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Abstract
The obesity pandemic is accompanied by increased risk of developing metabolic syndrome (MetS) and related conditions: non-alcoholic
fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH), type 2 diabetes mellitus (T2DM) and cardiovascular (CV) disease
(CVD). Lifestyle, as well as an imbalance of energy intake/expenditure, genetic predisposition, and epigenetics could lead to a dys-
metabolic milieu, which is the cornerstone for the development of cardiometabolic complications. Glucagon-like peptide-1 (GLP-1)
receptor agonists (RAs) and dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RAs promote positive effects on most
components of the “cardiometabolic continuum” and consequently help reduce the need for polypharmacy. In this review, we highlight
the main pathophysiological mechanisms and risk factors (RFs), that could be controlled by GLP-1 and dual GIP/GLP-1 RAs inde-
pendently or through synergism or differences in their mode of action. We also address the evidence on the use of GLP-1 and dual GIP/
GLP-1 RAs in the treatment of obesity, MetS and its related conditions (prediabetes, T2DM and NAFLD/NASH). In conclusion, GLP-1
RAs have already been established for the treatment of T2DM, obesity and cardioprotection in T2DM patients, while dual GIP/GLP-1
RAs appear to have the potential to possibly surpass them for the same indications. However, their use in the prevention of T2DM and
the treatment of complex cardiometabolic metabolic diseases, such as NAFLD/NASH or other metabolic disorders, would benefit
from more evidence and a thorough clinical patient-centered approach. There is a need to identify those patients in whom the
metabolic component predominates, and whether the benefits outweigh any potential harm.
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Introduction

The pandemic proportions of obesity, defined as “abnormal or

excessive fat accumulation that presents a health risk”, have

received major attention.1 Obese patients are at increased risk

of developing metabolic syndrome (MetS) and its related condi-

tions: non-alcoholic fatty liver disease (NAFLD)/non-alcoholic

steatohepatitis (NASH), type 2 diabetes mellitus (T2DM) and

cardiovascular (CV) disease (CVD).2

MetS includes a cluster of several CV risk factors (RFs) that

may lead to CVD and NAFLD-related complications.3 The over-

lap between CV and NAFLD-related RFs (e.g., obesity, dyslipi-

daemia, hypertension, and T2DM), is driving the increase in the

worldwide prevalence of NAFLD.4 The prevalence of NAFLD is

>90% in patients undergoing bariatric surgery (severely obese),

>76% of T2DM patients, and about 70% among CVD patients,

compared with *25% for the global general adult population.5-7

Genetic predisposition, epigenetics, lifestyle, as well as an

imbalance of energy intake/expenditure could lead to a dysmeta-

bolic milieu, which is the cornerstone for the development of both,

NAFLD/NASH and CVD.8-11 In fact, the considerable impact of

dysmetabolism on NAFLD incidence and severity has been

widely recognized and led to the proposal of a nomenclature

change from NAFLD to Metabolic Associated Fatty Liver Dis-

ease (MAFLD).12,13 Given the similar pathophysiology, there is

emerging evidence that medications that can reduce CV morbidity

and mortality (as well as reducing RFs for CVD) could also be

used for the treatment of NAFLD/NASH.14 Furthermore, treat-

ment of NAFLD/NASH must extend beyond the liver disease to

include CVD risk reduction to reduce CVD mortality.14

Following the US Food and Drug Administration’s (FDA)

requirement, since 2008 every new treatment option for T2DM15

is subject to major CV outcome trials (CVOTs).15 Glucagon-like

peptide 1 receptor agonists (GLP-1 RAs) represent significant prog-

ress in the treatment of T2DM patients because they affect a broad

array of CVD RFs through body weight (BW) reduction,16 lipid

level improvement, and positive effects on blood pressure (BP).17

Due to their CVD risk reduction properties,18-23 GLP-1 RAs should

be considered in patients with T2DM and possibly NAFLD.14

Glucose-dependent insulinotropic polypeptide (GIP), the

dominant incretin hormone in healthy individuals, also enhances

meal-stimulated insulin secretion in a glucose-dependent manner;

however, in patients with T2DM insulin secretion after GIP sti-

mulation is diminished.24 Although GIP acts synergistically with

GLP-1 RAs in promoting BW reduction by signaling satiety

through receptors in the hypothalamus, there are also differences

between the action of GIP and GLP-1 RAs.25,26 GIP showed no

effect on glucagon response to hyperglycemia, while it strongly

potentiated insulin secretion.26 In contrast, during hypoglycemic
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and fasting conditions, GIP increased glucagon levels without a

significant effect on insulin secretion.26 In addition, dual GIP and

GLP-1 RAs showed robust effects on glycemic control and mean-

ingful BW loss, indicating their potential use in the treatment of

T2DM.27 This has also raised the question of the possibility of

their use in the treatment of other dysmetabolic conditions such as

NAFLD/NASH.

This review will address the evidence on the use of GLP-1

and dual GIP/GLP-1 RAs for the treatment of obesity/MetS,

prediabetes, NAFLD, T2DM and CV complications. We also

highlight the main pathophysiological mechanisms and RFs

that could be controlled by GLP-1 and dual GIP/GLP-1 RAs.

Literature Search

A PubMed electronic database search was conducted, without

any limitation by publication date. A focus was placed on

clinical studies, especially those published in the last 2 decades.

A combination of Medical Subject Heading (MeSH) terms and

non-MeSH terms was used, including glucagon-like peptide-1

receptor agonists, glucose-dependent insulinotropic polypep-

tide agonists, obesity, nonalcoholic fatty liver disease, nonalco-

holic steatohepatitis, metabolic syndrome, prediabetes, type 2

diabetes mellitus, pathophysiology, and cardiovascular disease.

Reference lists of selected publications were also searched.

Since this was a narrative review, some articles, not retrieved

during this search strategy, were added at the discretion of the

authors if they were considered useful. All selected articles

were in English and were peer-reviewed.

Pathophysiology of GLP-1 Receptor
(GLP-1R) Agonism in Cardiometabolic RFs

GLP-1 binds to G-protein receptors on target tissues: pancrea-

tic a- and b-cells, central and peripheral nervous system, ske-

letal muscle, heart, endothelium, kidneys, lungs, digestive

system, adipose tissue (AT), lymphocytes, and eyes.28 Food

is the strongest stimulus for GLP-1 secretion. GLP-1 exerts

insulinotropic effects through GLP-1R which are dominantly

expressed in b pancreatic cells.29 However, the expression of

GLP-1Rs in other organs is responsible for the extrapancreatic

actions of GLP-1 and its metabolic effects.29,30 When released

into the blood, GLP-1 exerts several physiological effects

(Figure 1): in the pancreas it increases the mass of b-cells and

decreases apoptosis, stimulates glucose-dependent insulin

secretion, reduces glucose-dependent glucagon secretion and

slows gastric emptying, postprandial hyperlipidemia, intestinal

motility, and gastric acid secretion.30-35

The effect of GLP-1 RAs on BW is independent of and

distinct from its effect on plasma glucose levels.36 The

mechanisms for reducing BW are inhibition of gastric empty-

ing and induction of satiety.37 GLP-1 reduces appetite, and

food intake, and increases satiety via GLP-1Rs in the hypotha-

lamus.24,37,38 The action of GLP-1 RA affects meal onset and

energy intake, not energy expenditure.39 The sites of GLP-1R

expression within the central nervous system and consequently

representative targets for GLP-1 action are neurons in the area

postrema, hypothalamus, hindbrain, hippocampus, thalamus,

lateral parabrachial nucleus, nucleus accumbens, vagal afferent

neurons and nucleus tractus solitaries.40

It is not completely clear whether BP and lipid profile

improvement is a direct consequence of GLP-1 RA treatment,

or a result of changes in body composition, BW loss, and/or

better glucose regulation.16 The pathophysiological mechan-

isms responsible for the antihypertensive effect of GLP-1 RAs

have not been fully clarified. Nevertheless, treatment with

GLP-1 RAs affects cardiac performance and peripheral vascu-

lar resistance, which may partly explain their effect on BP.17

In addition, GLP-1R in the kidney can induce natriuresis and

diuresis in the renal proximal tubule, through inhibition of

NHE3 (Naþ/Hþ exchanger isoform 3).41 GLP-1R-induced

natriuresis and diuresis are also accompanied by increases in

glomerular filtration rate and renal plasma flow.41

Apart from the BW loss and positive effect on glucose reg-

ulation, GLP-1 can also influence triglyceride (TG) and total

cholesterol (TC) levels.42 GLP-1R signaling modulates key

enzymes of lipid metabolism in the liver and reverses choles-

terol transport, reduces hepatic TG content (HTGC) and very

low very-low-density lipoprotein (VLDL)-TG production rate

from the liver, and impairs hepatocyte de novo lipogenesis and

b-oxidation.42 Short- and long-term treatment with GLP-1 RAs

reduced fasting and postprandial lipid levels in T2DM patients

as well as in healthy populations.42 There is also evidence that

some GLP-1 RAs can lower the concentration of distinct

atherogenic lipoproteins in plasma43; it is of clinical signifi-

cance that GLP-1 RAs with proven cardiovascular benefit, such

as liraglutide, are able to reduce the levels of small, dense

LDL,44,45 since these particles are associated with the forma-

tion and progression of atherosclerosis.46

In the liver, AT, and skeletal muscle cells, GLP-1 increases

glucose utilization by stimulating glycogen and lipid synthesis

Figure 1. The pleiotropic effects of GLP-1 and GIP. GIP indicates
glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like
peptide 1.
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independent of insulin.47 To date, it is still controversial

whether the liver expresses GLP-1Rs, so, the effects of

GLP-1 on the liver may be mediated indirectly. Indeed GLP-

1 and GLP-1 RAs showed beneficial effects on the liver.48

Some beneficial liver effects include postprandial GLP-1-

mediated insulin secretion and inhibition of hepatic gluconeo-

genesis indirectly via the gut-pancreas-liver axis.48 In addition,

exendin-4 (a peptide with 39 amino acid residues isolated from

the saliva of the Gila monster) or GLP-1 can activate key

signaling molecules downstream of insulin receptor substrate-

2 (a key substrate for insulin signaling in b-cells),48 which

consequently leads to insulin-like effects.

Numerous CV trials have reported improvements in CV

outcomes in patients treated with GLP-1 RAs.49,50 GLP-1 has

pleiotropic CV effects, including anti-inflammatory effects,

cardioprotection in ischemia, and decreased platelet aggrega-

tion.38 In addition, activation of GLP-1R resulted in various

anti-atherosclerotic effects, e.g., reversing endothelial dysfunc-

tion (stimulates nitric oxide [NO] production and endothelial

NO synthase [eNOS] activation, eliciting vasorelaxation in

arterial endothelium), improving vascular smooth muscle cell

dysfunction, reducing macrophage inflammation and foam cell

formation, inhibiting NLRP3 (Nucleotide-Binding Domain,

Leucine-Rich-Containing Family, Pyrin Domain-Containing-

3) inflammasome and improving cardiomyocyte/cardiac fibro-

blast dysfunction.51,52 They also influence hypertension

through renal and non-renal mechanisms.30,53 Based on the

above mentioned cardiometabolic effects of GLP-1 RAs, these

drugs are likely to be increasingly used to treat cardiometabolic

disorders, other than DM.

Pathophysiology of GIP Receptor (GIPR)
Agonism on Cardiometabolic RFs

GIP exerts important biological effects in many tissues, some

of which remain to be explored (Figure 1). In addition to the

pancreas, the human GIPR is widely distributed in AT, intes-

tine, bone, and trachea, and is also detected in smaller amounts

in the brain, heart, spleen, thymus, blood cells, lungs, and kid-

neys.54 In the pancreas, it mediates its insulinotropic effects

like GLP-1, but unlike GLP-1, GIP acts as a bifunctional sta-

bilizer of blood glucose and stimulates glucagon secretion at

lower glucose concentrations.55,56 Some effects of GIP differ

from GLP-1: under conditions of insulin resistance (IR); it

promotes lipid deposition in mice subcutaneous fat cells, it

does not affect gastric emptying, and its effect on blood glucose

is impaired in chronic hyperglycemia.24,57-59

The reports on the role of GIP and GIPR in regulating BW

make it an interesting target for addressing obesity. Obesity

leads to GIP resistance in AT and a decrease in GIPR, whereas

BW loss leads to an increase in GIPR and improves GIP activ-

ity.60-62 In mice models, GIPR deficiency protects against diet-

induced neuronal leptin resistance, a key problem in obesity.63

A centrally administered antibody that neutralizes GIPR was

effective against obesity in obese mice, therefore antagonism

of GIP could be a therapeutic approach to prevent obesity.63

However, the metabolic benefits of GIP antagonism have not

yet been tested in humans.64 Paradoxically, studies have shown

that GIPR agonism and antagonism have similar effects on BW

and glucose tolerance.65 The effect of GIP on the hypothalamus

and food intake is not clear, but in recent years hybrid mole-

cules have been developed that promote greater BW loss than

GLP-1 RAs alone by activating GIPR.66,67 However, GIP is

another incretin that may enhance the metabolic effects of

GLP-1 through complementary or synergistic actions. Surpris-

ingly, when GIP was combined with GLP-1 and glucagon,

glycemic control in obese mice improved, as did BW loss and

reversal of NASH.67,68

The effect of GIP on arterial hypertension is still under investi-

gation. Patients with peripheral arterial disease have an increased

GIP concentration, which correlates with peripheral arterial disease

independently of diabetes mellitus (DM), CVD, age, sex, body

mass index (BMI), hypertension, and smoking.69 These observa-

tions identified GIP as a counterregulatory vasoprotective

peptide.69

GIP plays an important role in human lipid metabolism.70,71 Fat

is the most potent nutrient that stimulates the release of GIP in

humans.72,73 Results have shown that GIP plays a physiological

role in promoting lipid deposition in AT in response to overeating

by increasing lipoprotein lipase activity.74,75 On the other hand,

GIP has been shown to reverse the accumulation of TG in AT,

liver, and muscle.76 Interestingly, GIP is a mediator of the increased

TG storage in AT that leads to BW gain and obesity.24,51

The presence of GIPR in the liver is controversial. It is also

known that GIP mediates the development of fatty liver in

response to the consumption of high glycemic index foods.77

Studies in animal models suggest that GIP promotes the deposi-

tion of lipids in the liver, and GIP release/signaling mediates

the development of fatty liver in response to high intake of

carbohydrates, particularly sucrose.78

The role of GIP in CVD is still unclear.79,80 In vitro, GIP can

exhibit both pro-atherogenic (e.g., endothelin-1 production in

vascular endothelial cells) and anti-atherogenic properties

(enhancement of nitric oxide [NO] production, inhibition of

cell proliferation in vascular smooth muscle cells, and suppres-

sion of inflammatory processes in adipocytes, macrophages,

and monocytes).81-83 In animal studies, GIP also increases

hormone-sensitive lipase and cardiac TG.79 Human studies

showed that GIP increases heart rate,84-87 NO levels,88,89 inter-

leukin (IL)-6, IL-1b, monocyte chemoattractant protein 1,90

vascular adhesion molecule-1 in blood and epithelium,91 and

stimulates osteopontin expression in the vasculature via

endothelin-1.92 It could lead to the progression of atherosclero-

sis in obese humans but prevent plaque formation in mice.93,94

In addition, in vivo, pharmacological concentrations of GIP

are likely to be protective against atherosclerosis in both, DM

and non-DM patients.81 However, the question arises whether

GIPR agonism or antagonism has CV benefits in humans.

There is a need for further clarification.

Effects of GLP-1 RAs and GIPR agonists on dysmetabolic

milieu/diseases are shown in Figure 2.
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GLP-1 RAs and Dual GIP/GLP-1 RAs in the
Treatment of Non-Diabetic Obesity and
Pre-Diabetes—Current Evidence

Obesity is phenotypically diverse, with some proportion of obese

individuals who are metabolically healthy, without BP- or lipid-

lowering medication, and with no abnormalities in insulin

action.95 However, in most individuals, obesity is closely associ-

ated with IR, the key pathophysiological driver of disturbed

glucose-metabolism and a CV RF.96 BW loss has benefits regard-

less of whether the pathophysiological origin of T2DM is b-cell

dysfunction or IR.97 While insulin-resistant individuals benefit

most from BW loss, in patients with a primary defect in b-cell

function, BW reduction might reduce b-cell gluco-lipotoxicity

and minimize pharmacotherapy requirements.97

Moderate weight loss of 5% to 10% is encouraged for gly-

cemic and cardiometabolic RF control.98 However, sustained

loss of at least 15% BW has a major effect on the progression of

T2DM, inducing remission in a large proportion of patients and

markedly improving metabolic status.99

Achieving the desired BW loss is extremely challenging and

pharmacotherapy can be used in this setting. Treatment of obesity

based on GLP-1 RAs proved to decrease morbidity and mortality

in the adult population.100 Two agents of the GLP-1 RA class are

approved by one or more regulatory authorities worldwide for

chronic BW management (liraglutide 3.0 mg subcutaneously

(SC) and semaglutide 2.4 mg SC), in individuals without

DM.97 The remaining GLP-1 RA are recognized to promote

BW loss while primarily prescribed for their glucose-lowering

actions. Only exenatide, liraglutide, and semaglutide have been

studied for their role in prediabetes progression in patients with

obesity.101,102 Obesity may also complicate type 1 DM (T1DM)

and “obese-induced insulin resistance” in T1DM children could

be the main “driver” for NAFLD development.103

Exenatide and liraglutide have been studied in these patients

who also have suboptimal glycemic control or obesity;

consistent BW loss was demonstrated.104 Dual agonists com-

bining GLP1 with GIP are in the pipeline for obesity manage-

ment and their potential role in T2DM.105 Due to impressive

BW loss in nondiabetic obese, who received tirzepatide, this

agent will presumably affect T2DM risk and reversion of pre-

diabetes.106 The dual GIP/GLP-1 RAs, directly and indirectly,

improve white AT function and ectopic lipid accumulation and

subsequently whole-body insulin sensitivity.107

Exenatide

Exenatide, the first approved GLP-1 RA, was developed for the

treatment of T2DM. In this category of patients, in addition to its

glucose-lowering effects, exenatide has shown significant

improvement in many cardiometabolic parameters, including

endothelial function and subclinical atherosclerosis.108 Exenatide

was also studied in nondiabetic patients with obesity and patients

with prediabetes (with impaired fasting glucose [IFG] or impaired

glucose tolerance [IGT]) for its effects on BW and glucose toler-

ance. Exenatide-treated (10 mg SC with a 4-week 5 mg dose-

initiation period) participants lost 5.1 + 0.5 kg from baseline

versus 1.6 + 0.5 kg with placebo (P < .001), and the placebo-

adjusted difference in percent BW reduction was�3.3% + 0.5%
(P < .001). Consequently, after 24 weeks, 77% of patients with

prediabetes returned to normoglycemia, compared with 56% of

patients treated with placebo.101 Another study targeted BW loss

in nondiabetic women with short exenatide intervention and

demonstrated that a subset of women had a robust response to

exenatide treatment (30% of subjects who lost �5% BW), while

the other 30% even gained BW.109

Liraglutide

Liraglutide was the first GLP-1 RA approved by the FDA and

the European Medicines Agency (EMA) specifically for BW

loss (ranging from 5%-10% reduction of initial BW). In a

Figure 2. Effects of GLP-1 RAs and GIPR agonists on dysmetabolic milieu/diseases. CNS indicates central nervous system; CVD, cardiovascular
disease; GIP, glucose-dependent insulinotropic polypeptide; GLP-1 RAs, glucagon-like peptide 1 receptor agonists; IR, insulin resistance; MetS,
metabolic syndrome; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; SAT, subcutaneous adipose tissue; T2DM,
type 2 diabetes mellitus.
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network meta-analysis, liraglutide 3.0 mg SC was associated

with significant excess BW loss versus placebo at 1 year �5.3

kg (95% confidence interval [CI]: �6.06 to �4.52 kg).110

The SCALE (Effect of Liraglutide on Body Weight in Non-

diabetic Obese Subjects or Overweight Subjects With Co-mor-

bidities) trial aimed to evaluate the efficacy and safety of 3.0

mg of liraglutide administered once-daily SC in overweight or

obese adults who did not have DM at baseline.111 Patients (n¼
3731; 56-week duration) treated with liraglutide lost 8.4 + 7.3

kg, while those in the placebo group lost 2.8 + 6.5 kg of BW

(95% CI: �6.0 to �5.1 kg; P < .001).111 In addition, fewer

patients in the placebo group achieved at least 5% of BW loss

from the baseline, compared with patients treated with liraglu-

tide (27.1% vs 63.2%, P < .001). Besides the BW loss of 8.0%
+ 6.7%, patients in the liraglutide group had improvements in

beta-cell function and insulin sensitivity. Furthermore, T2DM

developed in more patients in the placebo group than in the

liraglutide group during the course of treatment.111 One of 4

trials in the SCALE program targeted individuals (n ¼ 2254)

with prediabetes with the primary outcome: duration to the

onset of DM. Over 160 weeks of treatment with liraglutide

showed greater BW loss compared with placebo (�6.1% vs

�1.9%, P < .0001), and the time to onset of DM among all

randomized individuals was 2.7 times longer with liraglutide

than with placebo (95% CI: 1.9-3.9, P < .0001), resulting in a

hazard ratio (HR) of 0.21 (95% CI: 0.13-0.34).112 Only 3% in

the liraglutide-treated group developed DM by the end of the

trial, compared with 11% in the placebo group. The main find-

ing was highly prevalent prediabetes to normoglycemia con-

version in the liraglutide group; 66% versus 36% in the placebo

group (P < .0001).112

In accordance with this finding, an earlier, but a small, double-

blind study of liraglutide 1.8 mg SC versus placebo that included

older individuals (n ¼ 68) with overweight/obesity and predia-

betes, demonstrated that 75% of individuals treated with liraglu-

tide achieved normal fasting glucose compared with 19% on

placebo.113 Peripheral IR, as opposed to hepatic IR, was directly

measured (with the modified version of the insulin suppression

test) at baseline and after 14 weeks of liraglutide or placebo

demonstrated that BW loss achieved with liraglutide was associ-

ated with a significant 29% improvement in IR.113

Semaglutide

Semaglutide, the most recently approved once-weekly (OW)

GLP-1 RA, has been associated with pronounced BW loss in

combination with dietary and physical activity counsel-

ing.102,114-116 The STEP (Semaglutide Treatment Effect in People

with Obesity) trial program supported a market authorization

approval for semaglutide for obesity treatment.102,115,116

The STEP-1, a double-blind trial (n ¼ 1961 adults),

included either patients with obesity or overweight patients

with at least one CV RF, who did not have DM.102 After ran-

domization (in a 2:1 ratio) enrolled patients were treated with

semaglutide (2.4 mg, OW SC) or placebo, plus lifestyle inter-

vention, for 68 weeks. Treatment with semaglutide was

associated with sustained, clinically relevant �14.9% mean

change in BW from baseline.102 In addition, treatment with

semaglutide showed greater BW loss, from baseline to week

68, compared with patients in the placebo group (�15.3 vs

�2.6 kg; 95% CI: �13.7 to �11.7). Weight loss of 15% or

more of initial BW was achieved in 50.5% of patients treated

with semaglutide and 4.9% of patients treated with placebo

(P < .001).102 In the exploratory endpoints, the authors

noted that 84.1% of participants in the semaglutide group who

had prediabetes at baseline, as compared with 47.8% of parti-

cipants in the placebo group with prediabetes reverted to

normoglycemia.102

In the STEP-3 trial (n ¼ 611 patients with obesity/overweight

plus one additional CV RF, without DM; randomized double

blind), treatment with semaglutide (2.4 mg, OW SC) compared

with placebo showed significantly greater estimated mean BW

change from baseline to week 68 (�16.0% vs �5.7%, 95% CI:

�12.0 to�8.6; P < .001).116 Weight loss of 15% or more of initial

BW was achieved by 55.8% of patients treated with semaglutide

and 13.2% of patients treated with placebo (P < .001).116

In the STEP-4 trial, after a 20-week run-in period (semaglutide,

2.4 mg OW SC), Rubino et al115 demonstrated that maintaining

semaglutide treatment compared with switching to placebo

showed continued BW reduction during the next 48 weeks (mean

BW change �7.9% in the semaglutide group vs þ6.9% with the

switch to placebo, P < .001).

Daily SC semaglutide (doses from 0.05 to 0.4 mg) versus

liraglutide (3.0 mg) and placebo for the treatment of non-

diabetic obesity over 52 weeks led to the following estimated

mean percentage BW reductions; �6.0% (0.05 mg), �8.6%
(0.1 mg), �11.6% (0.2 mg), �11.2% (0.3 mg), and �13.8%
(0.4 mg) for the semaglutide group versus �2.3% BW loss for

the placebo group. Mean reductions in BW for 0.2 mg or more

of semaglutide were all significantly greater than with liraglu-

tide (�13.8% to �11.2% vs �7.8%). Estimated BW loss of

�10% occurred in 37% to 65% of participants receiving

�0.1 mg of semaglutide.114

The STEP 1, 3, and 4 trials102,115,116 collectively included a

large cohort of adults with prediabetes (n ¼ 1536) and provide

robust data on the effects of semaglutide on normoglycemia con-

version during the 68 weeks of treatment. Among participants

with baseline prediabetes, significant improvements in glucose

metabolism and a high likelihood of normoglycemia were proven

(STEP 1, 84.1%; STEP 3, 89.5%; STEP 4, 89.8%).117

Tirzepatide

A novel dual GIP/GLP-1 RA, tirzepatide (39-amino acid syn-

thetic peptide), was developed for the treatment of T2DM,

obesity/overweight with weight-related comorbidities,

NAFLD/NASH, CV complications in T2DM, and heart failure.

Its efficiency and safety led, in May 2022, to the first approval

in the USA for improving glucose-regulation in T2DM

patients.118(p202) Furthermore, in October 2022, the FDA

granted tirzepatide a Fast Track designation for the treatment

of obesity and overweight.119
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The SURMOUNT (A Study of Tirzepatide in Participants

With Obesity or Overweight) trials were designed to test the

ability of tirzepatide to produce BW loss in people who are

overweight/obese but do not have DM. Recently, the

SURMOUNT-1 trial (n ¼ 2539 obese/overweight patients

without DM, randomized double-blind phase 3 trial; duration

72 weeks) was published and showed that treatment with tirze-

patide (5, 10, and 15 mg, OW SC) induced substantial and

sustained BW loss (the mean percentage change in BW

�15.0%, �19.5%, �20.9%, respectively). This was statisti-

cally significant when compared with placebo (mean percent-

age change in BW �3.1%) (P < .001).106 The percentage of

patients who had BW loss of �20% was 50% (95% CI: 46-54)

in the 10 mg and 57% (95% CI: 53-61) of patients in the 15 mg

groups, compared with 3% in patients treated with placebo (P <

.001 for all).106 Furthermore, most of the prediabetes patients

(95.3%) at baseline, treated with tirzepatide, had reverted to

normoglycemia, when compared with 61.9% of patients treated

with placebo.106 Tirzepatide improved markers of beta-cell

function and insulin sensitivity, and analysis of homeostasis

model assessment-estimated (HOMA)-IR suggests that only

20% to 30% of the improvement in insulin sensitization by

tirzepatide is due to BW loss, suggesting dual receptor agonism

confers distinct mechanisms regarding glycemic control.120

The antiobesity potential of GLP-1 and dual GIP/GLP-1

RAs in obese nondiabetic patients and individuals with predia-

betes is summarized in Table 1.

Considerations Regarding Potential Clinical
Use of GLP-1 and Dual GIP/GLP-1 RAs for the
Treatment of Prediabetes in the Obese:
Simplicity, Safety, and Tolerability

Since GLP-1 and GIP signaling is impaired in obesity and

T2DM, restoring these mechanisms with incretin-based therapies

is a reasonable option. Furthermore, the GLP-1 RA proven

improvements in b-cell function in both preclinical studies and

short-term clinical studies are promising for individuals with

prediabetes. However, since T2DM prevention can be achieved

by intensive lifestyle modification alone122 and since lifestyle

modifications provide better long-term effects than medica-

tions,123 tolerability and safety profile of potential pharmacother-

apy should be thoroughly considered before clinical use. Several

pharmacologic interventions besides GLP-1 RA have been

shown to lower the incidence of T2DM in specific populations:

metformin,122 acarbose,124 rosiglitazone,125 insulin glargine126

and testosterone.127 Up to now, no pharmacologic agent has been

approved by the FDA specifically for T2DM prevention. How-

ever the use of metformin is encouraged in specific high risk

populations by the American Diabetes Association.98

A Cochrane database systematic review investigating the

prevention or delay of T2DM with GLP-1 RA use included 7

trials with 2702 participants at increased risk for developing

T2DM.128 The analysis found limited-quality evidence that at-

risk patients taking GLP-1 RAs are less likely to progress to

DM (number needed to treat (NNT) ¼ 23). More individuals

who received GLP-1 RA had serious adverse events than those

who received placebo, 15.1% versus 12.7% (RR 1.18, 95% CI

0.94-1.47); absolute risk increase ¼ 2.4%; number needed to

harm (NNH)¼ 42. No comparisons among the different GLP-1

RA could be made because of the small number of participants

for some GLP-1 RA class members.128 The potential of a DM

prevention intervention lies predominantly in the BW loss

achieved by individuals at risk of T2DM.129 It is also likely

that some sub-phenotypes of individuals with prediabetes may

benefit more of GLP-1 RAs rather than other therapeutic

agents, and this highlights the importance of a more tailored

approach for screening, prevention and management.130 There-

fore, further long-term comparative studies of interventions

with novel potent anti-obesity medications of the GLP-1 RA

class are needed to identify any differences in intervention

effects.123

GLP-1 RA for Weight Control in DM Patients

All GLP-1 RA class agents have proven efficacy in both, glu-

cose control and concurrent clinically relevant BW reduction in

patients with T2DM.131 However, patients with T2DM have

more difficulty in losing BW compared with individuals with-

out DM,132 and the mean BW loss difference between GLP-1

RAs and placebo in patients with and without DM was 4% to

6.2% versus 6.1% to 17.4%, respectively.132

Trujillo et al133 rated the drug members according to BW

lowering potency in the following order: semaglutide > liraglu-

tide > dulaglutide > exenatide extended-release ¼ exenatide

(twice daily) ¼ lixisenatide. In addition, a meta-analysis rated

SC semaglutide as the most potent in reducing BW, followed

by oral semaglutide, exenatide twice daily and liraglutide, in

patients with T2DM.134

Liraglutide

In the SCALE Diabetes, among patients with T2DM who are

overweight/obese, liraglutide treatment led to a more signifi-

cant BW reduction, 6.0% (3.0 mg SC daily) and 4.7% (1.8 mg

SC daily) when compared with placebo (estimated treatment

difference [ETD]: �4.00% and �2.71%; P < .001 for both).135

BW reduction 10% or more occurred in 25.2% and 15.9%
versus 6.7% of patients treated with liraglutide 3.0 mg and

1.8 mg SC versus placebo (P < .001 and P ¼ .006, respec-

tively).135 Furthermore, in the SCALE Insulin randomized con-

trolled trial (n ¼ 396 T2DM patients with obesity treated with

insulin) liraglutide (3 mg SC daily) as an adjunct to intensive

behavioral therapy induced greater BW reduction when com-

pared with placebo (mean BW change: �5.8% vs �1.5%,

ETD: �4.3% [95% CI �5.5 to �3.2]; P < .0001).121

Semaglutide

In the STEP-2 trial (n ¼ 1210 patients with T2DM,

phase 3, double-dummy and double-blind superiority study,

Muzurović et al 7
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BMI�27 kg/m2) treatment with semaglutide (2.4 mg OW SC),

compared with placebo, resulted in 6.2% ETD in mean BW

loss (P < .0001).136 In addition, after 68 weeks of the treatment,

68.8% of patients in the semaglutide (2.4 mg) group achieved

BW reduction of �5%, compared with 28.5% of patients in the

placebo group (odds ratio [OR]: 4.88, P < .0001).136 It is

important to mention that patients treated with insulin were

excluded from the STEP-2 trial.136

In the SUSTAIN-7 trial, semaglutide (1.0 mg OW SC)

showed a significantly higher potency for BW reduction com-

pared with dulaglutide (1.5 mg OW SC) in patients with T2DM

(6.5 vs 3.0 kg, ETD �3.55 kg; P < .0001).137

Tirzepatide

Tirzepatide is being investigated in the SURPASS (A Study of

Tirzepatide in Participants With Type 2 Diabetes Not Con-

trolled With Diet and Exercise Alone) phase 3 clinical trial

program.138 A 5 mg dose led to 7.6 kg (8.2%) BW loss, a 10

mg dose led to 9.3 kg (9.3%) and a 15 mg dose led to 11.2 kg

(11.9%) BW loss over 40 weeks, in the SURPASS-2 study (n¼
1879), and the reductions in BW were dose-dependent.139

Reductions in BW were greater with tirzepatide at all doses

(5, 10, or 15 mg, OW SC) than with semaglutide at a dose of 1

mg, with ETD �1.9,�3.6, and �5.5 kg, respectively (P < .001

for all).139 In addition, approximately 8% of patients treated

with semaglutide (1 mg OW SC) achieved a BW loss of�15%,

compared with 15%, 24%, and 36% of patients treated with

tirzepatide at doses of 5, 10, and 15 mg, respectively.139

The SURMOUNT-2 trial, designed to test the ability of

tirzepatide to produce BW reduction in participants with obe-

sity who also have T2DM, is ongoing and is expected to be

published in the first half of 2023.

Other Components of MetS: BP and Lipid
Levels

The importance of CV RF is best illustrated by the fact that a

10 mmHg decrease in systolic BP reduces CVD risk by 11%,140

while a 1 mmol/L lowering in low-density lipoprotein choles-

terol (LDL-C) reduces the annual rate of CVD by approxi-

mately 20% in very diverse groups of patients.141

Although determining the isolated (independent of glycemic

and BW reduction or changes in body composition) effects of

GLP-1 RA on lipid levels and BP, requires well-designed stud-

ies, expert opinions confirm positive, but moderate effects on

lipid levels and BP.17 According to a 2018 narrative review of

head-to-head trials of 6 GLP-1 RA,142 the greatest statistical

difference in BP was 2.7 mmHg (liraglutide resulted in a sig-

nificantly greater decrease from baseline in systolic BP com-

pared with dulaglutide).143 Semaglutide 1.0 mg SC once

weekly (OW) also significantly decreased systolic BP com-

pared with exenatide 2 mg SC OW with a difference of

2.4 mmHg.144 For diastolic BP, no significant between-

treatment differences were reported in any of the included

trials.142 The most recent GLP-1 RA, oral semaglutide (that

was not included in the previously mentioned review) demon-

strated reductions of systolic BP (�2 [�5 to 0] mmHg; P ¼
.07) compared with placebo.145

Several large as well did some smaller dedicated GLP-1 RA

clinical trials collected lipid data as secondary outcomes prov-

ing favorable effects on lipoprotein metabolism, with modest

LDL-C, total cholesterol (TC), and fasting TG lowering. Some

have also demonstrated substantial blunting of the postprandial

rise in serum TGs146 Postprandial hypertriglyceridemia is a

potential risk predictor of atherosclerotic CVD even in the

presence of normal fasting TG levels.147,148 Its relevance is

further enhanced because of the assumption that postprandial

rise in serum TGs is a contributor to residual vascular risk

despite aggressive LDL-C lowering.147,148 Notably, in a real-

world prospective study involving obese T2DM patients, the

reduction in triglyceride levels by liraglutide was the main

contributor of the reduction in subclinical atherosclerosis, high-

lighting the importance of the triglycerides-lowering effect by

GLP-1 RAs for vascular risk reduction.149

One of the first double-blinded, randomized, placebo-

controlled, crossover studies examining the lipid-lowering

effect of GLP-1 RA was conducted in 35 subjects with IGT

or recent-onset T2DM. It demonstrated the effect of a single SC

injection of exenatide on postprandial lipids, remnant lipopro-

teins, and apolipoproteins. Exenatide reduced postprandial

lipid and lipoprotein levels without the reduction in BW or

fasting glucose and TG levels that usually occur with prolonged

therapy.150 In a recent first randomized trial, that addressed the

possible effects of antidiabetic interventional drugs such as

GLP1 RAs on endothelial and arterial stiffness indexes as sur-

rogate markers of vascular damage, subjects treated with dula-

glutide showed significantly lower values of mean serum TC

and LDL-C.151

Oral semaglutide at the highest dose improves the fasting

lipid level profile compared with placebo; it demonstrated a

modest, but superior reduction in TC, LDL-C, and most pro-

nounced reduction (OR 0.90 [0.83 to 0.99] in triacylglycerols

(oral semaglutide 14 mg).145 Compared with another GLP-1

RA (liraglutide), oral semaglutide was not significantly differ-

ent.145,152 A randomized clinical trial is currently investigating

the direct and indirect anti-atherosclerotic mechanisms of oral

semaglutide, including its effect on the full spectrum of plasma

lipids and lipoproteins.153

Tirzepatide and any further dual GLP-1/GIP RAs that could

be developed seem to be promising options for lipoprotein

profile improvement in patients with T2DM. Tirzepatide

dose-dependently decreased TG over time compared with pla-

cebo and dulaglutide, tirzepatide 5, 10, and 15 mg decreased

TG levels by 28.8%, 37.7%, and 41.4%, respectively, com-

pared with placebo.154 It is speculated that the relative treat-

ment effect would not be different regardless of the

participant’s baseline CV risk level, since similar changes in

CV surrogate markers (BP and lipoproteins) by tirzepatide

were observed in studies, that included participants with either

high or moderate CV risk.155 The SURMOUNT-1 trial demon-

strated that in nondiabetic obese treatment with tirzepatide

Muzurović et al 9



(5, 10, and 15 mg, OW SC) induced substantial placebo sub-

tracted change in systolic and diastolic BP (�6.2 and �4.0

mmHg, accordingly) and �20.3% change in TG level.106 The

reductions in BP and lipid levels of GLP-1 RA and dual incretin

agonists cannot be directly translated into CV outcomes and

seem to be complementary to other protective pleiotropic

actions of this drug class.

GLP-1 RAs in the Treatment of NAFLD/
NASH

The association of NAFLD and NASH with obesity and T2DM

encouraged the investigation of the effect of GLP-1RAs in

animal and human models of NAFLD/NASH.156,157 The fact

that GLP-1RAs lead to improvement in hepatic steatosis

through weight loss has been reported.158,159 However, experi-

mental evidence based on both, animal models and human

hepatocytes, have shown that GLP-1RAs may also play a direct

role in ameliorating hepatic steatosis (by reducing de novo

lipogenesis), mediated by the activation of genes associated

with insulin sensitivity and fatty acid b-oxidation and

improving several elements of the insulin signaling path-

ways.88,158,160,161 In patients with NAFLD/NASH, glucose-

induced GLP-1 secretion is deficient, while GIP secretion is

preserved.162

The beneficial effects of GLP-1 RAs on the individual his-

tological scores of NASH are multifactorial, due to the com-

bined indirect effects on IR/hyperglycemia and BW reduction,

as well as the result of a direct beneficial effect on the liver

(regardless of weight loss and hyperglycemia).163 These direct

effects are fundamental for the establishment of GLP-1 RAs as

a treatment option for NAFLD/NASH in patients in whom the

fatty liver disease is not mainly driven by obesity.164

Nevertheless, the presence or absence of GLP-1R in hepa-

tocytes is controversial.34,160,165,166 GLP-1 increases glucose

utilization in the liver, skeletal muscle, and AT by inducing

glycogen and lipid synthesis independently of insulin level.47

On the other hand, GLP-1RAs can stimulate lipolysis, AT

browning, and pre-adipocyte differentiation.34 Liraglutide and

exenatide showed antioxidant effects via the c-Jun N-terminal

kinase pathway or upregulation of protective antioxidant

enzymes.161 GLP-1RAs attenuate endoplasmic reticulum stress

responses by suppressing apoptosis.167 In addition, GLP-1 RA

exenatide attenuated fatty liver by activating sirtuin 1, an

upstream regulator of adenosine monophosphate-activated pro-

tein kinase in hepatocytes, supporting the rationale for GLP-1-

based NAFLD/NASH therapy.168 Preclinical studies that

recruited patients with NASH suggested that GLP-1 RAs might

reduce hepatic inflammation through mechanisms that are at

least partly independent of weight loss.156 Mechanistically, as

hepatocytes, stellate cells, and Kupffer cells do not express the

canonical GLP-1R, the actions of GLP-1 on the liver are pri-

marily indirect.

Exenatide may be an effective treatment for reducing hepa-

tic fat content in patients with T2DM and obesity, but these

effects are mainly dependent on BW reduction.169 In a study

(n ¼ 44 patients with T2DM and obesity, HTGC was assessed

with MRI and proton MRI spectroscopy, at baseline and 26

weeks after). In patients treated with exenatide, HTGC reduc-

tion was significantly related to body weight reduction (r ¼
0.47, P ¼ .03), but was not associated with an improvement in

IR, glycated hemoglobin level or adiponectin.169

Armstrong et al in a randomized, double-blinded, multicen-

ter, placebo-controlled phase 2 study evaluated SC injections

of liraglutide (1.8 mg daily) versus placebo in patients who are

overweight and showed clinical evidence of NASH.170 Treat-

ment with liraglutide led to histological resolution of NASH

and was well tolerated and safe. After treatment, 39% of

patients who were treated with liraglutide and underwent

end-of-treatment liver biopsy had resolution of definite NASH

versus 9% of patients treated with placebo (relative risk [RR]

4.3, 95% CI: 1.0-17.7; P ¼ .019).170 However, the LEAN

(Liraglutide Efficacy and Action in NASH) trial suggested that

liraglutide should be started early during the course of NAFLD,

since in NASH patients with advanced fibrosis, it might not be

useful.170 In women (n ¼ 72) with polycystic ovary syndrome

(a well-known IR state), treatment with liraglutide promoted

BW loss (�5.2 kg [5.6%]), reduced liver fat content (LFC) (by

44%) and showed reduction of the NAFLD prevalence by two-

thirds (P < .01 for all).171

Katsiki et al in 2017 emphasized the need for investigation

of the effects of semaglutide in patients with NAFLD.172 In a

randomized, double-blind, placebo-controlled trial, liver stiff-

ness was evaluated by MRI elastography and LFC by MRI

proton density fat fraction [MRI-PDFF]); treatment with sema-

glutide significantly reduced LFC compared with placebo (P <

.0001) but did not change liver stiffness in patients with

NAFLD.173 In patients with T2DM and obesity, semaglutide

significantly reduced ALT activity and high-sensitivity C-

reactive protein (hsCRP) levels.174 Summarized data collected

from CV and weight outcome trials showed that at the end-of-

treatment ALT activity reductions were 6% to 21% (P < .05 for

doses �0.2 mg/day).174 The results of the meta-analysis

showed that semaglutide, when compared with other GLP-

1RAs liraglutide and dulaglutide was superior in decreasing

the AST activity.175 Newsome et al176 evaluated the effects

of semaglutide treatment in the resolution of NASH without

worsening of fibrosis (n ¼ 320 patients with biopsy-proven

NASH and liver fibrosis of stage F1, F2, or F3). NASH reso-

lution was achieved in 40%, 26% and 59% in the semaglutide

0.1-, 0.2-, and 0.4 mg groups versus 17% in the placebo group

(P < .001 for semaglutide 0.4 mg SC vs placebo).176

Treatment with dulaglutide improved AST, ALT, and

gamma-glutamyl transferase (GGT) activity when compared

with placebo, in a pattern consistent with LFC reductions.177

Kuchay et al178 in their study (n ¼ 64 patients with T2DM and

MRI-derived proton density fat fraction-assessed LFC of

�6.0% at baseline) evaluated the effects of dulaglutide treat-

ment (OW for 24 weeks) on LFC. Treatment with dulaglutide

significantly reduced GGT levels (mean between-group differ-

ence �13.1 U/l, P ¼ .025) compared with controls, but there

were no significant reductions in ALT, AST activity and

10 Journal of Cardiovascular Pharmacology and Therapeutics



change in liver stiffness measurement (LSM in kPa) (P¼ .10, P

¼ .075, and P ¼ .123, respectively).178 In addition, in patients

with NAFLD dulaglutide significantly reduced LFC (control-

corrected absolute change in LFC �3.5%, P ¼ .025; relative

change of �26.4%, P ¼ .004), corresponding to a 2.6-fold

greater reduction compared with controls.178

Recent meta-analyses163,179-181 reported that GLP-1 RAs

(mostly semaglutide and liraglutide) are highly promising

pharmacological agents in the treatment of NAFLD or NASH.

In the meta-analysis by Mantovani et al (n ¼ 2597 individuals,

10 studies, included T2DM patients treated with GLP-1 RAs)

treatment with semaglutide or liraglutide, as well as treatment

with pioglitazone promoted resolution of NASH without wor-

sening of fibrosis. GLP-1 RA treatment improved some of the

NASH histological features, such as steatosis, lobular inflam-

mation or ballooning.181 In another meta-analysis (n ¼ 936

patients, 11 studies), Mantovani et al163 reported that treatment

with GLP-1 RAs, when compared with reference treatment or

placebo, for a median of 26 weeks significantly decreased ALT

(pooled weighted mean difference [WMD] �7.21 IU/L, P ¼
.02) and GGT activity (pooled WMD �0.97 IU/L, P < .001),

while AST activity did not differ between groups (P ¼ .27).163

More importantly, there was a significant reduction in the abso-

lute percentage of LFC (using MRI-based techniques) (pooled

WMD �3.92%, 95% CI: �6.27% to �1.56%) and greater

histological resolution of NASH without worsening of liver

fibrosis (pooled random-effects odds ratio [OR] 4.06, 95%
CI: 2.52-6.55; for liraglutide and semaglutide only).163

GLP1-RAs improve hepatic function, histology, and inflamma-

tion, by body weight reduction, improving glycemia, and

decreasing hepatic fat. In this context, Ghosal et al179 in their

meta-analysis (n ¼ 615 patients, 297 on GLP1-RA and 318 in

the control group, 8 randomized controlled trials) evaluated

effects of GLP-1 RAs in patients with both, T2DM and

NAFLD. Treatment with GLP-1 RAs showed a significant

improvement in AST activity (standardized mean difference

[SDM]: �0.44, 95% CI: �0.64 to �0.24, P < .01), ALT (SDM

�0.56, 95% CI: �0.88 to �0.25, P < .01), and GGT activity

(SDM �0.60, 95% CI: �0.86 to �0.34, P < .01). As expected,

GLP-1 RAs treatment showed a decrease in BW (SDM �0.66,

95% CI: �0.88 to �0.44, P < .01), glycosylated hemoglobin

(SDM �0.40, 95% CI: �0.61 to �0.19, P < .01), as well as the

reduction in LFC (SDM �0.43, 95% CI: �0.74 to �0.12, P <

.01), compared with standard of care or placebo. This meta-

analysis also showed a very significant improvement in liver

histology in the group of patients treated with GLP-1 RAs (rate

ratio, 6.60, 95% CI: 2.67-16.29, P < .01).179

GLP-1 RAs demonstrated higher efficacy in LFC lowering

when compared with insulin-based therapies or metfor-

min.180,182 In a meta-analysis (n ¼ 1454 patients, 8 studies),

treatment with GLP-1 RAs significantly reduced LFC (SMD

�1.05; P < .001) when compared with controls, and when

compared with insulin-based therapies and metformin (SMD

�0.66, P < .001 and �0.63, P ¼ .02, respectively).180 In addi-

tion, GLP-1RA significantly reduced ALT (SMD �1.69, P <

.001), AST (SMD �1.46, P < .001), and GGT (SMD �2.10;

P < .001) activity.180 When compared with insulin-based thera-

pies, treatment with GLP-1 RAs resulted in significantly lower

ALT activity (SMD �0.96; P ¼ .02), and when compared with

metformin treatment with GLP-1 RAs resulted in significant

decreases in GGT and ALT activity (SMD�1.04; P < .001 and

SMD �0.66; P ¼ .03, respectively).180 However, thiazolidine-

diones were superior when compared with GLP-1 RAs in the

improvement in ALT, AST, and GGT activity.180 When added

to metformin, liraglutide reduced intrahepatic lipid content,

promoted weight loss and reduced subclinical atherosclerosis

(carotid intima-media thickness) in patients with NAFLD and

T2DM.183,184 Furthermore, when added to pioglitazone, lira-

glutide and semaglutide were considered the most effective

intervention for achieving NASH resolution.185,186

Dual GIP/GLP-1 RAs in the Treatment of
NAFLD/NASH

In patients with NASH, ingestion of saturated fatty acids is

associated with prolonged GIP response, ß glucometabolic

parameters and carotid intima-media thickness-cell dysfunc-

tion, and with adipokine imbalance, and liver injury, which

favors GIP antagonism in non-diabetic patients with NASH.187

In addition, a doubling in fasting GIP levels may be associated

with improved LDL clearance but with an unhealthy fat distri-

bution independent of insulin levels.188 These effects of GIP

have not encouraged the further use and establishment of GIP

monotherapy in metabolic-associated diseases, including

NAFLD/NASH.

GIP and GLP-1 appear to activate distinct subsets of

hypothalamic neurons coupled to a reduction in food intake,189

and furthermore, the glucose-lowering effects of simultaneous

GLP-1R agonism could rapidly restore GIP sensitivity, thus

enabling superior glucose-lowering action when combined.190

In patients with T2DM, higher tirzepatide doses significantly

increased adiponectin levels and decreased NASH-related bio-

markers.191 Hartman et al192 in their phase 2 trial (n ¼ 316

T2DM patients, 26-weeks duration, treated with dulaglutide

(1.5 mg SC), tirzepatide OW [1, 5, 10, or 15 mg SC] or pla-

cebo) evaluated the effect of tirzepatide on AST and ALT

activity as well asadiponectin levels. Treatment with tirzepa-

tide significantly decreased ALT (all tirzepatide doses, P < .01)

and AST (all tirzepatide doses except 10 mg, P < .05) activity

at 26 weeks. In addition, at 26 weeks of treatment, adiponectin

increased significantly from baseline with tirzepatide 10 and 15

mg (P < .001).192

In a recent substudy of the SURPASS-3 trial (SURPASS-3

MRI study; n ¼ 296, randomized, open-label, parallel-group,

phase 3, T2DM patients, BMI �25 kg/m2, evaluated change in

LFC measured by MRI-PDFF, 52-week duration), pooled tir-

zepatide (10 and 15 mg doses, OW SC) promoted a significant

reduction in LFC, visceral AT when compared with insulin

degludec (�8.09% vs �3.38%), with the ETD versus degludec

�4.71% (95% CI: �6.72 to �2.70; P < .0001).193

The potential of GLP-1 and dual GIP/GLP-1 RAs in the

treatment of NAFLD/NASH is summarized in Table 2.

Muzurović et al 11



T
a
b

le
2
.

T
h
e

G
LP

-1
an

d
D

u
al

G
IP

/G
LP

-1
R

A
s

in
th

e
T

re
at

m
en

t
o
f
N

A
FL

D
/N

A
SH

.

R
ef

er
en

ce
G

LP
-1

R
A

/
d
u
al

G
IP

/G
LP

-1
R

A
In

cl
u
d
ed

su
b
je

ct
s

D
u
ra

ti
o
n

(w
ee

ks
)

M
et

h
o
d

St
u
d
y

o
u
tc

o
m

es
O

th
er

fin
d
in

gs

D
u
to

u
r

et
al

1
6
9

E
x
en

at
id

e
n
¼

4
4
,
T

2
D

M
þ

o
b
es

it
y

2
6

3
T

M
R

Iþ
p
ro

to
n

M
R

S
Si

gn
ifi

ca
n
t

re
d
u
ct

io
n

in
LF

C
(�

2
3
.8

%
+

9
.5

%
)

E
ff
ec

ts
w

er
e

m
ai

n
ly

B
W

lo
ss

-d
ep

en
d
en

t
K

u
ch

ay
et

al
1
7
8

D
u
la

gl
u
ti
d
e

n
¼

5
2
,
T

2
D

M
þ

M
R

I-
P
D

FF
-

as
se

ss
ed

LF
C

o
f
�

6
.0

%
at

b
as

el
in

e

2
4

M
R

I-
P
D

FF
-a

ss
es

se
d

LF
C

LS
M

m
ea

su
re

d
b
y

vi
b
ra

ti
o
n
-c

o
n
tr

o
lle

d
tr

an
si

en
t

el
as

to
gr

ap
h
y,

an
d

ch
an

ge
in

liv
er

en
zy

m
es

LF
C

o
f
�

3
.5

%
(9

5
%

C
I:
�

6
.6

to
�

0
.4

;
P
¼

.0
2
5
)

an
d

re
la

ti
ve

ch
an

ge
o
f
�

2
6
.4

%
(P
¼

.0
0
4
),

co
rr

es
p
o
n
d
in

g
to

a
2
.6

-f
o
ld

gr
ea

te
r

re
d
u
ct

io
n

o
f
G

G
T

N
o
n
-s

ig
n
ifi

ca
n
t

re
d
u
ct

io
n
s

in
liv

er
st

iff
n
es

s,
se

ru
m

A
ST

an
d

A
LT

le
ve

ls

A
rm

st
ro

n
g

et
al

1
7
0

Li
ra

gl
u
ti
d
e

1
.8

m
g

SC
n
¼

5
2
,
o
ve

rw
ei

gh
t
þ

cl
in

ic
al

ev
id

en
ce

o
f
N

A
SH

4
8

Li
ve

r
h
is

to
lo

gy
H

is
to

lo
gi

ca
l
re

so
lu

ti
o
n

o
f
N

A
SH

(R
R

4
.3

[9
5
%

C
I:

1
.0

-1
7
.7

];
P
¼

.0
1
9
)

N
ew

so
m

e
et

al
1
7
4

Se
m

ag
lu

ti
d
e

0
.5

o
r

1
.0

m
g/

w
ee

k)
/

se
m

ag
lu

ti
d
e

0
.0

5
-

0
.4

m
g

SC
/d

ay

n
¼

3
2
6
8
,
C

V
O

T
su

b
je

ct
s

w
it
h

o
b
es

it
y

an
d
/o

r
T

2
D

M
1
0
4

C
h
an

ge
in

liv
er

en
zy

m
es

N
o
rm

al
iz

at
io

n
o
f
el

ev
at

ed
b
as

el
in

e
A

LT
o
cc

u
rr

ed
in

2
5
%

-4
6
%

C
h
an

ge
s

in
A

LT
w

er
e

n
o
t

st
at

is
ti
ca

lly
si

gn
ifi

ca
n
t

af
te

r
ad

ju
st

m
en

t
fo

r
B
W

ch
an

ge

N
ew

so
m

e
et

al
1
7
6

Se
m

ag
lu

ti
d
e

0
.5

o
r

1
.0

m
g

SC
/w

ee
k)

/
se

m
ag

lu
ti
d
e

0
.0

5
-

0
.4

m
g

SC
/d

ay

n
¼

3
2
0
,
w

it
h

o
r

w
it
h
o
u
t

T
2
D

M
,
b
io

p
sy

-c
o
n
fir

m
ed

N
A

SH
an

d
liv

er
fib

ro
si

s
o
f

st
ag

e
F1

,
F2

,
o
r

F3

7
2

Li
ve

r
h
is

to
lo

gy
Si

gn
ifi

ca
n
tl
y

h
ig

h
er

p
er

ce
n
ta

ge
o
f
p
at

ie
n
ts

w
it
h

N
A

SH
re

so
lu

ti
o
n
þ

fib
ro

si
s

st
ag

e
im

p
ro

ve
d

in
4
3
%

o
f
th

e
p
at

ie
n
ts

in
th

e
0
.4

m
g

gr
o
u
p

N
o

d
iff

er
en

ce
b
et

w
ee

n
gr

o
u
p
s

in
th

e
p
er

ce
n
ta

ge
o
f

p
at

ie
n
ts

w
it
h

an
im

p
ro

ve
m

en
t

in
fib

ro
si

s
st

ag
e

Fl
in

t
et

al
1
7
3

Se
m

ag
lu

ti
d
e

0
.4

m
g

SC
/d

ay
n
¼

6
7
,
su

b
je

ct
s

w
it
h

liv
er

st
iff

n
es

s
2
.5

0
-4

.6
3

kP
a

M
R

E
an

d
liv

er
st

ea
to

si
s
�

1
0
%

b
y

M
R

I-
P
D

FF
)

4
8

M
R

I-
P
D

FF
,
M

R
E

Si
gn

ifi
ca

n
tl
y

re
d
u
ce

d
liv

er
st

ea
to

si
s

N
o

si
gn

ifi
ca

n
t

ch
an

ge
in

liv
er

st
iff

n
es

s

D
ec

re
as

es
in

liv
er

en
zy

m
es

,
B
W

an
d

H
b
A

1
c

al
so

o
b
se

rv
ed

H
ar

tm
an

et
al

1
9
2

D
u
al

G
IP

/G
LP

-1
R

A
ti
rz

ep
at

id
e

1
,5

,1
0

m
g,

an
d

1
5

m
g

SC

n
¼

3
1
6
,
T

2
D

M
2
6

C
h
an

ge
s

fr
o
m

b
as

el
in

e
in

A
LT

,
A

ST
,
ke

ra
ti
n
-1

8
,

p
ro

co
lla

ge
n

II
I
an

d
ad

ip
o
n
ec

ti
n

Si
gn

ifi
ca

n
t

re
d
u
ct

io
n
s

fr
o
m

b
as

el
in

e
in

A
LT

(a
ll

gr
o
u
p
s)

,
A

ST
(a

ll
gr

o
u
p
s

ex
ce

p
t

ti
rz

ep
at

id
e

1
0

m
g)

le
ve

ls

Si
gn

ifi
ca

n
tl
y

d
ec

re
as

ed
N

A
SH

-r
el

at
ed

b
io

m
ar

ke
rs

an
d

in
cr

ea
se

d
ad

ip
o
n
ec

ti
n

le
ve

ls
G

as
ta

ld
el

li
et

al
1
9
3

D
u
al

G
IP

/G
LP

-1
R

A
ti
rz

ep
at

id
e

5
,
1
0
,

an
d

1
5

m
g

SC
vs

d
eg

lu
d
ec

n
¼

5
0
2
,
T

2
D

M
5
2

M
R

I-
P
D

FF
Si

gn
ifi

ca
n
tl
y

gr
ea

te
r

re
d
u
ct

io
n

in
LF

C
fo

r
th

e
p
o
o
le

d
ti
rz

ep
at

id
e

1
0

m
g

an
d

1
5

m
g

gr
o
u
p
s

(�
8
.0

9
%
+

0
.5

7
%

)

R
ed

u
ct

io
n

in
LF

C
w

as
si

gn
ifi

ca
n
tl
y

co
rr

el
at

ed
w

it
h

b
as

el
in

e
LF

C
,

re
d
u
ct

io
n
s

in
V

A
T
þ

B
W

A
b
b
re

vi
at

io
n
s:

A
LT

,
al

an
in

e
am

in
o
tr

an
sf

er
as

e;
A

ST
,
as

p
ar

ta
te

am
in

o
tr

an
sf

er
as

e;
B
W

,
b
o
d
y

w
ei

gh
t;

C
I,

co
n
fid

en
ce

in
te

rv
al

;
C

V
O

T
,
ca

rd
io

va
sc

u
la

r
o
u
tc

o
m

e
tr

ia
l;

G
IP

,
gl

u
co

se
-d

ep
en

d
en

t
in

su
lin

o
tr

o
p
ic

p
o
ly

p
ep

ti
d
e;

G
LP

-1
R

A
s,

gl
u
ca

go
n
-l
ik

e
p
ep

ti
d
e

1
re

ce
p
to

r
ag

o
n
is

ts
;
G

G
T

,
g-

gl
u
ta

m
yl

tr
an

sp
ep

ti
d
as

e;
H

b
A

1
c,

gl
yc

at
ed

h
em

o
gl

o
b
in

;
LF

C
,
liv

er
fa

t
co

n
te

n
t;

LS
M

,
liv

er
st

iff
n
es

s
m

ea
su

re
m

en
t;

M
R

E
,
m

ag
n
et

ic
re

so
n
an

ce
el

as
to

gr
ap

h
y;

M
R

I,
m

ag
n
et

ic
re

so
n
an

ce
im

ag
in

g;
M

R
I-

P
D

FF
,
M

R
I-

d
er

iv
ed

p
ro

to
n

d
en

si
ty

fa
t

fr
ac

ti
o
n
-a

ss
es

se
d
;
M

R
S,

m
ag

n
et

ic
re

so
n
an

ce
sp

ec
tr

o
sc

o
p
y;

N
A

SH
,
n
o
n
-a

lc
o
h
o
lic

st
ea

to
h
ep

at
it
is

;
R

R
,

re
la

ti
ve

ri
sk

;
T

2
D

M
,
ty

p
e

2
d
ia

b
et

es
m

el
lit

u
s;

V
A

T
,
vi

sc
er

al
ad

ip
o
se

ti
ss

u
e.



Current Evidence on GLP-1 RAs Use in
Patients With DM and CVOTs

The risk of CVD is increased 2-fold in people with DM regard-

less of other conventional RFs.194 In the last decade, the CV

safety of drugs to lower blood glucose in T2DM has been

questioned, such that any drug should preclude increased CV

risk.15 Since then, several CVOTs have been conducted. Either

a neutral effect or a reduction in CV events has been reported

for the different GLP-1 RAs18-21,36,195,196 and, overall, a ben-

eficial reduction in the risk for the distinct cardio-renal end-

points has been obtained by the analysis of available data.197

Indeed, nine published CVOTs studies examined the effects

of GLP-1 RAs compared with placebo on major adverse CV

events (MACE) incidence in T2DM patients: (1) Lixisenatide

20 mg/day SC (the Evaluation of Lixisenatide in Acute Coron-

ary Syndrome [ELIXA] trial; n ¼ 6068; duration 2.1 years;

100% prevalence of CVD),195 (2) Liraglutide 1.8 mg SC/day

(Liraglutide Effect and Action in Diabetes: Evaluation of Car-

diovascular Outcome Results [LEADER]; n ¼ 9340; duration

3.8 years, 81% prevalence of CVD),18 (3) Exenatide ER 2 mg

SC /week (Exenatide Study of Cardiovascular Event Lowering

Trial [EXSCEL]; n ¼ 14752; duration 3.2 years, 73% preva-

lence of CVD),196 (4) Albiglutide 30 to 50 mg SC/week (HAR-

MONY; n ¼ 9463; duration 1.6 years, 100% prevalence of

CVD),36 (5) Dulaglutide 1.5 mg SC/week (Researching Cardi-

ovascular Events With a Weekly Incretin in Diabetes

[REWIND] n ¼ 9901; duration 5.4 years, 31% prevalence of

CVD),20 (6) Semaglutide 0.5 to 1 mg SC/week (Semaglutide

unabated Sustainability in Treatment of Type 2 Diabetes [SUS-

TAIN]-6 n ¼ 3297; duration 2.1 years; 83% prevalence of

CVD),19 and (7) Oral semaglutide 14 mg/day (Peptide Innova-

tion for Early Diabetes Treatment [PIONEER-6] n ¼ 3181;

duration 1.3 years; 85% prevalence of CVD).21 Furthermore,

[AMPLITUDE-O] (Effect of Efpeglenatide on Cardiovascular

Outcomes) n ¼ 4076; duration 1.8 years) included more

patients (32%) with renal disease (eGFR 25-60 mL/min) than

the other trials and was the first clearly positive CVOT with an

exendin-4-based GLP-1 receptor agonist.198

The FREEDOM (Clinical Impact of ITCA 650 [an

injection-free preparation delivering exenatide via a mini

osmotic pump placed in the subdermal tissue of the abdominal

wall], a Novel Drug-Device GLP-1 Receptor Agonist, in

Uncontrolled Type 2 Diabetes and Very High Baseline HbA1c;

n ¼ 4,156, duration 16 months) studies evaluated exenatide

delivered via an implanted minipump (ITCA 650) in patients

with T2DM. ITCA 650 was non-inferior to placebo in CV

outcomes, however longer-duration CVOT is needed to more

precisely define the CV effects.199 Trials that reported a

reduced HR for the primary composite CV endpoint of first

occurrence of nonfatal myocardial infarction or stroke or death

from CV causes were LEADER (HR 0.87, 95% CI: 0.78-0.97),

SUSTAIN-6 (HR 0.74, 95% CI: 0.58-0.95), HARMONY (HR

0.78, 95% CI: 0.68-0.90), and REWIND (HR 0.88, 95% CI:

0.79-0.99). Lixisenatide (ELIXA), exenatide (EXSCEL), and

oral semaglutide (PIONEER) were non-inferior to placebo on

the primary composite outcome of MACE (respectively, 1.02,

95% CI: 0.89-1.17; 0-91, 95% CI: 0.83-1.00; 0.79, 95% CI:

0.57-1.11).

CVOT for tirzepatide (SURPASS-CVOT) is ongoing. How-

ever, Sattar et al155 recently published a pre-specified CV

meta-analysis of all 7 randomized controlled trials (n ¼ 144

T2DM patients) from the SURPASS trial program. The HRs

comparing tirzepatide versus controls were 0.90 (95% CI: 0.50-

1.61) for CV death, 0.80 (95% CI: 0.57-1.11) for MACE-4 and

0.80 (95% CI: 0.51-1.25) for all-cause death.155

A recent meta-analysis of 7 CVOTs49 showed that GLP-1

RAs reduced MACE by 12% (HR 0.88; P < .001), CV mortality

by 12% (HR 0.88; P ¼ .003), fatal or nonfatal stroke by 16%
(HR 0.84; P < .001), and fatal or nonfatal myocardial infarction

by 9% (HR 0.91; P¼ .043). Another meta-analysis of the same

7 CVOTs found that the number of treatments required to

prevent MACE was 73 (95% CI: 45-212).200

Expert Opinion

In conclusion, the well-established GLP-1 RAs and novel dual

GIP/GLP-1 RAs are drug classes with various effects that cover

a wide range of “dysmetabolic milieu” disorders associated

with obesity. Given the clear association of obesity with MetS

and its components, prediabetes, T2DM, cardiometabolic com-

plications, and NAFLD/NASH, GLP-1 RAs and dual GLP-1/

GIP RAs promote crucial positive effects on the most compo-

nents of the “cardiometabolic continuum” and consequently

help reduce the need for polypharmacy.

Clinical evidence from well-designed trials and real-life data

indicates that currently, the GLP-1 RAs are the most promising

drugs for the treatment of obesity. Moreover, the novel GLP-1/

GIP RA tirzepatide shows even greater potential for weight

reduction. This finding is in line with the GIPR agonism potential

for ameliorating the GLP-1 RA dose-related gastrointestinal side

effects and the proposed synergy of the incretins to promote

satiety. Their combined weight-related potential is translated into

the improvement of components of the MetS (e.g., dyslipidaemia,

hypertension, reduction of visceral AT, etc.), which are also CV

RFs. The postulated BW-independent effects of GIP RA on lipid

metabolism suggest that the dual agonists play an important role

in improving the lipoprotein profile.

It is well-known that GLP-1 RAs are the most potent non-

insulin drugs for the treatment of T2DM, with currently limited

use in terms of the treatment of prediabetes and the prevention

of T2DM. With few exceptions,201 there is a large lack of head-

to-head trials with the use of 2 GLP-1 RAs as direct compara-

tors, since in any trial the comparator to the studied agent is the

so-called “standard of care”, and this limits the utility of infor-

mation for clinicians. Although direct comparisons are not pos-

sible since differences in study designs exist, considering

normoglycemia conversion rates were approximately 66% with

liraglutide, 84% with semaglutide, and >95% with tirzepatide.

Furthermore, tirzepatide demonstrated restoration of insulin

sensitivity irrespective of the BW loss magnitude. It is irrefu-

table and clear that an adequate dietary regimen is still the

Muzurović et al 13



cornerstone of T2DM prevention and prediabetes treatment,

with possible additional and favorable use of both, GLP-1 and

dual GLP-1/GIP RAs after assessing the benefits and risks for

each patient individually. The results of the registration studies

of GLP-1/GIP RA tirzepatide indicate robust improvements in

glycemic control in patients with T2DM, without increased risk

of hypoglycemia, with the safety profile which was consistent

with GLP-1 RAs. Comparatively, these results are likely to

pave the way for tirzepatide in clinical practice guidelines and

its incorporation in the treatment algorithm, as one of the initial

treatment options.

Understanding and positioning of GLP-1 and GLP-1/GIP RAs

in the treatment of NAFLD/NASH is complex. It is important to

emphasize that the pathogenesis of NAFLD/NASH can be

explained in part by a genetic component, and in part by a meta-

bolic component. The mechanisms underlying these components

are fundamentally different. Metabolic components are charac-

terized by the hepatic oversupply of substrates (e.g., sugars,

lipids, and amino acids), while the genetic component is charac-

terized by impaired hepatic mitochondrial function, making the

liver less able to metabolize these substrates. This leads to the

conclusion that the use of GLP-1 and dual GLP-1/GIP RAs

requires more evidence and a thorough clinical patient-centered

approach, intending to identify those patients in whom the meta-

bolic component predominates. Given the complex etiology of

NAFLD, future studies require better design to avoid the various

biases that cloud this field and to pave the way for the right use of

GLP-1 and GLP-1/GIP RA in the treatment of NAFLD/NASH

and other “dysmetabolism” complications.

The place of GLP-1 RAs in CV diabetology is clearly and

unequivocally expressed by the guidelines for the treatment of

T2DM, as a crucial and most important drug class in patients

with atherosclerotic CVD, which was clearly shown through

published GLP-1 RAs CVOTs.202 Moreover, CVOT for tirze-

patide (SURPASS-CVOT) is ongoing and its results are

expected soon.
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4. Muzurović E, Peng CCH, Belanger MJ, Sanoudou D, Mikhailidis

DP, Mantzoros CS. Nonalcoholic fatty liver disease and cardio-

vascular disease: a review of shared cardiometabolic risk factors.

Hypertension. 2022;79(7):1319-1326. doi:10.1161/HYPERTEN-

SIONAHA.122.17982

5. Younossi ZM, Golabi P, de Avila L, et al. The global epidemiol-

ogy of NAFLD and NASH in patients with type 2 diabetes: a

systematic review and meta-analysis. J Hepatol. 2019;71(4):

793-801. doi:10.1016/j.jhep.2019.06.021

14 Journal of Cardiovascular Pharmacology and Therapeutics

https://orcid.org/0000-0003-2022-3298
https://orcid.org/0000-0003-2022-3298
https://orcid.org/0000-0003-2022-3298
https://orcid.org/0000-0002-9549-8504
https://orcid.org/0000-0002-9549-8504
https://orcid.org/0000-0002-9549-8504


6. Portillo-Sanchez P, Bril F, Maximos M, et al. High prevalence of

nonalcoholic fatty liver disease in patients with type 2 diabetes

mellitus and normal plasma aminotransferase levels. J Clin Endo-

crinol Metab. 2015;100(6):2231-2238. doi:10.1210/jc.2015-1966

7. Ajmal MR, Yaccha M, Malik MA, et al. Prevalence of nonalco-

holic fatty liver disease (NAFLD) in patients of cardiovascular

diseases and its association with hs-CRP and TNF-a. Indian Heart

J. 2014;66(6):574-579. doi:10.1016/j.ihj.2014.08.006

8. Polyzos SA, Mantzoros CS. Making progress in nonalcoholic

fatty liver disease (NAFLD) as we are transitioning from the era

of NAFLD to dys-metabolism associated fatty liver disease

(DAFLD). Metabolism. 2020;111:154318. doi:10.1016/j.meta-

bol.2020.154318

9. Meroni M, Longo M, Rustichelli A, Dongiovanni P. Nutrition and

genetics in NAFLD: the perfect binomium. Int J Mol Sci. 2020;

21(8):E2986. doi:10.3390/ijms21082986
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22. Muzurović EM, Vujošević S, Mikhailidis DP. Can we decrease

epicardial and pericardial fat in patients with diabetes? J Cardi-

ovasc Pharmacol Ther. 2021;26(5):415-436. doi:10.1177/

10742484211006997
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157. Muzurović E, Mikhailidis DP, Mantzoros C. Commentary: From

mice to men: in search for dietary interventions to form the

background on which pharmacotherapy for non-alcoholic fatty

liver disease should be based. Metabolism. 2020;109:154305.

doi:10.1016/j.metabol.2020.154305

158. Dhir G, Cusi K. Glucagon like peptide-1 receptor agonists for

the management of obesity and non-alcoholic fatty liver disease:

a novel therapeutic option. J Investig Med. 2018;66(1):7-10. doi:

10.1136/jim-2017-000554

159. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and

management of nonalcoholic fatty liver disease: practice gui-

dance from the American Association for the study of liver dis-

eases. Hepatology. 2018;67(1):328-357. doi:10.1002/hep.29367

160. Gupta NA, Mells J, Dunham RM, et al. Glucagon-like peptide-1

receptor is present on human hepatocytes and has a direct role in

decreasing hepatic steatosis in vitro by modulating elements of

the insulin signaling pathway. Hepatology. 2010;51(5):

1584-1592. doi:10.1002/hep.23569

161. Svegliati-Baroni G, Saccomanno S, Rychlicki C, et al.

Glucagon-like peptide-1 receptor activation stimulates hepatic

lipid oxidation and restores hepatic signalling alteration induced

by a high-fat diet in nonalcoholic steatohepatitis. Liver Int.

2011;31(9):1285-1297. doi:10.1111/j.1478-3231.2011.02462.x

162. Bernsmeier C, Meyer-Gerspach AC, Blaser LS, et al. Glucose-

induced glucagon-like peptide 1 secretion is deficient in patients

20 Journal of Cardiovascular Pharmacology and Therapeutics



with non-alcoholic fatty liver disease. PLoS One. 2014;9(1):

e87488. doi:10.1371/journal.pone.0087488

163. Mantovani A, Petracca G, Beatrice G, Csermely A, Lonardo A,

Targher G.Glucagon-like peptide-1 receptor agonists for treatment

of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis:

an updated meta-analysis of randomized controlled trials. Metabo-

lites. 2021;11(2):73. doi:10.3390/metabo11020073

164. Valenzuela-Vallejo L, Guatibonza-Garcı́a V, Mantzoros CS.

Recent guidelines for non-alcoholic fatty liver disease

(NAFLD)/fatty liver disease (FLD): are they already outdated

and in need of supplementation? Metabolism. 2022;136:155248.

doi:10.1016/j.metabol.2022.155248

165. Panjwani N, Mulvihill EE, Longuet C, et al. GLP-1 receptor

activation indirectly reduces hepatic lipid accumulation but does

not attenuate development of atherosclerosis in diabetic male

ApoE(-/-) mice. Endocrinology. 2013;154(1):127-139. doi:10.

1210/en.2012-1937

166. Pyke C, Heller RS, Kirk RK, et al. GLP-1 receptor localization

in monkey and human tissue: novel distribution revealed with

extensively validated monoclonal antibody. Endocrinology.

2014;155(4):1280-1290. doi:10.1210/en.2013-1934

167. Ao N, Yang J, Wang X, Du J. Glucagon-like peptide-1 preserves

non-alcoholic fatty liver disease through inhibition of the endo-

plasmic reticulum stress-associated pathway. Hepatol Res. 2016;

46(4):343-353. doi:10.1111/hepr.12551

168. Lee J, Hong SW, Chae SW, et al. Exendin-4 improves steatohe-

patitis by increasing Sirt1 expression in high-fat diet-induced

obese C57BL/6J mice. PLoS One. 2012;7(2): e31394. doi:10.

1371/journal.pone.0031394

169. Dutour A, Abdesselam I, Ancel P, et al. Exenatide decreases

liver fat content and epicardial adipose tissue in patients with

obesity and type 2 diabetes: a prospective randomized clinical

trial using magnetic resonance imaging and spectroscopy. Dia-

betes Obes Metab. 2016;18(9):882-891. doi:10.1111/dom.12680

170. Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and

efficacy in patients with non-alcoholic steatohepatitis (LEAN): a

multicentre, double-blind, randomised, placebo-controlled phase

2 study. Lancet. 2016;387(10019):679-690. doi:10.1016/S0140-

6736(15)00803-X

171. Frøssing S, Nylander M, Chabanova E, et al. Effect of liraglutide

on ectopic fat in polycystic ovary syndrome: a randomized clin-

ical trial. Diabetes Obes Metab. 2018;20(1):215-218. doi:10.

1111/dom.13053

172. Katsiki N, Athyros VG, Karagiannis A, Mikhailidis DP. Sema-

glutide, lipid-lowering drugs, and NAFLD. Lancet Diabetes

Endocrinol. 2017;5(5):329-330. doi:10.1016/S2213-

8587(17)30109-2

173. Flint A, Andersen G, Hockings P, et al. Randomised clinical

trial: semaglutide versus placebo reduced liver steatosis but not

liver stiffness in subjects with non-alcoholic fatty liver disease

assessed by magnetic resonance imaging. Aliment Pharmacol

Ther. 2021;54(9):1150-1161. doi:10.1111/apt.16608

174. Newsome P, Francque S, Harrison S, et al. Effect of semaglutide

on liver enzymes and markers of inflammation in subjects with

type 2 diabetes and/or obesity. Aliment Pharmacol Ther. 2019;

50(2):193-203. doi:10.1111/apt.15316

175. Luo Q, Wei R, Cai Y, Zhao Q, Liu Y, Liu WJ. Efficacy of off-

label therapy for non-alcoholic fatty liver disease in improving

non-invasive and invasive biomarkers: a systematic review and

network meta-analysis of randomized controlled trials. Front

Med (Lausanne). 2022;9:793203. doi:10.3389/fmed.2022.

793203

176. Newsome PN, Buchholtz K, Cusi K, et al. A placebo-controlled

trial of subcutaneous semaglutide in nonalcoholic steatohepati-

tis. N Engl J Med. 2021;384(12):1113-1124. doi:10.1056/

NEJMoa2028395
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