
����������
�������

Citation: Torgbor, B.A.;

Rahman, M.M.; Robson, A.;

Brinkhoff, J.; Khan, A. Assessing the

Potential of Sentinel-2 Derived

Vegetation Indices to Retrieve

Phenological Stages of Mango in

Ghana. Horticulturae 2022, 8, 11.

https://doi.org/10.3390/

horticulturae8010011

Academic Editor: Esmaeil Fallahi

Received: 18 November 2021

Accepted: 17 December 2021

Published: 22 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

horticulturae

Article

Assessing the Potential of Sentinel-2 Derived Vegetation
Indices to Retrieve Phenological Stages of Mango in Ghana

Benjamin Adjah Torgbor * , Muhammad Moshiur Rahman * , Andrew Robson , James Brinkhoff
and Azeem Khan

Applied Agricultural Remote Sensing Centre, University of New England, Armidale, NSW 2351, Australia;
arobson7@une.edu.au (A.R.); james.brinkhoff@une.edu.au (J.B.); azeemwsu@gmail.com (A.K.)
* Correspondence: btorgbor@myune.edu.au (B.A.T.); mrahma37@une.edu.au (M.M.R.);

Tel.: +61-233(0)24-3131-459 (B.A.T.)

Abstract: In 2020, mango (Mangifera indica) exports contributed over 40 million tons, worth around
US$20 billion, to the global economy. Only 10% of this contribution was made from African countries
including Ghana, largely due to lower investment in the sector and general paucity of research into
the mango value chain, especially production, quality and volume. Considering the global economic
importance of mango coupled with the gap in the use of the remote sensing technology in the sector,
this study tested the hypothesis that phenological stages of mango can be retrieved from Sentinel-2
(S2) derived time series vegetation indices (VIs) data. The study was conducted on four mango
farms in the Yilo Krobo Municipal Area of Ghana. Seasonal (temporal) growth curves using four
VIs (NDVI, GNDVI, EVI and SAVI) for the period from 2017 to 2020 were derived for each of the
selected orchards and then aligned with five known phenology stages: Flowering/Fruitset (F/FS),
Fruit Development (FRD), Maturity/Harvesting (M/H), Flushing (FLU) and Dormancy (D). The
significance of the variation “within” and “between” farms obtained from the VI metrics of the S2
data were tested using single-factor and two-factor analysis of variance (ANOVA). Furthermore, to
identify which specific variable pairs (phenology stages) were significantly different, a Tukey honest
significant difference (HSD) post-hoc test was conducted, following the results of the ANOVA. Whilst
it was possible to differentiate the phenological stages using all the four VIs, EVI was found to be
the best related with p < 0.05 for most of the studied farms. A distinct annual trend was identified
with a peak in June/July and troughs in December/January. The derivation of remote sensing based
‘time series’ growth profiles for commercial mango orchards supports the ‘benchmarking’ of annual
and seasonal orchard performance and therefore offers a near ‘real time’ technology for identifying
significant variations resulting from pest and disease incursions and the potential impacts of seasonal
weather variations.

Keywords: mango (Mangifera indica); phenology; remote sensing; Sentinel-2 MSI; vegetation indices
(VIs); Enhanced Vegetation Index (EVI); time series analysis

1. Introduction

Mango (Mangifera indica) has been venerated as the ‘King of Fruits’ with a global
production of 40 million tons at an average productivity of approximately 8 tons per
ha from 5.4 million hectares [1,2]. The global annual economic value of mango ex-
ports in 2020 exceeded US$20 billion, with African countries contributing over 10%
and 11% of global fresh and processed mango exports respectively [3,4]. The predom-
inant commercial varieties grown globally include Tommy Atkins, Keitt and Kent.
These varieties are preferred for their superior agronomic characteristics including
low susceptibility to disease and pest infestation, ability to withstand damage during
transportation, as well as sensory and visual appeal [5,6]. In Ghana, Keitt and Kent
are predominantly grown due to their resistance to disease and availability during
periods of high demand from importing nations [7,8]. The mango sector in Ghana is
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rapidly expanding as a result of public and private sector initiatives to promote produc-
tion, good agricultural practices, post-harvest processing and marketing systems [9].
Ghana’s mango sector has a comparative advantage over other African countries in
that, a greater part of the country has two harvest seasons with high quality mangoes
which makes it suitable for fair-trade and organic niche markets [8–10]. As a result,
mango is fast becoming one of the most important horticultural crops for export (like
Cocoa) and for the domestic markets in Ghana [3,11,12]. However, compared to other
producers such as India, Brazil and Mexico, mango productivity in Ghana remains
very low [3,13] for several reasons including lack of research to determine optimal
nutrient and pest management, low technology adoption and poor post-harvest han-
dling practices among others [7]. Consequently, only about 15% of annual production
output is of good quality for export [8]. Knowledge of crop growth stages, or phenol-
ogy, is integral to proper management and yield improvement of mango crops [14].
Knowing the timing of the various phenology stages will ensure that farmers undertake
the critical practices such as fertilization, pest and weed control and harvesting at the
optimal time.

Phenology is the science of the synchronization of natural events and timing in
crop development as influenced by weather variables such as rainfall, day length and
temperature in its environment during certain seasons of the year [15]. A number of
studies have classified mango crop phenology into five main stages including: Flower-
ing/Fruitset (F/FS), Fruit Development (FRD), Maturity/Harvesting (M/H), Flushing
(FLU) and Dormancy (D) [16,17]. The length of the period of each stage depends on
a number of variables including weather conditions, location, variety, tree age and
crop management. During the flowering stage, the mango tree produces large num-
ber of flowers which blossom all over the canopy, with colours ranging from white to
brownish-red. It takes between one and three weeks for the petals of pollinated flowers
to fall off and the stigma to form fruitlets, with non-pollinated stigma drying out [6].
Fruitlets formed at the fruitset stage increase in size during the fruit development stage
of the physiological and phenological cycle. The fruit development stage lasts for 3 to
5 months [18]. Throughout the period of fruit development, both the leaves and fruits
in most cases are green due to the presence of chlorophyll. Harvesting is done when
the fruit is deemed physiologically mature but still hard and green to ensure there is
sufficient time between harvesting and transportation to markets [10]. Pruning is usually
done after harvesting to remove old branches, improve light interception and permit
fresh leaf flush, which is a process of initiating vegetative growth of the resting buds on
the branches of a tree canopy. Furthermore, dormancy is a period where growth of the
mango tree stops. Technically, at this stage individual non-growing stems are resting,
rendering the apical or lateral buds dormant [14]. It is a stage that is critical for flower
induction [19]. The dormancy period normally takes 2 to 3 months. At the dormancy
stage, the mango tree requires optimal water supply from rainfall or irrigation [19]. Even
in similar environments, every stage of the mango’s phenology, is heavily influenced by
weather condition (temperature, atmospheric vapour pressure deficit and rainfall-water
relation), nutrients and tree age [14,19].

Understanding the phenology of mango, particularly at varying scales (tree, or-
chard, regional and even national scale) offers significant benefit to the industry. At
the grower level, understanding of phenology supports the identification of optimum
timing for harvesting to maximize quality and inform harvesting logistics including
labour, storage, transport etc. The application of crop inputs at key phenological stages
for yield and quality forecasting is influenced by knowledge in crop phenology [20].
Establishing optimum harvesting timing is critical for mango, as an early harvest re-
sults in under ripe fruit that suffers poor eating qualities from reduced assimilation
of sugars (reducing sweetness of the fruit), hard texture and green coloration (loss of
blush) [21–26]. A delayed harvest results in the fruit ripening on the tree, making the
flesh softer and therefore more susceptible to pest infestation and transport damage [22].
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Consequently, the shelf life of the fruit is greatly reduced [23]. At the farm and regional
scales, benchmarking historic phenology growth profiles against future seasons can
enable specific constraints such as pest and disease to be quickly identified (i.e., rapid
variations to historic averages). Similarly, seasonal variations associated with climate
change can also be determined. Additionally, understanding crop phenological stages
provides the agri-food industry and government organizations with vital information
to better inform crop productivity forecasts in support of marketing and agricultural
decision-making policy [27].

Previous studies have identified the use of remote sensing derived vegetation in-
dices (VIs) for measuring a number of parameters in horticultural tree crops, including
pigments, foliar nutrients, biomass and yield [1]. The approaches range from descriptive
analysis to linear and non-linear regression modelling such as reflectance transforma-
tions and narrow band VIs [1], principal component analysis (PCA) [28,29]; and machine
learning modelling approaches of the spectral data such as random forest (RF) [30,31],
support vector machine (SVM) [32,33] and artificial neural network (ANN) [34] among
others. Physically-based methods such as radiative transfer model (RTM) and inver-
sions [35,36] and hybrid approaches that involve the combination of at least two of
the methods have also been used previously [1]. Of all the approaches mentioned, the
descriptive analysis and regression approach [37] have been widely used due to their
simplicity, relative ease of application in crop monitoring and their sensitivity to crop
phenological characteristics [38–41]. Their sensitivity to crop characteristics is largely
due to the combination of two or more reflectance bands, capturing specific interactions
between electromagnetic radiation and crop features including the concentration of
chlorophyll and other pigments, leaf area as well as canopy biomass depending on
the portion of the electromagnetic spectrum in use [38,40–43]. For example, decrease
in chlorophyll concentration can represent plant senescence. Changes in chlorophyll
concentration, therefore, are an indication of plant phenology, stress and developmental
stage [44,45]. VIs such as NDVI, GNDVI, EVI and SAVI have been noted to be among
the most critical indicators of vegetation phenology [46].

The increasing availability of remotely sensed data such as MODIS, SPOT, Landsat
and Sentinel-2 [47] with high temporal resolution and long historic archives has provided
greater analytical options in terms of mapping and modelling vegetation change seasonally
and over time. Landsat series (4–8) have a global archive of satellite imagery starting from
1982 with spatial resolution of 30 m and revisit time of 16 days. However, considering the
temporal resolution of Sentinel-2 with revisit time of 3 to 5 days and spatial resolution of
10 m for visible (Red, Green and Blue (RGB)) and near infrared (NIR) bands makes it a
better choice for a time series analysis on mango phenology in cloud prone regions such as
Ghana [48].

A number of studies have used remote sensing to characterize the phenology of
both annual and perennial crops [14,15,49–51]. For example, Wang, et al. [31] applied
a random forest algorithm to a Synthetic Aperture Radar (SAR) data to retrieve the
phenology of four annual crop namely canola, corn, soybean and wheat, with Spearman
correlation coefficients (R) of 0.93, 0.90, 0.85 and 0.91 respectively. Similarly, Zeng,
et al. [49] demonstrated the ability of a hybrid approach in detecting the phenology of
soybean and corn using a time-series MODIS data. Tedesco, et al. [37] used a combination
of remote sensing derived VIs (NDVI, GNDVI and SAVI) and growing degree days
(GDD) to characterize the phenology stages of sweet potato. In another study, Sawant,
et al. [52] used NDVI time-series data obtained from Landsat archives spanning the
period 1990–2015 to study the phenological growth stages and evapotranspiration of
citrus. Furthermore, satellite image time series of Sentinel-1 and Sentinel-2 derived
crop phenology was used to classify 9 perennial tree crops [53,54]. However, apart
from the existing general paucity of research into satellite remote sensing of tree crops,
specifically on mango crop phenology, there are several limitations including the use of
low resolution satellite data as well as gap in the choice of crops with the earlier studies.
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Given the economic importance of mango, particularly for countries such as Ghana and
the non-existence of a study that applied remote sensing in retrieving its phenology, this
current study tests the hypothesis that phenological stages of mango can be retrieved
from Sentinel-2 derived time series VIs data. The study therefore aims at exploring
the potential of freely available Sentinel-2 data to charcterize mango phenology stages
in Ghana.

2. Materials and Methods
2.1. Study Area

The study was conducted in 4 farms (Table 1) within the Yilo Krobo Municipal area,
near Somanya in the Eastern Region of Ghana (longitude 0◦2′ E to 0◦3′W and latitude 6◦2′ N
to 6◦4′ N), which accounts for more than 50% of the country’s total mango production [7,8].
Ghana is a West African country located between Togo to the East, Cote D’Ivoire to the West,
Burkina Faso to the North and the Gulf of Guinea to the South (Figure 1). The temperature
in the study area ranges between a minimum of 24.9 ◦C and a maximum of 30 ◦C. Due to
its location in the dry equatorial climatic zone, the annual rainfall ranges between 750 mm
to 1600 mm. The area is characterized by a bi-modal rainfall season with the major rains in
May/June and the minor rains in September/October. The farms used for the study are
located on relatively flat lands with isolated undulating portions. The area is surrounded
by hills on the northwestern ranges.
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Table 1. Description of the four farms used in the study.

Name of
Farm Location Ownership/

Management
Coordinate of

Centroid Tree Age (yr) Size (ha) Spacing (m) Variety
(%)

Pentacom
Farms Somanya Corporate 0◦0′22.045′′ E

6◦4′59.591′′ N 18 45.0 10 × 8
Keitt (85),
Kent and

Others (15)

Abora Farm Somanya Small grower 0◦2′14.438′′ W
6◦3′28.195′′ N 18 1.3 10 × 10 Keitt (95),

Kent (5)

Akuni Papa
Farm Somanya Small grower 0◦2′16.705′′ W

6◦3′20.774′′ N 18 1.9 9 × 9 Keitt (95),
Kent (5)

Akorle Farm 1 Somanya Small grower 0◦2′53.204′′ W
6◦3′10.632′′ N 18 6.0 10 × 10 Keitt (95),

Kent (5)

2.2. Data Acquisition and Processing
2.2.1. Mango Phenology Data

Data on the phenology and various farm management activities on the mango farms
were obtained from the growers of all four farms over the 4-year period. This includes the
dates physiological changes e.g., flowering, fruitset and leaf flush were first observed and
farm management activities such as flower induction dates and harvesting were undertaken.
Additionally, published literature relating to mango phenology cycles in Ghana and West
Africa were reviewed [55,56]. The information indicated the growth stages and timings
(Figure 2) where the collection of monthly satellite data was most required.
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For instance, since F/FS usually occur in January and February (J-F) in the southern
part of Ghana (and other West African countries), all the available remote sensing data
for those 2 months in a particular year were averaged and plotted. In similar manner,
available images for the months of March, April and May (M-A-M) were averaged for
the FRD stage. Images for June and July (J-J) were averaged to mark the M/H stage.
On a few occasions, only a few images were useful for the J-J period. It is the time of
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the year where there is a lot of cloud cover over the area, making it difficult to obtain a
cloud free imagery. Furthermore, the FLU stage is observed in the months of August,
September, October and November (ASON) and finally, the D stage occurs in December
(D). The resulting aggregated remote sensing data was plotted to obtain the time series
trend for the various farms over the 4-year period. All the median and maximum VI
values at the various phenology stages within a year were averaged to obtain an annual
temporal trend.

2.2.2. Extraction of Remote Sensing Data and Derivation of Vegetation Indices

Sentinel-2A (launched in June 2015) and Sentinel-2B (launched in March 2017) multi
spectral (MS) data with a spatial resolution of 10 m for all visible and near infrared bands
were acquired through the Digital Earth Africa (DE Africa) platform. It is a cloud-based
platform with a repository of earth’s observation SAR and optical data (including Landsat,
Sentinel-1 and Sentinel-2) on which the analyst has the flexibility of conducting Remote
Sensing analysis in a flexible and more efficient way by automating the various processes
in computer-based codes in the digital Sandbox environment [57]. The platform provides
an analysis-ready Level-2A (L2A) bottom of atmosphere (BOA) surface reflectance data,
which is derived from level-1C (L1C) top of atmosphere (TOA) data using the Sen2Cor
processor algorithm [58]. The algorithm is applied to mitigate the atmospheric effects
on L1C data [59–61]. Sentinel-2 L2A data was acquired for 4 farms within the mango
growing areas in the Yilo Krobo Municipal Area for full years, including 2017, 2018, 2019
and 2020. In total, 387 images were acquired for the analysis. A threshold was set for
suitable images required for the time series analysis. All images with cloud cover 10% or
less were considered suitable and were included in the analysis. From the ≤10% threshold
filtered data, cloudy pixels found on the area of interest (farms) were masked out using the
Fmask algorithm [62–64].

Two metrics, median and maximum for four vegetation indices (VIs) were extracted
from polygon geometries defining the mango farm boundaries with 50 m buffer to correct
for edge effect. The VIs studied were Normalized Difference Vegetation Index (NDVI) [65],
Green Normalized Difference Vegetation Index (GNDVI) [66], Enhanced Vegetation Index
(EVI) [67,68] and Soil Adjusted Vegetation Index (SAVI) [69]. These VIs have been used
extensively for vegetation health and yield studies [70]. NDVI is effective for vegetation
health study in areas with less biomass and leaf area index [50,71]. EVI is similar to NDVI
and can also be used to quantify vegetation greenness. However, EVI is an optimized
vegetation index that corrects for atmospheric conditions and canopy background noise
and is more sensitive in areas with high biomass or dense vegetation [50,72,73]. EVI
incorporates an “L” value to adjust for canopy background, “C” values as coefficients for
atmospheric resistance, and values from the blue band (B). These enhancements allow for
the ratio between the R and NIR values to be derived, while reducing the background
noise, atmospheric noise, and saturation in most cases. Unlike NDVI and GNDVI which
explore the chlorophyll content of the vegetation, EVI explores the structural characteristics
of the plant and seeks to overcome the limitations of NDVI and GNDVI [40,47]. SAVI uses
a transformation technique that minimizes the effect of soil brightness from VIs that use the
Red and NIR wavelengths [50,71]. SAVI also incorporates an “L” value that corrects for soil
background noise. Generally, L = 0 and L = 1 refers to high vegetation and no vegetation
areas respectively. Due to the vegetation characteristics of the study area, an “L” value of
0.5 was applied [69,71].

The VIs are defined as:
NDVI =

ρNIR− ρRed
ρNIR + ρRed

(1)

GNDVI =
ρNIR− ρGreen
ρNIR + ρGreen

(2)

EVI = G× ρNIR− ρRed
ρNIR + C1× ρRed−C2× ρBlue + L

(3)
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SAVI =
ρNIR− ρRed

ρNIR + ρRed + L
(1 + L) (4)

where, ρNIR, ρBlue, ρGreen and ρRed refer to the reflectance in the Near-infrared
([B8] ~833 nm), Blue ([B2] ~493 nm), Green ([B3] ~560) and Red ([B4] ~665 nm) portions
respectively of the electromagnetic spectrum. The values for the coefficients G, C1, C2 and
L for EVI are 2.5, 6, 7.5 and 1 respectively. Additionally, the value of the constant L, in the
SAVI formula is 0.5 after [69].

2.3. Data Analysis

To test for correlation among the VI metrics and the significance of the trends as
well as variability within and between farms, descriptive data analysis including cross
correlation, single-factor and two-factor analysis of variance (ANOVA) was undertaken
using the Sentinel-2 data. The single-factor ANOVA was targeted at testing the relationship
between the five phenology stages within farms. To identify which specific variable pairs
(phenology stages) were significantly different, a Tukey honest significant difference (HSD)
post-hoc test was conducted, following the results of the ANOVA. The Tukey’s HSD test
allows a simultaneous pairwise comparison of all the means of possible groups, to test for
statistically significant difference between them [74]. Furthermore, the two-factor ANOVA
was aimed at exploring the interactions of the various phenology stages between farms.
The test was conducted using an online calculator [75]. Additionally, the phenology data
from the four farms were compared with the remote sensing data. This was aimed at explor-
ing the possibility of clearly differentiating the various phenology stages using remotely
sensed VIs.

3. Results
3.1. Temporal Profiles of Remote Sensing Data at Key Phenological Stages

The extraction of the four vegetation indices from Sentinel-2 imagery over a four-year
period (2017–2020) identified an annual growth profile with a peak in June/July and trough
in December/January (Figure 3). Although the phenology stage characteristics of mango
varied slightly from year to year for all the four farms, EVImed proved to be consistently the
best for differentiating the five phenology stages of mango in the study area. The temporal
profile of mango phenology at the four farms is given in Figure 3. Less variation was
observed in the Pentacom Farm (PF) and Akuni Papa Farms (APF) compared to those in
the Abora (AF) and Akorle Farm 1 (AF1). The phenology curve for each farm had its own
response to the VIs as shown in Figure 3. For instance, the variation around the mean EVI
values for the Abora Farm was highest in the FRD, M/H and FLU stages followed by that
of the Akorle Farm 1 over the 4-year period.

The bell-shaped EVImed curve shows two stages on both sides of the “handle” which
is the M/H. Taking the M/H stage of individual farms as center, the left sides of the curve
have F/FS and FRD stages and right side have FLU and D completing the bell-shaped
formation. The left side starts with a low EVImed value from the F/FS stage and peaks with
time through the FRD stage and terminates at the M/H stage. It then begins to trough
through the FLU stages and ends the cycle at the D stages. This characteristic cycle of peaks
and troughs occur annually, giving the Mango in the study area its phenology.

For each of the following farms the EVI temporal growth profiles are shown as EVI
maximum values (EVImax), EVI median values (EVImed) and EVI yearly average values
(EVIaa). This demonstrates the average seasonal variability measure for each farm as well
as the extremes in high and low reflectance (EVI) associated with seasonal, management
or biotic/abiotic influences. The temporal profiles of all the four VI metrics (i.e., NDVI,
GNDVI, EVI and SAVI) for the four farms (PF, AF, APF and AF1) can be found in the
Supplementary Material (Figures S1–S4).



Horticulturae 2022, 8, 11 8 of 17Horticulturae 2022, 8, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 3. Overall mean and standard deviation of the four farms for the five phenology stages (F/FS, 
FRD, M/H, FLU and D) over the four years (2017–2020). X-axis offsets have been added to avoid 
overlapping error bars. 

For each of the following farms the EVI temporal growth profiles are shown as EVI 
maximum values (EVImax), EVI median values (EVImed) and EVI yearly average values 
(EVIaa). This demonstrates the average seasonal variability measure for each farm as well 
as the extremes in high and low reflectance (EVI) associated with seasonal, management 
or biotic/abiotic influences. The temporal profiles of all the four VI metrics (i.e. NDVI, 
GNDVI, EVI and SAVI) for the four farms (PF, AF, APF and AF1) can be found in the 
Supplementary Material (Figures S1–S4). 

3.1.1. Pentacom Farm 
The phenology characteristics of mango for Pentacom farm, in terms of date they 

occurred, did not show any considerable variation from year to year, therefore, the trend 
(and average of all the years in the time series) from 2017 to 2020 was similar for all the 
vegetation indices trialed. Temporal profile of mango phenology in relation to EVI metrics 
at the Pentacom farm is given in Figure 4. The lowest VIsmed were observed at the F/FS 
stage, whereas the peaks were observed at the M/H stage. For EVImax the peak fluctuated 
in-between M/H and FLU. Additionally, the lowest EVI metrics were observed at the F/FS 
stage in 2020. Figure S1 shows the temporal profiles for NDVI, GNDVI and SAVI for the 
Pentacom Farm. 

 

Figure 3. Overall mean and standard deviation of the four farms for the five phenology stages (F/FS,
FRD, M/H, FLU and D) over the four years (2017–2020). X-axis offsets have been added to avoid
overlapping error bars.

3.1.1. Pentacom Farm

The phenology characteristics of mango for Pentacom farm, in terms of date they
occurred, did not show any considerable variation from year to year, therefore, the trend
(and average of all the years in the time series) from 2017 to 2020 was similar for all the
vegetation indices trialed. Temporal profile of mango phenology in relation to EVI metrics
at the Pentacom farm is given in Figure 4. The lowest VIsmed were observed at the F/FS
stage, whereas the peaks were observed at the M/H stage. For EVImax the peak fluctuated
in-between M/H and FLU. Additionally, the lowest EVI metrics were observed at the F/FS
stage in 2020. Figure S1 shows the temporal profiles for NDVI, GNDVI and SAVI for the
Pentacom Farm.
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3.1.2. Abora Farm

There was a considerable variation in EVI metrics in the Abora Farm although similar
trend of troughs around the F/FS and peaks at the M/H stages were observed across the
time series. Thus generally, the highest EVImed was recorded at the M/H stage of year
2017 with the lowest recorded in the F/FS stage of 2020. The EVImax had a slight variation
in 2018 and 2019 but generally, 2020 was the lowest across all the five phenology stages.
Figure 5 shows the temporal profile of the EVI metrics at the various phenology stages in
the Abora Farm. Figure S2 shows the temporal profiles for NDVI, GNDVI and SAVI for the
Abora Farm.
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3.1.3. Akuni Papa Farm

There was no considerable variation in the phenology stages of mango in the Akuni
Papa Farm across the time series (Figure 6). The FRD and M/H stages of 2017 showed a
characteristic trough at the F/FS and peak at the M/H stages across the entire metrics of
the VIs analyzed. EVImax and EVImed were lowest at the F/FS stage of 2020. Additionally,
a slight trough and peak were observed at the M/H and FLU stages of 2018 for all the EVI
metrics tested. Furthermore, EVI, to a large extent, showed the expected mango phenology
trend, with the troughs at the F/FS stage and peaks at the M/H stage. Figure S3 shows the
temporal profiles for NDVI, GNDVI and SAVI for the Akuni Papa Farm.

3.1.4. Akorle Farm 1

Generally, Akorle Farm 1 recorded the highest EVImed compared to all the farms
studied, mainly, from the F/FS to M/H stages of 2017. The lowest values were also largely
recorded at the same stages in 2018 and 2020. EVImed conformed appreciably well to the
established phenology trend, with some variation. However, there exists some amount of
fluctuation in the EVImax between the M/H and FLU stages of 2017, 2018 and 2020. That
is, unlike the EVI values at the M/H stage being generally higher than the FLU stage, to
establish the expected trend, a slight trough was rather observed at the M/H stage of 2017,
2018 and 2020. Figure 7 shows the temporal profile of the EVI metrics for mango at the five
phenology stages. Figure S4 shows the temporal profiles for NDVI, GNDVI and SAVI for
the Akorle Farm 1.
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3.2. Temporal Variability of Mango Phenology within Farms

The results of the Single-Factor ANOVA analysis (Table 2), in which “phenology
stages” was the considered factor, suggests a significant variation at p < 0.05 within the four
farms from most of the VIs trialed. The EVI metrics showed the most significant differences
across all stages within the four farms. Overall, the results show on a farm-by-farm basis
which phenology stages have equal means or otherwise to allow for the acceptance or
rejection of the null hypothesis per the two VI metrics tested. For example, the results show
that there was no significant difference between the means of the phenology stages in the
Abora Farm and Akuni Papa Farm from the NDVI and GNDVI analysis.

Within all the farms, although the average trend in mango phenology from one stage
to the other remained fairly stable, significant variation exists from year to year in the time
series. Generally, there was less variation in EVImed and EVImax at the M/H stage across the
time series. Observed EVI variation across the time series was rather found mostly at the D
stage with EVImed and EVImax values ranging from 0.29–0.42 and 0.41–0.72 respectively.
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Table 2. Results of a Single-Factor analysis of variance (ANOVA) of phenology stages within the
four farms.

NDVI Metrics GNDVI Metrics EVI Metrics SAVI Metrics

FARM Significance
Test Median Maximum Median Maximum Median Maximum Median Maximum

PF p-value 0.0004 4.2 × 10−6 0.0376 0.0013 2.3 × 10−7 3.9 × 10−5 5.3 × 10−5 4.8 × 10−6

AF p-value 0.2752 2.2 × 10−1 0.3068 0.1610 2.3 × 10−3 1.8 × 10−3 5.9 × 10−2 3.5 × 10−2

AF1 p-value 0.0017 4.7 × 10−7 0.0040 0.0008 3.2 × 10−4 2.3 × 10−4 1.2 × 10−3 1.6 × 10−4

APF p-value 0.2730 2.7 × 10−1 0.3426 0.3480 5.1 × 10−4 2.6 × 10−4 2.1 × 10−2 1.8 × 10−2

The ANOVA test results generally showed a significant difference between means of
the VIs of one or more phenology stages, leading to the rejection of the null hypothesis.
However, information regarding which specific stages were significantly different from
each other needs to be established. Therefore, a post-hoc test, the Tukey honest significant
difference test was conducted, to show which phenological stages are significantly different
from each other at p < 0.01 and p < 0.05 (Table 3).

Table 3. Results of the Tukey HSD test conducted on the phenology stages of the four farms.

FARM
EVI METRIC

EVImed EVImax

Pentacom

F/FS FRD M/H FLU D F/FS FRD M/H FLU D

F/FS

FRD 0.001 ** 0.002 **

M/H 0.001 ** 0.590 0.001 ** 0.306

FLU 0.001 ** 0.900 0.395 0.001 ** 0.710 0.900

D 0.043 * 0.001 ** 0.001 ** 0.002 ** 0.057 0.418 0.013 * 0.057

Abora

F/FS

FRD 0.041 * 0.177

M/H 0.001 ** 0.402 0.001 ** 0.544

FLU 0.018 * 0.900 0.631 0.014 * 0.111 0.900

D 0.201 0.885 0.097 0.657 0.024 * 0.624 0.705 0.225

Akuni Papa

F/FS

FRD 0.242 0.037 *

M/H 0.001 ** 0.042 * 0.001 ** 0.313

FLU 0.002 ** 0.129 0.900 0.001 ** 0.104 0.900

D 0.075 0.900 0.147 0.378 0.014 * 0.900 0.571 0.237

Akorle Farm 1

F/FS

FRD 0.031 * 0.051

M/H 0.001 ** 0.130 0.001 ** 0.282

FLU 0.001 ** 0.359 0.900 0.001 ** 0.096 0.900

D 0.057 0.900 0.073 0.222 0.191 0.900 0.081 0.0235 *

* significant at p < 0.05, ** significant at p < 0.01.
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3.3. Temporal Variability of Mango Phenology between Farms

Variability in the mango crop characteristics in relation to the phenology stages be-
tween the four farms studied were explored. The relationship between mango farms and
phenology stages was also tested. The p-values of the two-factor ANOVA (without replica-
tion) analyses on vegetation indices in relation to the phenology stages in the four farms
are presented in Table 4. The results of the analysis show a significant variation at p < 0.05
between VIs and (1) the phenology stages (2) and the farms. This therefore allowed the
rejection of the null hypothesis, that all phenology stages and mango farms have the same
VIs mean values.

Table 4. Results of two-factor ANOVA analysis between the farms studied.

NDVI GNDVI EVI SAVI

Median Maximum Median Maximum Median Maximum Median Maximum

Phenology
Stage 3.1 × 10−6 6.4 × 10−7 3.2 × 10−6 5.1 × 10−6 4.4 × 10−7 1.3 × 10−6 2.4 × 10−7 2.2 × 10−6

Mango
Farm 2.3 × 10−6 9.8 × 10−7 3.6 × 10−5 9.5 × 10−5 2.0 × 10−3 1.5 × 10−3 3.3 × 10−4 5.1 × 10−4

4. Discussion

Five main crop phenological stages were differentiated from this study which
is consistent with the phenology stages observed by Vayssières, et al. [55]. These
stages, namely F/FS, FRD, M/H, FLU and D occur yearly in the mango growing areas
studied. There is a characteristic peak in June/July (M/H stage) and trough in Decem-
ber/January (D–F/FS stages) for the major production season. From a remote sensing
perspective, reflectance measured by multispectral sensors are usually low at the flow-
ering and fruitset stage compared to other stages in the phenological cycle due to the
low chlorophyll content of the flowers. VIs values are relatively lower at this stage due
to the lower reflectance in the NIR band which is chlorophyll sensitive [45]. Further-
more, considering the climate of Ghana, the flowering and fruitset period coincides
with the peak of the dry season (December to February) where herbaceous vegetation
growing in between the espacement of the mango tree mostly dry up. These situations
may explain why the VIs value at the F/FS stage was low. Throughout the period of
FRD, both the leaves and fruits are green due to the presence of chlorophyll. Therefore,
high VIs values were obtained at the FRD stage compared to the F/FS stage in the
left side of the bell-shaped curve. Furthermore, at the M/H stage, which is the peak
of the growing season, what is measured by remote sensing sensors include mature
fruits and other tree biomass as well as the grasses and herbaceous vegetation that may
be favoured by the rains in Ghana around June/July. This results in the recording of
higher VIs values at the M/H stage compared to all other stages. These production
periods have been recognized and affirmed by Van Melle and Buschmann [10] and
Zakari [8]. Subsequently, from the FLU stage (where pruning also occurs), the VIs val-
ues drop especially due to the general reduction of the biomass in the canopy through
the removal of branches with leaves and the harvest of fruits [76,77]. Additionally, the
new leaf flush does not contribute significant biomass to increase the reflectance or VIs
values. This result in lower VIs values compared to the M/H stage which ends at the D
stage [77].

Although variations exist within farms across the 4-year time series, EVI provided
the consistently best VI relationship to the different phenology stages across the four
farms. The results from the pairwise comparison (Table 3) show that different pairs
(phenology stages) were retrieved from different farms. However, the F/FS–M/H and
F/FS-FLU stages can be distinguished across all the farms at p < 0.05. This implies
therefore that Sentinel-2 MS data derived VIs can be used to differentiate the F/FS–M/H
and F/FS–FLU phenology stages on all the four mango farms. The significant variations
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found within the farms, observed from the EVI, show that this metric may be used
to clearly differentiate the phenology stages of mango on any of the farms within the
study area. Hatfield and Hatfield and Prueger [50] used Simple ratio (SR), NDVI, EVI,
SAVI, Chlorophyll green (CIgreen), normalized pigment chlorophyll ratio (NPCI) and the
plant senescence reflectance (PSRI) indices to differentiate phenology of soybean and
six corn hybrids and explored the EVI as more promising in differentiating phenology
stages due to its ability to overcome atmospheric and soil background noise, which is a
challenge with the use of NDVI and GNDVI [50,78]. Moreover, as shown from a number
of previous studies, EVI is more robust in the differentiation of the phenology stages due
to its ability to explore the structural properties (branches, stems etc.) of the tree apart
from just the leaves or green pigment [79–81]. Furthermore, the EVI metrics at the M/H
stage of all the farms, showed relatively less seasonal variations within farms across
the times series. This therefore presents a great opportunity for yield modelling in the
studied farms [82].

Only few data points were available annually over the study sites especially from
April to June/July due to continued cloud cover. This is a major challenge for optical
satellite remote sensing in a tropical country such as Ghana. Results on phenology are
usually unstable around this period although the trends are similar to what is expected.
This variation in the metrics during the M/H stage of mango may be due to the limited
availability of cloud free images over the farms particularly, in the months of June
and July. In some cases, only one or two images are available in the months of June
and July. This situation was overcome by interpolating values from available images.
A potential solution to this time series-based problem could be the use of SAR data
or the fusion of Sentinel-2 (10 m VNIR spatial resolution and 5 days revisit time) and
PlanetScope data with 3 m spatial resolution and a daily revisit time [83]. This will
provide a higher chance of successfully obtaining daily imagery during the cloudy days.
Additionally, data for the study was available for only four years (2017–2020) which
posed a significant limitation to this study. Data for more years (e.g., 10 or more from the
Landsat Archives) could have been extremely useful in providing a better explanation in
characterizing mango crop phenology. However, for small farms such as those used in
the study, which is common in Ghana, the use of Landsat with a coarser spatial resolution,
is challenging.

A number of factors including farm management and weather (rainfall and tem-
perature) could have contributed largely to the variations in the phenology trends
observed [82]. For example, in years 2019 and 2020 the erratic nature of the weather
in the study area may have affected the phenology of mango. Specifically, massive
rainfall was recorded in June 2019 and dropped significantly around the same time in
the following year. However, the remote sensing derived VIs identified those variations
in phenology comprehensively.

5. Conclusions

This study aimed to investigate the potential of S2 derived VIs to obtain information
on five main crop phenology stages of mango, namely F/FS, FRD, M/H, FLU and D
in Ghana. The study also underlined the spatial behaviour of mango crop phenology,
temporal shifts with season and variation on farm level. Although the four VIs (NDVI,
GNDVI, EVI and SAVI) tested show promise in differentiating the various crop phenol-
ogy stages, EVI provided the consistently best VI to retrieve the different phenology
stages across the four farms. The results of this study further revealed that the highest
VI values were observed at the M/H stage while the lower values were recorded for the
F/FS and D stages. Only two stages were distinguishable across all the four farms at
p < 0.05 and the inter-annual variation in VIs was farm specific, with 2019 recording
highest values for most farms. The alignment of satellite remote sensing derived VIs
data to specific phenological growth stages offers great benefit to industry for guiding
key timings for crop management activities including the application of crop inputs
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(nutrition, growth regulators, fungicides inter alia) and harvest scheduling. These out-
puts thus support improved production and quality as well as the ongoing resilience
and growth of Ghana’s mango industry. It also provides the opportunity to relieve
mango farmers of the stress in having to record farm operations and phenological events
when they occur, by ‘benchmarking’ of annual and seasonal orchard performance for
identifying significant variations resulting from pest and disease incursions and the
potential impacts of seasonal weather variations. Although EVI showed promising
results in identifying different phenological stages at most of the farms, further study
would be required to affirm this claim. Recently, with the advent of very high-resolution
imagery such as the PlanetScope with 3 m spatial resolution and a daily revisit time, this
study can be further extended to predict the specific date of the mango crop phenology
change. This will therefore provide valuable information for on farm crop management
practices, developing yield prediction models and optimizing harvest logistics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/horticulturae8010011/s1, Figure S1: Temporal profile of mango in relation to the phe-
nology cycle across the 4-year time series of median (NDVImed, GNDVImed, EVImed and
SAVImed) and maximum VI metrics (NDVImax, GNDVImax, EVImax and SAVImed) together
with their overall yearly average (NDVIaa, GNDVIaa, EVIaa and SAVIaa) from the Pentacom
Farm showing the five phenology stages differentiated including Flowering/Fruitset (F/FS),
Fruit Development (FRD), Maturity/Harvesting (M/H), Flushing (FLU) and Dormancy (D),
Figure S2: Temporal profile of mango in relation to the phenology cycle across the 4-year time
series of median (NDVImed, GNDVImed, EVImed and SAVImed) and maximum VI metrics
(NDVImax, GNDVImax, EVImax and SAVImed) together with their overall yearly average
(NDVIaa, GNDVIaa, EVIaa and SAVIaa) from the Abora Farm showing the five phenology stages
differentiated including F/FS, FRD, M/H, FLU and D, Figure S3: Temporal profile of mango in
relation to the phenology cycle across the 4-year time series of median (NDVImed, GNDVImed,
EVImed and SAVImed) and maximum metrics (NDVImax, GNDVImax, EVImax and SAVImed)
together with their overall yearly average (NDVIaa, GNDVIaa, EVIaa and SAVIaa) from the
Akuni Papa Farm showing the five phenology stages including F/FS, FRD, M/H, FLU and
D, Figure S4: Temporal profile of mango in relation to the phenology cycle across the 4-year
time series of median (NDVImed, GNDVImed, EVImed and SAVImed) and maximum metrics
(NDVImax, GNDVImax, EVImax and SAVImed) together with their overall yearly average
(NDVIaa, GNDVIaa, EVIaa and SAVIaa) from the Akorle Farm 1 showing the five phenology
stages including F/FS, FRD, M/H, FLU and D.
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