
Chapter 1

Introduction

This thesis develops a statistical model to predict breast tissue pathology based upon coefficients
produced by an adaptive multi-scale transform of small-angle x-ray scattering (SAXS) images.
The adaptive transform devised in this thesis provides a multi-scale, multi-directional represen-
tation of a SAXS image. An entire library of filter functions is used within this transform to
allow the best functions to be selected for classification. For the diagnosis of breast cancer us-
ing SAXS images, the functions selected from this library (for inclusion in the transform) are
those that provided the best separation of the data associated with the different tissue patholo-
gies. Statistical models are subsequently developed from the coefficients of the transformed
SAXS patterns. These models estimate the probability of normal, benign and malignant tis-
sue pathology using coefficients across scales and locations of the transform. The results of this
model provide insight into those coefficients most indicative of a particular tissue pathology. The
methodology is extended to include a logistic model that infers the tissue pathology associated
with a particular SAXS image based upon all of the coefficients of the adaptive transform. This
model proves itself to be capable for the detection and diagnosis of breast cancer. The analytical
techniques presented in this thesis contribute to the task of pattern recognition using the multi-
scale paradigm, as they can also be used as a general modeling framework that is applicable to a
range of other SAXS image data.
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1.1 Motivation for the Model

The need for a diagnostic model is driven by two priority areas in cancer research.
These are:

i) The analysis of large amounts of data collected in SAXS experiments and,

ii) The understanding of the differences in SAXS image produced by different tissue patholo-
gies.

1.1.1 Analysis of Large Quantities of SAXS Images

X-ray scattering experiments often involve the collection of a large number of scattering pat-
terns in the form of digital images. The intensity as a function of the position in the SAXS
image provides insight into the structure of the specimen under investigation. A typical SAXS
image contains hundreds of thousands of data records (262,144 records for a 512 x 512 pixel
image), which contain important information on specimen structure. A review of the literature
(Chapter 2) reveals several applications of such techniques to SAXS imaging. All approaches
reviewed suffer from the same fundamental limitation, the researcher must propose a feature
(which is application dependent) and then extract this feature at the sake of all of the other image
information. For each application, the researcher must determine if a set of features is useful for
the subsequent analysis. Even when the objectives of a research project have been achieved, a
range of other features are available to explore that may or may not result in better performance.
The problem could be considered open-ended unless all of the information contained within
the image is included in the diagnostic model. Despite the fact that modern image processing
methods can extract key features and compress the most pertinent information, they have limited
capability for SAXS image analysis. Almost every single pixel of a SAXS image contains in-
formation concerning the structure under investigation. The only part of the image that does not
contain structural information is that corresponding to the ‘shadow’ of the beam-stop, a region
deliberately obscured by the experimental design to ensure the x-ray beam that is used to image
the sample does not saturate (and possibly destroy) the electronic detectors that are used in these
experiments. Furthermore, features may exist in the image that are not visible and that require
sophisticated mathematical analysis in order to be understood. Reliance on visual identification
of features might be useful for the completion of a specific task in the analysis of a large data set,
but it may completely miss important information and result in sub-optimal or poor classification
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performance. Subtle or complex dependencies may exist amongst image pixels and simple ex-
traction of an image feature without consideration of this other information might also produce
poor classification results. A model that provides a coherent, objective approach to analysing all
of the information in a SAXS image would alleviate the problem of subjective feature selection
and expedite the process of data analysis.

1.2 SAXS Imaging in Cancer Research

There is scope to apply models of the adaptive transform coefficients to the diagnosis of breast
cancer using SAXS images. A precedent has been set by researchers who have applied digital
image processing and statistical techniques to analyse SAXS images of cancer tissue (Lewis et

al 2000; Butler et al 2003; Erickson 2005). The objectives of these researchers was to use the
SAXS images to gain new insights into the different pathologies of cancer tissue. Scattering
patterns of breast cancer tissue have been analysed using clustering, data mining and wavelet
techniques (Lewis et al 2000; Butler et al 2003; Erickson 2005). Brain cancer tissue has also
been analysed using both hierarchical clustering and independent component analysis (Siu et al

2005; Falzon et al 2007). Further applications to images of other tissue pathologies are envisaged
in the future and the challenge of feature detection, selection and extraction will need to be re-
addressed. The wide range of new statistical models available has provided bewildering choice
for practitioners and it is evident that a variety of approaches to cancer diagnosis have been
considered in the literature. The choice of model has to be well considered in light of the data set
and an inappropriate technique is likely to produce poor or misleading results. There is a pressing
need for consistency and rigour among the different approaches adopted. The adaptive image
transform analyses images at a variety of resolutions (scales) and locations with the coefficients
encodings the results of this analysis. It is these coefficients that are input into a statistical
model that produces a classification as output. One approach is to produce a statistical model
that mimics the structure of the input data. That is, a statistical model with multiple levels is
proposed.
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1.2.1 SAXS Imaging of Breast Tumours

The patterns produced in SAXS experiments are due to the diffraction of radiation from the
molecular structure of the sample under investigation. Nano-scale resolution (10-100s nm) is
possible because of the wavelength of the radiation used, as such, SAXS has been used to pro-
vide insight into the nano-structure of human breast tissue (Lewis et al 2000; Ferńandez et al

2002; 2004; Round 2006). These studies found that the organisation of collagen molecules dif-
fers between normal, benign and malignant breast tissue. Lewis et al (2000) proposed an accurate
diagnostic model of breast cancer by relating tumour type to the specific features of the scattering
images. The images were processed using a method known as radial integration which is a semi-
automated technique that transforms the two-dimensional image data into a one-dimensional
format. An interactive peak fitting routine was then used to fit a profile to this one-dimensional
data. This profile was created by the summation of a quadratic trend and several smooth peaks.
The diagnostic features of the Lewis et al (2000) model were based on the fraction of scattering
and the position of the smooth peaks. These features were derived from a model that essentially
fits an arbitrary number of pre-specified smooth components in an attempt to accurately repre-
sent the one-dimensional profile. Fit accuracy was based on maximising the Pearson correlation
coefficient between the model and the profile. The combined process of a one-dimensional trans-
formation and smoothing may have removed other useful information in the images. The model
proposed by Lewis et al (2000) might be enhanced if more advanced mathematical and statistical
methods were employed to capture the information in the SAXS image.

Although the model of Lewis et al (2000) was ground-breaking it was limited in the following
aspects:

a) It was based on a limited number of samples and,

b) Feature extraction is time-consuming and requires manual processing,

c) It was exploratory data analysis in that it did not perform any objective tests of classifica-
tion performance and,

d) A model was used that smoothed the data and therefore it may have removed important
diagnostic properties from the data.

Nonetheless, the model of Lewis et al (2000) motivated further investigations by Butler et al

(2003) and Erickson (2005) aimed at producing improved diagnostic models.
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1.2.2 Previous Image Analysis of SAXS data

Data mining and wavelet transformations have been used to analyse scattering images of breast
tissue (Butler et al 2003; Erickson 2005). These models searched for features in the images useful
for automated diagnosis of breast cancer. Both methods were very successful and identified
features useful for classification. The wavelet model stood out because it gave perfect predictions
of tumour type, verified using cross-validation (Erickson 2005). Despite these perfect results,
there were three key limitations of Erickson’s (2005) study:

a) A limited number of samples (n = 49) were used.

b) A number of models were developed using pairwise comparisons, when all three of the
tissue groups were included the best model performance dropped to 86-90%. Erickson
(2005) assumed that optimisation of the classifier to separate each pair of groups indepen-
dently would translate into optimal separation of all three tissue groups, yet little evidence
was provided to support this belief.

c) The model provided little insight into which features of the image were influencing classi-
fication. The ‘energy’ (sums of squares of wavelet coefficients) of several (up to 5) bands
were used as input features in a naive Bayes’ian classifier, the overall diagnostic perfor-
mance was assessed but the impact of each feature in the model was not. The probability
density functions for the data from each tissue group (the group-conditional densities) was
not compared, the interactions and dependencies between features was not examined and
penalty for model complexity was not implemented.

Despite the limitations, these results were very encouraging, suggesting that multi-scale (wavelet)
models may be a powerful method to analyse SAXS image data.
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1.3 Thesis Structure

1.3.1 Thesis Objectives

The objectives of this research are:

(a) To unite the capabilities of the adaptive transform in describing digital images and statisti-
cal inference within the framework of a mathematical model.

(b) To develop a unified, comprehensive, objective and semi-automated method with which to
analyse SAXS images.

(c) To apply both the transform and the associated model to the diagnosis of breast cancer
using SAXS images.

The model produced in this thesis provides good results when assessed by an independent
test data set, supporting the notion that multi-scale modeling is a useful method to analyse SAXS
image data.

1.3.2 Thesis Outcomes

SAXS images contain many features which are not intuitive for which specialised mathematical
functions as well as the associated computing are proposed in order to facilitate extraction and
analysis. The specific achievements of this thesis include:

a) An adaptive image transformation that allows analysis of the image across scales and lo-
cations (Section 7.2).

b) Specification of five new filter functions that might be useful for image analysis (Sec-
tion 7.3).

c) Selecting the most suitable functions for use in the adaptive transform via the probability
of misclassification (Section 7.4).

d) Specifying a mathematical model that succinctly describes the large number of probability
density function estimates that are used in analysis of the SAXS images (Section 8.2.2).

e) Development of the Mexican hat contourlet transform: a multi-scale, multi-directional
transformation of image and bivariate data (Section 8.2.4).
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f) Non-parametric regression (smoothing) in the presence of heteroskedastic rather than white
noise using the Mexican hat contourlet transform (Section 8.2.6.1).

g) Modifying the magnitude of Mexican hat contourlet transform coefficients using the sta-
tistical theory of extreme values (Section 8.2.8).

h) Probability density function estimation using the Walsh wavelet packet transformation
(Section 8.3.4).

These achievements satisfy both methodological and applied needs, the models developed in
this thesis casts multi-scale modeling into the realm of pattern recognition and at the same time
provide useful tools to the SAXS imaging community.

1.3.3 Thesis Organisation

The thesis is organised into ten chapters. The original contributions are contained within Chap-
ters 7 to 9. The preceding chapters present principles of SAXS image analysis so that the context
of the new work can be appreciated. These chapters may be skimmed and referred back to as
references to them are made during Chapters 7 to 9.

This introductory chapter concludes with an overview of the contents of Chapters 2 through
to 10. Chapter 2 provides the background science to the SAXS imaging technique with a par-
ticular emphasis on the structure of breast tissue collagen. Chapter 3 reviews and critiques the
previous literature on the analysis of SAXS patterns of cancer tissue. Image analysis techniques
are surveyed in Chapter 4 and it is in this chapter the grounds for treating a SAXS pattern as a
digital image are established. A range of existing image analysis transformations is examined
in Chapter 5. The impacts of the SAXS experimental methodology on the subsequent analy-
sis are examined in Chapter 6. Chapter 7 develops image analysis tools for use in this thesis.
Specific results include the adaptive image transformation, the Witch’s Hat filter function and
methodology to select the best filter functions to include in the transform using the probability
of misclassification. Statistical models are described in Chapter 8, including the Mexican hat
contourlet transform and probability density function estimation using the Walsh wavelet packet
transform. The methodology developed in the previous two chapters is applied to the diagnosis
of breast cancer using SAXS images in Chapter 9. The final chapter, Chapter 10, reviews and
summarises the main findings of this research with the future directions of this research being
identified and discussed.
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Chapter 2

The Scientific Background to the Diagnosis
of Breast Cancer using Small-Angle X-ray

Scattering

This chapter describes the scientific background related to the diagnosis of breast cancer using
SAXS. Section 2.1 discusses the basics physics behind the SAXS technique, providing an un-
derstanding of how the observed SAXS pattern relates to the structure of the specimen under
investigation. This will be a foundation for formulating statistical models to interpret the images
and infer the state of the tissue as expressed in the SAXS pattern. The ultra-structure of collagen
is reviewed in Section 2.2 and is related to specific features observed in SAXS patterns. The
relationship between collagen structure and breast cancer is examined in Section 2.3, motivating
the use of SAXS imaging to investigate breast cancer tissue structure. An overall summary in
Section 2.4 finalises the chapter.
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2.1 Small-Angle X-ray Scattering

Small-angle x-ray scattering refers to an imaging technique used to study the ultra-structure (10-
100 nano-metres) of a material. The physics that produces these patterns needs to be explained
so that the features present in the SAXS images (which are digital representations of the SAXS
patterns) can be understood and related back to the structure of the tissue.

X-rays incident on a material undergo a variety of interactions including scattering and a
loss of energy in the material in a process known as absorption. SAXS is based upon the phys-
ical mechanism of Rayleigh scattering. In contrast, the absorption mechanism is the basis of
radiological imaging technology currently used in medical practice. The scattering of x-rays
have been viewed as detrimental to the quality of images formed using the x-ray absorption
mechanism such as mammography (Bushberg et al 2002). This is a considerable problem as
Rayleigh scattering is a significant x-ray interaction in the mammographic energy range (20-30
keV) (Bushberg et al 2002). But unlike x-ray absorption, scattered photons convey information
on the structure of the material with which they have interacted (Royle et al 1999). This makes
x-ray scattering a useful technique when trying to understand the structure of the material, such
as breast cancer, under investigation. Rayleigh scattering involves an incident photon interacting
with an atom within the sample under investigation. The basic mechanism of Rayleigh scattering
is displayed in Figure 2.1. The electric field of the incident photon induces oscillations in the
electrons of the atom causing all of the electrons to vibrate in phase. Energy is immediately
released in the form of a photon that is of the same energy, and hence wavelength, as the incident
photon.
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Figure 2.1: The Mechanism of Rayleigh scattering involves an incident photon of wavelength,
λ1 impinging on the outer shell of an atom. The photons energy is absorbed by the atom and
released in the form of another photon of the same wavelength, λ2 (Figure 3-6 Bushberg et al
2002).

SAXS experiments involve the use of a high intensity, high flux beam of photons incident on
a sample. This sample can be described by an electron density distribution. The term ρ sample(r)

is used to denote this electron density distribution, where r is a vector describing position within
the sample. The sample is contained in a medium which also has an electron density distribution
denoted by ρ medium(r). When photons are scattered from the electron charge distribution of
the form, ρ′(r) = |ρ sample(r)− ρ medium(r)|, a detector can be used to record the intensity,
I(h). The intensity is related to the structure of the material under investigation via the Fourier
transform and its’ conjugate (denoted F(h) and F!(h) respectively):

I(h) = F(h)F!(h) =

∫ +∞

−∞

∫ +∞

−∞
ρ′(r1)ρ

′(r2) exp
(
ih · (r1 − r2)

)
d3r1d

3r2 (2.1)

The scattering vector is defined as h = k2 − k1 for x-rays that are incident on the electron
charge distribution and traveling in the direction specified by the vector k1 = (k1,x, k1,y, k1,z)

and scattered x-rays traveling in the direction specified by vector k2 = (k2,x, k2,y, k2,z) (page
578, Fernández et al 2002). Therefore the observed SAXS pattern is a Fourier transform repre-
sentation of the electron density distribution of the specimen being studied. Because phase infor-
mation is not recorded by the detector, the Fourier transform cannot be directly back-transformed
to yield the electron density distribution ρ′(r) of the specimen minus the medium. Nonetheless,
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the SAXS pattern provides valuable information about the structure of the sample under inves-
tigation. Synchrotron radiation has been used in many SAXS experiments because it provides
high-flux electro-magnetic radiation at sub-nanometre wavelengths, such wavelengths allow the
required resolution of the pattern in the tens to hundreds of nanometres range.

2.2 Collagen Structure & SAXS

Section 2.1 highlighted the links between physics, mathematics and the structure of the spec-
imen involved in SAXS research. Equation (2.1) demonstrated how the Fourier transform of
the structure of the specimen under investigation is directly related to SAXS pattern intensity.
Therefore, SAXS imaging is a tool that can be used in the investigation of the structure of an
object including those of a biological origin. The collagen family of proteins are an example of
one such structure amenable to SAXS experiments.

2.2.1 Collagen Structure

The hierarchical arrangement of the fibril-forming collagens (Types I, II, III, V, XI) give rise to
characteristic features in SAXS patterns. Human breast tissue contains collagen types I and III
in the greatest proportions, making them of great interest in this work (Kauppila et al 1998). The
fibril-forming collagens are composed of key units of amino acids, which in turn form into large
chains of approximatley 1000 amino acids (Bigi & Roveri 1996). Three of these chains wrap
together in a tight helix to form a collagen molecule of 300 nanometres in length. The molecules
order into higher levels of organisation to form a collagen fibril. Three key structures of interest
are the :

a) The longitudinal ordering of collagen molecules along and within a collagen fibril (denoted
‘d’ in Figure 2.2).

b) The lateral organisation between adjacent collagen fibrils (symbol ‘D’ in Figure 2.2) .

c) The radius of the fibrils (symbol ‘R’ in Figure 2.2).

Figure 2.2 displays these features as well as the relationship between collagen structure and the
SAXS pattern features. The longitudinal arrangement of over-lapping collagen molecules within
a collagen fibril is termed the axial D-repeat. This structure results in regions of high and low
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electron density along the fibril with a period of 64 to 67 nanometres. Constructive and destruc-
tive interference of x-rays that have interacted with this structure give rise to a series of sharp
peaks which are colloquially termed the ‘axial peaks’. The symbol ‘d’ in Figure 2.2 denotes
the axial D-repeat structure and one of the associated axial peak features along the meridian of
the scattering pattern. Random orientation of the fibrils with respect to the incident x-ray beam
results in the axial peaks being smeared into large arcs in the SAXS pattern that are termed
scattering rings. These features are evident in the SAXS pattern of Figure 2.2. The lateral or-
ganisation of collagen fibrils is not completely resolved. When viewed end-on so that the only
the circular cross-sections are visible, the fibrils appear to be arranged in a ‘quasi-hexagonal’
shape with each fibril separated by approximately 100 nm (Fernández et al 2002). The spacing
between the lateral arrangement of the fibrils gives rise to scattering peaks along the equator of
the SAXS pattern. This is evident when examining the structure denoted by the symbol ’D’ in
Figure 2.2. Finally, the mean radius of the fibrils (denoted by symbol ‘R’ ) is also of interest
and it can be extracted from the central region of the SAXS pattern. In practice, a breast tissue
specimen contains many such collagen fibrils as well as other components such as adipose tissue.
The contributions of the other components to the SAXS pattern can be filtered out by examining
only those x-rays scattered at an angle of (±50) from the direction of the incident beam. Within
this range the contributions of scatter from the majority of other tissue structures is assumed to
be minimal. The main additional contributors to the SAXS pattern of breast tissue collagen are
scatter from amorphous substances within the tissue, scatter from air and scatter from the cap-
illary tube in which the sample is placed during the experiment. In the ideal setting, the scatter
produced by these components does not produce visible ring features in the pattern but rather
adds additional counts (noise) to the pattern intensity.
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Figure 2.2: SAXS from oriented collagen fibrils, the symbol ‘d’ corresponds the longitudinal
arrangement of collagen molecules, ‘D’ the distance between adjacent fibrils and ‘R’ the fibril
radius (Fernández et al 2002)

2.2.2 Summary

Physical models of fibrillar collagens have many levels of hierarchical structure. These structures
result in features that can be identified in their corresponding SAXS pattern. The same fibril
contributes information to a number of different regions in the SAXS pattern. The very order
of collagen suggests the interpretation of SAXS pattern features using multi-scale models. In
such a framework, the logical flow between biological structure, the physical SAXS pattern and
the statistical model is quite evident. To understand how this all relates to cancer research, it is
necessary to understand the relationship between collagen structure and cancer.
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Figure 2.3: SAXS images of normal healthy, fibroadenoma (benign) and invasive carcinoma
(malignant) pathologies (Falzon et al 2006).

2.3 Collagen Structure & Breast Cancer

2.3.1 Overview

Considerable scientific evidence exists for the alteration of collagen structure within malignant
breast tissue. A new form of collagen, called OF/LB (onco-fetal laminin binding) collagen has
been found to exist only in embryonic fetal and tumour tissue (Pucci-Minafra et al 1993). In fact,
OF/LB collagen was found in both human breast and colon carcinoma tissue (Pucci-Minafra
et al 1993). Metastasis is the spread of cancer cells from the primary tumour, and in breast
cancer it may involve collagen structure. Wang et al (2002) investigated the relationship between
metastasis and tissue structure using a murine (mouse) model. Multi-photon microscopy was
used to study the growth of breast tumours derived from metastatic and non-metastatic cell lines.
The cells from tumours undergoing metastasis were observed to not only adhere to, but also
travel along collagen fibres (aggregations of fibrils) as they traveled towards blood vessels. In
contrast, cells from tumours that were not undergoing metastasis were completely obstructed
by the fibres. The amount, size and integrity of collagen fibres was greatly reduced in tumours
derived from metastatic cell lines as compared to those that were not derived from such cell lines
(Wang et al 2002).
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Figure 2.4: Electron microscopy images of collagen within breast tissue for the normal healthy,
fibroadenoma (benign) and invasive carcinoma (malignant) pathologies, note the differences in
the structure of collagen in each case, scale bar 5 µm (Reid 2006).

Lewis et al (2000) and Fernández et al (2002) conducted independent studies into the struc-
ture of cancerous breast tissue using the SAXS technique. Both groups have reported distinct
differences in the SAXS images of normal healthy, benign and malignant breast tissue patholo-
gies. Examples of such differences are displayed in Figures 2.3(a)-(c), observe that the SAXS
image of malignant breast tissue appears to lack distinctive scattering ring features and has a
much wider central disk (which is associated with the fibril radius R) than either the SAXS im-
ages of the normal or benign tissue pathologies. Such differences in the SAXS images suggest
changes in the tissue structure that is associated with malignancy. This hypothesis was supported
by an electron microscopy study that examined breast tissue structure on the micro-metre (µm)
scale (Reid 2006). This length scale is 10-100 times greater than the scales probed by the SAXS
technique and therefore the experimental results cannot be directly compared. Nonetheless, the
electron microscopy images of Figures 2.4(a)-(c) also indicate a distinct change in the order and
integrity of collagen within the sample. Reid (2006) found that normal healthy breast tissue
appeared to have the greatest structural integrity and malignant breast tissue the least. It is evi-
dent from the SAXS and electron microscopy studies that any changes occurring in breast tissue
structure as a result of malignancy occur over a range of length scales.
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Both Lewis et al (2000) and Fernández et al (2002) have reported changes in the axial D-
repeat structure in the presence of malignant breast tissue conditions. The change in the mag-
nitude of the axial D-repeat can be understood in terms of Bragg’s condition for constructive
interference from an array. This condition relates the angle of the scattering to the period of a
repetitive structure in the specimen. Bragg’s condition states,

2d sin θ = nλ (2.2)

where d is the scattering plane separation distance (the period),
n is the maxima order,
λ is the wavelength of incident radiation and,
2θ is the scattering angle, which is related to the scattering vector by
|h| = 4π sin θ/λ (equation 38-16, page 1181, Young & Freedman 1996).

Measurements of the period d of the structure can be made using diffraction (or scattering)
experiments. In experiments involving fibrillar collagen, a periodic structure is produced by
the alignment of collagen molecules within the axial D-repeat. The distance between scattering
planes in this case is then the period of the axial D-repeat (labeled ’d’ in Figure 2.2). According
to Bragg’s condition, a change in the magnitude in the axial D-repeat period relates to a shift in
the angle 2θ of scattered x-rays. Hence the position of a peak (due to an intensity maximum)
as recorded on a detector placed at a fixed distance from the sample will shift. Movements in
peak position in SAXS images allowed both Lewis et al (2000) and Fernández et al (2002) to
infer changes in magnitude of the axial D-repeat period for collagen from breast tumour tissue.
The SAXS image features associated with the fibril centre-to-centre distance (labeled ‘D’ in Fig-
ure 2.2) have also been reported to be ‘much broader’ for breast tumour tissue (Fernández et

al 2002). A physical explanation for this observation might be due to an increased variability
in the centre-to-centre distance (‘D’) parameter for fibrils within the sample. A greater level of
amorphous scatter has also been reported in SAXS images produced by malignant breast tissue
samples (Round 2006). Greater proportions of adipose tissue or a general decrease in the overall
structural order of the tissue might be responsible for this observation. Another possibility is
that the collagen molecules are ‘peeling-off’ the collagen fibrils as the tissue is being invaded by
cancer (Fernández et al 2004). This mechanism would be consistent with the observation of an
increase in the level of amorphous scatter between the third and fifth order axial rings of SAXS
images produced by malignant breast tissue (Fernández et al 2004). The proportion of scattering
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intensity occurring in the axial rings of the SAXS images has also been observed to decrease in
malignant breast tissue conditions (Lewis et al 2000). The intensity within these rings is believed
to be proportional to both the amount of order in the axial D-repeat structure and the total number
of collagen fibrils in the sample. A change in either, or both, parameter would alter the observed
image intensity.

2.4 Chapter Summary

The scientific background on the supra-molecular structure of fibrillar collagen and the evidence
for alterations to its structure in breast cancer have been discussed. The fibrillar collagens found
in human breast tissue possess a hierarchical structure that can be studied with SAXS imaging.
Breast cancer produces distinct changes in SAXS image features that are known to be related
to either collagen structure or quantity in the tissue. This knowledge establishes the grounds for
further investigation and provides insight into some of the changes that occur in the images. Can-
cer diagnosis based upon SAXS images is a natural avenue of research to pursue. Statisticians
wishing to produce diagnostic models of cancer using these images have the advantage of know-
ing those features worthy of pursuit. Furthermore, the very nature of the hierarchical structure
of collagen suggests that a multi-scale modeling strategy might be a useful way to analyse this
data. By understanding how the SAXS images were produced, significant gains can be made in
both accurate modeling and interpretation.



Chapter 3

A Review and Critique on Interpreting
Data from SAXS Images of Breast Cancer

This chapter reviews and critiques the relevant literature concerning the previous attempts to
diagnose breast cancer using SAXS. Key diagnostic models are identified and categorised into
two groups, those based upon a physical model of collagen structure and those based upon more
general purpose image processing techniques. The models based upon the more general pur-
pose image processing techniques do not necessarily have a ready association with the structure
of collagen, but they have allowed the use of more rapid and automated diagnostic techniques.
Section 3.1 surveys the broad literature concerning the medical and biological research relating
to x-ray scattering. Section 3.2 describes the models of Lewis et al (2000), Round (2006) and
Sidhu et al (2008) that extract those classification features that are related to a physical model of
collagen. These models all reduce the image data to one-dimension and frequently employ clus-
tering techniques to produce diagnostic models. Section 3.3 describes the models of Butler et al

(2003), Erickson (2005) and Falzon et al (2006) that use more abstract image analysis methods
(such as the wavelet transformation) to extract useful classification features. These techniques
then use the extracted image features to build diagnostic models. The merits, disadvantages and
limitations of each approach are examined with constructive criticism provided. The chapter
concludes in Section 3.4 with an overall summary of the lessons learned from the previous re-
search and an assessment of where the diagnosis of breast cancer using SAXS is at and where it
can head to from that point.

19
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3.1 A survey of biomedical research using x-ray scattering

The characterisation of biological tissue using scattered x-rays has received considerable interest
over the past thirty years. Investigations include applications in radiology (Johns & Yaffe 1983;
Muntz et al 1983), computed tomography (Harding et al 1987; Schlomka, Schneider & Harding
2000; Griffiths et al 2003), bone tissue analysis (Royle & Speller 1991), liver cirrhosis and
heptocellular carcinoma (Elshemeny et al 2003), brain and prostate tissue (Lazarev et al 2000;
Siu et al 2005, Falzon et al 2007; De Felici et al 2008), breast tissue and breast cancer (Evans et

al 1991; Peplow & Vergese 1998; Kidane et al 1999; Poletti, Gonçalves & Mazzaro 2002; Ryan
& Farquharson 2004; Castro et al 2004; 2005b), technical imaging (Leclair & Johns 1998; 1999;
2001; Westmore et al 1996) and a range of other biological tissues and biomedical materials
(Kosanetzky et al 1987; Speller & Horrocks 1991; Tartari et al 1997; 2002; Elshemey et al

1999; Harding & Schreiber 1999; Royle et al 1999; Batchelar & Cunningham 2002; Poletti et

al 2002). The SAXS imaging technique is one branch within this field that has been used by a
number of authors for cancer research. Investigations have examined the structure of collagen in
normal, benign and malignant breast tissue (Lewis et al 2000; Fernàndez et al 2002; 2004; 2005;
Suhonen et al 2005; Round 2006), investigated the utility of specific techniques for diagnosis
(Round et al 2006; Changizi et al 2006; Pearson et al 2006; Wilkinson et al 2006; 2007; Ooi
et al 2008) and developed or discussed diagnostic models (Butler et al 2003; Erickson 2005;
Changizi et al 2005a; 2008; Falzon et al 2006; Rogers et al 2006; Ryan & Farquharson 2007;
Sidhu et al 2008). Related image processing and modeling tasks have also been investigated
for use as a component in a diagnostic system (Wilkinson et al 2006; 2007). The structure of
brain tissue has also been investigated using SAXS imaging and diagnostic models have been
developed (Siu et al 2005; Falzon et al 2007; De Felici et al 2008). The majority of these
studies of considerable overlap and fall into more than one of the assigned categories above. In
addition, at least two review articles have been published that include the biological and medical
applications of SAXS imaging within their scope (Suortti & Thomlinson 2003; Theodorakou
& Farquharson 2008). The diagnosis of breast cancer using SAXS patterns from hair samples
has also been an intensive, yet controversial area of research having both advocates (James et

al 1999; 2005; James 2001; 2003; 2004; 2006; Meyer et al 2000; Meyer & James 2001) and
skeptics (Amenitsch et al 1999; Briki et al 1999; Chu et al 1999; Evans et al 2001; Howell et

al 2000; Laaziri et al 2002). This thesis is focused on the development of a statistical model
of SAXS patterns of breast tissue collagen, with one of the desired outcomes being improved
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diagnosis. The next two sections review those studies (Lewis et al 2000; Round 2006; Sidhu et

al 2008; Butler et al 2003; Erickson 2005; Falzon et al 2006) that are deemed by the candidate to
be most relevant in the development of a diagnostic model of breast cancer using SAXS patterns.

3.2 Diagnostic models based upon parameters related to the
structure of collagen

Considerable effort has ben expended on the development of diagnostic models of breast can-
cer based upon parameters related to the physical model of collagen. This includes parameters
such as the axial D-repeat (see Figure 2.2), the radius of gyration (a parameter related to the
size and shape of the collagen fibril) and the levels of amorphous scatter that describe the breast
tissue structure. Three notable studies include that of Lewis et al (2000) (Section 3.2.1) one of
the initial studies into the diagnosis of breast cancer using SAXS, Round (2006) who confirmed
the findings of Lewis et al (2000) (Section 3.2.2) and investigated a large range of other po-
tential diagnostic features and that of Sidhu et al (2008) (Section 3.2.3) who further developed
multi-variate classification models of breast cancer. These models are very useful because they
can be interpreted in light of our current understanding of collagen structure, but they are still
constrained by fundamental limitations. Wess (2005) highlighted the limited knowledge on the
structure of collagen, which indicates that one should be cautious when developing diagnostic
models of breast cancer. The SAXS breast cancer classification models developed by physical
scientists impose our current scientific understanding of the problem and does not incorporate all
of the information available in the image. Important diagnostic information in the image might
be inadvertently discarded by focusing on models derived from the physical structure of colla-
gen. Whilst the models may work for the application at hand (diagnosis of three breast tissue
pathologies), they may or may not work for future applications such as the diagnosis of a greater
range of breast cancer pathologies, the identification of the grade of malignant breast tissue and
the diagnosis of other cancers (such as colo-rectal cancer). This section reviews the major works
of three key authors in the field and justifies the claims that all aspects of the image data should
be considered for analysis rather than just extracting those features which describe the current
physical model for collagen.
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3.2.1 Exploratory Analysis Based upon a Physical Model:
Lewis et al 2000

3.2.1.1 Overview

Lewis et al (2000) proposed one of the first models to diagnose normal healthy, benign (fibroade-
noma), malignant (invasive carcinoma) and mammoplasty (healthy tissue near the margins of a
tumour) tissue using SAXS. The model was based on two features, 3rd order axial scattering
peak position and the proportion of scattering intensity contained within all of the scattering
peaks in the one-dimensional profile of the image. The 3rd order axial scattering peak position
is related to the magnitude of the axial D-repeat structure of the collagen fibrils by Bragg’s con-
dition (equation 2.2), while the proportion of intensity contained within all the scattering peaks
feature is related to both the structural integrity and the amount of collagen within the sample.
These features were extracted from the data via a process known as radial integration which
transforms a two-dimensional image into a one-dimensional vector. This process is illustrated in
Figures 3.1(a) and (b).
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Figure 3.1: The radial integration technique that was applied to the SAXS patterns: (a) the image
data contained within the image mask (green) is averaged to yield a function of intensity with
respect to position in the image mask, (b) the resulting one-dimensional function I(d).

The two-dimensional SAXS images were reduced to a one-dimensional function of intensity,
I(d) using the radial integration technique by summing and averaging the intensity as a function
of object size (which can be calculated using the location of the scattering vector, h on the
image). The I(d) function describes the intensity of scattering as a function of object size, d,
which can be determined from the SAXS images using Bragg’s condition in equation (2.2). This
technique is acceptable for SAXS images of collagen in breast tissue because they have a point
of symmetry. Identification of this point of symmetry was performed manually using a graphical
user interface (Lewis et al 2000). This might have resulted in some inaccuracies in the estimate
of the I(d) function. The parameters of the diagnostic model were extracted from these curves
using a peak-fitting routine (Lewis et al 2000). Therefore, slight errors in the estimates of the
I(d) function result in inaccurate values of the diagnostic parameters. Exploratory data analysis
allowed Lewis et al (2000) to identify the two features (3rd order axial scattering peak position
and total fraction of scattering intensity in the peaks) that separated the data into distinct clusters.
Tissue pathology was then associated with each cluster. The model was not developed any further
and a statistical model was not specified. This makes it difficult to assess the accuracy of the
technique in diagnosing future cases. Nonetheless the research reported in Lewis et al (2000)
provided the framework from which other diagnostic models were developed.
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3.2.1.2 Constructive Criticism

There were some important limitations to the research of Lewis et al (2000). These include:

a) Reduction of the image from two to one dimension.

b) Manual processing using the radial integration technique.

c) Using only a very limited amount of image information to separate the tissue groups.

d) Not developing a classification model.

The use of only two features for the separation of the tissue groups is of particular interest. At the
first glance, the discovery of two features that allow tissue group identification appears to have
solved the problem. On further consideration, the use of such a limited amount of image infor-
mation is not so desirable. The SAXS images contain a wealth of information on the structure of
breast tissue and greater separation might have been achieved using other features. Furthermore,
there is no guarantee that these two features (3rd order axial scattering peak position and the
fraction of total scattering intensity) will be useful for future tasks that are envisaged such as
prediction of tumour grade or pathology. Good scientific practice demands a deeper exploration
of the data to ensure any useful classification features are not missed.
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3.2.2 Cluster & Principal Component Analysis: Round 2006

3.2.2.1 Overview

Round (2006) conducted a comprehensive investigation on the SAXS images of breast cancer
tissue. A total of 225 SAXS images from 82 patients and 3 different tissue pathologies (corre-
sponding to the labels used in this thesis of ‘normal-healthy’, ‘benign’ and ‘malignant’) were
examined. The work followed on from the model of Lewis et al (2000) and investigated a range
of topics including:

a) The effects of the experimental techniques on the SAXS images.

b) The effect of enzymatic (collagenase) degradation on the tissue structure.

c) Diagnosis of breast cancer using SAXS images corresponding to the structure of adipose
tissue.

d) Diagnosis of breast cancer using SAXS images corresponding to the structure of collagen,
as in the work of Lewis et al (2000).

e) Diagnosis of breast cancer using SAXS images obtained using a conventional (rather than
a synchrotron) x-ray source.

f) The study of the changes in breast cancer collagen structure with increasing distance away
from the centre of the tumour.

Round’s (2006) analysis of the SAXS images corresponding to the collagen structure (item d)
above) is of primary interest in this literature review. This analysis is comparable to the work
of Lewis et al (2000) and corresponds to the images analysed in this thesis. Round (2006)
radially integrated the images to produce a one-dimensional profile of intensity as a function
of distance from the centre of the image. The distance from the centre of the image was then
indexed to physical size of the structures under investigation to obtain the I(d)-curve. A model
was then fit to these profiles by fitting an exponential trend and a series of Gaussian peaks.
Features related to a physical model of tissue structure were extracted including the radius of
gyration, relative intensity ratio (RIR) of the average intensity near the beam-stop (d = 230-429
nm) and the average intensity between the 3rd-order and the 5-th order axial scattering peaks
(d = 42-58 nm), peak position, power law behaviour of the scattering profile (Round 2006),
scattering peak area and, full-width half maximum of the scattering peaks. Two-tailed t-tests
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were applied to each univariate parameter (Table 10.3.2 Round (2006)) and potential features
identified for further analysis using the magnitude of the p-value of the test. Exploratory data
analysis was used to identify clusters corresponding to tissue pathology in bivariate scatter plots
of the features. The position and peak area of the 3rd order axial peak displayed in Figure 3.2(a)
provided a certain amount of separation of the three tissue groups, but there was a lot of overlap
and many outliers that did not fit a particular cluster (Figure 10.3.4 Round (2006)). As displayed
in Figure 3.2(b), limiting the comparisons to data collected within only a single experiment
improved the clustering and separation considerably (Figure 10.3.5 Round (2006)). This result
indicated that data collected from different experiments was difficult to compare directly. A
certain amount of separation was also achieved using position and the peak area of the 2nd-
order equatorial scattering peak (Figure 10.3.8 Round (2006)) . The scatterplot of the relative
intensity ratio and the radius of gyration also produced very good separation of the tissue groups
(Figure 10.3.9 Round (2006)) but only when malignant samples containing less then 80 % tumour
volume in the sample where excluded in the study. Round (2006) manually partitioned the data in
these scatterplots into regions corresponding to different tissue pathologies (Figure 10.3.7 Round
(2006)). Principal component analysis (PCA) was also applied to the I(d) profiles to develop a
classifier with 85.1852 % accuracy when assessed using leave-one-out cross-validation. Similar
techniques were applied to both the adipose tissue and conventional camera data.
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a)

b)

Figure 3.2: Exploratory data analysis plots of the 3rd-order axial scattering peak position and
area for SAXS images of breast tissue: (a) collected across multiple experiments, (b) data from
a single experiment. The parameter s, is defined by s = n/d, where the symbol d refers to the
parameter used the describe collagen structure and the labels ‘normal’ corresponds to normal
healthy breast tissue, ‘fibroadenoma’ to benign tumour tissue and ‘cancer’ to malignant breast
tissue (reproduced from Figures 10.3.4 and 10.3.5 Round 2006). Note the separation of the data
into clusters that are associated with tissue pathology.
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3.2.2.2 Constructive Criticism of the work of Round (2006)

Round’s (2006) research extended and identified the limitations of the Lewis et al (2000) model.
The problems produced when comparing the data across experiments were identified. Many
of the experimental techniques were refined and a much larger data set (than that of Lewis et

al (2000)) was studied. The PCA classifier produced good results which were verified using
leave-one-out cross-validation. There are several issues with the study that are worthy of further
consideration. These include:

i) The model fit to the I(d) curves smoothed the true profile.

ii) Feature extraction was a lengthy, manual process.

iii) A large number of statistical tests were used to identify features worthy of further investi-
gation.

iv) The exploratory data analysis was biased to malignant samples that had greater than 80 %

tumour volume

v) The diagnostic regions were identified manually.

vi) The PCA classification model was not fully specified.

Selected items from points (a)-(f) above are selected for further discussion.

3.2.2.3 Model Fitting

The radial integration technique reduced the data from a two-dimensional image into a one-
dimensional curve. The model was fitted as a mixture of Gaussians (to describe the scattering
peaks) and a quadratic trend of the form, I(d) = (d−p0)2−p1

4p2
(where p0, p1 and p2 are constants)

(Round 2006). The use of Gaussian profiles enforced an assumed amount of smoothness on the
scattering peaks. The very high intensity scattering peaks might not have fit a Gaussian pro-
file well and other techniques using triangular or wavelet basis functions might have been better
suited to capture the structure of the scattering peaks. The potential loss of information by fitting
a Gaussian profile to each scattering peak was not investigated. Key diagnostic information could
have been lost by adopting this model fitting approach which smooths out the characteristics of
the scattering peaks.

The precise mathematical model to describe the data was not specified and little information
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was provided on the model estimation routine. The total fit of the scattering profile was assessed
using the r2-statistic, unfortunately a high value of r2 was interpreted as indicating a good fit of
the model (Round 2006). This is a common misunderstanding, a high-value of r2 does not nec-
essarily indicate a good fit of the model to the data (Neter et al 1996). The r2-statistic measures
the fit of a linear model, but curves with quadratic or other non-linear trends can also produce
a high r2 value. The models fit by Round (2006) contain such non-linear trends and the use
of the r2-statistic could have been very misleading. More sophisticated alternatives to assess
model fit (such as the χ2 or likelihood ratio tests) could have been applied to provide more robust
assessments.

3.2.2.4 Statistical Tests for Feature Identification

Promising diagnostic features were identified with a barrage of two-tailed t-tests. Round (2006)
did not assess the adequacy of these tests to the data, the parametric assumptions were not as-
sessed nor were the data screened for potential outliers (which are evident in the plots of Fig-
ures 3.2(a)-(b)). Furthermore, no consideration was given to the false discovery rate of the tests
and the combined effects of the features was not considered. An alternative strategy would have
been to perform exploratory data analysis, identify potential classification features using scatter-
plots and then develop and refine a classification model. Statistical inference could have then
been performed using this model.

3.2.2.5 Biased Analysis

Round (2006) developed classification models using a subset of the ‘malignant’ group. This sub-
set was defined as those samples that contained more than 80% of tissue volume corresponding
to malignant tumour tissue. Whilst this approach is reasonable for the development of initial
models it is not for the full development of a classification model. In practice it is important
that malignant tissue is detected even if it corresponds to 1% of the volume of the sample, 80
% of tumour volume per sample is a very arbitrary level. Samples encountered in clinical prac-
tice could contain any proportion of tumour tissue. Selecting only the most suitable samples for
classification creates an unbalanced view of reality and wastes precious samples.



30 CHAPTER 3. PREVIOUS SAXS RESEARCH ON CANCER DIAGNOSIS

3.2.2.6 The Scatterplot Classification Model

Round (2006) developed a diagnostic model based upon the the position and area of the 3rd
order axial scattering peak (as plotted in Figure 3.2(b)). The decision regions in the scatterplots
of the features were found empirically by determining the maximum number of correctly labeled
data points (‘normal-healthy’, ‘benign’, ‘malignant’) in each region. A specificity of 81.8 % and
a sensitivity of 100 % was reported (Round et al 2005). A statistical model was not used to
define these regions and the errors rates were not assessed with cross-validation. The sensitivity
and specificity rates appear to be estimated from the training data, it would have been more
appropriate to estimate these errors using independent test data.

3.2.2.7 PCA classification model

The PCA classification model used by Round (2006) was poorly described, making it hard to
assess what was actually done. Round (2006) presumably fitted a spline function to the I(d)

curve for each sample, performed PCA on the coefficients of these splines, followed by linear
discriminant analysis on the eigenvectors of the PCA model. Twenty-five principal components
and twenty-five linear discriminants were identified but specific equations were not provided.
The PCA model was probably fit in a 25-dimensional feature space, yet only 108 samples (22
normal healthy, 30 benign and 56 malignant) were used and at most only 82 samples could have
been independent. Inter-sample correlation was not accounted for, which might have produced
optimistic cross-validation results. Furthermore, sparse amounts of data in a high-dimensional
feature space can lead to substantial problems. Ripley (1996) states that N patterns randomly

selected from any continuous distribution in Rp (where p ε R is the dimension of the feature
space) can be randomly divided into two groups with probability,

21−N

min(N−1 , p)∑

i=0

(
N − 1

i

)
∼ Φ

(
2p−N√

N

)
(3.1)

for large N and where Φ is the standard normal cumulative density function (page 119, Rip-
ley 1996). Equation (3.1) means that good classification results might just have been a result
of insufficient data for the number of features used. According to equation (3.1), the ‘normal
healthy’-‘benign’ contrast had a probability that a linear partition could have been found that just
happened to separate the two groups perfectly of 0.5. This probability is unacceptably high and
a meaningful linear discriminant may not have been found.
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3.2.3 Multivariate Analysis: Sidhu et al 2008

3.2.3.1 Overview

Sidhu et al (2008) also conducted a large study on the diagnosis of breast cancer using SAXS im-
age data. Samples from a total of 80 patients from normal healthy, benign, malignant and mam-
moplasty breast tissue were analysed. Radial integration was used to obtain one-dimensional pro-
files I(d) from the two-dimensional SAXS images. The data were detrended using a quadratic
term that was a function of object size, q ∝ d. Gaussian peaks were also fit using a method
similar to that used by Lewis et al (2000) and Round (2006). The final curves are displayed in
Figure 3.3(a) for selected samples, 95% confidence intervals are displayed (shaded) around the
average (solid line) where possible (Sidhu et al 2008). Features extracted from profiles included
the position, area, full-width half-maximum and the amplitude of the axial and Bessel scattering
peaks as well as the parameters of a quadratic curve fit to the scattering profiles which included
the total area under the curve (the amorphous scatter feature). The axial D-repeat of the structure
of collagen fibrils was then calculated from these features. The azimuthal distribution of the
scattering rings was also extracted, which is defined as the angular extent of the scattering rings
as measured from the centre of the image. Sidhu et al (2008) investigated two different tissue
scattering techniques, developed regression models to understand the relationships between dif-
ferent physical parameters and created classification models. The classification models are the
main part of Sidhu’s et al (2008) work that is of interest in this review.
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a)

b)

Figure 3.3: Analysis of SAXS images of breast tissue using the Sidhu et al (2008) model: (a)
Intensity, I(q), profiles of the four tissue groups (normal healthy, mammoplasty, benign and
tumour (malignant) ) with the 95% confidence intervals (shaded), (b) the scatterplot of the 3rd-
order axial scattering peak amplitude and the amorphous scatter features separates some of the
tissue contrasts (Sidhu et al 2008).
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Significant differences (p << 0.01) were identified in the intercept component, C of the
quadratic curve fit to the scattering profiles I(q) (Sidhu et al 2008). The greatest differences
appeared to be between the mammoplasty and malignant groups and suggested that this feature
might be useful for incorporation in a classification model of tissue group (Sidhu et al 2008).
Significant differences between tissue groups were also identified for the amplitude of the 3rd
order axial scattering peak feature. Figure 3.3(b) displays the scatterplot of the third-order axial
scattering peak and the amorphous scatter features with respect to each tissue group. The benign,
tumour (malignant) and mammoplasty groups appear to be separated on the amorphous scatter
feature, while some of the normal tissue samples are identified using a combination of both
features. A quadratic discriminant analysis classification model was fit using these two features
and was very effective at separating the mammoplasty and malignant tissue groups (Sidhu et al

2008). Detailed cross-valiated classification results are reported in Table 3.1, excellent separation
is achieved for some contrasts (malignant-mammoplasty) but not with others (benign-normal)
(Sidhu et al 2008).

Contrast Sensitivity Specificity Accuracy
Benign-Mammoplasty 95.8 71.4 90.3
Benign-Normal 83.3 47.6 66.7
Normal-Mammoplasty 95.2 57.1 85.7
Malignant-Benign 50.0 87.5 73.7
Malignant-Mammoplasty 92.9 100.0 95.2
Malignant-Normal 64.3 85.7 77.1

Table 3.1: Quadratic discriminant analysis classification results
(From Table 2, Sidhu et al 2008).

3.2.3.2 Constructive Criticism of the work of Sidhu et al (2008)

Sidhu et al (2008) conducted a comprehensive investigation on the diagnosis of breast cancer
using SAXS imaging. A large number of features were explored and improvements made to the
SAXS imaging technique. Changes in the relationship between the 2nd-order equatorial (Bessel)
scattering peak area and amplitude were also observed for the diseased (benign and malignant)
tissue groups. A challenging four group classification was attempted, with good results in some
cases. Sidhu et al (2008) recognised that the width (variability around the mean) of the scattering
peaks contained important diagnostic information. Nonetheless there are some limitations to the
model proposed by Sidhu et al (2008). The central issue is the reduction of the SAXS image from
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two to a one dimensions, followed by the smoothing of the I(d) profile by fitting Gaussian peaks.
The features derived are very application specific and can be very labour-intensive and time-
consuming to extract. The feature extraction techniques used by Sidhu et al (2008) are subject
to inaccuracies, but this was not taken into account in the analysis. Similar to the approach of
Round (2006), a number of statistical tests were applied, but in this case after careful inspection
using exploratory data analysis. Analysis of variance model assumptions were very carefully
checked, the data was screened for potential outliers and robust statistical methods were used
where possible. The main issue is not so much a problem with the analysis performed by Sidhu
et al (2008) but the desire for an improved methodology in the analysis of SAXS images.

3.2.4 Section Summary of the Diagnostic models related to Collagen
Structure

Breast cancer diagnosis using features related to the structure of collagen has been throughly ex-
plored by researchers in the SAXS imaging community. This approach has yielded insights into
how the structure of collagen changes in the malignant breast tissue. The reduction of the image
to a one-dimensionl vector, followed by smoothing by fitting a linear mixture of Gaussians and
a quadratic trend has distinct disadvantages. Spatial information and key spectral (and possibly
fractal) characteristics might be lost in this process. A wide range of features have been proposed
and little consensus has been reached among authors on the best features to use. The structure of
collagen in breast tissue not yet fully understood, which limits the interpretation of some of these
features. The feature extraction process is user-intensive and has inherent inaccuracy. In general,
this inaccuracy has not been accounted for in the classification models that have been proposed.
Good classification results have been achieved and valuable scientific understanding has been
provided but this approach might be superseded by more automated and powerful mathematical
methods dedicated to the task of classifying breast cancer using the SAXS images.
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3.3 Diagnostic Models of SAXS Images of Breast Cancer
Using Image Analysis Techniques

Alternative approaches exist to the diagnosis of breast cancer using SAXS imaging that are based
upon statistical and image analysis methodology. The wide range of possible methods that could
be implemented includes stochastic (random field), fractal and functional models. Two main
methods have been used to date, data mining and multi-scale analysis using the wavelet trans-
form. This section will review and critique the three main works that use image analysis tech-
niques on SAXS images of breast cancer. The first study by Butler et al (2003) used data mining
to identify features useful for classification of the three breast tissue groups. In contrast, Erickson
(2005) used the discrete wavelet transform to develop similar classification models. The work
of Falzon et al (2006) extended the wavelet technique by extracting and identifying diagnostic
features in the transform coefficients related to the axial scattering rings in the SAXS images. All
three approaches allowed the identification of features that were used in rapid, semi-automated
diagnostic algorithms that produced very good classification results. The features appeared to fo-
cus on different aspects of the images and subsequently extract different information than those
parameters related to a physical model of collagen (refer to Section 3.2). Interpretation of these
features is challenging and in most cases it is difficult to understand how they relate to the struc-
ture of collagen. Regardless of these challenges, the results reported in these studies provide
a strong case for the use of statistical and image analysis techniques in the diagnosis of breast
cancer using the SAXS technique.
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quencies of 5 and 10 we hoped to create features that included the significant
information.

4 Classification

A näıve Bayes classifier was selected as the initial base classifier since it is known
to be a simple, efficient and effective classifier. These features are all numeric,
so we were faced with the issue of whether to use probability density estimation
or discretization, and if the latter, which discretization to employ. Due to the
small amount of data we deemed probability density estimation inappropriate as
accurate estimation of a probability density function may require large volumes
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Figure 3.4: Feature Extraction method used in the analysis of SAXS images by Butler et al
(2003): (a) the vertical slice and (b) radial segment feature extractors as indicated by white lines
(Figure 2 Butler et al 2003).

3.3.1 Data Mining: Butler et al 2003

3.3.1.1 Overview

Butler et al (2003) applied data mining techniques to search for features in the SAXS images
that were useful for automated classification. The SAXS images of 20 normal healthy and 22
malignant breast tumour samples were examined using data mining methods. Over 100 features
were proposed and explored. These features were based upon information extracted along a
vertical slice through or in radial segments out from the centre of the image. Figures 3.4 (a) and
(b) display the regions of the image used to extract the vertical slice and radial features.

Features extracted included:

a) Total intensity of the scattering image (the sum of all pixel values in the image).

b) The maximum intensity in each of 5 or 10 equally sized divisions along a nine-pixel mov-
ing average smooth of the vertical slice of the image.

c) The y-coordinate of the maximum intensity in each of these divisions along the smoothed
vertical slice of the image.

d) The sum of the intensity in each of 5 or 10 radial segments of the image.

e) The maximum intensity magnitude in each of these radial segments.
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f) The radial distance and the x- and y- coordinates of the intensity maximum in each of the
circular regions.

A naive Bayes’ian classification model combined with the equal frequency discretisation
method was used to assess the classification potential of each feature (Butler et al 2003). The
most promising features were combined and assessed further using leave-one-out cross-validation.
The estimates of the accuracy of these models range from 97.62 % for a combination of vertical
slice and radial segment features to 45.24 % for the sum of the whole image intensity feature
(Butler et al 2003). These results are very impressive and motivated further research into the au-
tomated diagnosis of breast cancer using SAXS images. The models proposed put the diagnosis
of breast cancer using SAXS images in a statistical modelling/machine learning framework.

3.3.1.2 Constructive Criticism of the work of Butler et al (2003)

Despite the positive contributions of the work of Butler et al (2003), there is room for constructive
criticism. Specific issues include:

i) Producing a model that is too dependent on the data set at hand (over-fitting).

ii) Arbitrary partitioning of the regions in the SAXS image used to extract the features.

iii) Uncertainty in the estimation of feature values.

iv) Smoothing of the intensity profiles of the features extracted from the vertical transects.

3.3.1.3 Model Over-fitting

The cross-validated model results reported by Butler et al (2003) might be over-optimistic be-
cause the models might have been over-fit to the data. The most accurate classification model
had an accuracy of 97.62 % (Table 2, Butler et al 2003). This model contained 70 features but
used only 42 samples (20 normal healthy, 22 malignant) in the fitting process. Therefore, each
data point could have been associated with at least one feature. An alternative model had the
same accuracy (97.62 %), but used 60 features (Table 2, Butler et al 2003). In fact all models
that had greater than 95% accuracy were fit with between 5-105 features (Tables 1-4, Butler et al

2003). An accuracy of 97.62 % for 42 samples corresponds to exactly one sample misclassified
when the model was assessed using leave-one out cross-validation. It seems very likely that the
one sample held out from the model fitting process was incorrectly classified, which strongly
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suggests model over-fit. Multiple runs of the cross-validation algorithm, combined with random
selection of the samples to ‘hold-out’ would have allowed the detection of this problem.

3.3.1.4 Feature Extraction

Little explanation was provided for the use of the features incorporated into the classification
models by Butler et al (2003). The set of features studied was not exhaustive and a range of
other features could have been proposed. For instance, a horizontal transect could have been
used to extract features related to the packing of the fibrils (‘D’). Rigorous criterion to determine
the optimum number of partitions of the image was not provided. Too few partitions could have
missed important diagnostic information, while too many partitions would have captured many
random fluctuations in image intensity. An adaptive image partition method would have been
more appropriate, allowing the detection and separation of finely spaced features while having
larger partitions in regions that were more homogenous.

3.3.1.5 Feature Estimation

Several of the features used by Butler et al (2003) require precise determination of the SAXS
pattern centre based upon the data provided by the digital SAXS image. The centre of the SAXS
pattern was often difficult to determine with precision because it did not always coincide with
the centre of the digital image (Butler et al 2003). Both the vertical slice and radial segment
features were dependent on the accurate estimation of pattern centre and inaccuracies in this
estimate would have resulted in poor estimates of feature magnitude. This error could have
also lead to instability in some estimates. For instance an error in the estimate of pattern centre
could have resulted in poor partitioning of the image. Two relevant local maxima (corresponding
to scattering rings) could have been assigned to one segment, while only noise was contained
in a neighbouring segment. Features based upon the position of the local maximum in each
segment would ignore one of the relevant scattering rings and incorrectly extract noise as a
diagnostic feature. Butler et al (2003) did not account for the uncertainty in the estimates of
the feature values nor did they account for the ‘false-discovery’ of misleading features. Models
that incorporate Bayes’ian statistics might have been useful in both cases.
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3.3.1.6 Smoothing of Intensity Profiles

A moving average filter was used to smooth data extracted from the vertical transects before
further analysis (Butler et al 2003). No justification for this approach was provided, but it might
have been performed to reduce image noise thereby assisting in the detection of local maxima.
Little consideration was given as to how the smoothing operation could have biased the results of
the study. The very sharp, narrow, high intensity scattering peaks present in the vertical intensity
transects could have been completely smoothed out. Even if the size of the moving average filter
(9 pixels) was appropriate in this case, there is no guarantee that it will be for other cases. A
range of other techniques exist, such as local, wavelet and kernel regression that are adaptive
to the structure of the data set (Loader 1999; Ruppert, Hand & Carroll 2003; Vidakovic 1999;
Wand 1995; Simonoff 1996). These techniques could have been explored and would have been
more useful (than a fixed size filter) in preserving the structure of the transect.
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3.3.2 Automated Feature Extraction using Wavelets: Erickson 2005

3.3.2.1 Overview

Erickson (2005) investigated the diagnosis of breast cancer using features extracted from the dis-
crete wavelet transform of SAXS images. An accurate diagnostic model (perfect classification
in some cases) was developed by examining the information present in the images over different
scales of resolution (Erickson 2005). A total of 49 SAXS images of normal, benign and malig-
nant breast tissue (20 normal healthy-labeled ‘N’, 7 benign-labeled ‘F’ and 22 malignant-labeled
‘T’ in the original work) were decomposed using the separable two-dimensional discrete wavelet
transform into a set of coefficient matrices that described each image at different scales (resolu-
tions) and directions.

The two-dimensional separable discrete wavelet transform is defined for a square digital im-
age, I(x, y), for a total of J resolution bands as,

I(x, y) =
nJ∑

k1=1

nJ∑

k2=1

cJ,k1,k2φJ,k1,k2(x, y) +
3∑

l=1

J∑

j = 1

nj∑

k1=1

nj∑

k2=1

dl
j,k1,k2

ψl
j,k1,k2

(x, y) (3.2)

where n1 is the number of rows of the image I(x, y) being analysed and the number of rows
and columns of the wavelet coefficient matrices at each resolution level is given by nj = n1

2j

(adapted from page 157 Vidakovic 1999). The discrete wavelet transform described the image
in terms of a set of coefficient matrices

{
CJ,k1,k2 ,D

1
j,k1,k2

,D2
j,k1,k2

,D3
j,k1,k2

}
indexed by scale

parameter j = 1, 2, . . . , J , direction index l = 1, 2, 3 and location parameters (k1, k2). The
direction indices are correspond to the l = 1 for vertical, l = 2 for horizontal and l = 3 for di-
agonal directions. The coefficients were found by projecting the image onto the basis functions,
{
φJ,k1,k2(x, y), ψ1

j,k1,k2
(x, y), ψ2

j,k1,k2
(x, y), ψ3

j,k1,k2
(x, y)

}
using the inner product. In practice,

the coefficients were calculated rapidly using a digital filter bank. (page 310-311 Mallat 1998).
Selection of a particular set of filter bank coefficients corresponds to specifying a particular basis
for the wavelet transform. The Haar, Daubechies (Db) and biorthogonal (Bior) bases were used
in the discrete wavelet transform (equation 3.2) of pre-processed versions of the SAXS images
(Erickson 2005). This pre-processing step involved the application of several binary circular
masks of radii 50, 100, 150, 190 and 215 pixels respectively. These masks were designed to
supress particular regions of the image (by setting them to zero) whilst preserving other regions
(by leaving these regions unchanged).

Following the application of the discrete wavelet transform, a range of features were pro-
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posed including mean value (D l
j,k1,k2

), the standard deviation (σ(Dl
j,k1,k2

)) and the energy of the
power spectrum (Al) of each coefficient matrix of each of the coefficient matrices Dl

j,k1,k2
, (l ≡

v, h, d), as well as a feature based upon the sum of the intensities in the upper quadrant of
the SAXS image (Erickson 2005). This feature was found by summing the sums of the in-
tensity values along each x and y co-ordinates in the upper-quadrant of the image, that is,
F = (

∑N
i=1 I(x, y)x,y εO) where O is a set specifying the N pairs of x and y indices of the

intensity magnitudes to be summed in the calculation of this feature.
A preliminary experiment was performed to determine which one of these four features

should be examined further (Erickson 2005). The wavelet basis, mask, tissue group contrast
and combination of features were all constrained (the particular constraints were a biorthognal
3.7 filter, no mask, ‘normal healthy’-‘malignant’ samples only), no optimisation of features used
was allowed. A naive Bayes’ classifier was fit to a range of combinations of mask, filter and
classifier, with the leave-one-out cross-validated error rate used as an assessment of model fit.
The classification rates of each feature were compared and the most accurate model was used to
select the feature ‘type’ for further study. The mean intensity of the wavelet coefficients (D l

j,k1,k2
)

provided the greatest accuracy (98%) and all subsequent analyses only considered this ‘type’ of
feature (Erickson 2005).

All combinations of wavelet filter and mask were then considered subject to the constraint
that only samples from the ‘normal healthy’-‘malignant’ groups were compared. Several basis-
mask combinations were short-listed for further analysis based upon their classification per-
formance. Similar experiments to determine the optimum wavelet basis-mask combinations
were performed for the ‘normal-healthy’-‘benign’ and ‘benign-malignant’ tissue group contrasts,
again several filter-mask combinations were short-listed based upon their classification perfor-
mance. The classification rates of the most promising basis-mask combinations were then com-
pared for all three pairs of contrasts, ‘normal healthy’-‘malignant’, ‘normal-healthy’-‘benign’
and ‘benign-malignant’. Three combinations were very competitive: (Daubechies wavelet Db4-
50 pixel radius mask, Bior3.7-100 pixel radius mask and the Bior3.7-190 pixel radius mask)
(Erickson 2005). The three-group classification rates were 90 % for the Db4-50 pixel, 88 % for
the Bior3.7-100 pixel, 86% for the Bior3.7-190 pixel combination (Erickson 2005). A total of
four features was used for Db4-50 pixel, five features for the Bior3.7-100 pixel and one for the
Bior3.7-190 pixel models (Erickson 2005). In the final assessment the Bior3.7-190 pixel model
based upon the D

d
7,k1,k2

feature was used because it minimised the number of features used in
the classification model. The Db4-50 pixel model using the

{
D

v
1,k1,k2

,D
v
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,D
v
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}

features was also recommended when the optimum diagnosis of samples belonging to the benign
group was of paramount concern (Erickson 2005).



42 CHAPTER 3. PREVIOUS SAXS RESEARCH ON CANCER DIAGNOSIS

Despite the very good classification results of Erickson’s (2005) study there are a number of
issues worthy of constructive criticism:

a) There was a lack of a proper statistical design of the classification experiments.

b) Only a limited amount of information in each image was used for classification.

c) Model features were poorly specified.

d) Two group classification was used as a proxy for three-group classification performance.

e) A penalty was not used when comparing models with a different number of parameters.

f) The variability of the model accuracy estimates was not accounted for when comparing
models.

A selection of the above points (a)-(f) is elaborated on in further detail.

3.3.2.2 Lack of Statistical Design

The model selection process in Erickson’s (2005) work was empirical, a statistical experiment
design was not used. A very large number of models were fit in Erickson’s (2005) study and a
carefully designed experiment might have reduced the number of models fit or provided a more
robust understanding of the treatment (features, bases, masks) effects. The preliminary study
conducted by Erickson (2005) in order to determine the ‘type’ of feature to study is not convinc-
ing. No consideration was given to possibility that the cross-validated model results might be
influenced by the constraints put in place. Erickson (2005) fixed a basis, the biorthogonal 3.7
basis and concentrated on the ‘normal healthy-malignant’ contrast. Later experiments focused
on models designed to provide the best basis-mask combination. It was no surprise that the
biorthogonal 3.7 basis featured in the top three models found and that best classification results
were achieved for the ‘normal healthy-malignant’ contrast. A well planned statistical experimen-
tal design could have been used and might have negated the need for a preliminary experiment
(Atkinson, Donev & Tobias 2007).
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3.3.2.3 Poor Feature Specification

Erickson (2005) defined new diagnostic features, some of which may have been a poor choice.
The mean of the wavelet coefficient matrix feature, D

l
j,k1,k2

, was designed to describe the ‘tex-

ture’ of each wavelet coefficient matrix (page 55, Erickson 2005). The notion of ‘texture’ was not
defined and it can only be assumed that Erickson (2005) was referring to texture as the higher-
order (2-4) moments of the probability density function of the intensity values in the image (pages
596-597, Rangayyan 2005). It is hard to understand how the mean value of the wavelet coeffi-
cients could be used to capture these higher-order correlations. In fact, it is surprising that this
feature is useful for classification at all. The density of wavelet coefficients of an image within
a band (matrix) of the transform is often symmetric and centered on zero (Simoncelli 1999).
Therefore it is very surprising that differences were detected in each tissue group using this fea-
ture. Numerical or graphical summaries of the magnitude of each feature were not provided. The
data used by Erickson (2005) was available and the confidence intervals of the wavelet coeffi-
cient energy statistics for the Db4 basis were calculated. Table 3.2 displays the estimates of the
95 % confidence intervals of the wavelet energy features for the three highest resolution levels
of the transform, lower resolution levels were also found to be centered around zero. Inspecting
these intervals across tissue groups for each feature suggests little if any diagnostic information
is contained within the mean of the wavelet coefficient feature. Based upon these results it seems
unlikely that accurate classification would be achieved when the model based upon the wavelet
mean energy feature is applied to independent test data.
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Feature Normal Benign Malignant
D

v
8 [0.08,1.26] [-0.34, 1.82] [0.08, 1.30]

D
h
8 [-1.05, 1.32] [-1.42, 2.19] [-1.19, 1.49]

D
d
8 [-0.25, 0.25] [-0.23, 0.20] [-0.27, 0.22]

D
v
7 [-0.92, 1.85] [-0.84, 2.38] [-0.07, 3.26]

D
h
7 [-5.13, 3.64] [-9.06, 7.27] [-4.44, 2.24]

D
d
7 [-0.47, 0.53] [-0.46, 0.10] [-0.65, 0.93]

D
v
6 [-5.01, 3.32] [-1.97, 0.72] [-1.85, 5.42]

D
h
7 [-8.37, 4.65] [-4.09, 3.00] [-8.56, 2.14]

D
d
6 [-1.66, 0.80] [-1.30, 0.42] [-1.64, 0.78]

Table 3.2: 95 % confidence intervals of SAXS image mean wavelet coefficient features for scales
j = (6,7,8) as determined using the same data as Erickson (2005) and the Daubechies wavelet
basis with four vanishing moments.

The standard deviation of the wavelet coefficients, σ(D l
j,k1,k2

), was designed by Erickson
(2005) to represent the ‘surface energy’ of each matrix, but again the term surface energy was
not defined (page 55, Ericskon 2005). The notion of surface energy may refer to the integral of
a two-dimensional function E =

∫ +∞
−∞

∫ +∞
−∞ f(x, y) dx dy, which in practice is approximated by

the discrete sum of the squares of the pixels or coefficients (see page 10 and page 14 Mix & Ole-
jniczak (2003) for a discussion of energy in relation to one-dimensional signals) . For the wavelet
coefficient matrices, the surface energy would then be defined as E l

j =
∑N

k1=1

∑N
k2=1(D

l
j,k1,k2

)2

for fixed fixed scale, j and direction parameter, l. The standard deviation σ(Dj,k1,k2) of the
wavelet coefficients feature clearly does not match well with the more conventional definition of
surface energy E l

j . Unfortunately, Erickson (2005) did not explain how the standard deviation
of the wavelet coefficients can capture surface energy in sufficient detail for further comment.
It is difficult to understand how the standard deviation of the wavelet coefficients can accurately
describe the data. The literature states that the density of the wavelet coefficients within a scale
and direction resembles a Laplace distribution (Simoncelli 1999). This distribution has a sharp
central spike and very long tail. In general the Laplace distribution has non-zero higher-order
(n > 3) cumulants, yet the standard deviation only describes the second-order statistics of the
data. Clearly, the standard deviation feature is insufficient to capture all of the information con-
tained within the wavelet coefficients.

The area under the power spectrum of the wavelet coefficient matrix feature, Al
j , was de-

signed to represent the spatial frequency information in the wavelet coefficient matrices (page 56
Erickson 2005). The mapping from the power spectrum to the feature value is not unique. Two
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completely different power spectra might have the same feature value. For instance, imagine
two power spectra that consist of a series of 4 vertical lines to the left and to the right of the
zero frequency {Kx, Ky = (0, 0)}. The first power spectrum contains vertical lines that increase
in magnitude away from the centre, describing a image that has more dominant higher spatial
frequency information. While the second power spectrum has vertical lines that decrease in mag-
nitude away from the centre and thus has more dominant lower spatial frequency information.
Both of these spectra will have the same ‘area’ feature value, yet they differ considerably in the
spatial frequency information that they describe.

The sum of the intensities feature was used to compress but still represent the information in
the SAXS images (page 59, Erickson 2005). This feature was used as a benchmark to compare
the performance of the wavelet classification algorithms. Again the features do not correspond to
a unique arrangement of the SAXS images which is undesirable for general purpose applications.

3.3.2.4 Classification Bias

The models in Erickson’s (2005) research were developed with the ‘normal healthy-malignant’
contrast in mind, priority was given to features that separated these two tissue groups at the cost
of the others. The importance of separating these two groups is well-founded but the ‘benign-
malignant’ contrast seems equally if not more important. Erickson (2005) assessed model per-
formance using two group contrasts assuming that this would translate to good representations
of three group contrasts. This is not necessarily true, for instance a feature set could have been
very good at separating ‘normal healthy-malignant’ groups but have been very poor at separating
the ‘normal healthy-benign’ groups. The summary of classification results in Table 5.7, page
81 Erickson (2005) might indicate this problem. The Bior-190 pixel radius mask model had
perfect classification of the normal and malignant groups, but failed to classify a single benign
sample. Four out of the seven benign samples were classified as malignant and three as normal
healthy. Similar problems exist for the other two competing models, for instance the Daub4-50
pixel radius mask model classified only two benign samples correctly. Models examining all
three groups should have been compared or at the least a model should have been constructed by
selecting features designed to provide optimum results for each contrast.
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3.3.2.5 Variability in the Estimates of Accuracy

Leave-one out cross-validation produces estimates of model accuracy that are biased and have
a large variance (pages 215-216, Hastie, Tibshirani & Friedman 2001). This problem did not
appear to factor into Erickson’s (2005) comparison of competing models. For instance in the
preliminary experiment designed to select feature ‘type’, the mean of the wavelet coefficient
matrix features produced a model with 98 % accuracy (Erickson 2005). In contrast, the area
under the power spectrum of the wavelet coefficient matrix feature produced a model with 93
% accuracy (Erickson 2005). Therefore, the mean of the coefficients model classified two more
samples correctly than the model based upon the power spectrum feature (the 42 samples result
in a resolution of approximately 2 % per sample). There are a finite number of samples in the
data, so that even if a perfect estimate of accuracy was found the estimates could only be deter-
mined to be within the intervals of 96-100 % and 91-95 % accuracy respectively. Incorporating
the additional uncertainty associated with the leave-one out estimates would have made evidence
of a difference between the models even less likely. Calculation of confidence intervals of model
accuracy that account for all forms of uncertainty in the estimate would have been far more ap-
propriate and would have provided a greater understanding of the performance of the competing
models.
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3.3.3 Generalised Linear Models & Wavelet Coefficient Energies:
Falzon et al 2006
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Figure 3.5: Analysis of Wavelet Coefficient Energies of SAXS Images: (a) Regions (black rect-
angles) extracted from the wavelet coefficient matrices (b) Confidence intervals of the features
with respect the three tissue groups (Falzon et al 2006).

Falzon et al (2006) investigated the use of the wavelet transform of SAXS images further
to diagnose breast cancer. The objective of the study was to determine the key regions in the
wavelet coefficient matrices useful for diagnostic purposes. Exploratory data analysis combined
with two-sample Kolmogorov-Smirnov tests identified that the majority of wavelet coefficient
matrices contained features that separated the three tissue groups. Energy features (sums of
squares of the wavelet coefficients) were extracted for those coefficients associated with col-
lagen structure. A total of 49 features were extracted that were associated with the scattering
rings along the meridian and equator of each SAXS image. Figure 3.5(a) displays the regions
in the wavelet coefficient matrices that were extracted for this task as black rectangles. The
confidence intervals for selected features with respect to the three tissue groups are displayed in
Figure 3.5(b). The features are indexed by level, direction and location, for instance the symbol
‘L6H5ax’ indicates the sixth resolution level (L6) in the horizontal direction (H) for the locations
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associated with the 5th axial peak ‘5ax’. Significant differences between the tissue groups were
evident in many features such as L6H3ax and L8H5ax. Projections were then found from a linear
combination of the 49 features that mapped the data onto two discriminant vectors using a vari-
ant of discriminant analysis (termed projection pursuit discriminant analysis) that is described
by Lee et al (2005). The three groups were separated into distinct clusters that were associated
with tissue group and another pair of discriminant vectors was found that described a trend from
‘normal-healthy’ to ‘benign’ to ‘malignant’.

3.3.3.1 Constructive Criticism of the work of Falzon et al (2006)

The work of Falzon et al (2006) provided firm statistical evidence of a link between wavelet
coefficient energy, collagen structure and tissue pathology. A rapid, automated feature extraction
process was developed as an alternative to both the models of Butler et al (2003) and Erickson
(2005). The model produced by Falzon et al (2006) had a considerable advantage over these
other two models because it summarised a large amount of information across the scales of the
wavelet transform and compacted it into two vectors. Despite the improvement over previous
models there are inherent limitations in the study of Falzon et al (2006). These limitations
include:

a) Only the Daubechies family of wavelet bases were included in the study.

b) Primitive feature extraction techniques were used.

c) A classification model was not developed and estimates of classification accuracy were not
reported.

d) A limited amount of image information was extracted.

e) Non-linear dependencies and interactions between features were ignored when searching
for useful discriminant vectors.

Selected issues from items (a)-(e) above are discussed in further depth.
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3.3.3.2 Limited Family of Wavelet Bases

Only the Daubechies family of wavelet bases were included in the study. A large range of alterna-
tive bases exist that may have enhanced the separation of the tissue groups. Greater efficiency or
discriminatory ability might have been achieved using alternative custom-designed bases tailored
to the problem at hand.

3.3.3.3 Feature Extraction

Specific wavelet coefficient energy features were found by defining a ‘box’ around the location
of the wavelet coefficients of interest (as in Figure 3.5(a)). Although the technique was effec-
tive, it was fundamentally a primitive method of feature extraction. Greater scope exists for the
development of more sophisticated, targeted feature extraction techniques.

3.3.3.4 Linear Models

Projection pursuit discriminant analysis, was used to project the data from the 49 features onto
two discriminant vectors (Lee et al 2005; Falzon et al 2006). These discriminant vectors clus-
tered the data into three distinct groups associated with tissue pathology. The data appeared well
separated visually but a classification model and the resulting accuracy estimates were not re-
ported. The discriminant vectors manage to capture key linear dependencies in the data but they
could not capture any non-linear dependencies that might have been present. Identification of
any such non-linear dependencies could have provided additional insight into the structure of the
data set.
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3.3.4 Section Summary

Image analysis combined with statistical modeling is an alternative method to achieve breast
cancer diagnosis using SAXS data. To date, this approach has produced some of the most so-
phisticated models and the most accurate results. Model selection, feature identification and the
accuracy of image classification using these techniques are challenges that have been met but
there is little consensus among researchers about the best approach to use. The three studies
(Butler et al (2003); Erickson (2005) and Falzon et al (2006)) that were reviewed in this section
suffer from fundamental limitations, the most concerning of which include model over-fit, biased
model assessment and a poor choice classification features. Overall, there is still some evidence
(from these studies) that a good diagnostic model of breast cancer can be produced using statis-
tical image analysis techniques. The multi-scale approach using wavelets has been a component
of models in two different projects and is believed to produce good results. A wide range of other
techniques that model different aspects of the image will be reviewed in the next chapter.

3.4 Chapter Summary

The analysis of breast tissue SAXS images fall into two distinct camps. The first is the devel-
opment of diagnostic models based upon the features related to a physical model of collagen
structure, whilst the second focuses upon more automated techniques that incorporate a range
of features that may or may not be readily identified with the structure of collagen. The first
approach allows interpretation of the features in terms of the current understanding of collagen
structure but this approach is very application dependent and often requires the reduction of the
image data to one-dimension, followed by fitting of a model that smoothes the intensity profile
and requires the laborious extraction of classification features. The second approach incorpo-
rates a wider variety of image information but it is (at present) difficult to interpret in terms of
the structure of collagen and there is little consensus among researchers upon the most appro-
priate model to adopt. One of the greatest problems common to many of the research projects
reviewed in this chapter is that a vast number of statistical tests were performed. This is not an
economical or efficient approach and all of the features considered to date have lost some of the
information present in the images. A unified approach to the analysis of SAXS images is needed
and a image model might offer a solid framework to build on.




