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Abstract: In livestock grazing environments, the knowledge of C3/C4 species composition of a
pasture field is invaluable, since such information assists graziers in making decisions around
fertilizer application and stocking rates. The general aim of this research was to explore the potential
of multi-temporal Sentinel-1 (S1) Synthetic Aperture Radar (SAR) to discriminate between C3, C4,
and mixed-C3/C4 compositions. In this study, three Random Forest (RF) classification models were
created using features derived from polarimetric SAR (polSAR) and grey-level co-occurrence textural
metrics (glcmTEX). The first RF model involved only polSAR features and produced a prediction
accuracy of 68% with a Kappa coefficient of 0.49. The second RF model used glcmTEX features
and produced prediction accuracies of 76%, 62%, and 75% for C3, C4, and mixed C3/C4 grasses,
respectively. The glcmTEX model achieved an overall prediction accuracy of 73% with a Kappa
coefficient of 0.57. The polSAR and glcmTEX features were then combined (COMB model) to improve
upon their individual classification performances. The COMB model produced prediction accuracies
of 89%, 81%, and 84% for C3, C4, and mixed C3/C4 pasture grasses, and an overall prediction
accuracy of 86% with a Kappa coefficient of 0.77. The contribution of the various model features
could be attributed to the changes in dominant species between sampling sites through time, not only
because of climatic variability but also because of preferential grazing.

Keywords: satellite remote sensing; pasture grass classification; C-band synthetic aperture radar;
grey-level co-occurrence matrix

1. Introduction

In pasture grass fields, the botanical composition is often C3 and C4 plants. C3 and C4 pasture
grasses are different both physiologically and morphologically [1]. Aside from C3 grass being sensitive
to cool temperatures and C4 grass favoring warm or hot conditions [2], C3 grasses are also noted to be
more nutritious and palatable for pastoral livestock [3,4]. Grazing often enhances the physiological
and morphological differences between C3 and C4 grasses by modifying species composition and
competition among the species. Due to the higher nutrient content and palatability of C3 grass
plants [5], the potential effects of preferential grazing cannot be underestimated. Preferential grazing of
C3 plants tends to skew species composition of fields in favour of C4 plants [6,7]. Moreover, un-grazed
C4 plants tend to reach a reproductive stage with distinctive inflorescence (size and shape of spikelets).

Knowledge of C3/C4 composition of a pasture grass is important to graziers, as such information
provides feedback on pasture growth rates and feed quality. This informs decisions around
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predictability of site productivity (including livestock carrying capacity), fodder reserves, and
post-grazing recovery [8]. In Australia, earlier studies have used Landsat products for pasture grass
classification. Vickery et al. [9] distinguished pasture types of different pastoral fields on the basis
of species growth rate while Hill et al. [10] also used Landsat data to discriminate perennial, annual,
sown, and native pasture types. Hill et al. [11] combined Landsat TM and multi-frequency SAR
data to characterize and map pasture types in Western Australia. Moreover, given that C3 and C4
grass have different active growth periods, satellite optical remote sensing data has also been used
to discriminate C3/C4 grass types. Wang et al. [12] used phenological metrics derived from time
series MODIS surface reflectance imagery to discriminate short and tall types of C3 and C4 grasses.
Similarly, a study conducted over fragmented landscapes in China fused Landsat 7 ETM+ and MODIS
surface reflectance images to discriminate C3 and C4 grasses on the basis of differences in their
phenological profile [13]. Peterson et al. [14] utilized multi-temporal Landsat TM bands and the
normalized difference vegetation index to discriminate C3 and C4 pasture species and, as a result,
observed that these species are spectrally distinguishable in spring and mid-summer. Shoko and
Mutanga [15] similarly classified C3 and C4 grasses by sampling hyperspectral bands matching those
of Landsat 8 OLI Sentinel 2 MSI and Worldview 2 to identify summer as the optimal season that C3
and C4 grasses in South Africa are spectrally distinguishable. Furthermore, Shoko and Mutanga [16]
explored the exclusive use of Sentinel-2A to separate C3 and C4 species and found that the standard
spectral bands of Sentinel-2A are capable of separating these species.

Despite the varying levels of success of the previous work, optical remote sensing is challenged
by its inability to collect data on cloudy days and limited structural information of plants that can be
derived from the optical wave bands. For example, the use of optical remote sensing is limited with
the increasing leaf area index [17,18] and increasing proportions of non-photosynthetic senescent plant
parts of the botanical composition [19,20]. To overcome these problems, other studies have explored
Synthetic Aperture Radar (SAR) data. SAR imaging is different from optical remote sensing in that it
makes use of microwave radiation, which is unaffected by all types of cloud, haze, and rain [21,22].
In pasture grass environment, the varying shape, size, density, orientation, and dielectric constant
(moisture content) of the leaves, florets, and culms often interact with the incident microwave energy.
The return microwave signal, often called the backscattering coefficient, is determined by the structural
attributes of the plants and the characteristics of the SAR sensor (incidence angle, wavelength, and
polarization). For instance, when the size of pasture grass components (such as the leaves or florets)
is smaller than the wavelength of the probing sensor, low values of the backscattering coefficient are
recorded due to specular scattering. Conversely, a canopy size that matches the wavelength of the
sensor promotes diffuse scattering, which tends to increase the backscattering coefficient. Sometimes
the incident microwave energy penetrates through the grass volume to interact with different vegetative
components or the underlying soil surface (via moisture content and roughness). In other words,
different scattering mechanisms occur when the incident microwave energy penetrates the grass
volume. Different approaches have been used to derive these polarimetric scattering mechanisms [23–
25]. The scattering processes due to the structural and moisture content information of sensing targets,
proved useful for the discrimination of different crops including grasses [26–29].

The Sentinel-1A (S1) is a C-band SAR that observes the earth and provides global data with
an average update interval of 12 days. Up to two polarimetric (VV/VH or HH/VH) images from
the interferometric wide swath mode are currently made available to users at no cost. Some earlier
studies have shown improvements to optical crop classification models using polarimetric features
of time-series SAR images [30–33]. Although these past studies explored the potential of SAR data
for crop classification, their objectives did not include discrimination of C3 and C4 grasses. In a
situation where preferential grazing affects gross changes in the physical presentation of C3 and C4
grasses, it may be possible that SAR data may provide the means of delineating and mapping these
species groups.
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Differentiation in the physical characteristics of C3 and C4 grasses due to grazing may be captured
through the texture of image pixels [34]. The image texture, which simply explains the tonal variation
between pixels in a small neighborhood that moved across the entire image, provides detailed spatial
architectural information that has been useful for feature classification. The statistical approach for
extracting textural features from images has been popular thanks to Grey-Level Co-occurrence Matrix
(GLCM) [35]. The GLCM textural approach is founded on second-order statistics of the frequency
distribution of pixel brightness values. There are many textural metrics that can be estimated from
GLCM images. In estimating these metrics, ‘weights’ are applied and these weights fall into three
groups, which include the contrast, orderliness, and descriptive statistics [36]. The contrast group
consists of contrast, dissimilarity, and homogeneity while the orderliness group consists of angular
second moment (ASM), energy, entropy, and maximum probability (MAX). The descriptive statistics
of the GLCM are mean, variance, and correlation. Further detail of these GLCM textural metrics can
be found in Haralick et al. [35] and Hall-Beyer [36]. One of the areas of application of GLCM textural
metrics is land cover classification. Over the years, many studies have used these GLCM textural
metrics to either create or improve models that discriminate land cover types [37–42]. Treitz et al. [43]
utilized GLCM textural measures derived from C-band SAR data to improve discrimination of different
agricultural crops from a Kappa value of 39% to 78%. Similarly, Zhou et al. [44] relied on GLCM
textural measures estimated from multi-temporal S1 images to improve the discrimination of winter
wheat from other land cover types.

Random Forest (RF) is a tree ensemble machine learning technique that was developed by [45].
RF functions on the principles of bootstrap aggregation and random variable selection to grow an
ensemble of decision trees, which tends to generate low correlation between the decision trees and
achieve low-bias trees. For RF classification, each decision tree casts a vote for the most dominant
class at a particular input feature and the class with the majority of votes becomes the output class.
Many machine learning algorithms are plagued with the problem of over-fitting but RF is robust
to overfitting [37,45,46]. Furthermore, RF is characteristically appropriate for handling multi-class
classification and the RF process incorporates the selection of variable importance. In RF training,
three parameters are primarily required including mtry, ntree, and nodesize. The mtry parameter defines
the number of randomly selected features in each split of a tree node. The ntree parameter defines the
number of trees to grow for each forest while the nodesize defines the minimum terminal nodes applied
in the model. Practically, it is only the mtry that needs tuning since it is the only parameter that can
significantly influence the predictability of an RF model [47,48]. The application of the RF method for
land cover classification has been reported in many past studies [37,46,49], but only few studies have
relied on RF to discriminate C3 and C4 grasses [50,51] Aside from all these characteristics of RF, this
study used the RF classifier with the aim of enhancing prediction performance.

To the best of our knowledge, this work is the first time pasture grass species of a spatially
heterogeneous grazing landscape have been discriminated into C3 and C4 classes using S1 data. Based
on the assumption of grazing-induced morphological differences (such as leaf area and orientation,
plant height, and size and shape of inflorescence) between C3 and C4 grasses, the objective of this
study was to explore the ability of RF classification of multi-temporal dual-polarimetric S1 data to
discriminate C3, C4, and mixed C3/C4 (MX) pasture grass species of a grazed landscape. The specific
aims were to discriminate C3, C4, and MX pasture grasses using (1) polarimetric SAR features (polSAR),
(2) GLCM textural features (glcmTEX), and (3) the combination of polSAR and glcmTEX features.

2. Materials and Methods

2.1. Description of Study Site and Selection of Sampling Sites

This study was conducted on one of the University of New England’s SMART Farms located near
Armidale, NSW Australia (30◦26′6”S, 151◦37′30”E). The 740 ha property used is a complex pasture
landscape, which comprises open native pasture grasslands, scattered trees, remnant vegetation
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communities, and native forests (Figure 1). The topography ranges from undulating to hilly. The
soil in the study area is predominantly Vertosols and Ferrosols of basalt origin with Chromosol in
granite areas [52] with a mean annual rainfall of 755 mm and mean annual maximum and minimum
temperatures are 20.3 ◦C and 6.2 ◦C (1997–2017), respectively [53] This study site is composed of many
fields of numerous pasture grass types, which have grazing livestock (e.g. sheep and cattle) rotated
onto throughout the year. In this study, 20 different field sampling sites, defined by variability in soil,
pasture species, and all subjected to livestock grazing were sampled (Figure 1). Each of the 20 sampling
sites measured 30 m × 30 m to encapsulate the resampled 10 m × 10 m spatial resolution of the S1
imagery, which allows for a 10 m radius buffer around the ‘central pixel’ location for uncertainty in
spatial registration of the image pixels. Each site was also selected on the basis of having an additional
50 m radius buffer region around it (such as no trees or shrubs), to minimize the potential confounding
influence (mixed pixels) of evergreen species.
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Figure 1. True color (RGB) Sentinel-2A image of study site (inset: location of study site in Australia)
with the central location point of the 20 sampling sites (indicated by red circles and are not drawn to
scale) from which 1080 instances were derived. Each sampling site was 900 m2.

2.2. Field Measurement (Pasture Composition Data)

Field sampling campaigns were conducted between 2017 (February, July, October, and December)
and 2018 (January, March, and July). The field campaigns in February and July 2017 involved only 10
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sites, but this number of sites was increased to 20 in subsequent sampling dates. All of these visual
surveys were conducted by the same pasture officer each sampling period. Field sampling dates
within each time window were selected to coincide with S1 satellite overpasses (Table 1). Moreover,
these dates were selected on the basis of no rainfall occurring three days beforehand to minimize
the influence of moisture on radar backscatter signals. The geographic locations of all sampling sites
were taken using a sub-meter differential GPS unit (Trimble GPS Pathfinder Pro XRS DGPS Receiver
Sunnyvale, CA, USA).

The field sampling followed the BOTANAL protocol [54] where an observer would characterize
the pasture species composition within 10 ‘random throws’ of a 0.5 m × 0.5 m quadrat frame within
each designated sample site. In addition to the 10 throws, the observer performed a random walk over
each sample site to detail any other significant species that may not have been captured in the random
throw protocol.

Pasture plants observed at each sampling site were grouped into C3 and C4 classes. At any given
sampling site, a 70% threshold was applied to ascribe a given class to the entire site [55]. Any site
where this threshold was not met by a single class (namely C3 or C4) was allocated to an MX class
(Table 2). As the image classification of C3, C4, and MX pasture classes was conducted at pixel scale
(i.e., 10 m × 10 m), the dominant class of the site was assigned to every single pixel constituting that
sampling site. Each sampling site was composed of nine pixels.

Table 1. Field sampling and corresponding Sentinel-1A image acquisition dates.

Field Measurement Date Sentinel-1 Overpass Date

13 February, 2017 13 February, 2017
6 July, 2017 7 July, 2017

11 October, 2017 11 October, 2017
12 December, 2017 10 December, 2017

16 January, 2018 15 January, 2018
8 February, 2018 8 February, 2018
16 March, 2018 16 March, 2018

26 July, 2018 26 July, 2018

Table 2. Common native and introduced pasture species observed in the study sites that constituted
the three classes of C3, C4, and mixed. A mixed class in a given site was ascribed when neither C3 nor
C4 constituted at least 70% of the species composition.

C3 Species C4 Species

Poa tussock (Poa labillardierei) Parramatta grass (Sporobolus elongatus)
Wheat grass (Anthosachne scabra) Red grass (Bothriochloa macra)

Phalaris (Phalaris aquatica) Paspalum (Paspalum dilatatum)
Wallaby grass (Austrodanthonia spp.) Paddock lovegrass (Eragrostis leptostachya)

Cocksfoot (Dactylis glomerata) Panic grass (Panicum effusum)

2.3. Pre-Processing of Sentinel-1 Data

The Single Look Complex (SLC) and Ground Range Detected (GRD) images of S1 were accessed
from the Scientific Hub of the European Space Agency (ESA) [56]. Precise orbit ephemeris data from
the archive of ESA was downloaded and applied to both SLC and GRD images in order to minimize
errors in radiometric and geometric calibrations. The GRD images were radio-metrically corrected
and filtered of random speckle noise using a Refine Lee algorithm [57]. Since the topography of study
location (slope and aspect) affects radar backscattering coefficients, a 1 m digital elevation model was
used to remove topographic distortions in the return reflected signals [58] and geographically matched
the GRD images to the study location using a bilinear interpolation resampling method. This digital
elevation model was generated by an aerial LiDAR system that was flown over the entire study site in
2013. Further details of the digital elevation model have been reported in Verma et al. [59].
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Due to the high sensitivity of S1 VH polarization to plant canopy structure and biomass [60,61],
backscattering coefficients in only the VH polarization mode was used for the GLCM analysis. To
derive the GLCM textural features, a window size of 9 × 9 pixels moved at intervals of one pixel in
all directions (0◦, 45◦, 90◦, and 135◦) of the neighborhood was explored [42]. From this, the mean
values from all four directions were estimated for each GLCM textural feature. The SLC images
were TOPSAR (Terrain Observation with Progress Scans SAR) split to the sub-swath that hosts
the study site in order to expedite subsequent processing. The sub-swath SLC images were first
radio-metrically corrected to complex values in order to perform the polarimetric decomposition. The
bursts in SLC images were removed using the TOPSAR deburst technique, and then a Refine Lee
polarimetric filter was applied using ‘one look’ and a 7 × 7 pixel window size to improve polarimetric
information. An eigenvector dual polarization decomposition technique was then used to retrieve
the scattering mechanism parameters. As with GRD images, the 1 m digital elevation model was
used to terrain-correct the SLC products. The GRD and SLC images were co-located by using a GRD
product image as the master image and pixel values of an SLC product as a slave image, which is
then resampled into the geographical coordinates of the master image. Given the geographic size of
each sampling site and the study objective of a pixel-based analysis, a 3 × 3 pixel moving window
was applied to extract pixel values for all the estimated features. The backscatter values from VH
polarization (hereafter referred to as VH) and backscatter values from VV polarization (hereafter
referred to as VV) were extracted from the GRD images. Furthermore, the product of backscatter
values of the VV and VH polarizations (hereafter, referred to as ‘polPRD’) and the ratio of VH to VV
(hereafter, referred to as ‘polRAT’) were extracted. It is worth noting that the backscatter values were
of gamma naught and in linear scale. On the other hand, the GLCM textural features derived from the
GRD data were contrast, dissimilarity, homogeneity, angular second moment (ASM), energy, entropy,
maximum value (MAX), mean, variance, and correlation. To distinguish the GLCM textural features
from other features in subsequent sections of this work, all GLCM textural features were prefixed
with ‘glcm’ (e.g., glcmContrast). These GLCM textural metrics are, hereafter, referred to as ‘glcmTEX’
features. The eigenvector polarimetric decomposition of the SLC data provided three parameters,
which includes entropy, anisotropy, and scattering alpha. The polarimetric decomposition parameters
plus VV, VH, polPRD, and polRAT are, hereafter, referred to as the ‘polSAR’ features. Pre-processing
of the S1 data was exclusively performed using the Sentinel Application (SNAP) tool customized for
ESA Sentinel products [62].

2.4. Model Data and Pre-Processing

The study involved 1080 instances with 17 features. The C3 class was composed of 450 instances
while C4 and MX had 207 and 414 instances, respectively. The entire study data was randomly
partitioned into training and testing sets, where 80% of the data was used for model training, while
the remaining 20% was set aside to test the model [63]. Due to different scales of measurement of
the model features and the need to reduce the feature space for improved model performance, both
training and testing sets were scaled using a MinMax method. In this method, each feature is scaled
to a range between 0–1 using its minimum and maximum values. These minimum and maximum
values of the training set were further used to scale the testing set. As the class sizes of this study
were not balanced, and to avoid overfitting, a stratified 10-fold cross validation method was used
for hyper-parameter tuning [50,64]. The optimal number of features randomly selected in each split
of the tree node, mtry, was selected on the basis of a minimum out-of-bag error rate (i.e., highest
accuracy) resulting from a grid search between 2 and the maximum number of features. After several
trial and error routines, the number of trees to grow (ntree) was set to 1000 with a minimum number
of terminal nodes set to 1 (a default value for classification analysis). In model training, the Gini
impurity technique was used in splitting decision tree nodes [45,65] and the mean decrease impurity
index assisted in evaluating the relative importance of model features. Model features with an overall



Remote Sens. 2019, 11, 253 7 of 20

importance score of not less than 15% were selected for further analysis. A similar threshold method
of feature selection for RF was recently used in Maxwell et al. [65].

2.5. Model Building and Evaluation

In this study, three different RF models were built and evaluated. The first RF model was created
using polSAR features while the second model was created using glcmTEX features. Lastly, the
polSAR and glcmTEX features were combined to create the third model (hereafter called ‘COMB’). The
evaluation of all models was based on overall accuracy, the Kappa coefficient, and the F1 score. The
F1 score was selected not only because of the unevenness in class distribution but to also evaluate
the class-wise performance of the models. Data preprocessing, analysis, and RF modeling were all
performed in R using the CARET package [66]

3. Results

3.1. Spatio-Temporal Distribution of C3, C4, and Mixed C3/C4 (MX) Pasture Grass Types

Depending upon the season and levels of grazing intensity, different dominant grass species were
observed between sites (Figure 2). In February 2017, only C3 grassess were observed in all the sampled
sites, but this composition changed in July 2017 since some of the sites became predominantly MX
(1 out of 10 sites) and C4 (1 out of 10 sites) grasses. In October 2017 (spring season), the proportions
of C4 and MX grasses increased as more sites were sampled. Although, altogether C3 grasses were
preponderant (13 out of 20 sites) in this spring season, three of the sites were observed as C4-dominant
whereas four sites were dominated by MX.

In the summer months of December 2017 as well as January and February 2018, the majority of
the sites were composed of MX with C3 grasses being the least dominant (Figure 2d–f). In December
2017, nine out of the 13 sites were predominantly composed of MX while C4 species were observed in
three sites only. The dominance of C3 was observed in only one site. Similar distribution was observed
for January 2018 since the dominance of MX was observed in 12 different sites (out of possible 19 sites)
while C4 dominated five sites and C3 species accounted for only two sites. Moreover, in February 2018,
13 out of 20 sites were characterized with MX whereas five sites represent C4 grass. Meanwhile, C3
grasses predominantly occurred in two sites only.

In March 2018 (Autumn), the proportion of the C3 grasses increased since the majority of the sites
were composed of this grass type (12 out of 19 sites). While there was only one site composed of C4
grasses, five sites were dominated by mixed C3/C4 grasses (Figure 2g). In July 2018 (winter), only
nine sites were reported on due to using the other sites for other experiments. In this date, pasture
grasses were generally dry with post-grazing remnants of different sward heights and densities. Two
site were identified with C3 grasses while four sites were characterized with C4 grasses, and three sites
were predominantly MX grasses (Figure 2h).
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Figure 2. Spatio-temporal characterization of C3, C4, and mixed C3/C4 grasses. The images used
are from Sentinel-2 observations of the study site with sensing dates as close as possible to that of
Sentinel-1 overpass. The field sampling dates are: (a) February 2017, (b) July 2017, (c) October 2017,
(d) December 2017, (e) January 2017, (f) February 2018, (g) March 2018, and (h) July 2018.

3.2. Optimal Number of Candidate Features

The optimal number of candidate features randomly sampled at each split for all the three models
are summarized in Figure 3. For all of the models, the optimal number of features in each random split
was 2 (Figure 3a–c) since that was the size of the mtry parameter that produced the highest classification
accuracies. Specifically, a classification accuracy of approximately 61.6% (0.616) was observed for
the polSAR model whereas the highest accuracy for the glcmTEX model was approximately 70.8%
(0.708). Meanwhile, this optimal mtry value produced an accuracy of approximately 79% (0.790) for
the COMB model.
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Figure 3. Tuning for the optimal number of features (mtry) to be involved in each split of the random
forest classifier. The mtry values selected for random forest classification using (a) polarimetric SAR
features, (b) textural features from grey-level co-occurrence matrix (GLCM), and (c) the combination of
polarimetric SAR and GLCM textural features. The number of features with the highest accuracy was
used to train the model.

3.3. Selection of Important Model Features

The contribution of each model feature in explaining the discrimination between C3, C4, and MX
pasture grasses is captured in Figure 4. The x-axis of the figure shows the performance of the features
scaled to 100. In other words, a higher value on the x-axis means that the feature was more important
in discriminating between the three classes. For the polSAR model, the features that contributed
significant information in discriminating the different grass species, as ranked in a descending order
of magnitude, were polPRD (100%), the backscattering value of VV polarisation (85.9%), and the
backscattering value of VH polarisation (59.7%). The scattering angle (alpha) contributed similar
magnitude of information as the backscattering in the VH polarization (59.3%). Meanwhile, the
scattering entropy and anisotropy information were important for as much as 35.7% and 25.7%,
respctively, in separating C3, C4, and MX grasses. The polRAT feature was redundant since it
contributed no information in the model. The important features, ranked from highest to lowest, for
the glcmTEX model have been reported in Figure 4b. The glcmContrast textural metric offered the
most highly variable information (100%) to differentaiate between C3, C4, and MX grasses. The second
and third most important model features were observed in glcmCorrelation and glcmDissimilarity,
as the information contributed by these features were ranked as 91.3% and 89.7%, respectively.
Meanwhile, the overall information contribution of glcmVariance, glcmHomogeneity, and glcmMean to
the glcmTEX model was 56.6%, 51.9%, and 51.1%, respectively. The ‘orderliness’ metrics in glcmEnergy,
glcmASM, and glcmEntropy contributed varied information of the magnitudes 48.9%, 44.8%, and
32.9% in the model. However, the glcmMAX was redundant in the model as the information it
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carried might have been contributed by other retained features. The performance of the features in the
COMB model is illustrated in Figure 4c. While all the features contributed considerable information
(importance score > 15%) in discriminating C3, C4, and MX grass species, the polRAT feature was
redundant since its contrubution was nullified by other retained features. The information from
glcmContrast, VV, and polPRD was the most significant in discriminating the grass types as the feature
importance scores observed were 100%, 90.4%, and 79.6%, respectively. The information contributed
by other features were similar in their magnitude of influence of the model performance including
glcmDissimilarity (59.2%), glcmCorrelation (58.7%), VH (46.0%), and glcmEnergy (45.4%). The other
features were glcmVariance (35.6%), glcmHomogeneity (33.1%), glcmASM (33.1%), glcmMean (31.9%),
and alpha (30.7%). Furthermore, similar levels of information were observed for glcmMAX (10.1%),
entropy (10.0%), and anisotropy (8.1%). This combined model showed that not only polRAT and
glcmMAX were redundant but entropy and anisotropy contributed insignificant information towards
the model (Figure 4c).
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Figure 4. Rank of model features based on their contributions to improving the discrimination of
C3, C4, and MX pasture grasses. The performance of each feature indicated on the x-axis, scaled to
100, when random forest classification model was created using: (a) polarimetric synthetic aperture
radar features (polSAR), (b) textural features from grey-level co-occurrence matrix (glcmTEX), and (c)
the combination of polSAR and glcmTEX features. The polSAR features are composed of backscatter
values of VH polarization (VH) and backscatter values of VV polarization (VV), the product of VV
and VH (polPRD) and the ratio of VV to VH (polRAT). The other polSAR features are the eigenvector
polarimetric decomposition parameters including entropy, anisotropy, and alpha. The glcmTEX features
are prefixed with ‘glcm.’ The ASM denotes the angular second moment whereas MAX denotes the
maximum value.
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3.4. The Performance of polSAR, glcmTEX, and COMB Models

The three models performed differently in discriminating the pasture grasses into C3, C4, and
MX components. The spatial representation of these models’ performance is illustrated in Figure 5.
The observed versus the predicted class (i.e., illustrated in Figure 5 as ‘observed class/predicted class’)
for a subset of the more than 1000 instances spanning the spatio-temporal changes in the grasses that
can be estimated visually for polSAR (Figure 5a), glcmTEX (Figure 5b), and the COMB (Figure 5c).
Spatially, Figure 5 displays instances the polSAR model predicted a class correctly while the glcmTEX
model misclassified that instance and vice versa. Hence, the combination of the polSAR and glcmTEX
(COMB model) showed minimization of the prediction errors (Figure 5c). Although, for the sake of
clarity, all of the observations were not reported in Figure 5, the complete result of the performance of
the models is presented in Figure 6 (showing both class-wise and overall accuracies). The class-wise
performance of the model was captured by the F1 score while the overall model performance was
explained by the accuracy and Kappa values. The polSAR model showed similar performance in
discriminating C3 and MX species. The F1 score for C3 and MX was 0.70 while that of the C4 was only
0.59. The overall accuracy of this model was 68% with a Kappa coefficient of 0.49 (Figure 6a). The use
of the textural information produced performances, which have also been summarized in Figure 6b. In
terms of class-wise predictions, this model achieved an F1 score of 0.76 for C3, 0.62 for C4, and 0.75 for
MX. On the whole, the textural features achieved an accuracy of 73% (Kappa = 0.57) in separating the
three classes. The merging of the polarimetric SAR and textural information improved the individual
performance of polSAR and glcmTEX (Figure 6a). The F1 score for C3 was 0.89 whereas C4 and MX
classes were 0.81 and 0.84, respectively. Furthermore, the general performance of this model was an
improvement over that of the stand-alone models (polSAR and glcmTEX) in that an overall accuracy
of 86% (Kappa = 0.77) was achieved.
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Figure 5. Spatial characterization of the predictive performance of random forest models using different
features including (a) polarimetric SAR features (polSAR), (b) grey-level co-occurrence matrix textural
features (glcmTEX), and (c) combination of polSAR and glcmTEX features (COMB). This result is just a
subset of the 1080 observations in order to preserve the clarity of the maps. The dark circles denote
sampling sites with the red texts showing the pasture class observed on the field against the model
predicted class (i.e., observed class/predicted class).
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Figure 6. Evaluation of random forest classification models using the F1 score, accuracy, and the Kappa
coefficient. The random forest models, as defined by the type of features used, are expressed on the
x-axis as: (a) polarimetric SAR features (polSAR), (b) textural features from grey-level co-occurrence
matrix (glcmTEX), and (c) the combination of polSAR and glcmTEX features (COMB).

4. Discussion

4.1. Spatio-Temporal Changes in C3 and C4 Pasture Grasses

The phenological growth profile of plants due to changes in climate (mainly rainfall and
temperature) often encourages the classification of C3 and C4 grasses (Figure 7a,b). In Australia, the C3
grasses are noted to favor cool conditions with air temperatures below 15 ◦C or high altitude areas [2]
and such observation is justified by the result of this current study, as shown in July and October
2017 and March 2018 measurements (Figure 2). Particularly, the summer months preceding March
2018 (Figure 2d–f) revealed a limited presence of dominant C3 grasses due to warm temperatures.
However, as cool temperatures arrived in March and perhaps were complemented with autumn rains,
the C3 grass species began to dominate the site (Figure 2g). The preponderance of C3 grass in the
late summer season (February 2017) in Figure 2a could be attributed to summer rainfalls coinciding
with cool temperatures. Although on a regional scale, Hattersley [2] reported a conspicuous decrease
in C4 grasses due to the high altitude of this study area (>1200 m). It can, however, be observed in
this study that in the summer (December 2017, January and February 2018), there was an increase in
the C4 grass as many of the pre-summer C3 grass sites became either C4 or MX class (Figure 2d–f).
Although the site used in this study is characterized with a high altitude, it is not surprising to
observe preponderance of C4 sites since an earlier study reported a strong positive correlation between
summer temperatures of more than 30 ◦C and C4 grasses in Australia [2]. The C4 grasses become
more dominant among the sites when high summer temperatures are accompanied with rainfalls. The
spatial and temporal distribution of C3 and C4 grasses cannot be limited to only environmental factors
such as air temperature, rainfall, and topography, especially in active livestock grazing environments.
Aside from the role of climate and topography, our sampling sites were grazed and, thus, we observed
the contributions of grazing activity to changes in the botanical composition of C3 and C4 pasture
species (Figure 7c,d).
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Figure 7. Some photos of the sampling sites: (a) growing period in summer, (b) dry period in winter,
(c) grazed C4 site, and (d) grazed C3 site with evidence of preferential grazing between palatable and
unpalatable species.

4.2. Optimal Hyperparameter and Evaluation of the Random Forest Classification Models

In the RF classification analysis, the number of randomly selected features made available for
splitting each decision tree node cannot be underestimated given that this parameter (mtry) minimizes
the correlation between decision trees. Although an excessively large mtry value might result in feature
selection bias by selecting features with the largest effects, a very low mtry value could lead to a model
with poor performance since it may exclude the more relevant features for a split. In this study, the
influence of the mtry parameters on the models was not investigated, but some earlier studies have
shown that mtry value can affect the predictability of the model [47,48].

The different features constituting a model contributed dissimilar depths of information in
expressing variability between C3, C4, and MX grasses (Figure 4). All of the polSAR features except
polRAT contributed to the discrimination of the pasture classes. The two highest contributing polSAR
features were polPRD and VV (Figure 4a). This result is not surprising given that the VH component
of the polPRD provides information on the differential volume scattering between the species types.
At the same time, the VV polarization is sensitive to surface scattering and is likely to have accounted
for the effects of livestock grazing (e.g. exposed soil surface). Furthermore, discriminating the pasture
grasses due to differences in canopy structures appeared useful given that the alpha parameter also
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contributed significantly to the model performance. The usefulness of scattering mechanisms (as
elicited via alpha) in pasture grass classification of a similar environment has been reported in an
earlier study [11]. In terms of class-wise performance, the polSAR model was more than 10% accurate
in predicting C3 and MX grass species than the C4. This performance may be attributed to higher
attenuation of incident microwave energy at C4 sites. Unlike the other species, C4 sites were often left
un-grazed leaving tall, dense, and matured canopies, which tend to absorb the incident radar pulses
(Figure 7c). The relatively lower accuracy in predicting C4 grasses, however, affected the model’s
overall prediction accuracy since it achieved only 68%.

For this same study area, an earlier study observed the importance of textural features estimated
from C-band SAR in characterizing native and improve pasture types [42]. In this study, all the
textural features, except for glcmMAX, contributed significantly in separating C3, C4, and MX grasses.
The textural features are spatial statistical indices that capture the structural variations in the plant
canopies since the plants grow through time and are also grazed by livestock (grazing environment).
Like the polSAR model, the glcmTEX model was more accurate in predicting C3 and MX grasses
than the C4 species (Figure 6). In other words, the relatively higher errors observed in glcmTEX and
polSAR when predicting C4 grass species is likely to be caused by higher attenuation of the incident
microwave energy since this energy travels through tall and dense C4 grass species (due to C4 species
being less grazed). Compared to polSAR, the textural features captured more variability in all the
species types. The prediction accuracies, both in class-wise and overall terms, of the glcmTEX model
were higher than that of the polSAR (Figure 6b). This performance of the glcmTEX was expected, as
grazing promotes differentiation in plant morphology and growth rates [6,8], which results in tonal
variations in pixels. Specifically, preferential grazing of C3 species by livestock as experienced in our
sampling sites encouraged incomparable biomass and sward heights with C4 species often taller and
having more biomass (Figure 7a). However, some unpalatable C3 species such as Poa labillardierei with
distinctive tall, dense, and tufted canopy structure are also not grazed by livestock, which provides
different spatial properties from the neighboring pixels at grazed locations (Figure 7b).

The combination of the polSAR and glcmTEX features resulted in a model (COMB) that improved
the stand-alone polSAR and glcmTEX models (Figure 6c). The major features that contributed to the
COMB model were VV, glcmContrast, polPRD, alpha, and glcmCorrelation (Figure 4c). Specifically,
the COMB model outperformed the polSAR and glcmTEX models by 19% and 13%, respectively,
for C3 grass prediction. In the case of C4 prediction, the COMB model’s accuracy exceeded the
polSAR model by 22% and the glcmTEX model by 19%. Moreover, the COMB model outperformed
polSAR and glcmTEX models by 14% and 9%, respectively, for the prediction of mixed C3/C4 grasses.
Altogether, the COMB model improved the polSAR model by 18% and the glcmTEX model by 13%.
The clear reason for this improved performance lies in the combined strengths of polarimetric and
textural information of SAR data. Furthermore, this classification result is consistent with previous
studies, which also reported improvements in land cover classification by integrating GLCM textural
measures with spectral data [40,41,43,44]. It is, however, worth noting that features such as polRAT,
entropy, anisotropy, and glcmMAX contributed insignificant magnitude of information to explain
variability between the pasture classes. In multi-dimensional studies with relationships between
features (especially in how those features were derived), it is not surprising to have some features
contributing little or no information to the model outcome because the information those redundant
features carried might have been contributed by other retained features.

Many of the past studies involving C3 and C4 grass classification used products of optical satellite
remote sensing, which contrasts this current study given that we explored SAR data. However, the
classification accuracies of this study compare with the results of these earlier studies [14–16,50]. This
study used random forest classification models in order to increase performance of discrimination
between C3, C4, and MX grass species. Therefore, the study does not presume that these models are
transferable to different sites since such sites might have characteristics that are not similar to the
current study site.
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4.3. Evaluation of Livestock Grazing Activities in Discriminating C3, C4, and Mixed C3/C4 Pasture Grasses

The study site is grazed by sheep and cattle, but, at the moment, no data is collected on grazing
activities. Meanwhile, it is evident on the fields that livestock often discriminate grazing between
C3 and C4 grasses (Figure 7c,d). The degree of preferential grazing of C3 and C4 pasture species
varies between the sampling sites. Preferential grazing is typically high in under-stocked fields with a
large amount of available feed (especially in peak growing seasons) and especially when the field is
composed of different types of pasture with varied nutritive quality. In this study, the occurrence of
preferential grazing of C3 pasture grass suggests that the leaf area of the C3 species were likely reduced,
with shorter height, and due to the continuous process of regeneration and recovery, the canopies
exhibit a totally different morphology. The impacts of preferential grazing are likely to influence the
radar backscattering process since the canopy of C3 dominant grass interactions with incident C-band
microwave energy may be dominated by a surface scattering mechanism. Alternatively, the grazed C3
dominant sites with less dense and short sward height might have less absorption and depolarization
of microwave energy due to the reduced number of scatterers that interact with the incident radiation.

4.4. Importance and Uncertainty Analysis of the Study

In Australia, classification of pasture grass types including annual, perennial, and native grasses
on a large scale using satellite-based optical and SAR data is not a recent development. As early as
the late 1990s, Hill et al. [10] included NOAA-AVHRR and classified Landsat TM data to discriminate
perennial, annual, and native pasture grasses. In this same study area, Hill et al. [42] earlier explored
single date C-band RADARSAT-1 data to discriminate and characterize pasture types including
improved and native species. However, this study is the first time C3 and C4 pasture grasses of
the study area have been discriminated from space-borne SAR. The results of this work show that
SAR is capable of separating C3 and C4 grasses, and is even more accurate in predicting C3 grass
species in the presence of grazing. In effect, this study, in part, reveals the value of SAR remote
sensing in improving the understanding of the dynamism of grazing activities. Additionally, this study
implied the importance of complementing pasture grass phenology with livestock grazing effects in
discriminating plant species of different nutritive and palatability values. In the future, the results of
this study can be improved with the measurement of grazing intensity to further the interpretation
of preferential grazing of C3 and C4 grasses. The potential of SAR data to discriminate C3 and C4
grasses looks promising by virtue of the observations in this study and other past land cover/use
classification studies.

However, in grazing environments like our study site, the pasture sward height and density is
reduced, which may enhance the influence of soil roughness and moisture on the incident microwave
energy to, in turn, promote high radar backscattering coefficients. As C3 grasses tend to be more
grazed, C3-dominant sites are likely to be dominated by surface scattering due to the contribution
from the exposed soil (soil moisture and soil roughness). In such an event, the use of the SAR to
discriminate the plants based on the physical characteristics of their canopies becomes unreliable.
Moreover, preferential grazing of the C3 grasses may limit SAR’s predictability of C4 species as incident
microwave traveling through tall and dense C4 grasses (limitedly grazed due to less palatability),
get absorbed or depolarized. Another condition that can limit the potential of SAR in discriminating
the plants is the canopy moisture levels in senescence or the dormancy period. During the winter,
post-grazing remnants of the plants left behind are all dry and, thus, likely to cause low radar
backscatter values due to a low dielectric constant (canopy moisture) of the canopy. In other words, in
dry seasons, when there is little or no grazing activity that contributes to morphological differences
in the plants, it is likely that C3 and C4 grasses are differentiated by sward height and density of the
post-grazing pasture remnants.
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5. Conclusions

Sentinel-1 C-band synthetic aperture radar data has proven capable of discriminating C3, C4, and
mixed C3/C4 fields under livestock preferential grazing. In this study, random forest classification
models were created using various features derived from polarimetric synthetic aperture radar (polSAR
model) and grey-level co-occurrence matrix textural features (glcmTEX model) to discriminate C3, C4,
and mixed C3/C4. The polSAR model discriminated C3 and mixed C3/C4 grasses with accuracy of
70% while this model achieved 59% prediction accuracy for C4 grass. The overall prediction accuracy of
the polSAR model was 68% (Kappa = 0.49). On the other hand, the glcmTEX model accounted for 76%
of the C3 grasses, 62% for C4 grasses, and 75% for mixed C3/C4 sites. The overall prediction accuracy
of the glcmTEX model was, however, 73% (Kappa = 0.57). The polarimetric SAR and GLCM textural
features were combined into another model (COMB). The COMB model, by drawing the individual
strengths of its components, offered higher classification performance than the stand-alone models.
This model predicted C3, C4, and mixed C3/C4 grasses at accuracy values of 89%, 81%, and 84%,
respectively. Meanwhile, the overall prediction accuracy of the COMB model was 86% (Kappa = 0.77).
Altogether, Sentinel-1 is useful for monitoring pasture grass types of a grazing environment.
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