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Abstract 

 

Of primary concern to conservation biologists is that the level of genetic variability 

remaining within fragmented remnant populations may be insufficient for 

maintaining reproductive and evolutionary processes. The consequences and 

contributions of genetic declivities on the persistence of remnant communities, 

however, are not consistent across species. Plant breeding systems, historical mating 

patterns and pollinator behaviour can impact upon the susceptibility of a species to 

genetic decline; while the extinction threat presented by environmental factors may 

render genetic concerns redundant, at least in the immediate future. Thus, to 

accurately assess the resilience of remnant communities, genetic diversity and the 

impact of genetic diversity on individual fitness should be considered within the 

context of environmental factors and a range of time scales.  

Eucalyptus camaldulensis is a dominant species of tree in many riparian and floodplain 

ecosystems in Australia. In the Hunter Valley catchment region, the distribution of 

the species has been reduced to a series of disconnected remnants along small 

stretches of river and floodplain habitats. Eucalyptus camaldulensis is a niche specialist 

in which several critical life-stages are water dependant. The species is also known to 

hybridize with closely related species and exhibits a complex breeding system that 

enables post-zygotic selection based on the fitness of zygotes and available resources. 

Hence, the ecological viability of remnants, the level of inherent genetic variability, 

the impact of genetic variability on progeny performance and the breeding response 

of individuals to altered mating opportunities are potentially complicated. This 

research investigated key genetic and non-genetic attributes in thirteen remnant 

communities to assess genetic resources and their contribution to population 

persistence. 

Nine microsatellite markers were used to assess the levels and distribution of genetic 

variability within and among thirteen populations in the Hunter Valley. High levels of 

genetic diversity were detected (He = 0.60–0.81) that were not dissimilar to other 

widespread eucalypt species. Genetic differentiation based on these neutral markers 
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was predominantly low (Dest = 0.196, FST = 0.05) however pairwise comparisons 

indicated differentiation was pronounced between some remnants suggesting that 

they may be, or may have been reproductively isolated. Comparisons of genetic 

diversity between individuals grouped by age (diameter at breast height) indicated 

that declines in levels of genetic diversity were detectable in most remnants. Older 

trees (possibly in excess of one-hundred years) exhibited higher levels of genetic 

diversity compared with younger trees and low levels of genetic diversity in the 

younger trees were not accompanied with high inbreeding coefficients indicative of 

inbreeding.  

Assessments of geographic and demographic attributes of remnant populations 

suggested that specific attributes (high density, high number of young trees, and low 

edge to area ratios) were associated with stands that inhabited creek margins while 

opposite traits were associated with the majority of populations occurring in 

floodplain habitats. However, while the age-class structure indicated that successful 

recruitment was more apparent in riparian remnants, a negative correlation was 

detected between the genetic diversity and the edge to area ratio (Shannon’s Diversity 

Index, r = -0.60) indicating that riparian remnants were also characterised by 

relatively low levels of genetic diversity.  

Further investigation into the spatial genetic structure of habitat types indicated that 

genetic structure in episodic neighbourhoods (where individuals recruit at the same 

time in response to flood water) typical in floodplain habitat differed from linear 

neighbourhoods of saplings typical of riparian habitat. Floodplain neighbourhoods 

exhibited genetic structure consistent with limited seed dispersal while riparian 

neighbourhoods exhibited relative high levels of genetic diversity and little genetic 

structure. The degree to which genetic patterns established in recruitment 

neighbourhoods reflected population-wide genetic structure was variable. At the 

population level, genetic structure was relatively strong in two populations but weak 

and non-existent in another two. 

The impact of individual genotype on seedling growth indicated that inbreeding 

depression was operating. Positive correlations between seedling traits and the degree 

of heterozygosity (e.g. height x heterozygosity, r = 0.82) were detected. Investigations 

into the mating system detected significant variation among trees (0.383–0.981 tm) 

sampled in the Hunter Valley. In combination, these results indicate that under 
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certain circumstances, high levels of selfing or close sibling mating were occurring, 

and if widespread, the resulting increased homozygosity could significantly impact 

upon individual fitness. 

While remnant populations exhibited high levels of genetic diversity, this study 

demonstrated that lower levels of genetic variability were found in younger trees 

compared with older tree in six remnants. The results also indicated that populations 

with negligible recruitment can exhibit high levels of variability while populations 

with high levels of recruitment may be genetically impoverished. This is likely to 

occur in other species, particularly those in which critical life-stages depend on 

specific environmental attributes. The viability of E. camaldulensis populations is 

intimately linked to inundation, (a lack of inundation immediately impacts upon 

recruitment opportunities), however, long term fitness declines are possible, even in 

habitat that supports recruitment, if genetic variability continues to decline. High 

levels of genetic diversity residing in non-viable habitat may need to be conserved via 

seed collection to guarantee long-term conservation of genetic resources. However, 

further work is required to determine if the variation that may potentially be lost is of 

adaptive significance. 
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