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SUMMARY
The studies in this thesis were undertaken to investigate ways to improve the value of roughages

and byproducts as feeds for ruminants through supplementation. Low quality basal roughages

are high in fibre, low in N and other minerals; as a result their comminution rate in the rumen

(and clearance rate) is generally low, leading to low intake. Moreover, their digestion in the gut

often results in absorption of digestion products that are imbalanced in protein to energy (PIE),

and also in glucogenic to acetogenic substrates. The imbalance in nutrients leads to inefficiency

in the utilisation of the absorbed nutrients, often manifesting as high heat increment and generally

low voluntary intake (MacRae and Lobley 1982; MacRae et al. 1987). This problem is further

compounded by the high ambient temperature in the tropics where most of the ruminant livestock

subsisting on crop residues are raised, which makes dissipation of heat very difficult (Preston and

Leng 1987; Leng 1990). Animals in the tropical environments therefore respond to low

digestibility feeds by reducing feed intake which leads to lower animal productivity (Preston and

Leng 1987). This study investigated how strategic supplementation with rumen degradable

nutrients and by-pass nutrients in animals fed low quality roughage basal diets may be used to

stimulate an efficient rumen fermentation (and intestinal digestion). It was hypothesized that this

is likely to result in the absorption of balanced nutrients (PIE and glucogeniclacetogenic ratio)

from the gut, and therefore enhance efficiency in nutrient metabolism in the body tissues,

resulting in improved animal productivity (Leng 1990).

The broad objective of the present study was to investigate the role of dietary N, protein and

energy supplementation and ammoniation with urea in stimulating higher rumen fermentation,

with a view of providing the small intestines with a better balance of protein and energy

substrates (P: E), as well as of glucogenic to acetogenic substrates for digestion and absorption.

It was hypothesized that when the body tissues are provided with balanced nutrients, this would

lead to more efficient utilisation of those nutrients, lower heat production, and therefore higher

animal productivity.

In Exp 1 thirty (30) Border Leicester x Merino cross wether lambs weighing 25±2.5 kg (SD) and

blocked on a live weight basis were allocated to 5 dietary treatments, each treatment with six (6)

animals. The lambs were offered ad lib a basal roughage diet consisting of oaten chaff hay (11.8

gN/kgDM or 7.4% CP) unsupplemented (Tl) (control), or supplemented with urea as a source

Xl



rumen degradable nitrogen (T2), protein (CSM) (T3), urea + ME (wheat bran & molasses) (T4),

or protein and ME (T5). Therefore, with the exception of the control (Tl), the other four dietary

treatments received iso-N supplements supplying each animal with about 7 gN/d. The trial was

conducted over a period of 4 weeks, consisting of a 7-d backgrounding period for all the animals

during which they were given the basal roughage, followed by a 14-d adaptation period, and

finally a 5 d measurement period for the determination of voluntary intake. Supplementation

with urea or protein, with or without energy, improved N intake from 9.2 g/d in the

unsupplemented basal diet (Tl) to 16-18 g/d in the supplemented dietary treatments (T2-T5).

The basal DM intake was not increased (P>0.05) by urea or protein supplementation, with or

without energy, while the total dietary intake was increased (P<0.05) by protein or protein and

energy. Although total intakes increased in response to or protein and energy supplements, the

basal DM intake was depressed to levels lower than that of sheep on the control diet but this was

not statistically significant (P>0.05). Supplementation with protein or protein and energy

resulted in a higher total DM intake but the intake of the basal roughage did not change

significantly. In addition, it was concluded that N did not limit voluntary intake, and that other

factors associated with the roughage, such as high concentration of cell wall constituents (CWC)

may have constrained its intake in these animals.

In Exp 2, sucrose was administered as a means of enhancing rumen microbial fermentation or

generating a more suitable balance of digestion products or both. The aim was to increase the

metabolism of acetate in the body tissues, and improve voluntary intake. A urea-treated mixture

of wheaten chaff and barley straw (3:1 DM) and containing 22.2 gN/kgDM (13.90/0 CP) was used

as the basal diet in this study. Four Border Leicester x Merino cross wethers weighing 45±4.38

kg (SD) and fitted with permanent rumen fistulas and abomasal cannulae were allocated to four

dietary treatments in a 4 x 4 Latin square design. A scheduled set of determinations was made in

each of the 4 periods lasting about 4 weeks. The four dietary treatments included: the

unsupplemented basal diet as the control (Eo), the basal diet supplemented "rith sucrose (112.5

g/d) administered entirely intraruminally (ER), abomasally (EA), or via both routes (50:50) (ERA).

The basal roughage diet was fed at 09.00 h and made available ad lib, while the sucrose

supplement was given in two equal doses at 09.00 and 16.00 h. Feed intake, rumen fermentation

and fluid kinetic parameters, and body tissue clearance of intravenously loaded acetate were

monitored and determined.
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Feed intake (dietary and basal) was higher in animals on the control diet (P<0.05) when sucrose

was administered entirely through the rumen (ER) or abomasum (EA). Ho\\rever, there was no

difference (P>0.05) in intake between animals on the control dietand those supplemented with

sucrose via both the intraruminal and abomasal routes (ERA)' The apparent digestibility of OM or

OM was higher in intraruminally (ER) or abomasally (EA ) supplemented animals than in the

control (Eo) or those supplemented through intraruminally and intra-abomasally (ERA)' Even

though the rumen pH was reduced significantly (P<O.OO 1) in those animals that were

supplemented with sucrose entirely intraruminally (ER), the in sacco degradation of barley straw

in the rumen was not adversely affected, as evidenced by the lack of significant difference

(P>0.05) between the four dietary treatments in major degradation characteristics. Intraruminal

administration of sucrose boosted the supply fermentable substrates in the rumen and produced a

higher total concentration of VFA in the rumen. The total VFA concentration in sheep receiving

the sucrose supplement abomasally (EA) was, however, low indicating that factors than total

fermentable substrates in the rumen may also have influenced VFA concentration. The pattern of

fermentation in the rumen was also changed by intraruminal supplementation of sucrose i.e. there

was a higher propionate: acetate ratio (0.46 & 0.43), compared to the control (Eo) or abomasally

(EA ) supplemented animals (0.30 & 0.28). This subsequently increased the glucogenic potential

of the absorbed VFA in animals on dietary treatments ER and ERA than those on control diet or

abomasally supplemented.

It was hypothesized that intestinal digestion of sucrose would enhance the availability of

glucogenic substrates for the body tissues even further, because intestinal digestion of

carbohydrates delivers 10-30% more energy than the absorbed products of fermentation of the

same quantity of carbohydrate in the rumen (Leng 1982c; Harmon and McLeod 2001). However,

this hypothesis was not strongly supported by the acetate clearance results which did not differ

(P>0.05) between the control and the supplemented animals. The mean values of the abomasally

supplemented animals did, however, point to their having a higher acetate clearance rate than the

animals in the other three dietary treatments. There was also no difference (P>0.05) in the rumen

liquid kinetics parameters between the dietary treatments.

There was no difference (P>0.05) between dietary treatments in microbial protein outflow from

the rumen (predicted by means of urinary allantoin excretion) whether this was expressed as

microbial N production per day or per kg OMAOR. The lack of response in microbial protein
xiii



supply to intraruminal sucrose supplementation (given that synthesis was sub-optimal) showed

that factors other than fermentable energy or ammonia were limiting microbial growth efficiency.

These factors may have included rumen turnover rates, and microbial growth efficiency of

different groups ofmicrobes whose proportion in the rumen ecosystem may have been influenced

by the supplement. It is noteworthy that numbers of protozoa were quite high in the rumen of the

intraruminally supplemented animals, and given that protozoa are known to engulf bacteria and

therefore increasing intraruminal recycling of microbial N, it is conceivable that their presence in

the rumen in high numbers could impair microbial protein flow to the small intestine. While N

intake was generally high, most of it was readily degraded in the rumen resulting in high N

digestibility values, and which is a common finding with basal diets high in NPN (Ferrell et al.

1999). The extensive hindgut fermentation in the abomasally supplemented animals was

attributed to escape of sugars from the small intestines due to low sucrase (invertase) enzyme

activity in the small intestines of ruminants (Walker 1959b; Siddons 1968; 0rskov et al. 1972).

As a consequence, the faecal N excretion was rather high, thus depressing N digestibility in the

sucrose supplemented animals.

It is concluded from this study that any strategy to stimulate higher productivity in animals

subsisting on low quantity basal roughage, especially those in the tropics, would have to start

with simple and inexpensive physical and/or chemical treatment such as treatment with urea, to

increase the proportion of potentially digestible OM. This roughage treatment could be

complemented by the provision of rumen degradable nutrients such as Nand S to overcome

deficiencies and thereby stimulate higher microbial growth in the rumen, and additional protein

to the small intestines. The chemical treatment is likely to improve O~1 digestibility and

therefore make more VFA energy available from the roughage. Provided availability and cost are

not prohibitive, and ruminal ammonia is adequate, readily digestible carbohydrates such as

sucrose may be utilised as an energy-rich supplement to further boost the fermentable OM

availability in the rumen and to further increase VFA energy absorption. However, the potential

benefits of such supplementation to the animal at the tissue metabolism level may be moderated

by a variety of other changes in the rumen fermentation and post-absorptive metabolism triggered

by the presence of the sugar in the rumen (e.g. increase in number of protozoa). Furthermore,

while there may be some benefits of by-passing rumen fermentation of sucrose in favour of

intestinal digestion that leads to increase in glucose supply to the body tissues, these may be

undermined by the limitations associated with post-ruminal sucrose digestion.
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