equal to φ(g−), so x22 divides g−. Since
g ∈ IP = JP , in particular φ(g+) = φ(g−), we obtain that g+ = x11x23x32x34x41 and
g− = x14x22x2

31x43 from easy calculations. Hence f = g, a contradiction. In conclu-
sion we have that f is a primitive binomial of IP . Since for a toric ideal the universal
Gröbner basis coincides with the Graver basis (see [47]), the primitive binomials of
IP form the universal Gröbner basis G of IP . Since f is a primitive binomial of IP ,
it follows that G is not squarefree. Anyway IP is a radical ideal which admits a
squarefree initial ideal with a different monomial ordering, for instance with respect
to <1

lex, since the set of generator of IP is the reduced Gröbner basis by [37, Theorem
4.1].
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Chapter 5

The Hilbert-Poincaré series and the
rook polynomial of some
non-simple polyominoes

In this chapter we study the Castelnuovo-Mumford regularity and, in particular, the
Hilbert-Poincaré series of some classes of non-simple polyominoes relating them
to a particular polynomial in Z[t], called the rook polynomial. As a consequence, a
characterization of the Gorenstein property for closed paths without zig-zag walks
is given. The regularity, the Hilbert-Poincaré series and the Gorenstein property are
studied for several class of polyominoes. For references we recall in particular [1],
[17], [37], [38] and [40]. In the next sections, we show in detail all results contained
in [6].

5.1 Hilbert-Poincaré series of (L, C)-polyominoes

In this section we define the class of (L, C)-polyominoes and we provide an explicit
formula for the Hilbert-Poincaré series of the related coordinate rings, depending
on the Hilbert-Poincaré series of some polyominoes obtained eliminating specific
cells. In such case we compute also the Krull dimension of the coordinate ring of a
polyomino belonging to this class.

Definition 5.1.1. Let L be the union of the two cell intervals [A, Ar], consisting of the
cells A, A1, . . . , Ar, and [A, Bs], consisting of the cells A, B1, . . . , Bs, where A, Ar and
A, Bs are respectively in horizontal and vertical position with r, s ≥ 2. We denote
by a, b and c, d respectively the diagonal and anti-diagonal corners of A, by di and ai
respectively the upper left and upper right corners of Bi for i ∈ [s] and by bj and cj
respectively the upper and lower right corners of Aj for j ∈ [r]. Let C be a polyomino.
We say that a polyomino P is an (L, C)-polyomino if P = L t C and it satisfies one
and only one of the following four conditions (see also Figure 5.1):

(1) V(L) ∩V(C) = {as−1, as, br−1, br};

(2) V(L) ∩V(C) = {as−1, as, cr−1, cr};

(3) V(L) ∩V(C) = {ds−1, ds, br−1, br};

(4) V(L) ∩V(C) = {ds−1, ds, cr−1, cr};

If P is an (L, C)-polyomino, the following related polyominoes will be used along
the paper:

• P1 = P\[A, Ar];
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(A) (B)

(C) (D)

FIGURE 5.1: Examples of the different cases of (L, C)-polyominoes

• P2 = P\[A, Bs];

• P3 = P\([A, Ar] ∪ [A, Bs]) = C;

• P4 = P\{A, A1, B1};

• P ′1 = P\[A1, Ar];

• P ′2 = P\[B1, Bs].

Lemma 5.1.2. Let P be an (L, C)-polyomino. Then SP/(IP , xa, xd, xc, xb) ∼= K[P4].

Proof. Observe that IP can be written in the following way

IP = IP4 + (xaxb − xbxc) +
r

∑
i=1

(xaxai − xcxdi) +
r

∑
i=1

(xdxai − xbxdi)+

s

∑
i=1

(xaxbi − xdxci) +
r

∑
i=1

(xcxbi − xbxci).

It follows that (IP , xa, xd, xc, xb) = (IP4 , xa, xd, xc, xb), in particular

SP/(IP , xa, xd, xc, xb) = SP/(IP4 , xa, xd, xc, xb) ∼= SP4 /IP4 = K[P4]

.

Proposition 5.1.3. Let P be an (L, C)-polyomino. If IP is prime, then K[Pi] and K[P ′j ] are
domains for i ∈ [4] and j ∈ {1, 2}.
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Proof. We may assume that P is an (L, C)-polyomino such that V(L) ∩ V(C) =
{as−1, as, br−1, br}, since similar arguments can be used in the other cases. We prove
that K[P1] is a domain. Observe that IP is a toric ideal since IP is a prime bino-
mial ideal. Then there exists a map φ : SP → K[t±1

1 , . . . , t±1
d ] with xij 7→ taij for

all (i, j) ∈ V(P) such that IP = ker φ. Let V = {a, c, c1, . . . , cr, b1, . . . , br−2}, we
define φV : SP → K[t±1

1 , . . . , t±1
d ], by φV (xv) = 0 if v ∈ V and φV (xv) = φ(xv) oth-

erwise. Put JV := (IP , {xv | v ∈ V}), we prove that JV = ker φV . If f ∈ ker φV ,
we can write f = f̃ + βg where β ∈ SP , g ∈ ({xv | v ∈ V}) and f̃ not contain-
ing variables in the set {xv | v ∈ V}. Since φV ( f ) = 0, we have φ( f̃ ) = 0, so
f̃ ∈ ker φ = IP . For the other inclusion it suffices to prove that IP ⊆ ker φV . In such
a case observe that, for this configuration, if f = xi1 xi2 − xj1 xj2 is a generator of IP
then {xi1 , xi2} ∩ {xv | v ∈ V} 6= ∅ if and only if {xj1 , xj2} ∩ {xv | v ∈ V} 6= ∅, so in
all possible cases we have φV ( f ) = 0. Therefore JV = ker φV and JV is a prime ideal.
As in Lemma 5.1.2, we have also that JV = (IP1 , xa, xc, xci , xbj : i ∈ [r], j ∈ [r − 2]),
and K[P1] ∼= SP/J is a domain. The proof for this case is done. For the other poly-
ominoes the proof is analogue, considering:

• for P2 the set V = {a, d, d1, . . . , ds, a1, . . . , as−2};

• for P3 the set V = {a, b, c, d, c1, . . . , cr, d1, . . . , ds, a1, . . . , as−2, b1, . . . , br−2};

• for P4 the set V = {a, b, c, d};

• for P ′1 the set V = {b1, . . . , br−2, c1, . . . , cr};

• for P ′2 the set V = {a1, . . . , as−2, d1, . . . , ds}.

If P is an (L, C)-polyomino, our aim is to provide a formula for the Hilbert-Poincaré
series of K[P ], involving the Hilbert-Poincaré series of K[P1], K[P2], K[P3] and K[P4]
in the hypotheses that K[P ] is an integral domain. In particular, if (i1, i2, i3, i4) is a
permutation of the set {a, b, c, d}, our strategy consists in considering the following
four short exact sequences:

0 −→ SP/(IP : xi1 ) −→ SP/IP −→ SP/(IP , xi1 ) −→ 0

0 −→ SP/((IP , xi1 ) : xi2 ) −→ SP/(IP , xi1 ) −→ SP/(IP , xi1 , xi2 ) −→ 0

0 −→ SP/((IP , xi1 , xi2 ) : xi3 ) −→ SP/(IP , xi1 , xi2 ) −→ SP/(IP , xi1 , xi2 , xi3 ) −→ 0

0 −→ SP/((IP , xi1 , xi2 , xi3 ) : xi4 ) −→ SP/(IP , xi1 , xi2 , xi3 ) −→ SP/(IP , xa, xd, xc, xb) −→ 0

From the exact sequences above, we will obtain the Hilbert-Poincaré series of SP/IP
by a repeated application of Proposition 1.1.15 and considering in each case a suit-
able permutation (i1, i2, i3, i4) of the set {a, b, c, d} in order to compute the Hilbert-
Poincaré series of the rings in the intermediate steps. To reach our aim we pro-
vide several preliminary lemmas, distinguishing the different possibilities for the
set V(L) ∩V(C).

Lemma 5.1.4. Let P be an (L, C)-polyomino such that V(L) ∩ V(C) =
{as−1, as, br−1, br}. Suppose that IP is prime. Then:

(1) SP/((IP , xa) : xd) ∼= K[P1]⊗K K[xb1 , . . . , xbr−2 ];

(2) SP/((IP , xa, xd) : xc) ∼= K[P2]⊗K K[xa1 , . . . , xas−2 ];

(3) SP/((IP , xa, xd, xc) : xb) ∼= K[P3]⊗K K[xb, xa1 , . . . , xas−2 , xb1 , . . . , xbr−2 ].
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Proof. (1) Firstly observe that IP can be written in the following way:

IP = IP1 + (xaxb − xcxd) +
s

∑
i=1

(xaxai − xcxdi) +
r

∑
j=1

(xaxbj − xdxcj)+

r

∑
j=1

(xcxbj − xbxcj) + ∑
k,l∈[r]

k<l

(xck xbl − xcl xbk)+

({xcr−1 xv − xcr xu|[cr−1, v] ∈ I(P), u = v− (1, 0)}),

Now we describe the ideal (IP , xa) in SP :

(IP , xa) = (IP1 , xa) + (xcxd) +
s

∑
i=1

(xcxdi) +
r

∑
j=1

(xdxcj)+

r

∑
j=1

(xcxbj − xbxcj) + ∑
k,l∈[r]

k<l

(xck xbl − xcl xbk)+

({xcr−1 xv − xcr xu|[cr−1, v] ∈ I(P), u = v− (1, 0)}).

We prove that (IP , xa) : xd = (IP1 , xa) + (xc) + ∑r
i=1(xci). It follows trivially from the

previous equality that (IP , xa) : xd ⊇ (IP1 , xa) + (xc) + ∑r
i=1(xci). Let f ∈ SP such

that xd f ∈ (IP , xa). Then

xd f = g + αxa + βxcxd +
s

∑
i=1

γixcxdi +
r

∑
j=1

δjxdxcj +
r

∑
i=j

ωj(xcxbj − xbxcj)+

+ ∑
k,l∈[r]

k<l

νkl(xck xbl − xcl xbk) + ∑
[cr−1,v]∈I(P)

u=v−(1,0)

λv(xcr−1 xv − xcr xu),

where g ∈ IP1 , α, β, γi, δj, ωj, νk,lλv ∈ SP for all i, k ∈ [s], j, l ∈ [r] and for all v ∈ V(P)
such that [cr−1, v] ∈ I(P). As a consequence:

xd

(
f − βxc −

r

∑
j=1

δjxcj

)
= g + αxa +

s

∑
i=1

(γixdi)xc +
r

∑
i=j

(ωjxbj)xc −
r

∑
i=j

(ωjxb)xcj+

+ ∑
k,l∈[r]

k<l

(νklxbl )xck − ∑
k,l∈[r]

k<l

(νklxbk)xcl +

(
∑

[cr−1,v]∈I(P)
u=v−(1,0)

λvxv

)
xcr−1+

−
(

∑
[cr−1,v]∈I(P)

u=v−(1,0)

λvxu

)
xcr .

Hence we obtain that xd
(

f − βxc − ∑r
j=1 δjxcj

)
∈ IP1 + (xa) + (xc) + ∑r

i=1(xci).
Since K[P1] is a domain (Proposition 5.1.3) and a, c, ci /∈ V(P1) for all i ∈ [r]
then IP1 + (xa) + (xc) + ∑r

i=1(xci) is a prime ideal in SP . Since xd /∈ IP1 , we
have f − βxc − ∑r

j=1 δjxcj ∈ IP1 + (xa) + (xc) + ∑r
i=1(xci), so f ∈ IP1 + (xa) +

(xc) + ∑r
i=1(xci), that is (IP , xa) : xd ⊆ (IP1 , xa) + (xc) + ∑r

i=1(xci). In conclu-
sion we have (IP , xa) : xd = (IP1 , xa) + (xc) + ∑r

i=1(xci) and as a consequence
SP/((IP , xa) : xd) = SP/(IP1 + (xa, xc, xc1 , . . . , xcr))

∼= SP1 /IP1 ⊗K K[xv | v ∈
V(P \ P1)]/(xa, xc, xc1 , . . . , xcr) = K[P1]⊗K K[xb1 , . . . , xbr−2 ]. The claim (1) is proved.
(2) By similar computations as in the first part of (1) we can prove that (IP , xa, xd) :
xc = (IP2 , xa, xd) + ∑s

i=1(xdi), so claim (2) follows by using similar arguments as in
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the last part in (1).
(3) The argument is the same, considering that (IP , xa, xd, xc) : xb = (IP3 , xa, xd, xc) +

∑s
i=1(xdi) + ∑r

j=1(xci) can be proved using computations similar to the previous
cases.

In the previous result we examine, for a (L, C)-polyomino, the case V(L) ∩V(C) =
{as−1, as, br−1, br}. In order to examine the other cases we need other preliminary
results involving the polyominoes P ′1 and P ′2.

Lemma 5.1.5. Let P be an (L, C)-polyomino. Then

(1) SP ′2 /(IP ′2 , xb, xc) ∼= K[P2]. Moreover, if IP2 is a prime ideal then (IP ′2 , xb, xc) is a
prime ideal of SP .

(2) SP ′1 /(IP ′1 , xb, xd) ∼= K[P1]. Moreover, if IP1 is a prime ideal then (IP ′1 , xb, xd) is a
prime ideal of SP .

Proof. (1) Let R be the polyomino obtained from the cells of P2 and renaming the
vertices b and c respectively by d and a, in particular SR = K[xv | v ∈ V(P ′2) \ {b, c}].
Observe that

IP ′2 = IR + (xaxb − xcxd) +
r

∑
i=1

(xcxbi − xbxci)

So (IP ′2 , xb, xc) = (IR, xb, xc) and in particular SP ′2 /(IP ′2 , xb, xc) = SP ′2 /(IR, xb, xc) ∼=
SR/IR = K[R] ∼= K[P2], since xb, xc do not belong to the support of any element
of IR and observing that, apart from the name of the vertices involved, R = P2.
Furthermore SP/(IP ′2 , xb, xc) ∼= SP ′2 /(IP ′2 , xb, xc) ⊗K K[xv | v ∈ V(P \ P ′2)] ∼=
K[P2]⊗K K[xv | v ∈ V(P \ P ′2)], so also the last claim follows.
(2) The result can be obtained arguing as in the proof of (1). Indeed the arrangements
involved in these situations can be considered the same up to one reflection and one
rotation.

Lemma 5.1.6. Let P be an (L, C)-polyomino such that V(L) ∩ V(C) =
{ds−1, ds, br−1, br}. Suppose that IP is prime. Then:

(1) SP/((IP , xc) : xb) ∼= K[P1]⊗K K[xb1 , . . . , xbr−2 ];

(2) SP/((IP , xb, xc) : xa) ∼= K[P2]⊗K K[xd1 , . . . , xds−2 ];

(3) SP/((IP , xa, xb, xc) : xd) ∼= K[P3]⊗K K[xd, xb1 , . . . , xbr−2 , xd1 , . . . , xds−2 ].

Proof. Arguing as in Lemma 5.1.4, we obtain the equalities of the following ideals:

(1) (IP , xc) : xb = (IP1 , xc) + (xa) + ∑r
i=1(xci)

(2) (IP , xb, xc) : xa = (IP ′2 , xb, xc) + ∑s
i=1(xai).

(3) (IP , xa, xb, xc) : xd = (IP3 , xa, xb, xc) + ∑s
i=1(xai) + ∑r

i=1(xci).

In particular, the second equality above holds since (IP ′2 , xb, xc) is a prime ideal by
Lemma 5.1.5. By the same lemma we have also SP ′2 /(IP ′2 , xb, xc) ∼= K[P2], from which
claim (2) derives. For the sake of completeness we provide its proof.
Observe that IP can be written in the following way:

IP = IP ′2 +
s

∑
i=1

(xaxai − xcxdi) +
s

∑
i=1

(xdxai − xbxdi) + ∑
k,l∈[s]

k<l

(xdk xal − xdl xak)+

+ ({xas xv − xas−1 xu|[v, as] ∈ I(P), u = v + (0, 1)}),
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It follows:

(IP , xb, xc) = (IP ′2 , xb, xc) +
s

∑
i=1

(xaxai) +
s

∑
i=1

(xdxai) + ∑
k,l∈[s]

k<l

(xdk xal − xdl xak)

+ ({xas xv − xas−1 xu|[v, as] ∈ I(P), u = v + (0, 1)}),

We prove that (IP , xb, xc) : xa = (IP ′2 , xb, xc) + ∑s
i=1(xai). From the previous equality

it follows that (IP , xb, xc) : xa ⊇ (IP ′2 , xb, xc) + ∑s
i=1(xai). Let f ∈ S such that xa f ∈

(IP , xb, xc). Then

xa f = g +
s

∑
i=1

γixaxai +
s

∑
j=1

δjxdxaj + ∑
k,l∈[s]

k<l

νkl(xdk xal − xdl xak)+

+ ∑
[v,as ]∈I(P)
u=v+(0,1)

λv(xas xv − xas−1 xu),

where g ∈ (IP ′2 , xb, xc), γi, δj, νk,lλv ∈ SP for all i, k, j, l ∈ [s] and for all v ∈ V(P)
such that [v, as] ∈ I(P). As a consequence:

xa

(
f −

s

∑
i=1

γixai

)
= g +

s

∑
j=1

(δjxd)xaj + ∑
k,l∈[s]

k<l

(νklxdk)xal − ∑
k,l∈[s]

k<l

(νklxdl )xak+

+

(
∑

[v,as ]∈I(P)
u=v+(0,1)

λvxv

)
xas −

(
∑

[v,as ]∈I(P)
u=v+(0,1)

λvxu

)
xas−1 .

Hence we obtain that xa
(

f −∑s
i=1 γixai

)
∈ (IP ′2 , xb, xc) + ∑s

i=1(xai). Since (IP ′2 , xb, xc)

is prime and ai /∈ V(P ′2) for all i ∈ [s] then (IP ′2 , xb, xc) + ∑s
i=1(xai) is a prime ideal

in SP . By being xa /∈ IP ′2 , we have f − ∑s
i=1 γixai ∈ (IP ′2 , xb, xc) + ∑s

i=1(xai), so
f ∈ (IP ′2 , xb, xc) + ∑s

i=1(xai), that is (IP , xb, xc) : xa ⊆ (IP ′2 , xb, xc) + ∑s
i=1(xai). In

conclusion we have (IP , xb, xc) : xa = (IP ′2 , xb, xc) + ∑s
i=1(xai) and as a consequence

SP/((IP , xb, xc) : xa) = SP/(IP ′2 , xb, xc) + (xa1 , . . . , xas))
∼= SP2 /(IP ′2 , xb, xc)⊗K K[xv |

v ∈ V(P \ P1)]/(xa1 , . . . , xas)
∼= K[P2]⊗K K[xd1 , . . . , xds−2 ].

We omit to provide the analogous result for the case V(L) ∩ V(C) =
{as−1, as, cr−1, cr}. In fact, we can reduce it to the case examined in the previous
Lemma up to a rotation and a reflection.

Lemma 5.1.7. Let P be an (L, C)-polyomino such that V(L) ∩ V(C) =
{ds−1, ds, cr−1, cr}. Suppose that IP is prime. Then:

(1) SP/((IP , xb) : xc) ∼= K[P1]⊗K K[xc1 , . . . , xcr−2 ];

(2) SP/((IP , xb, xc) : xd) ∼= K[P2]⊗K K[xd1 , . . . , xds−2 ];

(3) SP/((IP , xb, xc, xd) : xa) ∼= K[P3]⊗K K[xd, xc1 , . . . , xcr−2 , xd1 , . . . , xds−2 ].

Proof. The claims follow reasoning as in Lemma 5.1.4, obtaining the equalities of the
following ideals:

(1) (IP , xb) : xc = (IP ′1 , xb, xd) + ∑r
i=1(xbi)

(2) (IP , xb, xc) : xd = (IP ′2 , xb, xc) + ∑s
i=1(xai).
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(3) (IP , xb, xc, xd) : xa = (IP3 , xb, xc, xd) + ∑s
i=1(xai) + ∑r

i=1(xbi).

In particular, the first equality follows from the primality of (IP ′1 , xb, xd), the second
equality follows from the primality of (IP ′2 , xb, xc), both by Lemma 5.1.5.

Theorem 5.1.8. Let P be an (L, C)-polyomino. Suppose that IP is prime. Then:

HPK[P ](t) =
1

1− t
HPK[P4](t) +

t
1− t

[HPK[P1](t)
(1− t)r−2 +

HPK[P2](t)
(1− t)s−2 +

HPK[P3](t)
(1− t)s+r−3

]
Proof. Assume that V(L) ∩ V(C) = {as−1, as, br−1, br}. Consider the following four
short exact sequences:

0 −→ SP/(IP : xa) −→ SP/IP −→ SP/(IP , xa) −→ 0

0 −→ SP/((IP , xa) : xd) −→ SP/(IP , xa) −→ SP/(IP , xa, xd) −→ 0

0 −→ SP/((IP , xa, xd) : xc) −→ SP/(IP , xa, xd) −→ SP/(IP , xa, xd, xc) −→ 0

0 −→ SP/((IP , xa, xd, xc) : xb) −→ SP/(IP , xa, xd, xc) −→ SP/(IP , xa, xd, xc, xb) −→ 0

Since IP : xa = IP , because IP is prime, the claim easily follows by repeated
applications of Proposition 1.1.15 and from Proposition 1.1.16, Lemma 5.1.2 and
Lemma 5.1.4.
If V(L)∩V(C) = {ds−1, ds, br−1, br} the formula is obtained referring to Lemma 5.1.6
by a suitable permutation of the set {a, b, c, d}. For symmetry, we obtain the claim
also for the case V(L) ∩V(C) = {as−1, as, cr−1, cr}.
Finally, if V(L) ∩ V(C) = {ds−1, ds, cr−1, cr} we use again the same argument to-
gether with Lemma 5.1.7.

Corollary 5.1.9. Let P be an (L, C)-polyomino, suppose that IP is a prime ideal and C is a
simple polyomino. Then:

HPK[P ](t) =
hK[P4](t) + t

[
hK[P1](t) + hK[P2](t) + (1− t)hK[P3](t)

]
(1− t)|V(P)|−rankP

In particular K[P ] has Krull dimension |V(P)| − rankP .

Proof. Since C is a simple polyomino, then P1, P2, P3 and P4 are simple polyomi-
noes, so we have that K[Pj] is a normal Cohen-Macaulay domain of dimension
|V(Pj)| − rankPj for j ∈ {1, 2, 3, 4} from [25, Corollary 3.3] and [24, Theorem 2.1].
We put |V(P)| = n and rankP = p. Observe that

• |V(P1)| = n− 2r and rankP1 = p− r− 1, so |V(P1)| − rankP1 = n− p− r +
1;

• |V(P2)| = n− 2s and rankP2 = p− s− 1, so |V(P2)| − rankP2 = n− p− s +
1;

• |V(P3)| = n − 2s − 2r and rankP3 = p − r − s − 1, so |V(P3)| − rankP3 =
n− p− s− r + 1;

• |V(P4)| = n− 4 and rankP4 = p− 3, so |V(P4)| − rankP4 = n− p− 1.

Then n− p = |V(P4)| − rankP4 + 1 = |V(P1)| − rankP1 + (r− 2) + 1 = |V(P2)| −
rankP2 + (s− 2) + 1 and |V(P3)| − rankP3 + (s + r− 3) + 1 = n− p− 1. Therefore
the formula for HPK[P ](t) in the statement follows from Theorem 5.1.8 after an easy
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computation. Finally, let h(t) be the polynomial in the numerator of the formula.
By [3, Corollary 4.1.10], observe that h(1) = hK[P4](1) + hK[P1](1) + hK[P2](1) > 0, so
(1− t) does not divide h(t), hence K[P ] has Krull dimension |V(P)| − rankP .

5.2 Hilbert-Poincaré series of prime closed path polyomi-
noes without L-configurations

In this section we suppose that P is a prime closed path polyomino having no L-
configurations, so P contains a ladder of at least three steps ([4, Section 6]). Let
B1, B2 and B3 be three maximal horizontal blocks of a ladder of n steps in P , n ≥
3. Without loss of generality, we can assume that there does not exist a maximal
block K 6= B2,B3 of P such that {K,B1,B2} is a ladder of three steps. Moreover,
applying suitable reflections or rotations of P , we can suppose that the orientation
of the ladder is right/up, as in Figure 5.2.

FIGURE 5.2

Our aim is to study the Hilbert-Poincaré series of the coordinate ring of P . We split
our arguments in two cases. In the first case we suppose that at least one block
between B1 or B2 contains exactly two cells, in the second one assume that B1 and
B2 contain at least three cells.

Assume that at least one block between B1 or B2 contains exactly two cells. We start
with some preliminary definitions that we adopt throughout this subsection. LetW
be a collection of cells consisting of an horizontal block [As, A1] of rank at least two,
containing the cells As, As−1, . . . , A1, a vertical block [B1, Br] of rank at least two,
containing the cells B1, B2, . . . , Br, and a cell A not belonging to [As, A1] ∪ [B1, Br],
such that V([As, A1]) ∩ V([B1, Br]) = {b}, where b is the lower right corner of A.
Moreover we denote the left upper corner of A by a, the lower right corner of B1 by
d, the lower right corner of A1 by c. Moreover, let bi and ci be respectively the left
upper and lower corners of Ai for i ∈ [s], let aj and dj be respectively the left and the
right upper corners of Bj for j ∈ [r] (Figure 5.3).
Since P has no L-configurations, it is trivial to check that P contains a collection of
cellsW such that [As, A1] and [B1, Br] are maximal blocks of P . In particular, ifM is
the collection of cells such that P =W tM, then we callW :

• 1-Configuration, if V(W) ∩V(M) = {cs−1, cs, dr−1, dr};

• 2-Configuration, if V(W) ∩V(M) = {bs−1, bs, dr−1, dr}.

Observe that just one of the following cases can occur:

(1) |B1| = |B2| = 2. In such a case s = 2 and r = 2, B1 = [A2, A1] and B2 = [A, B1],
so we obtain an 1-Configuration.
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FIGURE 5.3: A collection of cellsW

(2) |B1| > 2 and |B2| = 2. In such a case s > 2 and r = 2, B1 = [As, A1] and
B2 = [A, B1], so we have an 1-Configuration or a 2-Configuration depending on
M∩{As}.

(3) |B1| = 2 and |B2| > 2. In such a case, after a suitable rotation and reflection,
consider a new ladder where B1 = [A1, A] and B2 = [B1, Br], s ≥ 2 and r > 2.
Let C be a cell of P such that I := [C, A1] is a maximal block of P . Therefore we
obtain an 1-Configuration or a 2-Configuration depending on the position of the
cell of P\I adjacent to C.

The following related polyominoes will be essential in this subsection:

• Q = P \ {A};

• Q1 = P \ {A, A1, B1};

• R1 = Q \ {B1};

• R2 = Q \ {B1, . . . , Bs};

• F1 = Q \ {A1, . . . , As};

• F2 = Q \ {A1, B1, . . . , Bs}.
Let <1 be the total order on V(P) defined as u <1 v if and only if, for u = (i, j) and
v = (k, l), i < k, or i = k and j < l. Let Y ⊂ V(P) and let <Y

lex be the lexicographic
order in SP induced by the following order on the variables of SP :

for u, v ∈ V(P) xu <Y
lex xv ⇔


u /∈ Y and v ∈ Y
u, v /∈ Y and u <1 v
u, v ∈ Y and u <1 v

Considering Figure 5.3, from Theorem 4.2.9 we know that there exists a set L ⊂
V(P), with a, d ∈ L and b, c, a1, b1, c1, d1 /∈ L, such that the set of generators of IP
forms the reduced Gröbner basis of IP with respect to <L

lex. Furthermore, in the case
of 1-Configuration also d2, . . . dr /∈ L. For convenience we denote such a monomial
order by ≺P . Moreover, let ≺Q, ≺Q1 , ≺R1 , ≺R2 be the monomial orders induced
from ≺P respectively on the rings SQ, SQ1 , SR1 , SR2 . The following proposition will
be useful.

Proposition 5.2.1. Let P be a closed path polyomino containing a collection of cells of type
W . Then the set of the inner 2-minors of Q is the reduced Gröbner basis of IQ with respect
to the monomial order ≺Q. The same holds for the polyominoes Q1,R1 andR2 considering
respectively the monomial orders ≺Q1 , ≺R1 and ≺R2 .
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Proof. Let f , g be two generators of IQ ⊂ IP . Since every S-polynomial S( f , g)
reduces to zero in IP then the conditions in lemmas in Section 4.1 are satisfied
for the collection of cells P . Apart from the occurrences f = xbxc1 − xcxb1 and
g = xbxd1 − xdxa1 , in which the leading terms of f and g have the greatest common
divisor equal to 1, the other conditions of the mentioned lemmas do not involve the
cell A. So the same conditions hold also for the collection of cells Q, hence S( f , g)
reduces to zero also in IQ. By the same argument also the second claim in the state-
ment holds.

Remark 5.2.2. Observe thatQ1,R1,R2, F1 and F2 are simple polyominoes, so their
related coordinate rings are normal Cohen-Macaulay domains whose Krull dimen-
sion is given by the difference between the number of vertices and the number of
cells of the fixed polyomino (see [25, Corollary 3.3] and [24, Theorem 2.1]). The
polyomino Q is not simple but it is a weakly closed path and it is easy to see that
Q has a weak ladder in the cases which we are studying. Therefore IQ is a prime
ideal (equivalently K[Q] is a domain) from Proposition 3.3.5. Moreover, from Propo-
sition 5.2.1 and arguing as in the proof of Theorem 4.2.10 we also obtain that K[Q] is
a normal Cohen-Macaulay domain.

We are going to use all these introductory facts in the proofs of the next results. With
abuse of notation we refer to in(IP ), in(IQ), in(IQ1), in(IR1), in(IR2) respectively
for the initial ideals of IP with respect to ≺P , of IQ with respect to ≺Q, of IQ1 with
respect to ≺Q1 , of IR1 with respect to ≺R1 and of IR2 with respect to ≺R2 .

Proposition 5.2.3. Let P be a closed path polyomino containing a collection of cells of type
W . Then

HPK[P ](t) = HPK[Q](t) +
t

1− t
HPK[Q1](t)

Proof. Observe that:

IP = IQ + (xb1 xa1 − xaxb) + (xb1 xd1 − xaxd) + (xc1 xa1 − xaxc),
IP = IQ1 + (xb1 xa1 − xaxb) + (xb1 xd1 − xaxd) + (xc1 xa1 − xaxc)+

+
r

∑
i=1

(xbxdi − xdxai) +
s

∑
i=1

(xbxci − xcxbi).

From Proposition 5.2.1 we obtain:

in(IP ) = in(IQ) + (xaxb) + (xaxd) + (xaxc),
in(IP ) = in(IQ1) + (xaxb) + (xaxd) + (xaxc) + ({max

≺P
{xbxdi , xdxai} : i ∈ [r]})+

+ ({max
≺P
{xbxci , xcxbi : i ∈ [s]}).

From the above equalities it is not difficult to see that:

• (in(IP ), xa) = (in(IQ), xa), in particular SP/(in(IP ), xa) = SP/(in(IQ), xa) ∼=
SQ/in(IQ).

• in(IP ) : xa = (in(IQ1), xb, xc, xd) (see for instance [22, Proposition 1.2.2]), in
particular SP/(in(IP ) : xa) = SP/(in(IQ1), xb, xc, xd) ∼= SQ1 /in(IQ1)⊗K K[xa].

Consider the following exact sequence:

0 −→ SP/(in(IP ) : xa) −→ SP/in(IP ) −→ SP/(in(IP ), xa) −→ 0
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Since for every graded ideal I of a standard graded K-algebra S and for every mono-
mial order < on S it is verified that S/I and S/in<(I) have the same Hilbert func-
tion (see [22, Corollary 6.1.5]), then from the above computations and from Proposi-
tions 1.1.15 and 1.1.16 we obtain HPK[P ](t) = HPK[Q](t) + t

1−t HPK[Q1](t).

We observed that Q is not a simple polyomino. Our aim is to provide a formula
for the Hilbert-Poincaré series of K[P ] involving the Hilbert-Poincaré series related
to the coordinate rings of simple polyominoes. By the previous result, since Q1
is a simple polyomino, we have to study the Hilbert-Poincaré series of K[Q]. We
examine 1-Configuration and 2-Configuration separately.

Theorem 5.2.4. Let P be a closed path polyomino containing a collection of cells of typeW
with the occurrence of 1-Configuration. Then

HPK[P ](t) =
hK[R1](t) + t

[
hK[R2](t) + hK[Q1](t)

]
(1− t)|V(P)|−rankP

In particular, the Krull dimension of K[P ] is |V(P)| − rankP .

Proof. Observe that:

IQ = IR1 +
r

∑
i=1

(xbxdi − xdxai),

IQ = IR2 +
r

∑
i=1

(xbxdi − xdxai) + ∑
k,l∈[r]

k<l

(xak xdl − xal xdk)+

+ ({xar−1 xv − xar xu|[ar−1, v] ∈ I(Q), u = v− (0, 1)}).

From Proposition 5.2.1 we obtain:

in(IQ) = in(IR1) +
r

∑
i=1

(xdxai),

in(IQ) = in(IR2) +
r

∑
i=1

(xdxai) + ({max
≺Q
{xak xdl , xal xdk}|k, l ∈ [r], k < l})+

+ ({max
≺Q
{xar−1 xv, xar xu}|[ar−1, v] ∈ I(Q), u = v− (0, 1)}).

From the above equalities is not difficult to see that:

• (in(IQ), xd) = (in(IR1), xd), in particular SQ/(in(IQ), xd) =
SQ/(in(IR1), xd) ∼= SR1 /in(IR1).

• in(IQ) : xd = in(IR2) + ∑r
i=1(xai), in particular SQ/(in(IQ) : xd) ∼=

SR2 /in(IR2)⊗K K[xd1 , . . . , xdr−2 ].

So, arguing as in the proof of Proposition 5.2.3, we obtain HPK[Q](t) = HPK[R1](t) +

t · HPK[R2 ]
(t)

(1−t)r−2 . Combining such an equality with the claim of Proposition 5.2.3 we have:

HPK[P ](t) = HPK[R1](t) + t ·
(

HPK[R2](t)
(1− t)r−2 +

HPK[Q1](t)
1− t

)

Set |V(P)| = n and rankP = p. Observe that
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• |V(R1)| = n− 2 and rankR1 = p− 2, so |V(R1)| − rankR1 = n− p and this
is the Krull dimension of K[R1] sinceR1 is simple;

• |V(R2)| = n− 2r + 1 and rankP2 = p− r − 1, so |V(R2)| − rankR2 = n−
p− r + 2 and this is the Krull dimension of K[R2];

• |V(Q1)| = n− 4 and rankQ1 = p− 3, so |V(Q1)| − rankQ1 = n− p− 1 and
this is the Krull dimension of K[Q1].

Therefore, by easy computations, we obtain the formula for HPK[P ](t) in the state-
ment. Finally, because of the Cohen-Macaulay property of K[R1], K[R2] and K[Q1]
and by [3, Corollary 4.1.10], we have that hK[R1](1) + hK[R2](1) + hK[Q1](1) > 0, so
dim K[P ] = |V(P)| − rankP .

Now we want to study the 2-Configuration. In such a case we do not need to use the
initial ideals.

Theorem 5.2.5. Let P be a closed path polyomino containing a collection of cells of typeW
with the occurence of 2-Configuration. Then

HPK[P ](t) =
(1 + t)hK[Q1](t) + t

[
hK[F1](t) + hK[F2](t)

]
(1− t)|V(P)|−rankP

In particular, the Krull dimension of K[P ] is |V(P)| − rankP .

Proof. Arguing as in Lemma 5.1.4 we obtain the following equalities:

(1) IQ : xc = IQ;

(2) (IQ, xc) : xb = IF1 + (xc) + ∑s
i=1(xci);

(3) (IQ, xb, xc) : xd = IF2 + (xb, xc) + ∑r
i=1(xai).

(4) (IQ, xb, xc, xd) = (IQ1 , xb, xc, xd)

Again by the same arguments of Lemma 5.1.4 we obtain also the following:

(1) SQ/(IQ : xc) = K[Q];

(2) SQ/((IQ, xc) : xb) ∼= K[F1]⊗K K[xb1 , . . . , xbs−2 ];

(3) SQ/((IQ, xb, xc) : xd) ∼= K[F2]⊗K K[xd, xd1 , . . . , xdr−2 ];

(4) SQ/(IQ, xb, xc, xd) ∼= K[Q1]

Now considering the suitable exact sequences and arguing as in Theorem 5.1.8, the
following holds:

HPK[Q](t) =
1

1− t
HPK[Q1] +

t
1− t

[
HPK[F1](t)
(1− t)s−2 +

HPK[F2](t)
(1− t)r−1

]

So, from Theorem 5.2.3 we have:

HPK[P ](t) =
1 + t
1− t

HPK[Q1] +
t

1− t

[
HPK[F1](t)
(1− t)s−2 +

HPK[F2](t)
(1− t)r−1

]

Finally we obtain our claims arguing as in the last part of the previous result (or also,
for instance, as in Corollary 5.1.9).
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Assume that B1 and B2 contain at least three cells. Suppose that B1 = [B1, B]
consists of the cells B1, . . . , Br, B, r ≥ 2, and B2 = [A, Ar] of the cells A, A1, . . . , As,
s ≥ 2. We denote the upper and lower left corners of A by a, c respectively, the upper
and lower right corners of A by b, d respectively, the left and right lower corners of
B by f , g respectively, the upper and lower right corners of Ai by ai, bi respectively
for i ∈ [s], the lower and upper left corners of Bi by ci, di respectively for i ∈ [r].
Considering our assumption on the ladder at the beginning of Section 5.2 and the
fact that P has not any L-configuration, we have that c1, c2 /∈ V(P) \ V(B1). The
described arrangement is summarized in Figure 5.4.
For our purpose we need to introduce the following related polyominoes:

• K1 = P\[B1, B];

• K2 = P\([A, As] ∪ {B, Br});

• K3 = P\([B1, B] ∪ {A});

• K4 = P\{A, B, A1, Br}.

FIGURE 5.4

Lemma 5.2.6. Let P be a closed path polyomino having a ladder of at least three steps
satisfying the previous assumptions. Then the following hold:

(1) SP/(IP : xg) ∼= K[P ];

(2) SP/((IP , xg) : xd) ∼= K[K1]⊗K K[xd3 , . . . , xdr ];

(3) SP/((IP , xg, xd) : xb) ∼= K[K2]⊗K K[xa, xb, xa1 , . . . , xas−2 ];

(4) SP/((IP , xg, xd, xb) : x f ) ∼= SP/(IP , xg, xd, xb);

(5) SP/((IP , xg, xd, xb, x f ) : xc) ∼= K[K3]⊗K K[xd3 , . . . , xdr ];

(6) SP/((IP , xg, xd, xb, x f , xc) : xa) ∼= K[K1]⊗K K[xa, xa1 , . . . , xas−2 ];

(7) SP/(IP , xg, xd, xb, x f , xc, xa) ∼= K[K4].

Proof. To prove the isomorphisms in the statements (1)− (7), it is enough to prove
the following equalities:

(1) IP : xg = IP ;

(2) (IP , xg) : xd = IK1 + (x f , xg) + ∑r
i=1(xci);

(3) (IP , xg, xd) : xb = IK2 + (x f , xg, xd, xc) + ∑s
i=1(xbi);

(4) (IP , xg, xd, xb) : x f = (IP , xg, xd, xb);
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(5) (IP , xg, xd, xb, x f ) : xc = (IK1 , xb, xd) + (xg, x f ) + ∑r
i=1(xci);

(6) (IP , xg, xd, xb, x f , xc) : xa = IK2 + (x f , xg, xd, xc, xb) + ∑s
i=1(xbi);

(7) (IP , xg, xd, xb, x f , xc, xa) = (IK4 , xg, xd, xb, x f , xc, xa).

In particular the equality (1) is trivial since IP is prime, (2), (3) and (6), together
with the related claims, can be proved as done in Lemma 5.1.4. The equality (5) and
its related claim follow as in Lemma 5.1.6, considering also that SK1 /(IK1 , xb, xd) ∼=
K[K3] and arguing as in Lemma 5.1.5. We obtain the equality (7) and its related
claim as for Lemma 5.1.2.
Finally, in order to show 4), we prove that (IP , xg, xd, xb) is a prime ideal in SP .
Let {Vi}i∈I be the set of the maximal edge intervals of P and {Hj}j∈J be the set
of the maximal horizontal edge intervals of P . Let {vi}i∈I and {hj}j∈J be the set
of the variables associated respectively to {Vi}i∈I and {Hj}j∈J . Let w be another
variable and set I = { f , c, d, g, b1, . . . , bs} ⊂ V(P). We consider the following ring
homomorphism

φ : SP −→ K[{vi, hj, w} : i ∈ I, j ∈ J]

defined by φ(xij) = vihjwk, where (i, j) ∈ Vi ∩ Hj, k = 0 if (i, j) /∈ I , and k = 1 if
(i, j) ∈ I . From Theorem 2.2.18 we have IP = ker φ. Let i′ ∈ I such that Vi′ is the
maximal edge interval of P containing b, d and g. We define ψ : SP → K[{vi, hj, w} :
i ∈ I\{i′}, j ∈ J] as ψ(xv) = φ(xv) if v ∈ V(P)\{b, d, g}, and ψ(xb) = ψ(xd) =
ψ(xg) = 0. It is not difficult to check that (IP , xd, xb, xg) ⊆ ker ψ. Let f ∈ ker ψ.
We can write f = f̃ + βxb + δxd + γxg where β, δ, γ ∈ SP and xb, xd, xg are not
variables of f̃ . Since ψ( f ) = 0, we have φ( f̃ ) = 0, so f̃ ∈ ker φ = IP . Hence
SP/(IP , xb, xd, xg) ∼= Im(ψ), that is a domain since it is the subring of a domain. So
(IP , xb, xd, xg) is prime in SP .

Remark 5.2.7. If we suppose that B2 has just two cells (so s = 1), then (IP , xg, xd, xb)
is not prime. In fact, set b = a0, denote the cell adjacent to A1 by C, and let b, p and
q, a1 be respectively the diagonal and anti-diagonal corners of C. Observe that in
such a case xqxa1 ∈ (IP , xg, xd, xb) but xq, xa1 /∈ (IP , xg, xd, xb).

Theorem 5.2.8. Let P be a closed path polyomino having a ladder of at least three steps
where B1 and B2 contain at least three cells. Then

HPK[P ](t) =
hK[K4](t) + t

[
hK[K1](t) + 2 · hK[K2](t) + hK[K3](t)

]
(1− t)|V(P)|−rankP

In particular K[P ] has Krull dimension |V(P)| − rankP .

Proof. It follows from Lemma 5.2.6 considering the suitable exact sequences and ar-
guing as done in Theorem 5.1.8 and Corollary 5.1.9.

5.3 Rook polynomial and some consequences for the Goren-
steiness

Let us start introducing a very important combinatorial tool, that is the rook polyno-
mial of a polyomino. Let P be a polyomino. A k-rook configuration in P is a configu-
ration of k rooks which are arranged in P in non-attacking positions.
The rook number r(P) is the maximum number of rooks which can be placed in P
in non-attacking positions. We denote byR(P , k) the set of all k-rook configurations
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FIGURE 5.5: An example of a 4-rook configuration in P .

in P and we set rk = |R(P , k)| for all k ∈ {0, . . . , r(P)}, conventionally r0 = 1. The
rook polynomial of P is the polynomial rP (t) = ∑r(P)

k=0 rktk ∈ Z[t]. The latter seems
to be related to the h-polynomial of the thin polyominoes and provides a very nice
tool to study the Gorenstein property.

Nowadays a complete characterization of Gorensteiness is not still know for the
coordinate rings of polyominoes and some partial results are given only for partic-
ular classes of polyominoes. In [1] and [37] the authors give a complete characteri-
zation respectively for convex polyominoes and for stack polyominoes. In [40] it is
showed that if P is a simple thin polyomino then the h-polynomial h(t) of K[P ] is
the rook polynomial and they characterize the Gorenstein simple thin polyominoes
with the S-property.

Definition 5.3.1. Let P be a thin polyomino. A cell C is called single if there exists a
unique maximal interval of P containing C. We say that P has the S-property if every
maximal interval of P has only one single cell.

Finally, it is conjectured that a polyomino is thin if and only if h(t) = rP (t). In
this section we give also a partial support to this conjecture, since we provide an
affirmative answer for closed paths. In this sense, in [30], it is also discussed this
conjecture for a certain class of polyominoes, in particular it is proved that if P is a
convex non-thin polyomino whose vertex set is a sublattice of N2 then h(t) 6= rP (t).
In [38] the authors introduce a particular equivalence relation on the rook complex
of a simple polyomino P to define the switching rook polynomial and they conjecture
that h-polynomial of K[P ] is equal to the latter. Moreover they prove it for the class
of parallelogram polyominoes (refer to [38, Section 2.3]) and implicitly for L-convex
polyominoes, and by a computational method also for all simple polyominoes
with rank at most eleven. Finally they characterize all Gorenstein parallelogram
polyominoes.

The aim of this section is to give a complete characterization of the Gorenstein closed
path polyominoes having no zig-zag walks. Firstly, we start showing how the rook
polynomial is related to Hilbert-Poincaré series of the polyominoes considered in
this chapter so far.

Proposition 5.3.2. Let P be a (L, C)-polyomino. Let P1,P2,P3,P4 be the polyominoes in
Section 3. Then:

(1) r(P1) = r(P2) = r(P)− 1;

(2) r(P3) = r(P)− 2;

(3) r(P)− 2 ≤ r(P4) ≤ r(P).
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Proof. (1) Let P1 = P\[A, Ar]. Once we fix a rook in a cell of [A1, . . . , Ar−1], we can-
not place another rook in [A, Ar] in non-attacking position in P , so r(P1) = r(P)− 1.
In a similar way it can be showed that r(P2) = r(P)− 1.
(2) It follows by similar previous arguments on the intervals [A, Ar] and [A, Bs].
(3) Since P = P4 ∪ [A, A1] ∪ [A, B1], it is obvious that r(P4) ≤ r(P). Moreover,
P4 = P3 ∪ [A2, Ar] ∪ [B2, Bs], so r(P3) ≤ r(P4), that is r(P) − 2 ≤ r(P4). In par-
ticular, observe that if r, s > 3 then r(P4) = r(P), if either r = 3 or s = 3 then
r(P4) = r(P)− 1, and if r, s = 3 then r(P4) = r(P)− 2.

Theorem 5.3.3. Let P be a (L, C)-polyomino. Suppose that C is a simple thin polyomino.
Then hK[P ](t) is the rook polynomial of P . Moreover reg(K[P ]) = r(P).

Proof. It is known that hK[P ](t) = hK[P4](t)+ t
[
hK[P1](t)+ hK[P2](t)+ (1− t)hK[P3](t)

]
.

We denote by rPj(t) = ∑
r(Pj)

k=0 r(j)
k tk the rook polynomial of Pj. Since C is a simple thin

polyomino, then P1, P2, P3 and P4 are simple thin polyominoes, so hK[Pj](t) = rPj(t)
for j ∈ {1, 2, 3, 4}. By Proposition 5.3.2 we have deg hK[P ] = r(P). Then

hK[P ](t) =
r(P)

∑
k=0

[r(4)k + r(1)k−1 + r(2)k−1 + r(3)k−1 − r(3)k−2]t
k,

where we set r(j)
−1, r(3)−2, r(3)r(P)−1, r(4)k equal to 0, for all j ∈ {1, 2, 3} and for k ≥ r(P4).

We want to prove that r(4)k + r(1)k−1 + r(2)k−1 + r(3)k−1− r(3)k−2 is exactly the number of ways in
which k rooks can be placed inP in non-attacking positions, for all k ∈ {0, . . . , r(P)}.
Fix k ∈ {0, . . . , r(P)}. Observe that:

(1) r(4)k can be viewed as the number of k-rook configurations in P such that no rook
is placed on A, A1 and B1.

(2) Assume that a rook T is placed in A1. Then we cannot place any rook on a cell
of [A, Ar], so r(1)k−1 is the number of all (k− 1)-rook configurations in P1. Hence

r(1)k−1 is the number of all k-rook configurations in P such that a rook is on A1.
Observe that there are some k-rook configurations in P in which a rook T ′ 6= T
is on B1. Paraphrasing, note that r(1)k−1 is the number of all k-rook configurations
in P such that T is on A1 and T ′ is not on B1 plus those ones where T is on A1
and T ′ is on B1.

(3) Assume that a rook T is placed in B1. Arguing as before, r(1)k−1 is the number of
all k-rook configurations in P such that T is on B1 and T ′ is not on A1 plus those
ones where T is on B1 and T ′ is on A1.

(4) Assume that a rook is placed on A. Then we cannot place any rook on a cell of
[A, Ar] ∪ [A, Bs], so r(3)k−1 is the number of all (k − 1)-rook configurations in P3,
that is the number of k-rook configurations in P such that a rook is placed on A.

(5) Fix a rook T in A1 and another one T ′ in B1. Then we cannot place any rook on a
cell of [A, Ar]∪ [A, Bs], so r(3)k−2 is the number of all (k− 2)-rook configurations in

P3. Hence r(3)k−2 is the number of all k-rook configurations in P such that a rook
is on A1 and another is on B1.

From (1), (2), (3), (4) and (5) it follows that r(4)k + r(1)k−1 + r(2)k−1 + r(3)k−1 − r(3)k−2 is the
number of k-rook configurations in P .
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Proposition 5.3.4. Let P be a closed path polyomino having a ladder of at least three steps
where B1 and B2 contain at least three cells. Then hK[P ](t) is the rook polynomial of P and
reg(K[P ]) = r(P).

Proof. It can be proved by similar arguments as in Proposition 5.3.2 that the rook
numbers of K1, K2, K3 and K4 satisfy the following:

(1) r(K1) = r(P)− 1;

(2) r(P)− 2 ≤ r(K2) ≤ r(P)− 1;

(3) r(K3) = r(P)− 1;

(4) r(P)− 2 ≤ r(K4) ≤ r(P).

We denote by rKj(t) = ∑
r(Kj)

k=0 r(j)
k tk the rook polynomial of Kj, for j = 1, 2, 3, 4. Ob-

serve that K1, K2, K3 and K4 are simple thin polyominoes, so hK[Kj](t) = rKj(t) for
j ∈ {1, 2, 3, 4}, and by the above formulas and Theorem 5.2.8 we have deg hK[P ] =
r(P). Moreover

hK[P ](t) =
r(P)

∑
k=0

[r(4)k + r(1)k−1 + 2r(2)k−1 + r(3)k−1]t
k,

where we set r(j)
−1, r(4)k , r(2)l equal to 0, for all j ∈ {1, 2, 3}, for k ≥ r(K4) and l ≥ r(K2).

Similarly as done in Theorem 5.3.3, we have that r(4)k + r(1)k−1 + 2r(2)k−1 + r(3)k−1 is the
number of k-rook configurations in P , for all k ∈ {0, . . . , r(P)}. In fact, let k ∈
{0, . . . , r(P)}. Observe that:

(1) r(4)k is the number of k-rook configurations in P such that no rook is placed on
A, A1, B and Br.

(2) Fix a rook T on Br. Then r(1)k−1 is the number of all k-rook configurations in P
such that T is on Br. Observe that among these configurations, there are some
k-rook configurations in which T ′ 6= T is placed either in A or in A1.

(3) Fix a rook T in B. Then r(3)k−1 is the number of all k-rook configurations in P such
that T is on B. As before, among these configurations there are some k-rook
configurations in which T ′ 6= T is placed in A1.

(4) Assume that a rook is placed in A (resp. A1). Then r(2)k−1 is the number of all
k-rook configurations in P such that T is on A (resp. A1), and no rook is on a
cell of [A, As] ∪ {B, Br}.

From (1), (2), (3) and (4) we have the desired conclusion.

In order to complete the study of closed path polyominoes having no L-
configuration, it remains to consider 1-Configuration and 2-Configuration intro-
duced in the previous section. For such cases we mention only the analogous result,
omitting the proof since the arguments are similar.

Proposition 5.3.5. Let P be a closed path with a ladder of at least three steps where at least
one block between B1 or B2 contains exactly two cells.Then hK[P ](t) is the rook polynomial
of P and reg(K[P ]) = r(P).

Observing that a closed path having an L-configuration is an (L, C)-polyomino with
C a path of cells and gathering all the results above, we obtain the following general
result.



92
Chapter 5. The Hilbert-Poincaré series and the rook polynomial of some

non-simple polyominoes

Theorem 5.3.6. Let P be a closed path having no zig-zag walks, equivalently having an
L-configuration or a ladder of three steps. Then:

(1) K[P ] is a normal Cohen-Macaulay domain of Krull dimension |V(P)| − rankP ;

(2) hK[P ](t) is the rook polynomial of P and reg(K[P ]) = r(P).

At this point we are ready to provide the condition for the Gorenstein property of a
closed path polyomino having no zig-zag walks.
Observe firstly that if P is a closed path polyomino, then P has the S-property if and
only if every maximal block of P contains exactly three cells.

Theorem 5.3.7. Let P be a closed path having no zig-zag walks. The following are equiva-
lent:

(1) P has the S-property;

(2) K[P ] is Gorenstein.

Proof. If P has no zig-zag walks, then K[P ] is a normal Cohen-Macaulay domain of
Krull dimension |V(P)| − rankP and hK[P ](t) = rP (t) = ∑s

k=0 rktk, where s = r(P).
In such a case it is known from Theorem 1.2.14 that K[P ] is Gorenstein if and only if
ri = rs−i for all i = 0, . . . , s.
(1) ⇒ (2). Suppose that P has the S-property. Fix i ∈ {0, 1, . . . , r(P)} and prove
that ri = rs−i. Since P has the S-property, P consists of maximal cell intervals of
rank three. If i = 0 then it is trivial that r0 = rs = 1. Assume i ∈ [s− 1]. It is not
restrictive to consider a part of P arranged as in Figure 5.6.

FIGURE 5.6

Define P1 = P\{A, A1, A2}, P2 = P\{A, A1, A2, C1, C2} and P3 =

P\{A, A1, A2, B1, B2}. We denote by rPj(t) = ∑
r(Pj)

k=0 r(j)
k tk the rook polynomial of

Pj. Observe that r(P1) = r(P)− 1 = s− 1 and r(P2) = r(P3) = r(P)− 2 = s− 2.

By similar arguments as in Theorem 5.3.3, it is easy to prove that rk = r(1)k + r(1)k−1 +

r(2)k−1 + r(3)k−1 for all k ∈ {1, . . . , s}. Then

rs−i = r(1)s−i + r(1)s−i−1 + r(2)s−i−1 + r(3)s−i−1 = r(1)
(s−1)−(i−1)+

+ r(1)
(s−1)−i + r(2)

(s−2)−(i−1) + r(3)
(s−2)−(i−1).

Since P1, P2 and P3 are simple thin polyominoes having the S-property, then by
Theorem 4.2 of [40] we have: r(1)

(s−1)−(i−1) = r(1)i−1, r(1)
(s−1)−i = r(1)i , r(2)

(s−1)−(i−2) = r(2)i−1

and r(3)
(s−2)−(i−1) = r(3)i−1. Hence

rs−i = r(1)
(s−1)−(i−1) + r(1)

(s−1)−i + r(2)
(s−2)−(i−1) + r(3)

(s−2)−(i−1) = r(1)i−1+

+ r(1)i + r(2)i−1 + r(3)i−1 = ri.
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(2) ⇒ (1). Assume that K[P ] is Gorenstein, that is ri = rs−i for all i = 0, . . . , s. We
prove that P has the S-property. First of all, we observe that all the ranks of the
maximal intervals of P cannot be greater than or equal to four. In fact, if there exists
a maximal interval I = [A, B] with rank I ≥ 4, then we can consider two distinct
cells C, D ∈ I\{A, B}. Hence we can obtain an s-rook configuration in P with a rook
in C and another one with a rook in D, so rs ≥ 2 > r0 = 1, that is a contradiction.
In addition, in such a case, we can suppose that P has an L-configuration, otherwise
it is not difficult to see that P has a subpolyomino as in Figure 5.3, and arguing as
in the proof of the case b) ⇒ c) (hypothesis (2)) of [40, Theorem 4.2], then K[P ] is
not Gorenstein. So, let {A, A1, A2, B1, B2} be an L-configuration of P , as in Figure
5.6. Consider P ′ = P\{A, A1, A2}, which is a simple thin polyomino. Let rP ′(t) =
∑s′

k=0 r′ktk be the rook polynomial of P ′, where s′ = r(P)− 1. We prove that P ′ has
the S-property. Suppose that P ′ has not the S-property so from the case b) ⇒ c) of
[40, Theorem 4.2] it follows that either r′s′ > 1 or r′s′−1 > rankP ′. Both cases lead to a
contradiction with rs = 1 or rs−1 = rankP . By similar arguments we can prove that
P ′′ = P\{A, B1, B2} is a simple thin polyomino having the S-property. Since P ′ and
P ′′ have the S-property, it follows trivially that also P has the S-property.
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Chapter 6

A package for Macaulay2 to deal
with the inner 2-minor ideals of
collection of cells

In this chapter we explain the package PolyominoIdeals ([5]) for the computer alge-
bra software Macaulay2 ([19]). The purpose of this package is to define and manip-
ulate the binomial ideals attached to collections of cells.

6.1 Functions and options

In this section we describe the functions provided in the package. First of all, con-
sider that a collection of cells P is encoded, for the package, with a list of lists,
where each list represents a cell of the collection and contains two lists represent-
ing the diagonal corners of the cell, the first for the lower left corner, the second
for the upper right corner. For instance, the collection of cells in Figure 6.1 is
encoded with the list Q = {{{1, 1}, {2, 2}}, {{2, 1}, {3, 2}}, {{3, 1}, {4,
2}}, {{2, 2}, {3, 3}}, {{3, 2}, {4, 3}}, {{2, 3}, {3, 4}}}.

6.1.1 polyoIdeal function

Let P be a polyomino and IP be a polyomino ideal associated to P . The polyoIdeal
function available in the PolyominoIdeals package gives the generators of poly-
omino ideal IP as output. The polynomial ring defined as SP = K[xv : v ∈ V(P)] is
auto-declared in the polyoIdeal function and can be accessed with the command
ring(polyoIdeal(Q)) where Q is the input list which comprises of the diagonal
corners of each cell in P .

For example, consider the polyomino P in Figure 6.1 and, fixing the lower left
corner A as (1, 1), we embed P with the list Q = {{{1, 1}, {2, 2}}, {{2, 1},
{3, 2}}, {{3, 1}, {4, 2}}, {{2, 2}, {3, 3}}, {{3, 2}, {4, 3}}, {{2, 3},
{3, 4}}}. Using the polyoIdeal(Q) function we obtain the binomials that generate
the polyomino ideal.

Macaulay2 , version 1 . 2 0
with packages : ConwayPolynomials , Elimination , IntegralClosure ,
InverseSystems , Isomorphism , LLLBases , MinimalPrimes , OnlineLookup ,
PrimaryDecomposition , ReesAlgebra , Sa turat ion , TangentCone

i 1 : loadPackage " PolyominoIdeals " ;
i 2 : Q= { { { 1 , 1 } , { 2 , 2 } } , { { 2 , 1 } , { 3 , 2 } } , { { 3 , 1 } , { 4 , 2 } } , { { 2 , 2 } ,

{ 3 , 3 } } , { { 3 , 2 } , { 4 , 3 } } , { { 2 , 3 } , { 3 , 4 } } } ;
i 3 : I =polyoIdeal (Q) ;
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FIGURE 6.1: A polyomino.

i 4 : g = gens I
o4 : | x_ ( 4 , 3 ) x_ (3 ,2)− x_ ( 4 , 2 ) x_ ( 3 , 3 ) x_ ( 2 , 2 ) x_ (1 ,1)− x_ ( 2 , 1 ) x_ ( 1 , 2 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x_ ( 4 , 3 ) x_ (2 ,1)− x_ ( 4 , 1 ) x_ ( 2 , 3 ) x_ ( 3 , 2 ) x_ (2 ,1)− x_ ( 3 , 1 ) x_ ( 2 , 2 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x_ ( 4 , 3 ) x_ (2 ,2)− x_ ( 4 , 2 ) x_ ( 2 , 3 ) x_ ( 3 , 3 ) x_ (2 ,1)− x_ ( 3 , 1 ) x_ ( 2 , 3 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x_ ( 4 , 2 ) x_ (1 ,1)− x_ ( 4 , 1 ) x_ ( 1 , 2 ) x_ ( 3 , 4 ) x_ (2 ,1)− x_ ( 3 , 1 ) x_ ( 2 , 4 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x_ ( 3 , 3 ) x_ (2 ,2)− x_ ( 3 , 2 ) x_ ( 2 , 3 ) x_ ( 4 , 2 ) x_ (3 ,1)− x_ ( 4 , 1 ) x_ ( 3 , 2 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x_ ( 3 , 4 ) x_ (2 ,2)− x_ ( 3 , 2 ) x_ ( 2 , 4 ) x_ ( 3 , 2 ) x_ (1 ,1)− x_ ( 3 , 1 ) x_ ( 1 , 2 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x_ ( 4 , 3 ) x_ (3 ,1)− x_ ( 4 , 1 ) x_ ( 3 , 3 ) x_ ( 3 , 4 ) x_ (2 ,3)− x_ ( 3 , 3 ) x_ ( 2 , 4 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x_ ( 4 , 2 ) x_ (2 ,1)− x_ ( 4 , 1 ) x_ ( 2 , 2 ) |

6.1.2 polyoMatrix function

Let P be a collection of cells and [(p, q), (r, s)] be the smallest interval of N2

containing P . The matrix M(P) is a matrix having s − q + 1 rows and r − p + 1
columns with M(P)i,j = x(i,j) if (i, j) is a vertex of P , otherwise it is zero.
Consider the same polyomino given in Figure 6.1 encoded by Q = {{{1, 1}, {2,
2}}, {{2, 1}, {3, 2}}, {{3, 1}, {4, 2}}, {{2, 2}, {3, 3}}, {{3, 2}, {4,
3}}, {{2, 3}, {3, 4}}}.
The associated matrix is obtained using polyoMatrix function.

Macaulay2 , version 1 . 2 0
with packages : ConwayPolynomials , Elimination , IntegralClosure ,
InverseSystems , Isomorphism , LLLBases , MinimalPrimes , OnlineLookup ,
PrimaryDecomposition , ReesAlgebra , Sa turat ion , TangentCone

i 1 : loadPackage " PolyominoIdeals " ;
i 2 : Q= { { { 1 , 1 } , { 2 , 2 } } , { { 2 , 1 } , { 3 , 2 } } , { { 3 , 1 } , { 4 , 2 } } , { { 2 , 2 } ,

{ 3 , 3 } } , { { 3 , 2 } , { 4 , 3 } } , { { 2 , 3 } , { 3 , 4 } } } ;
i 3 : M=polyoMatrix (Q) ;
o3 : | 0 x_ ( 2 , 4 ) x_ ( 3 , 4 ) 0 |

| 0 x_ ( 2 , 3 ) x_ ( 3 , 3 ) x_ ( 4 , 3 ) |
| x_ ( 1 , 2 ) x_ ( 2 , 2 ) x_ ( 3 , 2 ) x_ ( 4 , 2 ) |
| x_ ( 1 , 1 ) x_ ( 2 , 1 ) x_ ( 3 , 1 ) x_ ( 4 , 1 ) |

The associated matrix for a collection of cells can help to order the variables to de-
fine a polynomial ring with another monomial order. In particular, this function is
fundamental for coding the option when RingChoice has a different value by 1 (see
Subsection 6.1.5).
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6.1.3 polyoToric function

Let P be a weakly connected collection of cell. We introduce a suitable toric ideal
attached to P based on that one given in [31] for polyominoes. Consider the fol-
lowing total order on V(P): a = (i, j) > b = (k, l), if i > k, or i = k and j > l.
If H is a hole of P , then we call the lower left corner e of H the minimum, with
respect to <, of the vertices of H. Let H1, . . . ,Hr be the holes of P and ek = (ik, jk)
be the lower left corner of Hk. For k ∈ K = [r], we define the following subset
Fk = {(i, j) ∈ V(P) : i ≤ ik, j ≤ jk}. Denote by {Vi}i∈I the set of all the maximal
vertical edge intervals of P , and by {Hj}j∈J the set of all the maximal horizontal
edge intervals of P . Let {vi}i∈I , {hj}j∈J , and {wk}k∈K be three sets of variables. We
consider the map

α : V(P)→ K[hi, vj, wk : i ∈ I, j ∈ J, k ∈ K]

a→ ∏
a∈Hi∩Vj

hivj ∏
a∈Fk

wk

The toric ring TP associated to P is defined as TP = K[α(a) : a ∈ V(P)]. The
homomorphism ψ : S→ TP with xa → α(a) is surjective and the toric ideal JP is the
kernel of ψ. Observe that the latter generalizes in a natural way those ones given in
[39] and in the previous sections on closed paths and weakly ones.
The function PolyoToric(Q,H) provides the toric ideal JP defined before, where Q
is the list encoding the collection of cells and H is the list of the lower left corners of
the holes. It provides a nice tool to study the primality of the inner 2-minors ideal of
weakly connected collections of cells. Here we illustrate some examples.

Example 6.1.1. Consider the simple and weakly-connected collection P of cells
in Figure 6.2 (A), encoded by the list Q={{{1, 1}, {2, 2}}, {{2, 2}, {3, 3}},
{{2, 1}, {3, 2}},{{3, 2}, {4, 3}},{{2, 3}, {3, 4}}, {{4, 1}, {5, 2}},
{{3, 4}, {4, 5}}}}.
We can compute the ideal IP using the function polyoIdeal(Q), the toric ideal
JP with polyoToric(Q,{}) and finally we make a comparison between the
two ideals. We underline that to verify the equality, we need to bring the
ideal J=polyoToric(Q,{}) in the ring R of polyoIdeal(Q), using the command
substitute(J,R). In according to the Theorem 3.2.3, we find that IP = JP .

(A) (B)

FIGURE 6.2

Macaulay2 , version 1 . 2 0
with packages : ConwayPolynomials , Elimination , IntegralClosure ,
InverseSystems , Isomorphism , LLLBases , MinimalPrimes , OnlineLookup ,
PrimaryDecomposition , ReesAlgebra , Sa turat ion , TangentCone

i 1 : loadPackage " PolyominoIdeals " ;
i 2 : Q= { { { 1 , 1 } , { 2 , 2 } } , { { 2 , 2 } , { 3 , 3 } } , { { 2 , 1 } , { 3 , 2 } } , { { 3 , 2 } ,
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{ 4 , 3 } } , { { 2 , 3 } , { 3 , 4 } } , { { 4 , 1 } , { 5 , 2 } } , { { 3 , 4 } , { 4 , 5 } } } ;
i 3 : I =polyoIdeal (Q) ;
i 4 : J =polyoToric (Q , { } ) ;
i 5 : R=ring I ;
i 6 : J = s u b s t i t u t e ( J , R ) ;
o6 : Ideal of R
i 7 : J == I
o7 = t rue

Consider the closed path polyomino P in Figure 6.2 (B). The polyomino ideal is not
prime (see Subsection 2.2.3), so IP ⊂ JP since IP = (JP )2 (Lemma 3.1, [31]). We can
compute also the set of the binomials generating JP but not IP .

Macaulay2 , version 1 . 2 0
with packages : ConwayPolynomials , Elimination , IntegralClosure ,
InverseSystems , Isomorphism , LLLBases , MinimalPrimes , OnlineLookup ,
PrimaryDecomposition , ReesAlgebra , Sa turat ion , TangentCone

i 1 : loadPackage " PolyominoIdeals " ;
i 2 : Q= { { { 2 , 1 } , { 3 , 2 } } , { { 2 , 2 } , { 3 , 3 } } , { { 1 , 2 } , { 2 , 3 } } , { { 1 , 3 } ,

{ 2 , 4 } } , { { 1 , 4 } , { 2 , 5 } } , { { 2 , 4 } , { 3 , 5 } } , { { 2 , 5 } , { 3 , 6 } } ,
{ { 3 , 5 } , { 4 , 6 } } , { { 4 , 5 } , { 5 , 6 } } , { { 4 , 4 } , { 5 , 5 } } , { { 5 , 4 } ,
{ 6 , 5 } } , { { 5 , 3 } , { 6 , 4 } } , { { 5 , 2 } , { 6 , 3 } } , { { 4 , 2 } , { 5 , 3 } } ,
{ { 4 , 1 } , { 5 , 2 } } , { { 3 , 1 } , { 4 , 2 } } } ;

i 3 : I =polyoIdeal (Q) ;
i 4 : J =polyoToric (Q, { { 2 , 3 } } ) ;
i 5 : R=ring I ;
i 6 : J = s u b s t i t u t e ( J , R ) ;
i 7 : J == I
o7 = f a l s e
i 8 : s e l e c t ( f i r s t e n t r i e s mingens J , f−> f i r s t degree f >=3)
o8 = { x x x x − x x x x }

6 ,5 5 ,1 2 ,6 1 ,2 6 ,2 5 ,6 2 ,1 1 ,5

6.1.4 The options Field and TermOrder

Let P be a collection of cells. The option Field for the function polyIdeal allows
changing the base ring of the polynomial ring embedded in IP . One can choose
every base ring that Macaulay2 provides. The option TermOrder allows changing
the monomial order of the ambient ring of IP as given by the function polyoIdeal.
In particular, by default, it provides the lexicographic order but one can replace it
with other monomial orders defined in Macaulay2. See, for instance, the following
example.

6.1.5 RingChoice: an option for the function polyoIdeal

Let P be a collection of cells. Recall that the definition of a ring in Macaulay2 needs
to provide, together with a base ring and a set of variables, also a monomial order.
RingChoice is an option that allows choosing between two available rings that one
can define into IP .
If RingChoice is equal to 1, or by default, the function polyoIdeal gives the ideal
IP in the polynomial ring SP = K[xa : a ∈ V(P)], where K is a field and the mono-
mial order is defined by Term order induced by the following order of the variables:
xa > xb with a = (i, j) and b = (k, l), if i > k, or i = k and j > l.
Now we describe what is the ambient ring in the case RingChoice has a value dif-
ferent from 1. Consider the edge ring R = K[sitj : (i, j) ∈ V(P)] associated to the
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bipartite graph G with vertex set {s1, . . . , sm} ∪ {t1, . . . , tn} to P such that each ver-
tex (i, j) ∈ V(P) determines the edge {si, tj} in G. Let S = K[xij : (i, j) ∈ V(P)
and φ : S → R be the K-algebra homomorphism defined by φ(xij) = sitj, for all
(i, j) ∈ V(P) and set JP = ker(φ). From Theorem 2.1 of [37], we know that IP = JP ,
if P is a weakly connected and convex collection of cells. In such a case, from [34]
we get that the generators of IP form the reduced Gröbner basis with respect to a
suitable order <, and in particular the initial ideal in<(IP ) is squarefree and gener-
ated in degree two. Following the proof in [34], the implemented routine provides
the polynomial ring SP where the monomial order is <.

Example 6.1.2. The polyomino P in Figure 6.1 is convex. Using the options
RingChoice => 2 to define IP , the ambient ring of IP is given by PolyoRingConvex.
Hence the initial ideal is squarefree in degree two.
Macaulay2 , version 1 . 2 0
with packages : ConwayPolynomials , Elimination , IntegralClosure ,
InverseSystems , Isomorphism , LLLBases , MinimalPrimes , OnlineLookup ,
PrimaryDecomposition , ReesAlgebra , Sa turat ion , TangentCone

i 1 : loadPackage " PolyominoIdeals " ;
i 2 : Q= { { { 1 , 1 } , { 2 , 2 } } , { { 2 , 1 } , { 3 , 2 } } , { { 3 , 1 } , { 4 , 2 } } , { { 2 , 2 } ,

{ 3 , 3 } } , { { 3 , 2 } , { 4 , 3 } } , { { 2 , 3 } , { 3 , 4 } } } ;
i 3 : I =polyoIdeal (Q) ;
i 4 : In= monomialIdeal ( leadTerm ( I ) )

o4 = monomialIdeal ( x x , x x , x x , x x , x x , x x ,
2 ,4 3 ,3 3 ,3 4 ,2 2 ,3 4 ,2 2 ,4 3 ,2 2 ,3 3 ,2 4 ,2 1 ,1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x x , x x , x x , x x , x x , x x , x x ,

3 ,2 1 ,1 2 ,2 1 ,1 3 ,3 4 ,1 2 ,3 4 ,1 3 ,2 4 ,1 2 ,2 4 ,1 2 ,4 3 ,1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x x , x x )

2 ,3 3 ,1 2 ,2 3 ,1

i 5 : Q= { { { 1 , 3 } , { 2 , 4 } } , { { 2 , 2 } , { 3 , 3 } } , { { 2 , 3 } , { 3 , 4 } } , { { 2 , 4 } ,
{ 3 , 5 } } , { { 3 , 4 } , { 4 , 5 } } , { { 3 , 3 } , { 4 , 4 } } , { { 3 , 2 } , { 4 , 3 } } ,
{ { 3 , 1 } , { 4 , 2 } } , { { 3 , 5 } , { 4 , 6 } } , { { 4 , 4 } , { 5 , 5 } } , { { 4 , 3 } ,
{ 5 , 4 } } , { { 5 , 4 } , { 6 , 5 } } } ;

i 6 : I = polyoIdeal (Q, RingChoice = >2);

i 7 : In= monomialIdeal ( leadTerm ( I ) )

o7 = monomialIdeal ( x x , x x , x x , x x , x x , x x
4 ,6 3 ,1 4 ,6 3 ,2 4 ,1 3 ,2 3 ,2 2 ,3 4 ,2 2 ,3 4 ,6 3 ,3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x x , x x , x x , x x , x x , x x , x x ,
4 ,1 3 ,3 4 ,2 3 ,3 2 ,3 5 ,5 3 ,3 5 ,5 4 ,3 5 ,5 3 ,2 2 ,5 4 ,2 2 ,5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x x , x x , x x , x x , x x , x x , x x ,
3 ,3 2 ,5 4 ,3 2 ,5 4 ,6 3 ,5 4 ,1 3 ,5 4 ,2 3 ,5 4 ,3 3 ,5 5 ,3 1 ,4
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x x , x x , x x , x x , x x , x x , x x ,
2 ,3 1 ,4 3 ,3 1 ,4 4 ,3 1 ,4 5 ,5 6 ,4 2 ,5 6 ,4 3 ,5 6 ,4 4 ,5 6 ,4
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x x , x x , x x , x x , x x , x x , x x ,
2 ,3 5 ,4 3 ,3 5 ,4 4 ,3 5 ,4 2 ,5 5 ,4 3 ,5 5 ,4 4 ,5 5 ,4 3 ,2 2 ,4
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x x , x x , x x , x x , x x , x x , x x ,
4 ,2 2 ,4 3 ,3 2 ,4 4 ,3 2 ,4 3 ,5 2 ,4 4 ,5 2 ,4 4 ,6 3 ,4 4 ,1 3 ,4
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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x x , x x , x x )
4 ,2 3 ,4 4 ,3 3 ,4 4 ,5 3 ,4

6.2 Code of the package PolyominoIdeals.m2

We devote this section to show the code of the package.

newPackage (
" PolyominoIdeals " ,
Version => " 1 . 0 " ,
Date => " December 22 , 2022 " ,
Authors => {

{
Name => " Carmelo Cis to " ,
Email => " ccisto@unime . i t "

} ,
{

Name => " Francesco Navarra " ,
Email => " fnavarra@unime . i t "

} ,
{

Name => " Rizwan Jahangir " ,
Email => " rizwan@sabanciuniv . edu " ,
HomePage => " ht tps ://myweb. sabanciuniv . edu/rizwan "

}
} ,
Headline => " binomial i d e a l s of c o l l e c t i o n s of c e l l s " ,
Keywords => { " Binomial I d e a l s " , " Inner 2−minor I d e a l s " ,

" Polyomino I d e a l s " } ,
DebuggingMode => fa lse ,
Reload => t rue
)
export {

" polyoIdeal " ,
" polyoMatrix " ,
" polyoToric " ,

−− o p t i o n s
" F i e l d " ,
" TermOrder " ,
" RingChoice "

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− D e c l a r a t i o n o f some v a r i a b l e s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x := vars ( 2 3 ) ;
u := vars ( 2 0 ) ;
v := vars ( 2 1 ) ;
h := vars ( 7 ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−− p o l y o V e r t i c e s −−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−
−− p o l y o V e r t i c e s i s a f u n c t i o n which computes t h e s e t o f
−− t h e v e r t i c e s o f t h e c o l l e c t i o n o f c e l l s .
−−
−− A c o l l e c t i o n o f c e l l s i s e n c o d e d h e r e by a l i s t Q,
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−− whose e l e m e n t s a r e t h e l i s t s o f t h e d i a g o n a l c o r n e r s
−− o f t h e c e l l s .
−−
− For i n s t a n c e :
−
− __
− __|__|
− __|__|
− |__|__| i s encoded as Q= { { { 1 , 1 } , { 2 , 2 } } , { { 2 , 1 } , { 3 , 2 } } ,
− { { 2 , 2 } , { 3 , 3 } } , { { 3 , 3 } , { 4 , 4 } } }
−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

polyoVer t i ces =(Q)−>(
for i from 0 to #Q−1 do (

i f Q# i #1−Q# i #0 != { 1 , 1 } then
e r r o r " The input l i s t does not represent a c o l l e c t i o n of c e l l s "

) ;
V : = { } ;
for i from 0 to #Q−1 do (

V= join (V, t o L i s t ( {Q# i #0#0 ,Q# i # 0 # 1 } . . {Q# i #1#0 ,Q# i # 1 # 1 } ) ) ;
) ;

V= s e t V;
V= t o L i s t (V ) ;

return V;
) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−− p o l y o R i n g D e f a u l t −−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−
−− The f u n c t i o n po lyoRing d e f i n e s t h e r i n g a t t a c h e d t o
−− a c o l l e c t i o n o f c e l l s , where t h e monomial o r d e r i s
−− g i v e n by t h e o r d e r d e f i n e d in t h e o p t i o n Term o r d e r ,
−− i n d u c e d by t h e f o l l o w i n g o r d e r o f t h e v a r i a b l e s :
−− x_a > x_b with a =( i , j ) and b =( k , l ) , i f i > k , o r
−− i = k and j > l .
−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

polyoRingDefault = method ( Options=>{ F i e l d => QQ, TermOrder=>Lex } )
polyoRingDefault L i s t := opts −> Q −> (

V:= reverse ( s o r t ( po lyoVer t i ces (Q ) ) ) ;
Gen : = { } ;
for i from 0 to #V−1 do (

Gen= join ( Gen , { x_ (V# i #0 ,V# i # 1 ) } ) ;
) ;
R : = ( opts . F i e l d ) [ Gen , MonomialOrder => opts . TermOrder ] ;
return R ;
) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−− p o l y o M a t r i x −−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−
−− The f u n c t i o n p o l y o M a t r i x d e f i n e t h e mat r i x a t t a c h e d t o a
−− c o l l e c t i o n o f c e l l s P , where t h e s m a l l e s t i n t e r v a l l
−− c o n t a i n i n g i t i s [ ( p , q ) , ( r , s ) ] . The ma t r ix has r−p
−− rows and s−q columns and t h e ( i , j )− th e n t r y i s x_ ( i , j )
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−− i f ( i , j ) i s a v e r t e x o f P , o t h e r w i s e i t i s z e r o .
−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− D e f i n e two f u n c t i o n s t o compute p , q , r and s from t h e l i s t Q
−− encond ing t h e c o l l e c t i o n o f c e l l s . The f u n c t i o n Mv(Q)
−− computes t h e l i s t { p , r } :

Mv=(Q)−>(
V : = { } ;
for i from 0 to #Q−1 do (

V= join (V, t o L i s t {Q# i # 1 # 1 } ) ;
) ;
return t o L i s t { min (V)−1 ,max (V ) } ;
) ;

−− The f u n c t i o n Mh(Q) computes t h e l i s t { q , s } :

Mh=(Q)−>(
V : = { } ;
for i from 0 to #Q−1 do (

V= join (V, t o L i s t {Q# i # 1 # 0 } ) ;
) ;
return t o L i s t { min (V)−1 ,max (V ) } ;
) ;

−− D e f i n e t h e f u n c t i o n po lyoMatr ix , t o compute t h e mat r i x .

polyoMatrix = method ( TypicalValue=>Matrix )
polyoMatrix L i s t := Q −>(
R:= polyoRing (Q) ;
V:= polyoVer t i ces (Q) ;
Corners : = { } ;
for i from 0 to #V−1 do (

Corners= join ( Corners , { ( V# i #0 ,V# i # 1 ) } ) ;
) ;

H: = { } ;
V e r t i :=Mv(Q) ;
Orizon :=Mh(Q) ;
for j from V e r t i #0 to V e r t i #1 do (

L : = { } ;
for i from Orizon #0 to Orizon #1 do (

i f member ( ( i , j ) , Corners ) then
L= join ( L , t o L i s t { x_ ( i , j ) _R } )
e lse L= join ( L , { 0 } ) ;

) ;
H=append (H, L ) ;

) ;
H=reverse (H) ;
return matrix (H) ;
) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−− polyoRingConvex −−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−
−− The f u n c t i o n polyoRingConvex r e t u r n s t h e p o l y n o m i a l r i n g o f a
−− c o l l e c t i o n o f c e l l s P with a new monomial o r d e r . In p a r t i c u l a r ,
−− i f P i s a weak ly c o n n e c t e d and convex c o l l e c t i o n s o f c e l l s th en
−− polyoRingConvex d e f i n e s a p o l y n o m i a l r i n g in which t h e monomial
−− o r d e r i s d e f i n e d as in t h e p a p e r : H. Ohsugi and T . Hibi ,
−− " Koszu l b i p a r t i t e g ra ph s " , Adv . Appl . Math . 22 , 25−28 , 1999 .
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−− We know t h a t t h e g e n e r a t o r s o f t h e b i n o m i a l i d e a l a s s o c i a t e d
−− with a weak ly c o n n e c t e d and convex c o l l e c t i o n s o f c e l l s f o rms
−− t h e r e d u c e d Groebner b a s i s wi th r e s p e c t t o t h i s o r d e r , and so
−− t h e i n i t i a l i d e a l i s s q u a r e f r e e and g e n e r a t e d in d e g r e e two .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− v e c t o r L e s s E q T h a n i s a baby f u n c t i o n which compares two v e c t o r s
−− in N^d , d e f i n i n g A < B i f t h e r i g h t m o s t nonzero component
−− o f t h e v e c t o r A − B i s n e g a t i v e .

vectorLessEqThan =(A, B)−>(
Ar := reverse (A) ;
Br := reverse ( B ) ;
i f Ar==Br then return true else

for i from 0 to #A−1 do (
i f Ar# i <Br# i then break return true ;
i f Ar# i >Br# i then break return f a l s e ;

) ;
) ;

−− Sub1 i s a baby f u n c t i o n which r e p l a c e s 1 in t h e
−− non−n u l l e n t r i e s o f a g e n e r i c v e c t o r .

Sub1 : = (M)−>(
N: = { } ;
for i from 0 to #M−1 do (

i f M# i !=0 then N= join (N, { 1 } )
e lse N= join (N, { 0 } ) ;

) ;
return N;
) ;

−− po lyoMatr ixReduced i s a f u n c t i o n which r e t u r n s a new mat r i x from
−− p o l y o M a t r i x (Q) by s w i t c h i n g rows or columns as done in t h e p a p e r :
−− H. Ohsugi and T . Hibi , " Koszu l b i p a r t i t e g r aph s " , Adv . Appl .
−− Math . 22 , 25−28 , 1999 .

polyoMatrixReduced =(Q)−>(
PolyominoMat := polyoMatrix (Q) ;
EntrateMat := e n t r i e s ( PolyominoMat ) ;
numberrow :=numgens ( t a r g e t ( PolyominoMat ) ) ;
MutMat := mutableMatrix ( PolyominoMat ) ;
SubEntrateMat : = { } ;
for k from 0 to numberrow−1 do (

SubEntrateMat= join ( SubEntrateMat , { Sub1 ( EntrateMat #k ) } ) ;
) ;
for i from 0 to numberrow−1 do (

for j from i to numberrow−1 do (
i f vectorLessEqThan ( SubEntrateMat # i , SubEntrateMat # j )== f a l s e then (
MutMat=rowSwap ( MutMat , i , j ) ;
SubEntrateMat=switch ( i , j , SubEntrateMat ) ;
) ;

) ;
) ;
rowMutMat := matrix ( MutMat ) ;
TMutMat:= transpose ( rowMutMat ) ;
SecondEntrateMat := e n t r i e s ( TMutMat ) ;
nc :=numgens ( source ( rowMutMat ) ) ;
MutarowMutMat := mutableMatrix ( rowMutMat ) ;
Sos : = { } ;
for c from 0 to nc−1 do (

Sos= join ( Sos , { Sub1 ( SecondEntrateMat # c ) } ) ;
) ;
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for a from 0 to ( nc−1) do (
for b from a to ( nc−1) do (

i f vectorLessEqThan ( Sos #a , Sos #b)== f a l s e then (
MutarowMutMat=columnSwap ( MutarowMutMat , a , b ) ;
Sos=switch ( a , b , Sos ) ;
) ;

) ;
) ;
return matrix ( MutarowMutMat ) ;
) ;

−− polyoRingConvex d e f i n e s a new p o l y n o m i a l r i n g .

polyoRingConvex = method ( Options=>{ F i e l d => QQ} )
polyoRingConvex L i s t := opts −> Q −> (
PMR:= polyoMatrixReduced (Q) ;
EPMR:= e n t r i e s (PMR) ;
numRow:=numgens ( t a r g e t (PMR) ) ;
numColumn:=numgens ( source (PMR) ) ;
v a r i a b l e s : = { } ;
for i from 0 to numRow−1 do (

for j from 0 to numColumn−1 do (
i f EPMR# i # j ==0 then v a r i a b l e s = join ( v a r i a b l e s , t o L i s t { } )
e lse v a r i a b l e s = join ( v a r i a b l e s , t o L i s t {EPMR# i # j } ) ;

) ;
) ;
Gens := v a r i a b l e s ;
S : = ( opts . F i e l d ) [ Gens , MonomialOrder => RevLex , Global=> f a l s e ] ;
return S ;
) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−− po lyoRing −−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− The f u n c t i o n po lyoRing d e f i n e s t h e r i n g f o r p o l y o I d e a l .
−− Whether i t i s 1 or by d e f a u l t i t r e t u r n s t h e i d e a l computed
−− by p o l y o I d e a l in t h e ambient r i n g g i v e n by p o l y o R i n g D e f a u l t .
−− With a v a l u e d i f f e r e n t by 1 i t r e t u r n s t h e i d e a l in t h e
−− ambi ent r i n g g i v e n by polyoRingConvex .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

polyoRing = method ( Options=>{ F i e l d => QQ, TermOrder=>Lex ,
RingChoice = >1})

polyoRing L i s t := opts −> Q −>(
i f opts . RingChoice==1 then
return polyoRingDefault (Q, F i e l d =>opts . Fie ld ,
TermOrder=>opts . TermOrder )
e lse return polyoRingConvex (Q, F i e l d =>opts . F i e l d ) ;
) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−− p o l y o I d e a l −−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− p o l y o I d e a l i s a f u n c t i o n which r e t u r n s t h e i n n e r 2−minor i d e a l
−− a t t a c h e d t o a c o l l e c t i o n o f c e l l s .
−−
−− The o p t i o n RingCho i c e wi th v a l u e 1 and by d e f a u l t r e t u r n s t h e
−− i d e a l in t h e ambi ent r i n g g i v e n by p o l y o R i n g D e f a u l t . With a
−− v a l u e d i f f e r e n t by 1 i t r e t u r n s t h e i d e a l in t h e ambi ent r i n g
−− g i v e n by polyoRingConvex
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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−− i s I n n e r I n t e r v a l i s a f u n c t i o n such t h a t , i f A and B a r e two
−− c e l l s , i t r e t u r n s t r u e i f [A, B ] i s an i n n e r i n t e r v a l o f t h e
−− c o l l e c t i o n o f c e l l s , o t h e r w i s e i t r e t u r n s f a l s e .

i s I n n e r I n t e r v a l =(A, B ,Q)−>(
C:=B− { 1 , 1 } ;
i f C==A then return true ;
i f member ( { C, B } ,Q)== f a l s e then return f a l s e ;
tag := t rue ;
for i from A#1+1 to B#1 do (

for j from A#0 to B#0−1 do (
i f member ( { { j , i −1} , { j +1 , i } } ,Q)== f a l s e then return f a l s e ;

) ;
) ;
return tag ;
) ;

polyoIdeal = method ( Options=>{ F i e l d => QQ, TermOrder=>Lex ,
RingChoice = >1})

polyoIdeal L i s t := opts −> Q −>(

R:= polyoRing (Q, F i e l d =>opts . Fie ld , TermOrder=>opts . TermOrder ,
RingChoice=>opts . RingChoice ) ;
InnerBinomials : = { } ;
for i from 0 to #Q−1 do (

lLowCorner := Q# i # 0 ;
for j from 0 to #Q−1 do (
rUpCorner := Q# j # 1 ;
i f lLowCorner#0<rUpCorner#0 and lLowCorner#1<rUpCorner#1 then (

i f i s I n n e r I n t e r v a l ( lLowCorner , rUpCorner ,Q) then (
a := lLowCorner # 0 ;
b := lLowCorner # 1 ;
c := rUpCorner # 0 ;
d:= rUpCorner # 1 ;
InnerBinomials= join ( InnerBinomials , { x_ ( a , b ) _R∗x_ ( c , d ) _R−x_ ( a , d ) _R∗x_ ( c , b ) _R } ) ;
) ;

) ;
) ;

) ;
InnerBinomials = s e t InnerBinomials ;
InnerBinomials = t o L i s t InnerBinomials ;
I := ideal ( InnerBinomials ) ;
return I ;
) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−− p o l y o T o r i c −−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−Given a po lyomino e n c o d e d by Q and t h e l i s t H o f t h e l o w e r l e f t
−− c o r n e r s o f e a c h h o l e o f t h e polyomino , t h e f u n c t i o n p o l y o T o r i c
−− r e t u r n s t h e t o r i c i d e a l a s d e f i n e d in t h e p a p e r :
−−Mascia , Rina ldo , Romeo , " P r i m a l i t y o f m u l t i p l y c o n n e c t e d
−− p o l y o m i n o e s " , I l l i n o i s J . Math . 6 4 ( 3 ) , 291−304 , 2020 .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Leq2 =(A, B)−>(
i f A#0<=B#0 and A#1<=B#1 then return true ;
return f a l s e ;
) ;

polyoToric = method ( TypicalValue=>Ideal )
polyoToric ( List , L i s t ) := (Q,H) −> (
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V:= reverse ( s o r t ( po lyoVer t i ces (Q ) ) ) ;
Oriz : = { } ;
Vert : = { } ;
for i from 0 to #V−1 do (

Oriz= join ( Oriz , { V# i # 0 } ) ;
Vert= join ( Vert , { V# i # 1 } ) ;

) ;
Oriz= s e t Oriz ;
Oriz= t o L i s t ( Oriz ) ;
Oriz= s o r t ( Oriz ) ;
Vert= s e t Vert ;
Vert= t o L i s t ( Vert ) ;
Vert= s o r t ( Vert ) ;
VerInt : = { } ;
for i from min ( Oriz ) to max ( Oriz ) do (

j :=min ( Vert ) ;
while j <max ( Vert ) do (

L1 : = { } ;
while member ( { { i , j } , { i +1 , j + 1 } } ,Q) or member ( { { i −1, j } , { i , j + 1 } } ,Q) do (

L1= join ( L1 , { { i , j } , { i , j + 1 } } ) ;
j = j +1 ;

) ;
L1= s e t L1 ;
L1= t o L i s t ( L1 ) ;
VerInt= join ( VerInt , { L1 } ) ;
j = j +1 ;
) ;

) ;
VerInt=delete ( { } , VerInt ) ;
OrInt : = { } ;
for j from min ( Vert ) to max ( Vert ) do (

i :=min ( Oriz ) ;
while i <max ( Oriz ) do (

L1 : = { } ;
while member ( { { i , j } , { i +1 , j + 1 } } ,Q) or member ( { { i , j −1} , { i +1 , j } } ,Q) do (
L1= join ( L1 , { { i , j } , { i +1 , j } } ) ;
i = i +1;

) ;
L1= s e t L1 ;
L1= t o L i s t ( L1 ) ;
OrInt= join ( OrInt , { L1 } ) ;
i = i +1;
) ;

) ;
OrInt=delete ( { } , OrInt ) ;
Svar : = { } ;
for i from 0 to # OrInt−1 do (

Svar= join ( Svar , { u_ ( i ) } ) ;
) ;
for i from 0 to # VerInt−1 do (

Svar= join ( Svar , { v_ ( i ) } ) ;
) ;
for i from 0 to #H−1 do (

Svar= join ( Svar , { h_ ( i ) } ) ;
) ;
S :=QQ[ Svar , MonomialOrder => Lex ] ;
Im : = { } ;
for i from 0 to #V−1 do (

m: = 1 ;
for k from 0 to # OrInt−1 do (

i f member (V# i , OrInt #k ) then m=m∗u_ ( k ) _S ;
) ;

for k from 0 to # VerInt−1 do (
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i f member (V# i , VerInt #k ) then m=m∗v_ ( k ) _S ;
) ;
for j from 0 to #H−1 do (

i f Leq2 (V# i ,H# j ) then m=m∗h_ ( j ) _S ;
) ;
Im= join ( Im , {m} ) ;
) ;
T := polyoRing (Q) ;
f :=map( S , T , Im ) ;
J := kernel f ;
return J ;
) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− End o f s o u r c e c o d e −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Open questions and future works

We conclude this work showing some open questions and the future researches
which can be dealt on this topic.
The radicality of the polyomino ideals gives an interesting problem. It seems that all
polyomino ideals are radical, in fact if P is a polyomino and < is the reverse lexico-
graphical order on SP induced by the ordering of the variables defined by xij > xkl
if j > l, or, j = l and i > k, then the Gröbner basis of IP with respect to < could be
squarefree and consequently IP radical, but a complete proof is not still given. For
what concerning the study of the Gröbner basis, we wonder if it is possible to find
a polyomino P for which the set of generators does not form the reduced Gröbner
basis of IP with respect to any monomial order. During "EMS Summer School of
Combinatorial Commutative Algebra" held in Gebze (Turkey), that I attended, Prof.
Takayuki Hibi remarked that this last question is very underrated although an an-
swer seems very difficult to give.
As already said along the thesis, a complete characterization of the primality of IP is
not still known but the conjecture that states that the inner 2-minor ideal of a collec-
tion of cells is prime if and only the collection of cells does not contain any zig-zag
walk is very promising. Try to give a complete proof of this conjecture is a very fas-
cinating challenge as well as a complete characterization of the polyominoes whose
coordinate ring is a normal Cohen-Macaulay domain or Gorenstein.
Another interesting problem is the study of the Hilbert-Poincaré series of K[P ], in
particular to provide a complete proof of the conjecture stating that if P is a simple
polyomino then the h-polynomial of K[P ] is equal to the switching rook polynomial
of P (see [38]). Motived by these considerations, in [33] we investigate the con-
jecture also for non-simple polyominoes and we study the Hilbert-Poincaré series
of frame polyominoes, which are polyominoes obtained removing a parallelogram
polyomino from a rectangle polyomino. We establish a bijection between the set
of non-attacking and non-switching rook arrangements in P and the facets of the
shellable simplicial complex, having in<(IP ) as Stanley-Reisner ideal. As a conse-
quence we get that the h-polynomial of K[P ] is the switching rook polynomial of P
and the regularity of K[P ] is the rook number of P .
In [23] the authors extend the concept of König type to graded ideals in K[x1, . . . , xn]
and in [20] Herzog and Hibi prove that if P is a simple thin polyomino then IP is of
König type. In [14] we study the König type property for non-simple polyominoes
and we prove that, for closed path polyominoes, the polyomino ideals are of König
type. We remark also that not all the polyominoes have their ideals of König type. In
particular, a class of polyominoes for which this property does not hold is given by
the parallelogram polyominoes, combining the results in [20] and [38]. In general, it
could be very interesting to give a complete classification of the polyominoes which
have the König type property.
Another huge problem is the study of the primary decomposition of IP . To face
this problem, in [9] we study the primary decomposition of a more general class of
binomial ideals. In particular, we introduce the concept of polyocollection, a combi-
natorial object that generalizes the definitions of collection of cells and polyomino,
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that can be used to compute a primary decomposition of non-prime polyomino ide-
als. Furthermore, we give a description of the minimal primary decomposition of
non-prime closed path polyominoes. In particular, for such a class of polyominoes,
we characterize the set of all zig-zag walks and show that the minimal prime ide-
als have a very nice combinatorial description. If we know that IP is radical for a
collection of cells P then [9, Theorem 3.12] will provide a primary decomposition of
IP . Another property that could be investigated is the unmixedness of polyomino
ideals, that we prove for closed paths in [9]. Moreover it could be interesting to see
if the properties studied for the inner 2-minor ideals of a collection of cells can be
extended for polyocollections. For what concerning the package PolyominoIdeals
for Macaulay2 some combinatorial functions could be implemented.
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