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Abstract
In order to provide a reliable and robust SHM performance, Ultrasonic Guided Waves (UGWs) need to be analyzed
and understood. Numerical modeling of UGW propagation and scattering by hybrid methods offers the possibility of
simulating UGW interaction with waveguides of arbitrary cross-sections and discontinuities. Maximizing the accuracy
of such methods is important to perform quantitative SHM, while maintaining minimum computational cost.
This work investigates the role of evanescent modes in the numerical analysis of UGWs in aluminum and composite
plates with defects, by the hybrid Global-Local method. The complex solutions to the UGW eigenvalue problem are
found and the scattering spectra for A0 and S0 incident modes are calculated. The accuracy of the numerical solution
is then studied by computing the error in terms of energy balance.
Parametric studies with respect to the local zone size, defect dimensions and shape are conducted including and
excluding evanescent modes in the analysis. Considerations are provided to obtain a solution with error no greater than
5%, in terms of varying local zone – scatterer relations within plate waveguides.
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Introduction

In the last decades, the use of ultrasonic guided waves
(UGWs) has increased considerably for NDE and SHM
purposes, in a variety of materials, geometries and
applications. This is due to the potential that UGWs
offer in terms of long-range propagation, cross-sectional
involvement and sensitivity to defects (Staszewski (2004)).
In order to provide a reliable and robust SHM performance,
UGW propagation and scattering have to be analyzed and
understood in detail (Willberg et al. (2015)). While analytical
solutions are available for waveguides of uniform cross-
section and in cases where discontinuities or defects are
easily defined by boundary conditions, numerical methods
are required to solve UGW propagation problems in
waveguides of arbitrary cross-section and/or in the presence
of more complex structural configurations, materials or
defects. Moreover, numerical simulations allow for the study
of a large number of cases and variables to account for,
that would be cumbersome or nearly impossible to observe
experimentally.
To date, a wide range of numerical methods have been
employed to model UGW propagation and scattering: a
review in 2015 (Willberg et al. (2015)) describes the main
strategies, also emphasizing each method’s advantages and
disadvantages. Although finite element methods (FEM) are
still heavily used as benchmark for the comparison of
reduced-order and other approximation methods (Leckey
et al. (2018)), and for the design and interpretation of
experimental results, particularly in cases of complex
damages (Ricci et al. (2016)), and structures (Gavrić (1995)),

they are computationally expensive, require extensive efforts
to interpret the spectral content of the waveform and
do not allow mode excitability and sensitivity studies.
This is even more relevant when a broadband frequency
analysis is required. Among others (finite difference (Lee
and Staszewski (2003); Frankforter et al. (2019)), spectral
elements (Ostachowicz et al. (2011), boundary element,
etc.), the Semi Analytical Finite Elements method (SAFE)
enables to model UGW propagation in cross-sections
of arbitrary geometry and varying material properties.
This is achieved by discretizing the cross-section with
FE. An eigenvalue problem is then posed to solve for
the complex wavenumber and wavemodes, that are then
propagated analytically, in the wave propagation direction
(Hayashi et al. (2003); Bartoli et al. (2006); Marzani et
al. (2008)). To include scattering and wave propagation
from the UGW interaction with geometrical discontinuities,
damages and any changes along the wave propagation
direction, the SAFE method needs to be coupled with
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other computational approaches (hybrid methods). Mal and
Chang (2000) first proposed this hybrid method to calculate
the elastodynamic field in a plate containing geometric
discontinuities. Srivastava and Lanza di Scalea (2010)
presented the so-called Global-Local (GL) method, a hybrid
SAFE-FE method, for quantitative SHM in multilayered
structures with defects.
The validation and accuracy of numerical methods is of
crucial importance to enable quantitative and robust SHM.
While validation is performed by comparing simulation
results with analytical solutions and experimental data (when
available) and FEM results of the reproduced case study, the
evaluation of accuracy has been commonly addressed by the
computation of an energy balance.
Moreover, the complexity of UGW scattering is increased
also by the presence of propagating and non-propagating
modes. This aspect is of particular importance when the
contribution of near-field effects cannot be neglected, such as
in the presences of free ends and in the vicinity of waveguide
or defect edges. Gazis and Mindlin (1960) studied complex
roots in the analytical solution of waves propagating in plates
with respect to edge modes and plate thickness over distance
ratio, and compared the zeroth and second order theory.
Using the SAFE method, Taweel et al. (2000) studied the
effect of propagating and non-propagating modes on the
energy balance in free ends of a bar or cylinder with respect
to the height over width ratio: it was found that different
solution methods require a different number of modes to
satisfy energy balance. Later, Bartoli et al. (2006) studied
UGWs propagation in damped and undamped waveguides of
isotropic and composite materials with the SAFE method,
including evanescent modes. Another research group used
the modal decomposition method to study S0 and A0 mode
scattering from perpendicular cracks and free end of plates
(Castaings et al. (2002); Diligent et al. (2003)). The effect of
evanescent modes was here evaluated and it was concluded
that, although the power flow has to be computed only
for incident and scattered propagative modes, the energy
balance must include complex (evanescent) modes to satisfy
boundary conditions, hence to obtain an accurate solution.
3D UGWs scattering by through thickness cavities of
irregular shapes was studied analytically by the use of normal
Lamb waves (propagating and evanescent) by Moreau et
al. (2011): energy balance was computed to evaluate the
convergence error with respect to the number of modes to
be included, for different incident modes and defect aspect
ratios. A similar method (CMEP) was more recently used by
Poddar and Giurgiutiu (2016) in 2D aluminum plates with
horizontal cracks: a convergence analysis was performed
to assess the number of complex roots to be included for
an accurate solution. Also, Schaal et al. (2017) studied
UGW propagation in the case of scattering from horizontal
cracks in an aluminum plate, using the WFE (Wave FE)
method: complex roots where included to account for the
near field effects in leading and trailing edges of the crack
and conservation of power flow was evaluated to calculate
error.
In the case of scattering in complex waveguide cross-sections
and defects, such as in railroad tracks, a hybrid method
(spectral super element coupled to FE) is used (Ryue et al.
(2011)): complex solutions are here included and error is

evaluated in terms of conservation of the incident energy.
Using a similar concept (WFE coupled to FE) Zhou and
Ichchou (2011) studied the effect of defect size on UGWs
scattering in plates, including evanescent modes and a forced
formulation to compute time-domain scattered waveforms.
A hybrid method (SAFE coupled to FE) was also used
by Benmeddour et al. (2011) to validate the method for
UGWs scattering at free ends and vertical discontinuities
of cylindrical waveguides: the number of non-propagating
modes to be included in the analysis for an accurate result
was decided depending on the magnitude of the imaginary
part of the product wavenumber and radius.
In this paper, the authors study the role of evanescent modes
in the accurate modeling of UGWs scattering in isotropic
and composite plate waveguides, with respect to defect
shapes and sizes. The hybrid GL method, expanded by the
authors and applied on complex composite structures and
3D geometries (Spada et al. (2020); Spada et al. (2022)), is
here used and its accuracy is assessed through energy balance
to provide considerations in terms of the local FE zone and
scatterer relation.

Theoretical Formulation
The GL method formulates the UGW propagation problem
by identifying two regions in the complex waveguide
(Fig. 1): the local region contains any discontinuity and/or
structural defect, and the global region represents an infinite
waveguide of arbitrary cross-section. The formulation is
here briefly presented in 2D. A detailed formulation can be
found in Spada et al. (2020). An incident time-harmonic
guided wave excited in the sound (global) region propagates
along the wave propagation direction and is scattered into
reflected and transmitted waves, after interacting with the
discontinuity within the local region. The equilibrium of each
region is guaranteed by imposing the Principle of Virtual
Work (PVW).

SAFE Solution
The cross-section (thickness in the 2D case) of the waveguide
in the global (g) region is discretized by FE and a harmonic
exponential term ei(ξx−ωt) describes the analytical wave
propagation, to obtain nodal displacements, strains and
stresses, where ξ is the wavenumber and ω is the angular
frequency. The stiffness matrix Kg , mass matrix Mg and
force vector Fg are computed for the global region and the
PVW is applied, obtaining:

(Kg − ω2Mg)Ug = Fg (1)

where in the case of an unforced solution the right-
side of Eq. (1) is 0. This reduces to an eigenvalue
problem where the wavenumbers ξ and wavemodes ϕ can
be found in terms of eigenvalues and eigenvectors. The
eigenvalues can be pairs of real, complex and imaginary
numbers, representing propagating, evanescent decaying and
evanescent non-oscillating (end-modes) waves, respectively.
Following Benmeddour et al. (2011), a threshold equal to
Im(ξh) = [−5, 5] has been placed to select the evanescent
modes, where h is the thickness of the waveguide. A
total of NM modes is found as the sum of propagating
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Figure 1. Geometrical representation of the scattering of an incident wave in reflected and transmitted waves from a local region,
with indication of the adopted discretization strategies in each region of the Global-Local approach.

and evanescent modes. Phase and group velocity are then
computed as cp = ω/ξRe and cg = ∂ω

∂ξ , as well as attenuation

att = ξIm and energy velocity cEn =
1
Γ

∫
Γ
P ·ndΓ

1
T

∫
T
( 1
Γ

∫
Γ
etotdΓ)dt

,
where Γ is the cross-sectional area, P is the Poynting vector
(real part only), n is the propagation direction unit vector,
etot is the total energy density (kinetic and potential), T is
the period.

Coupled Global-Local Solution
The nodal displacements at the left boundary qlB of the
local region are the combination of the incident wave and
the reflected waves, while those at the right boundary qrB

are a combination of the transmitted ones:

qlB = qin + qRefl; (2)

qrB = qTransm. (3)

In the case of UGW propagation and scattering, the
incident, reflected and transmitted waves can be thought
of as the superposition of weighted NM wavemodes,
corresponding to the global cross-sectional modeshapes
obtained in the SAFE solution:

qlB = Φ+
ine

i[ξ+in(xS−xlB)] +

NM∑
j=1

A−
j Φ

(j)−ei(ξ
−
j xlB); (4)

qrB =

NM∑
j=1

A+
j Φ

(j)+ei(ξ
+
j xrB). (5)

The weights are the amplitude Aj of the modeshapes,
which are calculated by least square method on the system:

SU l = F l (6)

where S is the dynamic stiffness matrix for the local
region, U l and F l are the vectors containing the nodal
displacements and forces for the local region, including those
at the left and right boundary.
Such amplitudes represent the scattering (reflected and
transmitted) coefficients.

Energy Balance
Once the amplitudes are determined, the energy carried by
each j-th mode can be calculated as:

Ej = −|Aj |2

2
Re[iωF jT Φ̄

j
]. (7)

As stated in Castaings et al. (2002) and in the Introduction,
evanescent modes do not carry energy. Their contribution
though has to be accounted for in evaluating the energy
balance to obtain an accurate scattering solution, as to satisfy
the boundary conditions and guarantee energy conservation
(undamped case).
The total energy is the sum of the energy of all reflected
E

(j)
Refl and transmitted E

(j)
Transm modes, given an incident

energy Ein amplitude equal to 1,

Ein =

NM∑
j=1

(E
(j)
Refl + E

(j)
Transm). (8)

Numerical investigations
In order to investigate the role of evanescent modes in
the global-local method, a number of numerical analyses
were run on defected aluminum and composite plates.
For the aluminum plates, the values of the Poisson
coefficient, density and Young modulus were: ν = 0.33,
ρ = 2700 kg/m3 and E = 68GPa, respectively. Composite
plates had a 10-layers layup [0/ +45/ +90/ -45/ 0]S of
T800/3900-2 Graphite/Epoxy unidirectional laminae, with
a thickness of 0.2 mm for each layer. Material properties
were those used in Liyong and Soutis (2003) and reported
in Table 1 in the principal direction of material symmetry,
where 1 is the fiber direction, 2 is the direction perpendicular
to the fibers in the lamina plane, and 3 the through-thickness
direction. The density of each lamina was 1550 kg/m3.

The thickness of the plates was maintained fixed for all the
tests, and equal to 2 mm. On the other hand, the geometry,
size, and position of the defect vary inside the local zone,
whose length was chosen equal to 5 mm for most of the
examples, and greater than 5 mm in some cases.
Although the refinement of the finite element mesh is
essential for numerical accuracy, the goal of this work was
not to investigate this aspect. As such, the size of the finite
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Table 1. Elastic properties of the composite lamina.

Property C11 C12 C13 C22 C23 C33 C44 C55 C66

GPa 162 3.98 3.98 10.4 3.81 10.4 3.45 6.21 6.21
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Figure 2. 2 mm thick aluminum plate dispersion and attenuation curves: a) phase velocity, b) group velocity, c) attenuation, d)
energy velocity.

element was a parameter not investigated. It was considered
sufficient to guarantee the presence of at least 20 elements
for wavelength to reach acceptable numerical accuracy. In
this way, each finite element was chosen linear (only four
Gauss points) and squared, with sides equal to 0.1 mm.
The numerical code is the evolution of the Global-Local
Matlab© code developed by Spada et al. (2020). The original
2D version of the code was enriched in order to include
the effect of evanescent modes. It is known that evanescent
modes are not able to carry energy. The energy flux carried
by an evanescent mode through a cross-sectional area is null
since the product of the terms within the square brackets in
Eq. (7) results in a pure imaginary term. As a consequence,
in the energy spectra the diagrams of the propagative modes
only are visible. On the contrary, inclusion of evanescent
modes in the Global-Local system completes the description
of the physical problem, which is only approximated when
the evanescent modes are absent. This fact is mathematically
reflected in a better evaluation of the unknown coefficients
leading to a more accurate estimation of the energy, thereby
reducing the error in energy conservation.
At each frequency, the eigenvalue problem returns a number
of evanescent modes. Not all evanescent modes need to be
included in the analysis. Higher order evanescent modes
usually have a negligible effect. As such, evanescent modes
are included if abs(Im(ξh)) is less or equal to a threshold
value.

In this work, the sign of the energy velocity determines
the traveling direction of propagating modes. For evanescent
modes, instead, the traveling direction is obtained by the sign
of the wavenumber: positive values of the real and imaginary
parts referred to modes traveling in the positive direction.

Figures 2 and 3 show phase and group velocity dispersion
curves, attenuation and energy velocity curves for aluminum
and composite plates respectively, when the plate thickness
is 2 mm and a threshold equal to 5 is chosen to select
evanescent modes. For the aluminum plate, a total of 5
propagating modes (continuous lines in Fig. 2) and 6
evanescent modes (2 evanescent decaying modes and 4
evanescent non-oscillating end-modes, black and grey dotted
lines in Fig. 2 respectively) were obtained in the DC-1
MHz frequency range. For the composite plate, a total of
5 propagating modes (continuous lines in Fig. 3) and 13
evanescent modes (2 evanescent decaying modes and 11
evanescent non-oscillating end-modes, black and grey dotted
lines in Fig. 3 respectively) were obtained in the DC-500 kHz
frequency range. In both figures, the higher order symmetric
and anti-symmetric propagating modes are non-oscillating
before their cut-on frequency.

In Figure 4 the results of the aluminum plate in the
presence of a 2× 1 mm centered rectangular defect are
reported. Results correspond to an A0 incoming mode. The
comparison is made between a local zone (LZ) size equal
to 6 mm (minimum distance between the LZ boundary
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Figure 3. 2 mm thick composite plate dispersion and attenuation curves: a) phase velocity, b) group velocity, c) attenuation, d)
energy velocity.
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Figure 4. Aluminum plate. A0 incident energy spectra for a centered 2× 1 mm rectangular defect having a distance of 2 mm (a, c)
or 6 mm (b, d) from the left boundary: a, b) solutions without evanescent modes; c, d) solutions with evanescent modes.
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Figure 5. Aluminum plate. S0 incident energy spectra for a decentralized 2× 1 mm rectangular defect having a distance of 2 mm
(a, c) or 6 mm (b, d) from the left boundary: a, b) solutions without evanescent modes; c, d) solutions with evanescent modes.

and the defect of 2 mm, equivalent to the plate thickness,
Figs. 4a-c) or 14 mm (minimum distance between the LZ
boundary and the defect of 6 mm, equivalent to three times
the plate thickness, Figs. 4b-d). The comparison is also
performed considering propagating modes only (Figs. 4a-b)
or including all the evanescent modes (Figs. 4c-d). In Fig. 4a
it is apparent that the total normalized energy suffers from
a large error (up to 40%) until the cut-on frequency of the
higher order modes (DC-771 kHz). The error is nullified in
the same range if evanescent modes are included (Fig. 4c).
In the 771-1000 kHz, instead, no issues are observed, even in
the absence of evanescent modes. It seems that error vanishes
when A1 and S1 modes are included into the analysis,
in their evanescent form before the cut-on frequency, in
their propagative form after the cut-on frequency. If the
distance between the LZ boundary and the defect increases
to a ‘safety’ distance, the effect of evanescent modes
becomes less prominent and the propagating modes alone
approximate almost all the energy (Fig. 4b). As can be seen
from Figure 4b and Figures 4c-d, the scattered energy spectra
of all the involved modes are almost identical, proving once
again acceptable results for only propagating modes when
a sufficient distance is maintained between the scatterer
and the LZ boundary. On the contrary, by including the
evanescent modes, the LZ size can be reduced to a minimum,
with a significant saving from a computational point of view.

In the parametric analyses of Figure 8, it will be shown
that a minimum distance has to be guaranteed even in the
presence of evanescent modes, for the sake of avoiding rough
numerical errors. When the LZ boundary is too close to the
scatterer and only propagating modes are taken into account,
the results may be totally misleading, as in Figure 4a.
Similar comments can be made if a S0 incoming mode
impinges upon a 2× 1 mm rectangular notch in the
aluminum plate (Fig. 5). In this example, mode conversions
also take place. The results are reported for the cases of LZ
boundary/defect distance equal to 2 mm (Figs. 5a-c) or 6 mm
(Figs. 5b-d), in the absence of evanescent modes (Figs. 5a-
b) or in their presence (Figs. 5c-d). A 10% maximum error
in the total normalized energy reduces to 3% when stepping
from a 2 mm distance to a 6 mm distance, when propagating
modes only are considered. The errors are almost nullified
in the presence of evanescent modes. When a distance of
6 mm is considered together with propagating modes only
(Fig. 5b), scattered spectra coincide with the correct ones
(Fig. 5d). On the contrary, for a distance of 2 mm, energy
spectra have similar general trends which locally differ from
the correct ones (see for example the differences between S0
and A0 transmitted and reflected spectra of Figs. 5a-c in the
DC-771 kHz frequency range).

The results in Figures 6 and 7 correspond to two tests on
the 2 mm thick composite plate: in the first test (Fig. 6), an
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Figure 6. Composite plate. A0 incident energy spectra for a centered 1× 0.8 mm (a, c) or 4× 0.8 mm (b, d) rectangular defect
(LZS= 5 mm): a, b) solutions without evanescent modes; c, d) solutions with evanescent modes.

A0 incident mode scattered on a centered rectangular defect;
in the second test (Fig. 7), an S0 incident mode scattered
on a rectangular notch. In these two tests the LZ size was
maintained equal to 5 mm and the effects of varying defect
sizes were analyzed.
The defect in Figures 6a-c has a rectangular shape of 1× 0.8
mm with a 2 mm distance from the LZ boundary. In Figures
6b-d, the defect has a rectangular shape of 4× 0.8 mm,
with a distance from the LZ boundary equal to 0.5 mm.
In both cases the defect involved the four central plies at
0 and -45 degrees. For a 1 mm long defect, the maximum
error is 46% in the absence of evanescent modes, and less
then 2% in the presence of evanescent modes (Fig. 6c).
Scattered spectra are also different in the two cases in the
DC-407 kHz frequency range. In the 407-500 kHz range
some mode conversion into A1 and S1 modes occurs. The
presence of evanescent modes, in particular, corrects the
energy related to the scattered A1 mode. For a 4 mm long
defect the maximum error is dramatically increased up to
80% in the absence of evanescent modes (Fig. 6b), and it
still remains high (43%) if evanescent modes are included
(Fig. 6d). This demonstrates that if the scatterer is too close
to the boundary, the associated mathematical solution loses
physical meaning also in the presence of evanescent modes.
Scattered spectra significantly differ from one another and,

as in the previous case, mode conversions taking place above
407 kHz are corrected by the inclusion of evanescent modes
in the analysis.
The notch in Figure 7 has a rectangular shape with increasing
dimensions, but a constant width/depth ratio of 2. In Figures
7a-c the defect has 0.4 mm and 0.2 mm long sides, with a
distance LZ boundary/defect equal to 2.3 mm and a notch
affecting the top 0 ply only. In Figures 7b-d the defect
has 2 mm and 1 mm long sides, with a minimum distance
LZ boundary/defect equal to 1.5 mm and a notch affecting
the top five plies. The reflected S0 energy is higher as the
depth of the notch increased, as expected. The incoming S0
mode is converted into transmitted and reflected A0 mode
but the evaluation of the scattered A0 mode is incorrect in
the absence of evanescent modes: Figure 7a and particularly
Figure 7b show a numerical error in the total scattered
energy, that is instead properly evaluated in Figures 7c-d.
Also, the error is higher the closer the notch to the LZ
boundary. The inclusion of evanescent modes reduces A0
mode conversion and corrects the overall solution.
In general, considering only propagating modes and
comparing the cases of the composite plate with those of the
aluminum plate, higher errors are expected in the composite
due to the higher number of missing evanescent modes.
The absence of evanescent modes has two implications: it is
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Figure 7. Composite plate. S0 incident energy spectra for a 0.4× 0.2 mm (a, c) or 2× 1 mm (b, d) rectangular notch (LZS= 5
mm): a, b) solutions without evanescent modes; c, d) solutions with evanescent modes.

necessary to always ensure a minimum LZ boundary/defect
distance; error in the conservation of energy increases as
the number of missing evanescent modes increases. The
presence of evanescent modes, on the other hand, has two
benefits: it improves the Global-Local numerical solution,
and reduces to a minimum the length of the local zone,
reducing computational costs, as well.

Discussion
In order to provide some rules of thumb, an intense
parametric analysis was carried out for both the aluminum
and composite plates, performing different tests by varying
the LZ-scatterer relations. Results are reported in terms of
the overall error in the total normalized energy. This error
parameter is defined as the cumulative error over the entire
frequency range, obtained by comparing the area under the
numerical effective curve with the expected one:

Err =

nf∑
k=1

|Sk
num − Sk

exp|
Sk
exp

(9)

where nf is the total number of frequency steps, Sk
num

is the effective observed numerical area under the total
normalized energy curve and Sk

exp is the expected area.

Figure 8 and Table 2 summarize the results of the
parametric analyses performed on the aluminum plate for the
following cases:

1. LZ size equal to 5 mm with a centered square defect
having side lengths ranging from 0.4 mm to 1.6 mm
(Fig. 8a and Tab. 2a);

2. LZ size equal to 5 mm with a centered rectangular
defect with an height of 1 mm and length ranging from
1 mm to 4 mm (Fig. 8b and Tab. 2b);

3. LZ size equal to 5 mm with a notch on the top. This
notch has a rectangular shape with width/depth ratio
equal to 2 and depth ranging from 0.2 mm to 1 mm
(Fig. 8c and Tab. 2c);

4. LZ of different lengths with a rectangular notch on the
top having width equal to 2 mm and depth equal to 1
mm. LZ boundary/notch distances range from 2 mm to
6 mm (Fig. 8d and Tab. 2d);

5. LZ of different lengths, with a centered square
defect with sides equal to 1 mm. LZ boundary/notch
distances range from 2 mm to 6 mm (Fig. 8e and Tab.
2e);

6. LZ size equal to 5 mm, with a not centered square
defect with side equal to 1 mm and distances from the
LZ boundary ranging from 0.5 mm to 2 mm (Fig. 8f
and Tab. 2f).

Prepared using sagej.cls



Spada et al. 9

1.6 1.2 0.8 0.4
d [mm]

0

5

10

15

20

25

30

35

Er
ro

r [
%

]
A0 no-evan A0 evan S0 no-evan

(a) (b)

(c) (d)

4 3 2 1
d [mm]

0

5

10

15

20

25

30

35

Er
ro

r [
%

]

1 0.8 0.6 0.4 0.2
d [mm]

0

5

10

15

20

25

30

35

Er
ro

r [
%

]

2 3 4 5 6
d [mm]

0

5

10

15

20

25

30

35
Er

ro
r [

%
]

(e) (f)
2 3 4 5 6

d [mm]

0

5

10

15

20

25

30

35

Er
ro

r [
%

]

0.5 1 1.5 2
d [mm]

0

5

10

15

20

25

30

35

Er
ro

r [
%

]

S0 evan

Figure 8. Aluminum plate. Parametric analysis in terms of total normalized energy error in the case of: a) centered square defect
(LZS= 5 mm), b) centered rectangular defect (LZS= 5 mm), c) rectangular notch on the top (LZS= 5 mm), d) distance from the left
boundary of a 2× 1 mm rectangular notch (varying LZS), e) distance from the left boundary of a centered 1× 1 mm defect (varying
LZS), f) distance from the left boundary of a centered 1× 1 mm defect (LZS= 5 mm).

In Figures 8 and 9 continuous lines refer to cases with
propagating modes only, dotted lines refer to cases including
the evanescent modes. Black lines refer to an A0 incoming

mode, while gray lines refer to an S0 incoming mode. The
parameter of interest is indicated as ‘d’. In all the parametric
studies it was assumed that the acceptable results were those
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Table 2. Aluminum plate, Figure 8 data. Parametric analysis in terms of total normalized energy error in the case of: a) centered
square defect (LZS= 5 mm), b) centered rectangular defect (LZS= 5 mm), c) rectangular notch on the top (LZS= 5 mm), d) distance
from the left boundary of a 2× 1 mm rectangular notch (varying LZS), e) distance from the left boundary of a centered 1× 1 mm
defect (varying LZS), f) distance from the left boundary and a not centered 1× 1 mm defect (LZS= 5 mm).

a) Centered square defect dimensions - Fig. 8a

d [mm] Error without evan [%] Error with evan [%]
A0 S0 A0 S0

1.6 15.09 1.07 0.16 1.49

1.2 10.68 1.78 0.09 2.24

0.8 6.79 0.70 0.04 0.92

0.4 1.71 0.01 0.03 0.18

b) Centered rectangular defect width - Fig. 8b

d [mm] Error without evan [%] Error with evan [%]
A0 S0 A0 S0

4 28.08 21.79 21.05 22.84

3 14.85 8.84 2.96 7.33

2 14.69 3.53 0.49 1.49

1 8.75 0.70 0.07 1.27

c) Rectangular notch depth (width=2*depth) - Fig. 8c

d [mm] Error without evan [%] Error with evan [%]
A0 S0 A0 S0

1 13.67 6.43 2.59 0.85

0.8 8.30 4.61 0.98 0.58

0.6 3.90 2.67 0.40 0.36

0.4 0.85 0.81 0.05 0.11

0.2 0.08 0.07 0.04 0.03

d) LZ boundary/rectangular notch distance - Fig. 8d

d [mm] Error without evan [%] Error with evan [%]
A0 S0 A0 S0

2 11.27 4.36 0.55 0.33

3 6.37 2.39 0.10 0.05

4 2.33 2.03 0.04 0.02

5 1.49 1.29 0.03 0.03

6 1.17 0.69 0.03 0.02

e) LZ boundary/square defect distance Fig. 8e

d [mm] Error without evan [%] Error with evan [%]
A0 S0 A0 S0

2 8.75 0.70 0.07 1.27

3 7.81 0.02 0.03 0.19

4 2.84 0.00 0.04 0.07

5 1.15 0.00 0.03 0.01

6 0.91 0.00 0.03 0.01

f) LZ left boundary/0.8 mm square defect distance - Fig. 8f

d [mm] Error without evan [%] Error with evan [%]
A0 S0 A0 S0

0.5 32.70 24.36 19.08 20.94

1 10.38 8.87 2.09 7.14

1.5 10.07 1.91 0.28 3.00

2 8.75 0.70 0.07 1.27

where the global error was less than 2-3%. However, in the
presence of propagating modes only, this threshold could be
elevated to 5% for acceptable results.
A descending trend of error occurred in all cases as
the d parameter changed from less to more favorable.
Furthermore, higher error values were obtained for the A0
incoming mode with respect to the S0 incoming mode. In
Figure 8a all the cases are almost acceptable, except for
A0 mode without evanescent modes with d greater than 0.4
mm. Figure 8b shows that in the presence of a centered
rectangular defect and an A0 incoming mode the results are
not acceptable for all defect widths, when not considering
evanescent modes. This means that in this case the results
were not acceptable even when the LZ boundary/scatterer
distance was at its maximum for the analyzed defect
geometries (coincident with the plate thickness). For a
S0 incoming mode without evanescent modes or when
evanescent modes are included, the maximum allowable
defect width was 2 mm. In Figure 8c, an acceptable d
parameter is less than 0.8 mm, in the absence of evanescent
modes; in the presence of an evanescent mode, the results are
always acceptable, except for d = 1 mm and A0 incoming
mode, for which they remain acceptable nonetheless. In
the presence of a rectangular notch on the top of the plate

(Fig. 8d) or a centered squared defect with 1 mm long
side (Fig. 8e), without evanescent modes the minimum LZ
boundary/scatterer distance should be at least 4 mm for
A0 incoming mode, 2 mm for S0 incoming mode. Very
good results were always obtained if evanescent modes were
included. The case analyzed in Figure 8f is quite unusual,
since the local zone is normally centered on the defect.
However, it is presented here to investigate the influence of
the LZ boundary scatterer distance, maintaining unchanged
all other geometric parameters. The result shows that a
distance of 2 mm is not sufficient for an A0 incoming mode
using only propagating modes, while a distance of 1 mm can
be considered sufficient if evanescent modes are included. A
distance of 1.5 mm gives acceptable results for an incoming
S0 mode in the absence of evanescent modes, which are
otherwise unacceptable for a distance equal or below 1.5mm,
even with evanescent modes.

These investigations were repeated for the composite
plate, except for the last case. Table 3 reports the values
of the errors obtained in each test, while the corresponding
plots are depicted in Figure 9. In the absence of evanescent
modes errors were in general higher than those obtained
for the aluminum plate, but with an overall trend that can
be regarded as equally descending when tuning the LZ to
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Figure 9. Composite plate. Parametric analysis in terms of total normalized energy error in the case of: a) centered square defect
(LZS= 5 mm), b) centered rectangular defect (LZS= 5 mm), c) rectangular notch on the top (LZS= 5 mm), d) distance from the left
boundary of a 2× 1 mm rectangular notch (varying LZS), e) distance from the left boundary of a centered 0.8× 0.8 mm defect
(varying LZS).

scatterer dimension and/or including the evanescent modes.
With an A0 incoming mode and only propagating modes
included in the analysis the errors were always over the

threshold. This demonstrates that a wider distance is required
from the LZ boundary when the A0 mode is incoming. This
is confirmed by the results shown in Figures 9d-e for a 2× 1
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mm rectangular notch or a 0.8 mm square defect with a
distance of 6 mm from the LZ boundary, where the errors
are nearly acceptable.

With a S0 incoming mode and no evanescent modes, a
centered square defect case resulted as acceptable, if its side
was no more than 0.4 mm long together with a LZ size equal
to 5 mm (Fig. 9a); a centered d× 0.8 mm rectangular defect
was always not acceptable even if d = 1 mm (Fig. 9b); a
rectangular notch with a width/depth ratio equal to 2 was
acceptable if its depth was no more than 0.6 mm with LZ
size of 5 mm (Fig. 9c) or if the distance from the boundary
was at least 4 mm if the notch depth was 1 mm (Fig. 9d);
a 0.8× 0.8 mm centered square defect was acceptable if its
distance from LZ boundary was at least 4 mm (Fig. 9e).
When evanescent modes were included, the only case
showing not acceptable results was a 4× 0.8 mm rectangular
defect and A0 incoming (Fig. 9b), due to the very short
distance from the LZ boundary. Acceptable results were
found in the same case for an S0 incoming mode or for a
3× 0.8 mm rectangular defect (Fig. 9b). For the rest of the
analyzed cases very good results were obtained, always with
an error less than 1%.
In summary, these results suggest that for an aluminum plate
having a thickness of 2 mm, in the absence of evanescent
modes the minimum LZ boundary/defect distance should be
at least equal to 3 times the defect height and in any case
not less than twice the plate thickness. When evanescent
modes are included these values can be halved. For a
composite plate having a thickness of 2 mm, in the absence
of evanescent modes the minimum LZ boundary/defect
distance should be greater than 6-8 times the defect height
and in any case not less than 3-4 times the plate thickness.
When evanescent modes are included these limits can be
assumed to be the same as for aluminum.
To conclude the numerical investigations, two additional
analyses were performed.
The first one was a repetition of the Figure 8b case for a
d = 4mm, using a finer mesh where each finite element had
a halved side, for a total number of elements 4 times the
number of the previous discretization. For an A0 incoming
mode the obtained errors were equal to 29.06% and 22.28%
without or with evanescent modes respectively. For a S0
incoming mode the errors were equal to 21.83% and 23.10%
without or with evanescent modes respectively. These results
confirmed the values obtained with the previous finite
element discretization, from which the initial assumptions
regarding the finite element size can be considered valid.

The second analysis regarded an investigation on the ξh
threshold on the centered 2× 1 mm rectangular defect and
a 2× 0.8 mm rectangular defect for the aluminum and
composite plates respectively, with a LZ size fixed to 5
mm. For the aluminum plate, if no evanescent modes were
considered the error was equal to 14.64% and 3.53% for
A0 and S0 incoming modes, respectively. Under the same
conditions, for the composite plate, the errors were 32.23%
and 16.41% for A0 and S0 incoming modes, respectively.
Table 4 reports the trends of the errors by varying the ξh
threshold, revealing that a threshold equal to 5 represents
an optimal compromise. This value is in fact the one that
ensures a total energy error of less than 2%, confirming other
choices in the literature.

Concluding remarks.

In this paper the role of evanescent modes in Global-Local
analyses of UGW in plates with varying local zone-scatterer
relations has been investigated by improving a numerical
code developed by the same authors in previous works.
The performed studies can be considered at the base for
guidelines on UGW scattering modelling.
All the studies provided energy spectra for A0, S0, or SH0
incident mode, in presence of centered rectangular or square
defects, or rectangular notches. Both an aluminum and a
composite case were analyzed. In this paper only the most
significant cases were presented.
The effect of the evanescent modes has been studied by
varying the distance of the region of interest from the defect
scatterer. The region outside of the global-local boundary is
considered far-field.
The main outcomes of the numerical analyses are here
repeated. The most important outcome suggested by these
analyses is that for an aluminum plate having a thickness of
2 mm, in the absence of evanescent modes, the minimum LZ
boundary/defect distance should be at least equal to 3 times
the defect height and in any case not less than twice the plate
thickness. When evanescent modes are included these values
can be halved. For a composite plate having a thickness of
2 mm, in the absence of evanescent modes the minimum LZ
boundary/defect distance should be greater than 6-8 times the
defect height and in any case not less than 3-4 times the plate
thickness. When evanescent modes are included these limits
can be assumed to be the same as for aluminum.
The absence of evanescent modes has two implications: it is
necessary to always ensure a minimum LZ boundary/defect
distance; error in the conservation of energy increases as
the number of neglected evanescent modes increases. The
presence of evanescent modes, on the other hand, has two
benefits: it improves the Global-Local numerical solution,
and it reduces to a minimum the length of the local
zone, reducing computational costs, as well. If the LZ
size guarantees a minimum distance between the boundary
and the scatterer, only propagating modes are sufficient to
provide a correct solution.
A study on the ξh threshold confirms that the value of
5 used in published works in the literature is the optimal
compromise also for aluminum and composite plates.
Even if mesh effects have not been studied in depth, the
performed test using a refined mesh confirmed that 20 finite
linear elements per wavelength provide sufficiently accurate
results.
The analyses revealed also localized effects in narrow
frequency bandwidths due to internal resonances effects,
particularly with respect to symmetric modes.
Future developments can be devoted to the best selection of
specific evanescent modes in relation to different scatterer
geometries and/or material properties and symmetries. Other
efforts could involve experimental validations on forced
Global-Local solutions employing evanescent modes.
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Table 3. Composite plate, Figure 9 data. Parametric analysis in terms of total normalized energy error in the case of: a) centered
square defect (LZS= 5 mm), b) centered rectangular defect (LZS= 5 mm), c) rectangular notch on the top (LZS= 5 mm), d) distance
from the left boundary of a 2× 1 mm rectangular notch (varying LZS), e) distance from the left boundary of a centered 0.8× 0.8
mm defect (varying LZS).

a) Centered square defect dimensions - Fig. 9a

d [mm] Error without evan [%] Error with evan [%]
A0 S0 A0 S0

1.6 25.72 18.84 0.83 0.10

1.2 27.44 14.69 0.46 0.05

0.8 22.84 12.06 0.37 0.03

0.4 9.75 3.15 0.25 0.03

b) Centered rectangular defect width - Fig. 9b

d [mm] Error without evan [%] Error with evan [%]
A0 S0 A0 S0

4 44.95 19.09 13.70 1.28

3 40.50 16.68 2.97 0.53

2 32.23 16.41 0.78 0.21

1 25.60 13.13 0.37 0.04

c) Rectangular notch depth (width=2*depth) - Fig. 9c

d [mm] Error without evan [%] Error with evan [%]
A0 S0 A0 S0

1 49.05 9.27 0.40 0.10

0.8 41.72 5.94 0.34 0.06

0.6 32.36 4.64 0.31 0.05

0.4 20.87 3.81 0.28 0.05

0.2 11.51 1.55 0.30 0.03

d) LZ boundary/rectangular notch distance - Fig. 9d

d [mm] Error without evan [%] Error with evan [%]
A0 S0 A0 S0

2 39.56 8.28 0.47 0.09

3 27.47 6.58 0.42 0.05

4 16.00 4.75 0.21 0.06

5 8.59 2.93 0.38 0.07

6 7.92 1.65 0.48 0.08

e) LZ boundary/square defect distance Fig. 9e

d [mm] Error without evan [%] Error with evan [%]
A0 S0 A0 S0

2 22.84 12.06 0.37 0.03

3 15.88 6.19 0.57 0.02

4 12.72 2.37 0.31 0.02

5 7.63 1.03 0.25 0.02

6 6.50 0.57 0.50 0.03

Table 4. n° of evanescent modes and errors by varying the selection threshold.

Aluminum Composite

abs(Im(ξh)) 3 4 5 3 4 5

n° of evanescent modes 4 5 6 7 11 13

Error for A0 inc. mode [%] 0.19 0.49 0.49 1.78 0.88 0.78

Error for S0 inc. mode [%] 3.81 3.81 1.49 0.33 0.21 0.21
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